

IBM ATS PSSC Products & Solutions Support Center

Make the Best of your POWER5 Using APV

(Advanced POWER Virtualization)

Patrick Mensac / Francois Martin

July 23, 2007

© 2005 IBM Corporation

Dedicated and Virtualized Environments Considerations

- This demo is an example of how Virtualization and APV features allow you to optimize your POWER5 system resources usage
- It is based on a p570 system hosting an Oracle Application.
 - How to optimize system resources usage?
 - Dedicated versus virtualized environment ?
 - What about High Availability ?

- Using unused resources for another Partition
 - We don't want any kernel dependancy
 - No performance interaction between applications
 - Separated downtime when lpar shutdown
 - Isolated software and Administration tasks

Demo Scenario

- Run Swingbench in the Dedicated environment, check CPU consumption and Application throughput (Number of Transactions per Minute)
- Run the same application in a virtualized infrastructure (Virtual SCSI and Virtual LAN), check CPU consumption and Application throughput
- Get unallocated CPU resources for a new Shared Processor type partition for running another application
- Show the virtualized resource implementation, and availability solutions for VSCSI and VLAN

Production running on dedicated environment

Step 1 : Dedicated Logical Partition : apv_dedprod

p570 hardware and Availability

What is idle CPU?

ATS PSSC

Unused CPU Capacity is :

= Number of physical Processors * (idle + wait)

Shared Processor Pool

ATS PSSC

7

CPU Virtualization

ATS PSSC

SPLPAR

Solution 1: CPU Virtualization Shared Processor Logical Partition

Uncap is better if OLTP load

Averaged output

- OLTP is not a constant load
- Uncapped mode absorbs CPU peaks

Solution 2 : Advanced Power Virtualization is...

Shared Processor Partition (Micro Partition)

> New micro-partition requires additional adapters and PCI slots

...and Virtual I/O Server

ATS PSSC

Virtual SCSI Protocol and Shared Ethernet Adapter (SEA)

- > Share physical SCSI and Ethernet Adapters between Client partitions
- > Use 2 VIO Servers for High Availability

Building Virtualization

APV

Virtual IO Server and High Availability

- Allocate existing I/O devices (SCSI and Ethernet adapters) to Virtual I/O Server partitions
- Share physical resources with client partitions.
 - > Define Virtual SCSI adapters
 - > Define Virtual Ethernet adapters
 - > Define Shared Ethernet adapter for external access
- Virtual SCSI availability

ATS PSSC

- > with redundant Virtual I/O Servers and LVM mirroring at the Client partition
- VLAN high availability

13

- > With redundant virtual I/O Servers and Shared Ethernet Adapter Failover feature
- Note : Migrating from a physical SCSI disk to a virtual SCSI device is not supported at that time.
 - > Virtual scsi devices are new devices when created.
 - > Backup/restore needed after creation

Sharing Resources

ATS PSSC

SPLPAR & VIOS

Virtualizing Partition

SPLPAR & VIOS

Virtualization and High Availability

SPLPAR & VIOS

VSCSI Protocol and AIX Mirroring for disk redundancy

Basic SEA Failover Configuration

ATS PSSC

Dedicated

Let's perform the Demo

Virtualized and Optimized

