

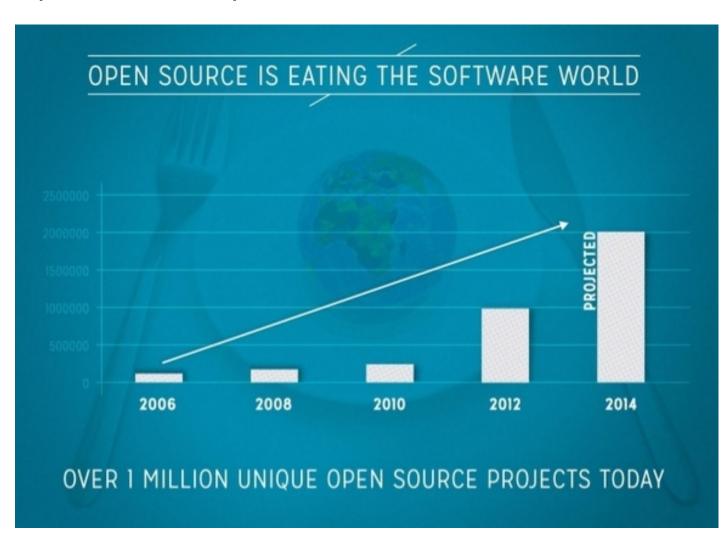
IBM Power Systems: "Linux on Power"

A journey to "open-innovation"

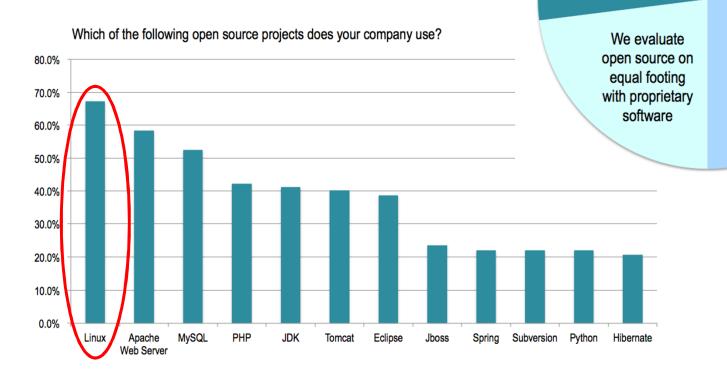
Open-Source Phenomenom

open source

development



The Open-Source Explosion

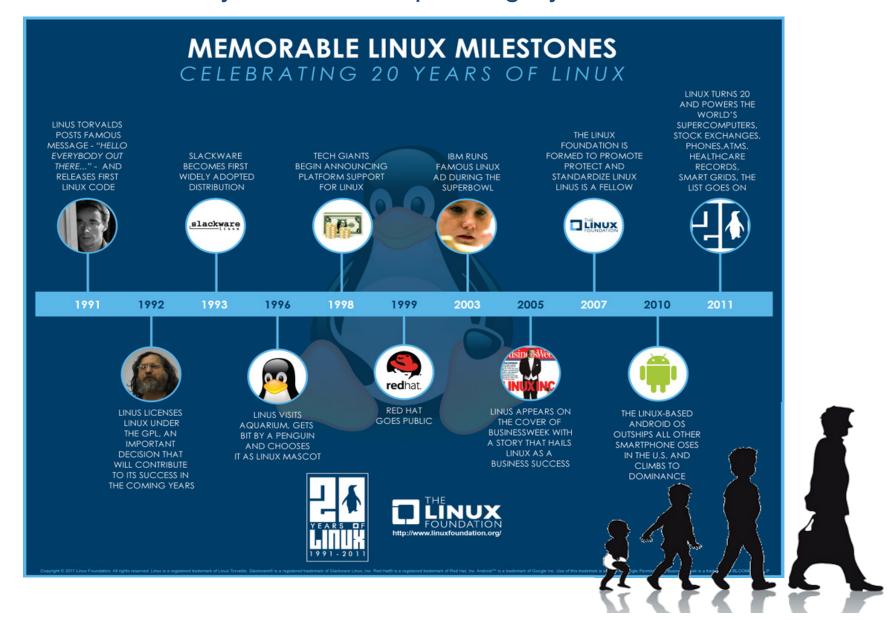


Open-Source in Enterprise

"Linux becomes strategic in the Enterprise to support Open-source project"

What is your company's stance toward open source software?

We prefer proprietary software or don't use open source


We always use or prefer open source software

http://www.openlogic.com/wazi/bid/187999/Survey-Shows-Enterprise-Open-Source-Usage-Ubiquitous

The LINUX History – a Mature Operating System

Few Interesting Facts About Linux

linux

Linux is the world's fastest growing Operating System

- Over 90% of world's fastest supercomputers, run on Linux
- 8 of the world's top 10 websites run on Linux (Google, YouTube, Yahoo, Facebook, Twitter)
- 80% of All Stock Exchanges in the world rely on Linux
- 95% of the servers used by Hollywood animation films run on Linux
- US Department of Defense is the "single biggest install base for Red Hat Linux" in the world

Enterprise Linux is growing with new types of workloads

Big Data, Analytics and Cognitive Computing

IBM is focused on providing a NEW winning solution:
Linux on Power Systems

IBM is heavily invested in the success of Linux

100% of our systems (since 2001)

400+ software products

500 patents donated

_____ developers

... to support the Open Source Community

Customers Are Faced With Traditional Data Centers And Driving Innovation

Optimization

Reduce Cost & Minimize Risk

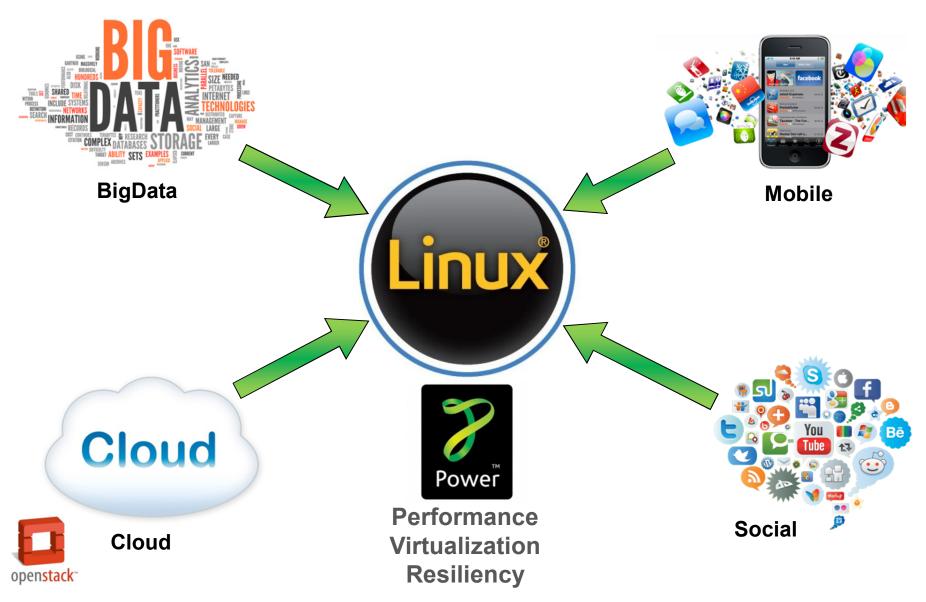
Innovation

Rapidly Add New Business Value

Traditional Data Centers that focus on Optimization of Operational Costs

- Consolidation (solutions & infrastructure)
- Transactional Integrity
- Data Protection
- "Traditional" Analytics
- Qualities of Service

New Data that are focused on <u>Speed and</u> <u>Agility</u>


- Linux and Open Solutions
- Cloud Computing
- Fast development and deployments
- · Big Data
- Cognitive Computing

Power Systems More Than Meet These Challenges With Two Approaches (AIX and Linux)

Offering the POWER advantage to emerging Linux Workloads

April 2014: IBM Solutions based on Power System

Big Data & Analytics

Enhanced: IBM Solution for BLU Acceleration: Power Systems Edition

Highly scalable with Capacity on Demand for non-disruptive upgrades

NEW: IBM Solution Hadoop: Power Systems Edition

Storage-dense, optimized platform to simplify & accelerate big data analytics

NEW: : IBM Solution for Analytics: Power Systems Edition

50x faster reporting and analytics

Cognos Business Intelligence

SPSS predictive analytics

DB2 BLU for data warehouse

Mobile

Cloud

NEW: Mobile Scale Out Sales Offering with Worklight & WebSphere Application Server

Efficiently develop, test, connect, run, and manage mobile and omni-channel applications

Private Cloud: Update: Solution Edition for Cloud

Open source Linux solution for scale-out cloud servic

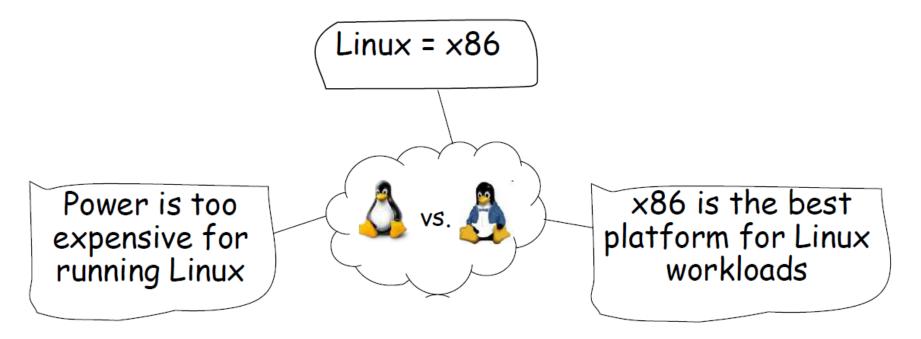
Public Cloud: NEW: Solution Edition for Scale out Cloud

Pre-installed entry cloud system offers ability to get up and running in a day

Hybrid Cloud: NEW: SmartCloud Entry for Power Systems

Next Generation with OpenAPIs delivers open alternative

= Linux-focused solutions


Public Cloud: Update: Power Systems Solutions for Service Providers

Enhanced with new POWER8 scale-out configs, PowerK support, PowerVC enhancements and PAYG+

The Linux myths

So why Linux on Power System?

Power Architecture is Purpose Built

x86	Power
Design point is for multiple markets - Smart Phones, Ultra Books, Desktop, Servers	Design point is "purposeful" for new and existing Enterprise workloads (Analytics, Big Data, OLTP, ERP, SAP, etc.)
Design Goal: Increase the number of cores supported per server	Design Goal: Increase the performance per core while reducing the cost per workload
Optimizations: Limited to processor only	Optimizations: Integrate processor micro-architecture with hypervisor, OS, IBM middleware and IBM storage

- ⇒ Higher Performance per Core = less software licenses needed to accomplish the same amount of work
- ⇒ Less software licenses = lower cost per workload

POWER8 – Continued Leadership (what you expected)

More Cores

Industry Best Practice

More Threads

Industry Leading

<u>12 processor cores</u> per socket (50% more than before) that deliver better per core performance

What this means

Enjoy better scale up performance, and more throughput per scale out server node.

SMT8 – 8 dynamic threads per core, supporting SMT1, 2, 4, & 8 modes dynamically across VMs

What this means

You choose – Deploy VM's in the optimal SMT mode based on application needs.

More Cache

Industry Leading

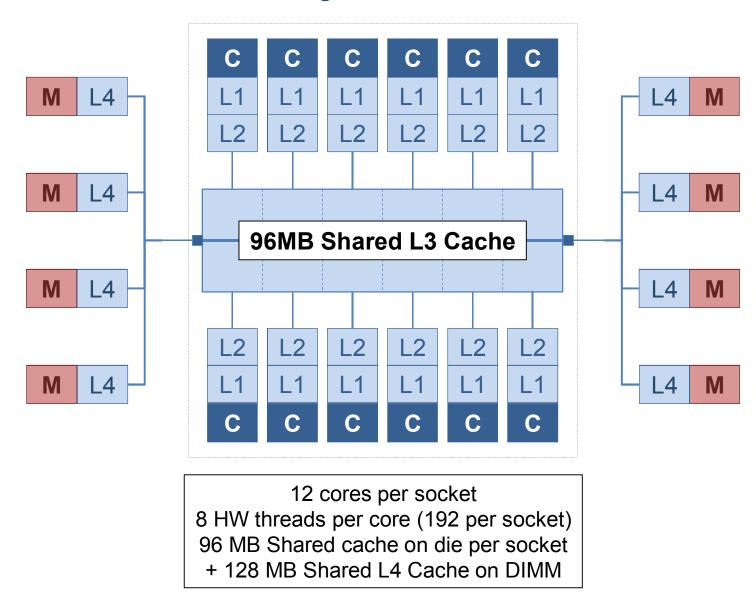
More Bandwidth

Industry Leading

At 100MB, 3X the on-chip cache as POWER7 – plus 128MB of new off-chip cache as well

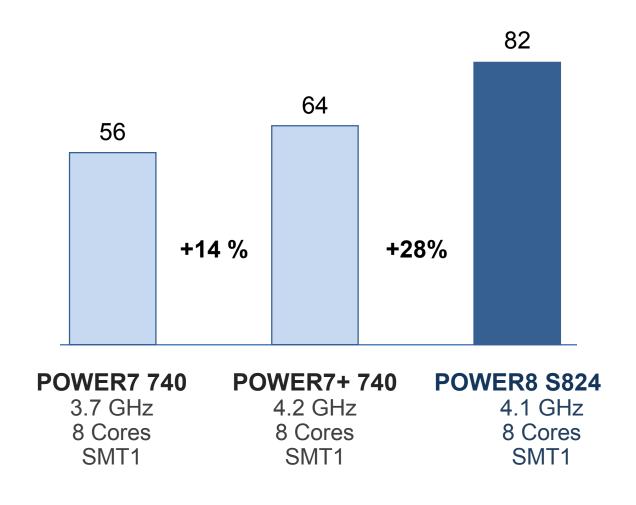
What this means

Memory-intensive applications (like database) will perform better as memory latency is reduced

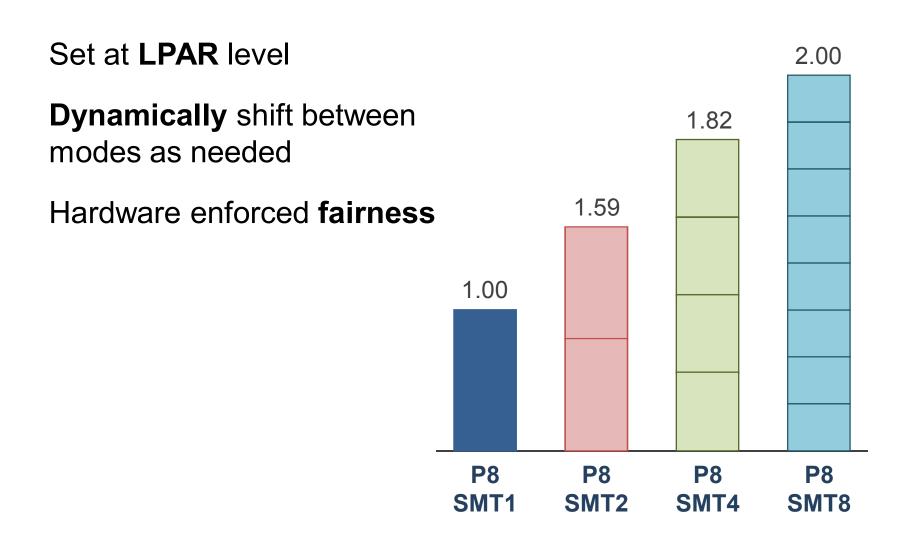

2.3X our prior gen to memory, and 2.4X our prior gen to I/O.

What this means

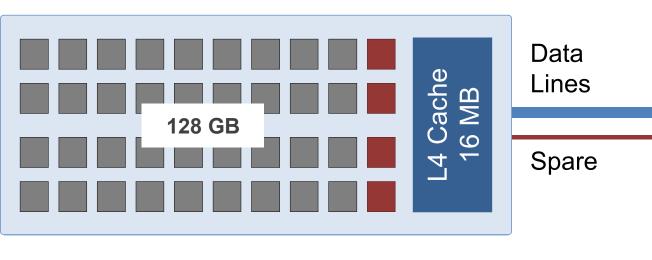
Data-hungry applications (like big data & analytics) will respond twice as fast and scale more efficiently.



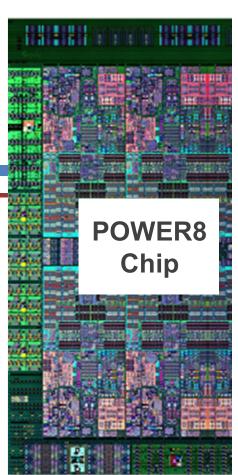
POWER8 Cache: Close, Big, and Smart


Single Thread Performance* is Increasing

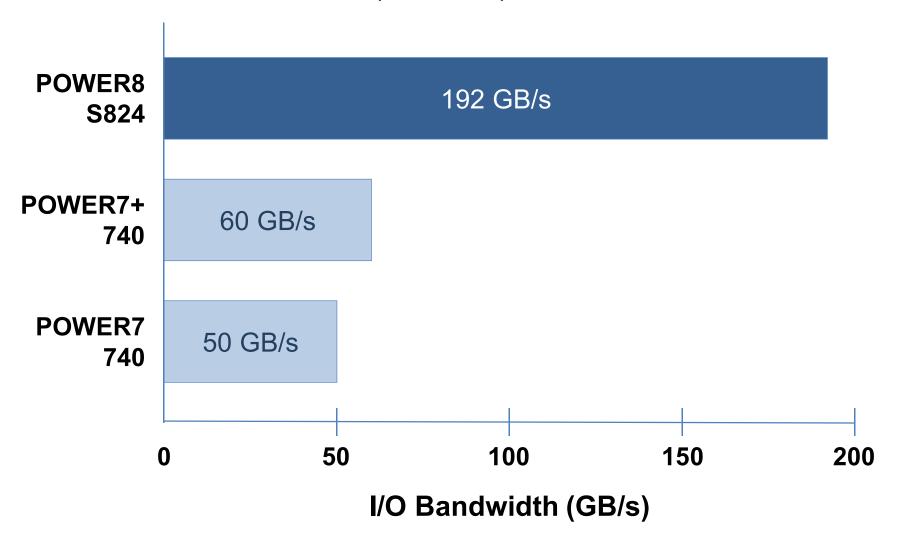
^{*}Performance measured in rperfs



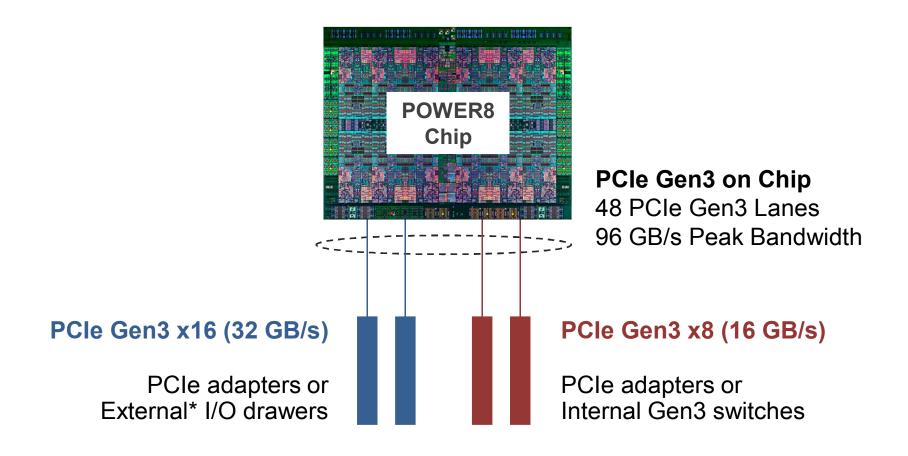
Threading to Match Workload Needs



POWER8 Memory - Extends Memory RAS to Scale Out



- 16 MB L4 per DIMM (128 MB per socket)
- 128 GB DIMM max (1TB Mem per socket)
- 192 GB/s sustain Bandwidth per socket (230 for HE)
- Distributed ECC and spare DRAM chips
- Spare bus lines
- Buffer allows for future DDR4 memory



Max Peak I/O Bandwidth (2-Socket)

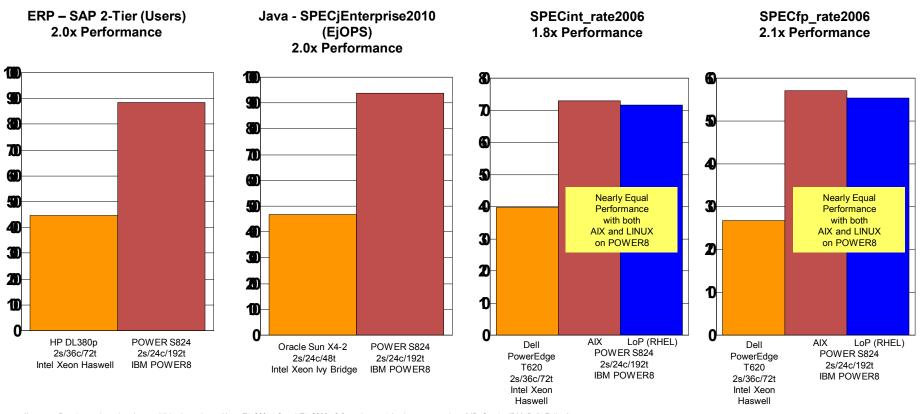
POWER8 I/O Architecture for Scale Out

^{*} External I/O drawers have not yet been announced.

Cache, Bandwidth and Threading per socket

Chip Family	Cache per Core (MB)	Memory Bandwidth per Socket	Peak I/O Bandwidth per Socket	Threads per Core
Intel EN E5-v2 (8+ core)	2.81	38.4 GB/s *	48 GB/s	1, 2
Intel EP E5-v2 (8+ core)	2.81	59.7 GB/s * 80 GB/s		1, 2
Intel EP E5-v3 (8+ core)	2.81	68.3 GB/s *	80 GB/s	1, 2
Intel E7-v2 (8+ core)	2.81	85 GB/s **	64 GB/s	1, 2
POWER8 (8+ core)	8.6***	192 GB/s 230 GB/s	96 GB/s	1, 2, 4, 8

^{*} NO RAS features


^{**} Results must be divided by 2 when RAS is enable

^{***} Internal Cache (L1,L2,L3). 19.2 MB if we add L4 cache

Up to TWICE the performance per core across key workloads compared to the top 5 Intel vendors

- Results are based on best published results on Xeon E5-2697 v2 and E5-2699 v3 from the top 5 Intel system vendors (HP, Oracle, IBM, Dell, Fujitsu).
- 2) SAP results are based on the two-tier SAP SD standard application benchmark running SAP enhancement package 5 for the SAP ERP 6.0 application. Results valid as of September 8, 2014. Source: http://www.sap.com/benchmark
 - SPECiEnterprise2010 results are valid as of 9//8/2014. For more information go to http://www.specbench.org/jEnterprise2010/results/
- 4) SPECcpu2006 results are submitted as of 9/8/2014. For more information go to http://www.specbench.org/cpu2006/results/

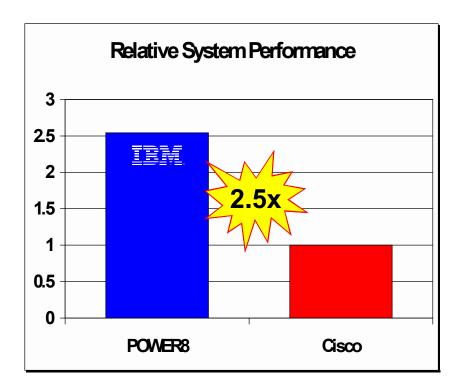
POWER8 vs. Intel x86 Benchmark Results

Benchmark	x86	Results	POWER8	Results	Ratio
Benomiark	AUU	Results	1 GIVEIX	Results	- Tatio
Oracle eBS 12.1.3 Payroll	Cisco UCS C240 M3 E5-2697 v2 24 Core Ivy Bridge	1,017,639	IBM S824 12 Core	1,090,909	2.1 X
SAP SD 2-Tier ERP 6	Fujitsu RX300 S8 E5-2697 v2 24 Core Ivy Bridge	10,240	IBM S824 24 Core	21,212	2.1 X
Siebel CRM Release 8.1.1.4	Cisco UCS B200 M3 E5-2690 16 Core Sandy Bridge	10,000	IBM S824 6 Core	50,000	13.3 X

IBM Power System S824 on the two-tier SAP SD standard application benchmark running SAP enhancement package 5 for the SAP ERP 6.0 application; 4 processors / 24 cores / 192 threads, POWER8; 3.52GHz, 512 GB memory, 21,212 SD benchmark users, running AIX® 7.1 and DB2® 10.5, dialog response: 0.98 seconds, line items/hour: 2,317,330, dialog steps/hour: 6.952,000 SAPS: 115,870 database response time (dialog/update): 0.011 sec / 0.019sec, CPU utilization: 99%, Certification #2014016: * Results valid as of 3/24/14. Source: http://www.sap.com/benchmark.

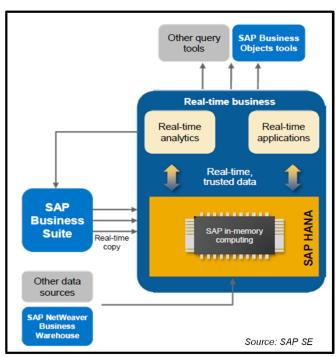
Fujitsu RX300 S8 on the two-tier SAP SD standard application benchmark running SAP enhancement package 5 for the SAP ERP 6.0 application; 2 processors / 24 cores / 48 threads. Intel Xeon E5-2697 processor 2.70 GHz, 256 GB memory, 10.240 SD benchmark users, running Windows Server 2012 SE and SQL Server 2012, Certification #: 2013024

All results use Oracle eBS 12.1.3 Payroll Batch Extra Large Kit and are current as of 3/24/2014. For more information go to http://www.oracle.com/us/solutions/benchmark/apps-benchmark/results-166922.html


All results use Siebel 8.1.1.4 PSPP Kit and are current as of 3/24/2014. For more information go to http://www.oracle.com/us/solutions/benchmark/white-papers/siebel-167484.html

POWER8 delivers 2.5x performance on Big Data / Hadoop

Terasort benchmark on a POWER8 doubles the system capacity of the best x86 published result


- POWER8 S822L will deliver over 2.5x the performance of the best published x86 system
 ... and continues to offer far superior RAS
- POWER8 exploits additional cores, more threads, larger caches, memory bandwidth
- Terasort is a popular benchmark to measure the performance of a Hadoop solution
 - Sorts a large dataset (10 TB) in parallel
 - Exercises the Map-reduced framework and Hadoop Distributed File System (HDFS)

HANA on Power: The next, new Linux workload...

- Accelerated Analytics
 - > Deliver faster insight and manage 'big data'
 - No anticipation of data aggregation and query pre-compilation
- · New Applications and Business Processes
 - Transform "offline" transactions to real-time interaction
 - Improve quality and agility of business
- Logical and physical Simplification
 - Ideally, one consistent data model for OLTP and OLAP
 - No data transformation (ETL)

- June 2014 IBM & SAP joint statement from SAPPHIRE:
 - -"SAP and IBM have a long-standing successful technology partnership, and we are excited about extending that partnership with the Test and Evaluation Program for SAP HANA running on Linux on IBM Power Systems"

Source: http://www.marketwatch.com/story/

sap-fosters-open-ecosystem-for-driving-customer-innovation-2014-06-04

-"SAP and IBM continue to collaborate closely with the intent to enable SAP Hana to run on the IBM Power technology, including Power7+ and the newly introduced Power8 system on Linux."

Source: http://www.itjungle.com/tfh/tfh060914-story03.html

Watch for more details...

Power Systems

Open innovation to put data to work

Power8 server family available in 2014

New Logo & New System Naming

Power Systems (**)

Power Systems

S812L

1-socket, 2U

Linux only

POWER8 processor

CAPI support (2)

Power Scale-out Servers

2-socket, 2U

Up to 24 cores

1 TB memory

Linux only CAPI support (4) PowerVM & PowerKVM

9 PCI Gen3 slot

S822L

POWER8 processor

2-socket, 2U Up to 20 cores 1 TB memory 9 PCIe Gen 3 AIX & Linux CAPI support (4) PowerVM

Power Systems S814

1-socket, 4U Up to 8 cores 512 GB memory 7 PCIe Gen 3 AIX, IBM i, Linux CAPI support (2) PowerVM

1 & 2 Sockets

NEW **Announce** October 6th

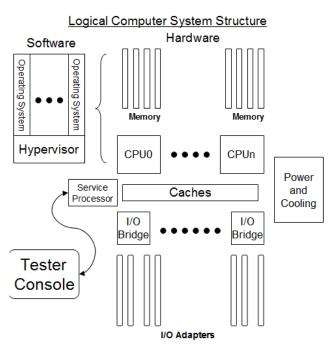
Power Systems S824L

2-socket, 4U Up to 24 cores Linux **NVIDIA GPU** CAPI support(2)

Power Systems S824

2-socket, 4U Up to 24 cores 1 TB memory 11 PCIe Gen 3 AIX, IBM i, Linux CAPI support (4) **PowerVM**

Power KVM

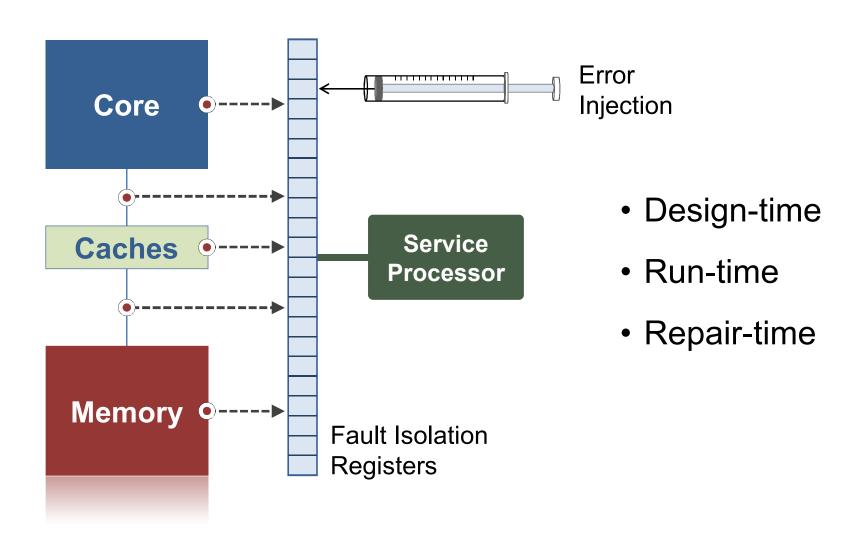


Processor RAS Test Point Comparison - Power Has Significantly More Than Intel

Test Point:

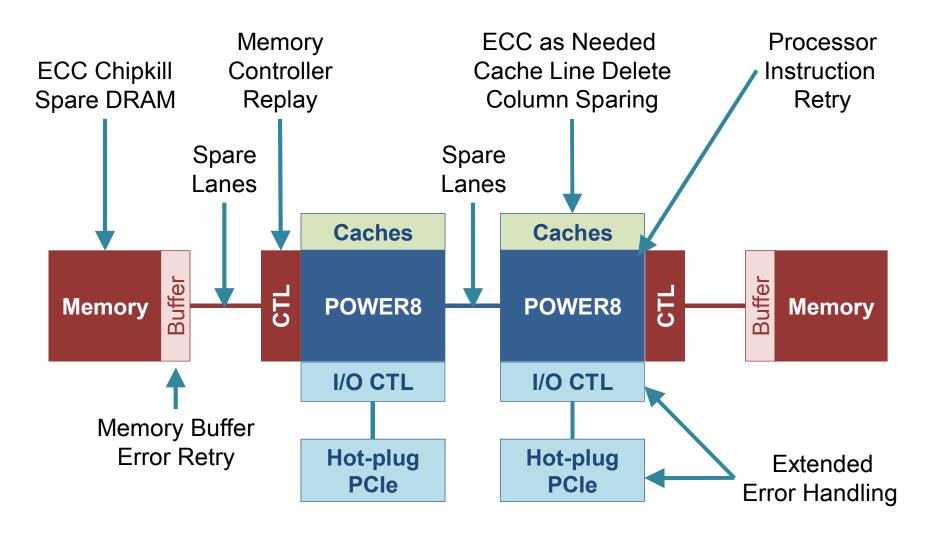
Represents individual failing latches in the hardware and fault isolation summary bits

Test Area	x86 (Ivy Bridge) (Test Points)	POWER 7 (Test Points)	POWER8
Processors and Caches	50+	5000+	6500+
Memory	20+	100+	120+
I/O Bridges	15+	250+	400+
I/O Adapters and Devices	70-100 per adapter and device	70-100 per adapter and device	70-100 per adapter and device
Power and Cooling	10-20	10-20	10-20
Hypervisor and Virtualization	20-30 per hypervisor	100+ for PowerVM	100-120 for PowerVM/ PowerKVM
Service Processor	30+	50+	70+


Additional Differentiators:

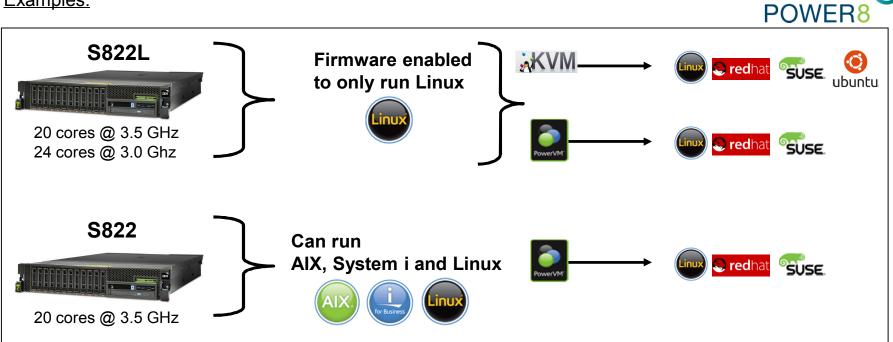
Power Systems Test has more sophisticated RAS tools allowing deeper coverage.

Power System Test 'Must-Fix Criteria' for RAS defects are more rigorous than for x86 servers.



First Failure Data Capture

Resolve Errors Transparently in Hardware


Power System "Classical" vs. Linux-Only server What Is The Difference?

Linux on Power is Linux running on any Power System

- Power8 Linux-Only servers have the same HW, but cannot run AIX or IBMi
 - With a lower cost to the customer for this "bundling"

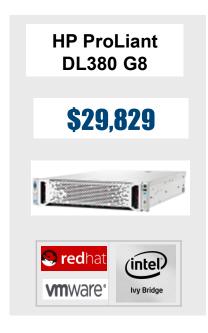
Examples:

Pricing comparison (\$US) – vs. Ivy Bridge

Comparable TCA

Linux on Intel

Ivy Bridge +

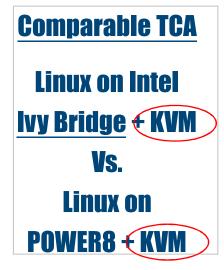

VMware

Vs.

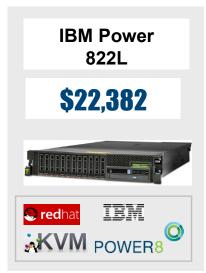
Linux on Power7+

with PowerVM

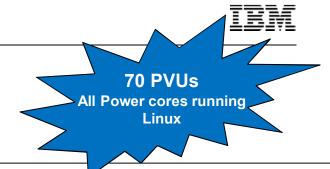
Server list price* -3-year warranty, on-site	\$12,605	\$14,068	\$14,895
Virtualization - OTC + 3yr. 9x5 SWMA	\$10,064 VMware vSphere Enterprise 5.1	\$ 10,064 VMware vSphere Enterprise 5.1	\$9,880 PowerVM for IBM PowerLinux
Linux OS list price	\$5,697	\$5,697	\$4,489
- RHEL, 2 sockets, unlimited guests, 9x5, 3 yr. sub./ supp.	Red Hat subscription and Red Hat support	Red Hat subscription and Red Hat support	Red Hat subscription and IBM support
Total list price: (Total cost of acquisition)	\$28,366	\$29,829	\$29,264


Server model	Dell R720	Dell R720 HP Proliant DL380p G8 Two 2.7 GHz , E5-2697, Ivy Bridge, 12-core processors				
Processor / cores	Two 2.7 GHz , E5-2697, Ivy E		Two 3.4 GHz POWER8, 10-core			
Configuration	64 GB memory, 2 x 300GB	15k HDD, 10 Gb two port		Same memory, HDD, NIC		

^{*} Based on US pricing for Power S822L announcing on April 28, 2014 matching configuration table above. Source: hp.com, dell.com, vmware.com


Pricing comparison (\$US) – vs. Ivy Bridge

Server list price* -3-year warranty, on-site	\$12,605	\$14,068	\$14,895		
Virtualization - 2 sockets, 3 yr. 9x5 sub./supp.	\$2,998 KVM for Red Hat on x86 (RHEV)	\$ 2,998 KVM for Red Hat on x86 (RHEV)	\$2,998 KVM for Linux on Power (PowerKVM		
inux OS list price \$5,697 RHEL, 2 sockets, unlimited uests, 9x5, 3 yr. sub./ supp. \$5,697 Red Hat subscription and Red Hat support		\$5,697 Red Hat subscription and Red Hat support	\$4,489 Red Hat subscription and IBM support		
Total list price: (Total cost of acquisition)	\$21,300	\$22,763	\$22,382		
Server model	Dell R720	HP Proliant DL380p G8	IBM Power 822L		
Processor / cores	Two 2.7 GHz , E5-2697, Ivy	Bridge, 12-core processors	Two 3.4 GHz POWER8, 10-core		
Configuration	64 GB memory, 2 x 300G	B 15k HDD, 10 Gb two port	Same memory, HDD, NIC		


^{*} Based on US pricing for Power S822L announcing on April 28, 2014 matching configuration table above. Source: hp.com, dell.com, vmware.com

SWG's 70 PVU Licensing

(Processor Value Unit)

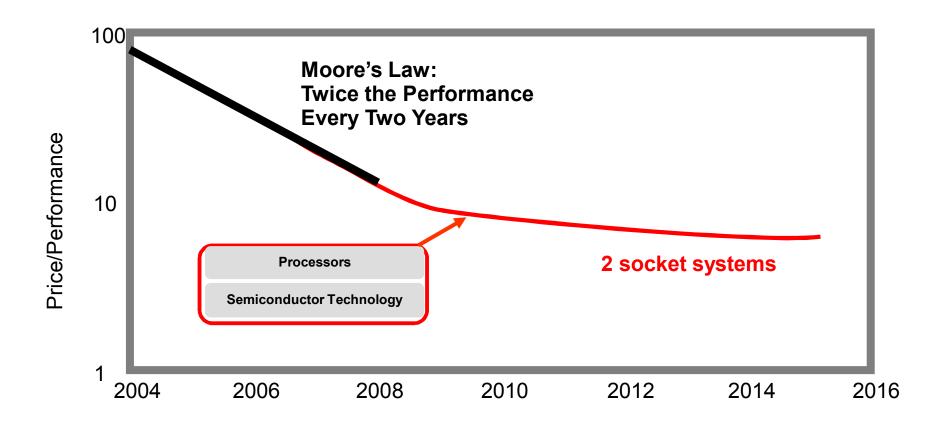
- Applies to SWG PVU licensed software products for ALL Power cores running Linux
- 70 PVU pricing previously only available for 1-2 socket servers
 - PowerLinux 7R1/7R2, p260/p270 and Power 710/720/730/740
 - Intel SandyBridge/IvyBridge servers
- 70 PVU pricing includes:
 - Power IFLs
 - Power 750 to Power 795
 - PowerLinux 7R4
 - Flex System p460
- Applies to Power8

			Processo	r Te	echn	olog	ies						
	Pr	ocessor Brand				F	roc	esso	r Ty	ре			
Processor Processor Vendor Name	Server model	Maximum number of sockets		Cores per socket					IFL Engine	Proc. Model	PVUs per		
			per serve	er	(1)	(2)	(4)	(6)	(8)	(12)	3	Number	Core
	POWER	7R1, 7R2, 7R4 POWER IFL, p24L											Z
	Systems cores running Linux OS	Any POWER System core running Linux	All				٠	٠	٠	٠		All	70
POWER7 ⁴		770, 780, 795	> 4				-	-				All	120
	POWER7 ⁴	750, 755, 760, 775, PS704, p460, Power ESE	4									All	100
	PS700-703, 710-740, p260, p270	2									All	70	
		550, 560, 570, 575, 595	All									All	120
IBM	POWER6	520, JS12, JS22, JS23, JS43	All									All	80

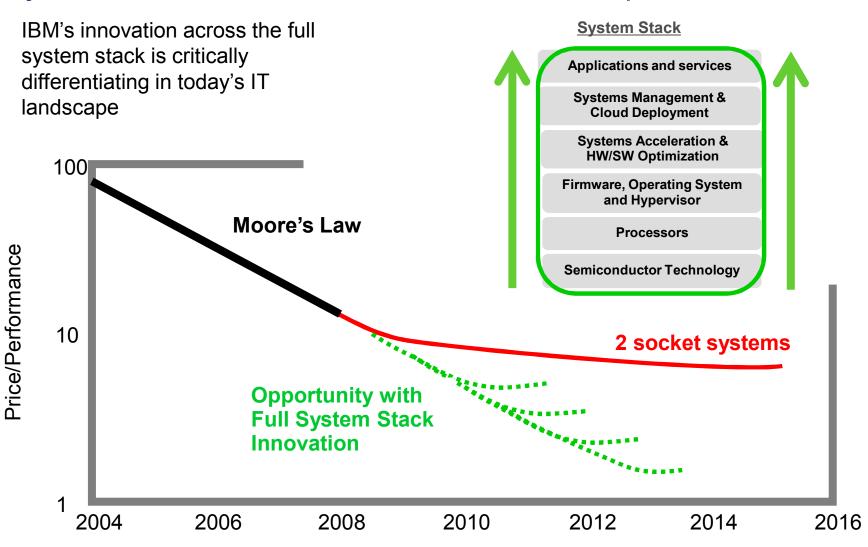
PVU Table link: http://www-01.ibm.com/software/lotus/passportadvantage/pvu licensing for customers.html

Power Systems

"Open – Innovation" Inside ;-)



Why open is critical now


Microprocessors alone can no longer maintain the promise of Moore's Law

System level value has never been more important

POWER8 – Innovating for Tomorrow

Industry Innovation Innovation Extended

CAPI

Open interface allows PCle3 devices to participate in operations at memory speed without risk.

What this means

Gain orders of magnitude application performance with PCI card technology w/o hiring specialized skills

Innovation On Power

Transactional Memory

Borrowed from the mainframe, this technology speeds up memory writes by reducing contention.

What this means

A feature that improved OLTP database performance by 45% on System z is now available on Power.

Innovation On Power

Native PCIe

Integrating PCIe Gen 3 into the processor boosts performance by eliminating logic overhead.

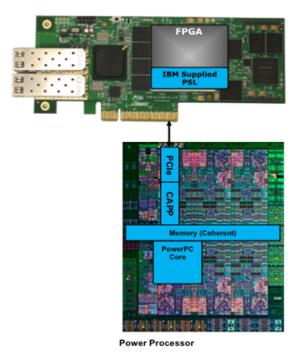
What this means

I/O intensive data applications will run faster due to high bandwidth, low latency communications.

PowerKVM

KVM, the open-source virtualization solution, can be used to manage Linux-only systems.

What this means


Data centers can now standardize their clouds with a single open-source virtualization technology.

CAPI – an open invitation to innovate on POWER

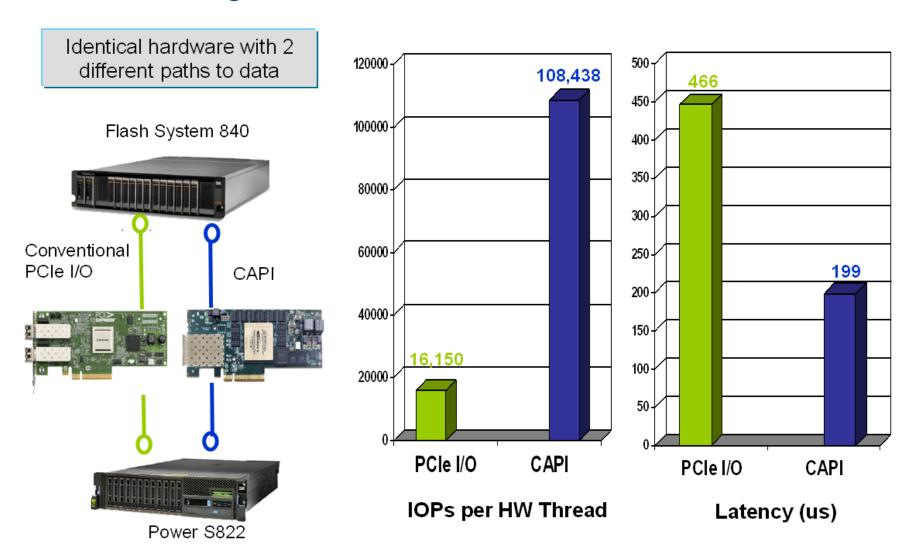
Coherent Attached Processor Proxy (CAPP) in processor

Unit on processor that extends coherency to an attached device

► Coherency protocol tunneled over standard PCle

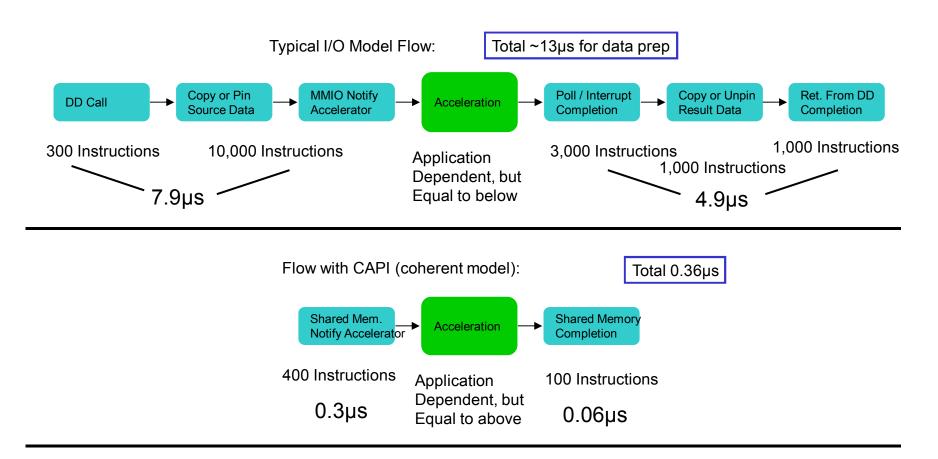
Eliminates the need for special I/Os and protocol logic

► Enables attached device to be a peer to the processor

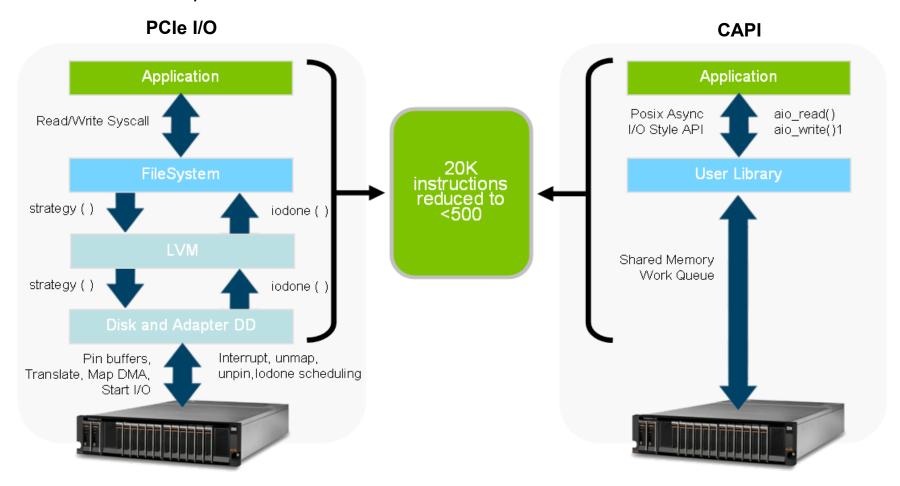

- Simplifies programming model between application
- Enables device to use same effective address as application running in processor
- Eliminates the cumbersome I/O Device Driver requirements

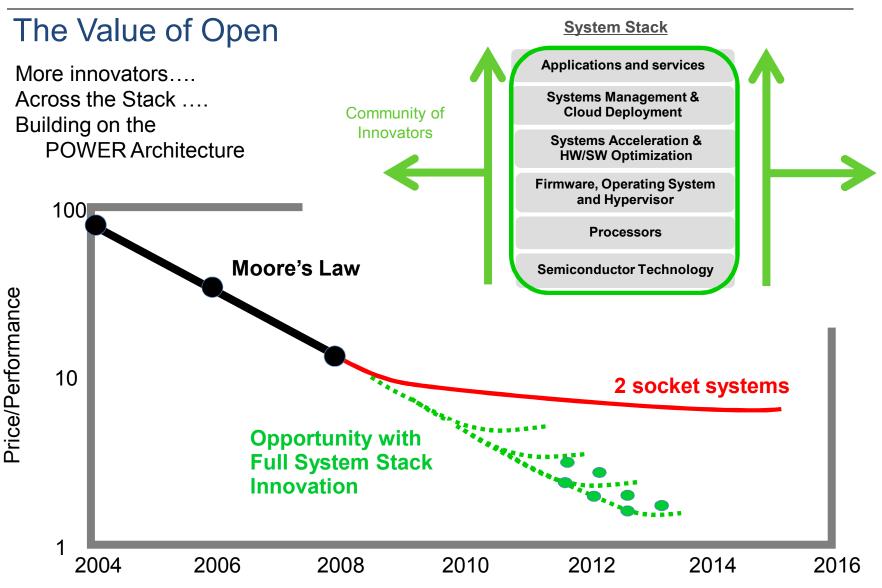
Accelerator example :

- ASICS
- GPU
- FPGA
- Network
- FlashDisks
- •


Demonstrating the Value of CAPI Attachment

Demonstrating the Value of CAPI Attachment (2)


CAPI vs. I/O Device Driver: Data Prep



Demonstrating the Value of CAPI Attachment (3)

- Attach TMS Flash to POWER8 via CAPI coherent Attach
- Issues Read/Write Commands from applications to eliminate 97% of code path length
- Saves ~20 cores per 1M IOPs

An open server ecosystem

Embraces open stack of software for easy development and implementation

Creates a pipeline of ecosystem innovation

Leverage industry innovation

Accelerates applications on a purpose-built infrastructure

OpenPOWER™ Foundation is Growing a Community

Platinum Members

Member and Pipeline Diversity across the ecosystem

Technology Fab

Chip SoC Dev IP Dev

I/O Memory Networking Storage

Systems ODM OEM

Firmware Open Source

Software Linux ISV **Open Source**

Web 2.0 Internet Data Center Cloud High Perf Computing

	• I	Α.
	Κ.	w
-	•	ıv

Nvidia Altera Suzhou **PowerCore Xilinx**

IBM

Mellanox

Fusion-io Micron Samsung **SK Hynix Emulex**

IBM Tyan

Suzhou **PowerCore Servergy**

IBM

Google

IBM Canonical **Teamsun**

Google Jülich Supercomputer Centre

100+ inquiries and active dialogues underway

OpenPOWER™ Driving industry innovation

OpenPOWER is an **Open** development Community

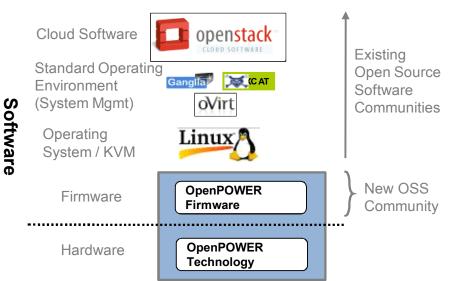
- Built on the premise of Open Source Software and Hardware
- Opening entire stack for innovation, from chip to software
- Removes proprietary boundaries
- Little Endian Linux simplifies software migration to POWER

OpenPOWER fosters Collaboration across multiple stakeholders

- Collaboration of multiple thought leaders on multiple projects in parallel
- Building an ecosystem for choice and flexibility in systems
- Delivering set of compelling, shared building blocks

OpenPOWER leverages the **Performance** of leading POWER architecture

- Built for demands of big data and analytics
- Incredible innovation and differentiation options
- Includes SOC design, Bus Specifications, Reference Designs, Firmware and Open Source Hypervisor

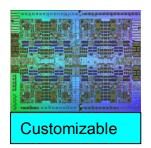

The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise, investment, and server-class intellectual property to serve the evolving needs of customers.

OpenPOWER Proposed Ecosystem Enablement

Power Open Source Software Stack Components

System Operating Environment Software Stack

A modern development environment is emerging based on tools and services



Multiple Options to Design with POWER Technology Within OpenPOWER

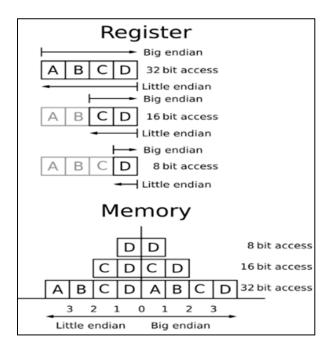
POWER8 CAPI over PCIe

"Standard POWER Products" - 2014

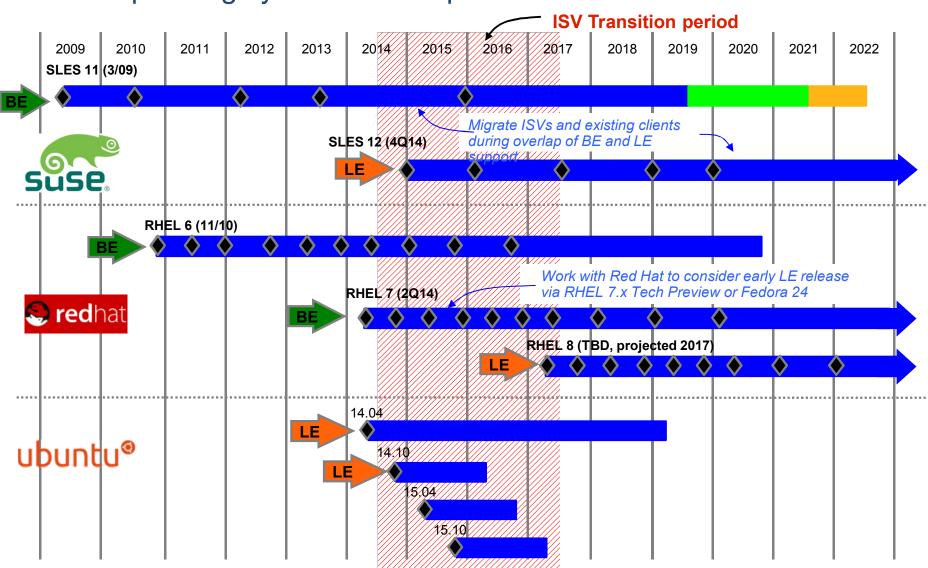
Framework to Integrate System IP on Chip

Industry IP License Model

"Custom POWER SoC" - Future


Hardware

Simplify and grow Power software with little endian Linux...


- "Endian" simply describes the way data is accessed in memory – from the low order or LSB end ("little") or high order or MSB end ("big").
- POWER8 processors support execution in **both** big endian (BE) and little endian mode (LE). Intel processors are LE.
- Linux on Power has chosen to exploit little endian (LE) processor mode based on OpenPOWER partner feedback.
 - Eases the migration of applications from Linux on x86.
 - Enables simple data migration from Linux on x86.
 - Simplifies data sharing (interoperability) with Linux on x86.
 - Improves Power I/O offerings with modern I/O adapters and devices, e.g. GPUs.
- LE distributions for Linux on Power does NOT mean x86 applications magically run: applications must still be compiled for Power.
- AIX and IBM i will remain BE.

Linux operating system roadmap and LE/BE transitions

...without confusing everyone. What does LE mean to me???

If you are a customer:

- You mostly likely don't care about BE/LE.
- You will focus on Linux distributions and supported applications.
- You will need to do a little more planning when upgrading your OS and HW while we transition.

If you are an ISV:

- If you provide support on multiple hardware platforms, e.g. POWER and x86, you have already addressed endianness. Today's (BE) Linux distributions can support you today.
- If you only run on x86 systems today, you may benefit from LE distributions when they are available. (A decision tree is included in the link provided below)

If you are a business partner, VAR, distributor, seller, etc:

- Today's solutions and offerings (BE) are mature and ready.
- New solutions will be coming to the market in the coming years. Endianness details are generally irrelevant in solution selling.

More information can be found in the Linux on Power developerWorks community blog, *Removing the FUD and De-mystifying LE (little endian)*.

First OpenPower Achievements

1-800-SERVERGY POWERED BY (b) Servergy Developers V Partners and Alliances V Newsroom Company ~

(b) Servergy Home

Gordon MacKean

Partagé en mode public - 28 avr. 2014

#OpenPower

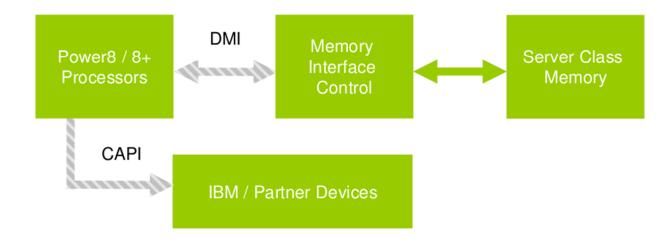
Today I'm excited to show off a Googl POWER8 server motherboard I the OpenPOWER booth at the Impact 2014 conference in Las vegas. We're always looking to deliver the highest quality of service for our users, and so we built this server to port our software stack to POWER (which turned out to be easier than expected, thanks in part to the liitle-endian support in P8). A real server platform is also critical for detailed performance measurements and continuous optimizations, and to integrate and test the ongoing advances that become available through OpenPOWER and the extended OpenPOWER community. (Google, IBM and others formed the OpenPOWER Foundation, a non-profit organization dedicated to developing an open ecosystem.

Traduire

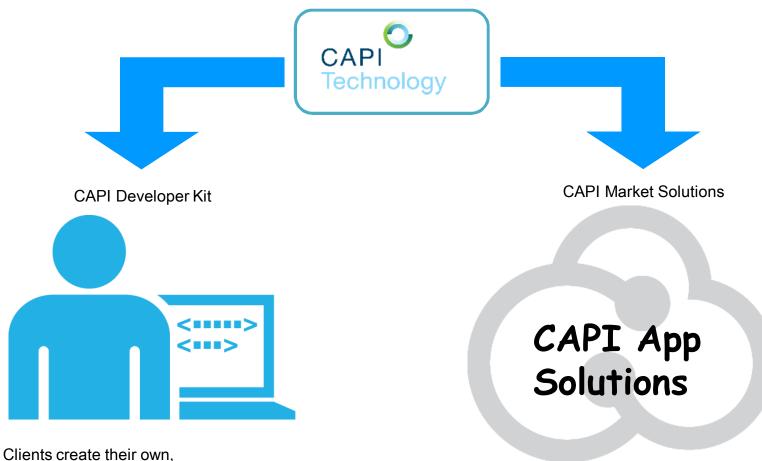
CTS-1000 Cleantech Server ®

A new class of Enterprise Linux Server in a blade footprint.

applications, the servers literally help pay for then


TYAN POWER8 Motherboard

Looking Forward: Helping Cloud Providers Optimize Services



OpenPOWER open interfaces enable an unbeatable innovation pace

Two Paths to the CAPI Ecosystem

proprietary business solution.

IBM & Partners create business solutions for the CAPI Market.

Clients buy pre-packaged solutions from the CAPI Market.

CAPI + Flash : Innovative "In-Memory" NoSQL/KVS **Integrated Solution**

24" Full rack with 24 x86 server

VS 1 S822L CAPI + 1 Flash System

Today's NoSQL in memory (x86) WWW 10Gb Uplink 512GB Cache Backup Nodes 4Q14 - Differentiated NoSQL

(POWER8 + CAPI Flash solution)

WWW 10Gb Uplink POWER8 Server Flash Array w/ up to 40TB

24:1

Reduction in infrastructure

2.4x

Price reduction

12x

Less Energy

6x

memory

redis

Less rack space

40TB of extended

Power + CAPI Flash Advantage

- 24:1 physical server consolidation
- 6x less rack space (2U server+2U Flash vs. 24 1U servers)
- Dramatically reduce costs to deliver services

- Regain infrastructure control

Target LoB / solution architects and MSPs

- · Supporting or building mobile/web/social apps
- · Leveraging Key Value Store (KVS) for fast lookups
- Require high performance in-memory data access

CAPI Attached FPGA: Monte Carlo Simulations

Medicine:

- Monte Carlo simulations are used in leading edge cancer treatment for radiology
- Current simulation runtimes for an individual is multiple weeks

Financial:

- Monte Carlo methods are used to price complex financial derivatives which in turn allows financial institutions determine the risk (e.g.VaR) of their investment portfolios
- Required by regulators of risk compliance

=> Monte Carlo on FPGA with CAPI

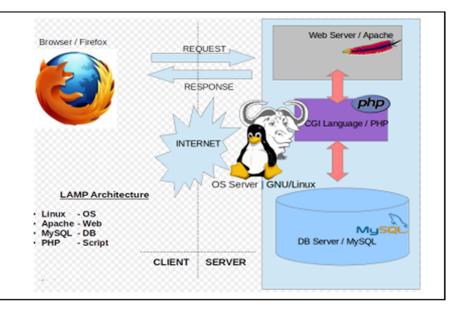
Reduced C code 40x compared to non-CAPI FPGA

Running
1 million iterations

At least

250x Faster

with CAPI FPGA + POWER8



LAMP Stack evolution

LAMP for basic web applications

- Linux, Apache, MySQL, PHP s/w stack
- Easy to use, open, community based
- Enables dynamic, data driven websites

LAMP for next gen mobile, web apps

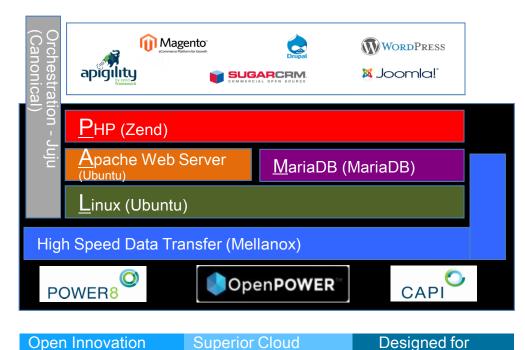
- Data centric, mobile/web app. services
- Performance, scale, secure access to business systems of record are critical
- Faster, open innovation is key to differentiated services and economics

Introducing the "Turbo LAMP Stack" for next gen mobile and web apps

Platform

Faster Innovation

Performance and scalability


Compliance and security

Faster time to value via provisioning and orchestration in minutes

High performance, internet scale and availability across multiple locations

Economics

Big Data

zenď

Continuous mobile application development for rapid innovation

Exploitation of multithreading, memory bandwidth and stack integration with Zend

IBM and NVIDIA deliver new acceleration capabilities for analytics, big data, and Java

- ✓Runs pattern extraction analytic workloads faster
- √ Provides new acceleration capability for analytics, big data, Java, and other technical computing workloads
- ✓ Delivers faster results and lower energy costs by accelerating processor intensive applications

Power System S824L

- Up to 24 POWER8 cores
- Up to 1 TB of memory
- Up to 2 NVIDIA K40 GPU Accelerators
- Ubuntu Linux running bare metal

IBM POWER8 S824L

Nvidia K40 GPU (on IBM POWER8 S824L)

Systems

- Up to 2 K40 GPU in S824L

•GPU Spec

-Kepler-2 architecture GPU

-ASIC: GK110B

PCle interface

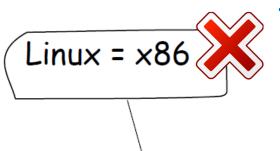
- -PCle Gen3 x16
- –Full length / double wide PCIe form factor
- -Plugs in using existing double wide cassette

Power

-235W Max power draw :75W via PCIe slot plus 160W via 8-pin Aux. cable.

OS support

-Ubuntu 14.10 or later



Features	Tesla K40
Number and Type of GPU	1 Kepler GK110B
Peak double precision floating point performance	1.43 Tflops
Peak single precision floating point performance	4.29 Tflops
Memory bandwidth (ECC off)	288 GB/sec
Memory size (GDDR5)	12 GB
CUDA cores	2880

http://www.nvidia.com/object/tesla-servers.html

The Linux myths

Power Platform is not only a <u>REAL</u> alternative, it is the « <u>Open-platform</u> » for innovation.

Power is too expensive for running Linux

Comparable TCA

Dell PowerEdge R720

Linux on Intel

Ny Bridge (XVM)

Vs.

Linux on

POWER8 (XVM)

Server let grice

512,605

52,988

514,608

514,608

51,800

S14,808

51,800

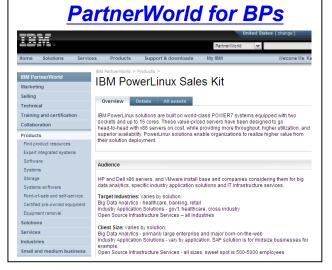
S14,808

S14,80

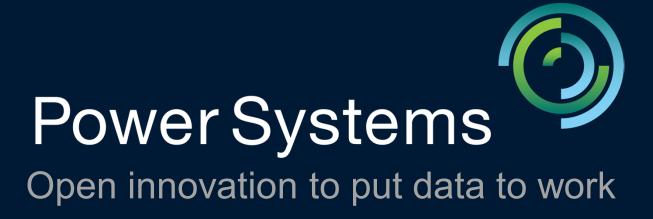
Competitive prices...

x86 is the best platform for Linux workloads

Power offers more
Performances, more
Scalability, more
Reliability and unique
access to « workload
accelerator »



Be part of the Community and Learn more about PowerLinux



Thanks for your time

Sébastien Chabrolles:

<u>s.chabrolles@fr.ibm.com</u>

MOP Power Systems Linux Center Capabilities & Focus

Power Systems Linux Center for Europe

Strategic Focus on:

- Big Data
- Cloud
- Mobile
- Social Media

Providing Support for:

- Access to platforms (HW + SW + Support)
- Customer architecture design
- General Developer Resources Support
- ISV Resources Support
- Education / Training

Capabilities

Talk and Teach: Customer, BP, CSI & ISV Briefings, Demos, Videos

Design: Pre-sales Customer support, Customer Consultancy, Architecture Design Workshops

Prove: Linux on Power Benchmark & PoCs, Remote Power Linux Platform access

+ Second level of support for technical IIC, IMTs (Infrastructure, Virtualization, OS, Compilers, Certification programs, ...)

Marie-Line Reynier
Power Systems Linux Center
Program Manager ((+ Business
contact and Bus Dev)

Sebastien Chabrolles
Technical Leader
Linux on Power Specialist
Performance, Virtualization

Julien Limodin
Linux on Power Specialist
(Middleware knowledge,
Mobile & Java skills, Cloud)

Fabrice MoyenLinux on Power Specialist
Performance. Virtualization

Christophe Menichetti Power Architect (Big Data knowledge / Competitive knowledge)