
Rational Development Studio for i

ILE RPG Language Reference
7.1

SC09-2508-08

���

Rational Development Studio for i

ILE RPG Language Reference
7.1

SC09-2508-08

���

Note!
Before using this information and the product it supports, be sure to read the general information
under “Notices” on page 915.

This edition applies to Version 7, Release 1, Modification Level 0, of IBM® Rational® Development Studio for ILE
RPG Programmer's Guide (5770-WDS), and to all subsequent releases and modifications until otherwise indicated in
new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2508-07.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “How to Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

About This Reference xi
Who Should Use This Reference xi
Prerequisite and Related Information xii
How to Send Your Comments xii
What's New xii
What's New in this Release xiii
What's New in V6R1 xvii
What’s New in V5R4? xxi
What's New in V5R3? xxv
What's New in V5R2? xxx
What's New in V5R1? xxxii
What's New in V4R4?. xxxvii
What's New in V4R2? xli
What's New in V3R7? xlv
What's New in V3R6/V3R2? xlix

Part 1. RPG IV Concepts 1

Chapter 1. Symbolic Names and
Reserved Words 3
Symbolic Names 3

Array Names 4
Conditional Compile Names 4
Data Structure Names 4
EXCEPT Names 4
Field Names 4
KLIST Names 4
Labels 4
Named Constants. 4
PLIST Names 5
Prototype Names 5
Record Names 5
Subroutine Names 5
Table Names 5

RPG IV Words with Special Functions/Reserved
Words 5
User Date Special Words 8

Rules for User Date 8
PAGE, PAGE1-PAGE7 9

Rules for PAGE, PAGE1-PAGE7 9

Chapter 2. Compiler Directives 11
/FREE... /END-FREE (Positions 7-11) 11
/TITLE (Positions 7-12) 11
/EJECT (Positions 7-12) 11
/SPACE (Positions 7-12) 12
/COPY or /INCLUDE. 12

Results of the /COPY or /INCLUDE during
Compile 14
Nested /COPY or /INCLUDE 14
Using /COPY, /INCLUDE in Source Files with
Embedded SQL 14

Conditional Compilation Directives 15
Defining Conditions 15

Predefined Conditions 16
Condition Expressions 17
Testing Conditions 17
The /EOF Directive 18
Handling of Directives by the RPG Preprocessor 20

Chapter 3. Procedures and the
Program Logic Cycle 21
Subprocedure Definition 21

Procedure Interface Definition 23
Return Values 23
Scope of Definitions 24
Subprocedures and Subroutines 25

Program Flow in RPG Modules: Cycle Versus Linear 26
Cycle Module 27
Linear Module 29
Module Initialization 30

RPG Cycle and other implicit Logic 31
Program Cycle 31
Subprocedure Calculations 43
Implicit Opening of Files and Locking of Data
Areas 46
Implicit Closing of Files and Unlocking of Data
Areas 46

Chapter 4. RPG IV Indicators 47
Indicators Defined on RPG IV Specifications . . . 47

Overflow Indicators 47
Record Identifying Indicators 48
Control Level Indicators (L1-L9) 49
Field Indicators 57
Resulting Indicators 58

Indicators Not Defined on the RPG IV Specifications 60
External Indicators 60
Internal Indicators 60
Return Indicator (RT) 62

Using Indicators 62
File Conditioning 62
Field Record Relation Indicators 63
Function Key Indicators 65
Halt Indicators (H1-H9) 66
Indicators Conditioning Calculations 66
Indicators Used in Expressions 69
Indicators Conditioning Output 70

Indicators Referred to As Data 73
*IN 73
*INxx 73
Additional Rules 74

Summary of Indicators 75

Chapter 5. File and Program
Exception/Errors 79
File Exception/Errors 79

File Information Data Structure 79
File Exception/Error Subroutine (INFSR) . . . 93

© Copyright IBM Corp. 1994, 2010 iii

||

##
##

Program Exception/Errors 96
Program Status Data Structure 97
Program Exception/Error Subroutine 105

Chapter 6. General File
Considerations. 107
Global and Local Files 107
File Parameters 107
Variables Associated with Files 107

Example of passing a file and passing a data
structure with the associated variables. 109

Primary/Secondary Multi-file Processing 110
Multi-file Processing with No Match Fields . . 110
Multi-file Processing with Match Fields. . . . 110

File Translation 118
Specifying File Translation 119
Translating One File or All Files 119
Translating More Than One File 120

Part 2. Definitions 123

Chapter 7. Defining Data and
Prototypes 125
General Considerations 125

Scope of Definitions 126
Storage of Definitions 127

Standalone Fields 127
Variable Initialization 128

Constants 128
Literals 128
Named Constants 133
Figurative Constants 134

Data Structures 136
Qualifying Data Structure Names. 137
Array Data Structures 137
Defining Data Structure Parameters in a
Prototype or Procedure Interface 138
Defining Data Structure Subfields 139
Special Data Structures 141
Data Structure Examples 142

Prototypes and Parameters 153
Prototypes 153
Prototyped Parameters 155
Procedure Interface 157

Chapter 8. Using Arrays and Tables 159
Arrays. 159

Array Name and Index 160
The Essential Array Specifications 160
Coding a Run-Time Array 160
Loading a Run-Time Array 160
Coding a Compile-Time Array. 163
Loading a Compile-Time Array 164
Coding a Prerun-Time Array 165
Example of Coding Arrays 166
Loading a Prerun-Time Array 166
Sequence Checking for Character Arrays . . . 167

Initializing Arrays 167
Run-Time Arrays 167

Compile-Time and Prerun-Time Arrays 167
Defining Related Arrays 168
Searching Arrays 169

Searching an Array Without an Index 170
Searching an Array Data Structure 170
Searching an Array with an Index 171

Using Arrays 171
Specifying an Array in Calculations 171

Sorting Arrays 173
Sorting using part of the array as a key . . . 173
Sorting an Array Data Structure 173

Array Output 173
Editing Entire Arrays 174

Using Dynamically-Sized Arrays 174
Tables 175

LOOKUP with One Table 176
LOOKUP with Two Tables 176
Specifying the Table Element Found in a
LOOKUP Operation 177

Chapter 9. Data Types and Data
Formats. 179
Internal and External Formats 179

Internal Format. 180
External Format 180

Character Data Type 182
Character Format 182
Indicator Format 183
Graphic Format 183
UCS-2 Format 184
Variable-Length Character, Graphic and UCS-2
Formats 185
Conversion between Character, Graphic and
UCS-2 Data 194
Alternate Collating Sequence 195

Numeric Data Type 197
Binary Format 197
Float Format 198
Integer Format 200
Packed-Decimal Format 201
Unsigned Format 202
Zoned-Decimal Format 202
Considerations for Using Numeric Formats . . 203
Representation of Numeric Formats 204

Date Data Type. 206
Separators 208
Initialization. 208

Time Data Type 208
Separators 210
Initialization. 210
*JOBRUN. 210

Timestamp Data Type 210
Separators 210
Initialization. 210

Object Data Type 211
Where You Can Specify an Object Field. . . . 211

Basing Pointer Data Type 212
Setting a Basing Pointer 214
Examples 214

Procedure Pointer Data Type 218
Database Null Value Support 219

iv ILE RPG Reference

##
##
#
##

||

||

User Controlled Support for Null-Capable Fields
and Key Fields 220
Input-Only Support for Null-Capable Fields . . 226
ALWNULL(*NO) 227

Error Handling for Database Data Mapping Errors 227

Chapter 10. Editing Numeric Fields 229
Edit Codes 230

Simple Edit Codes. 230
Combination Edit Codes. 230
User-Defined Edit Codes 232
Editing Considerations 232
Summary of Edit Codes 232

Edit Words 235
How to Code an Edit Word 236
Parts of an Edit Word 236
Summary of Coding Rules for Edit Words . . . 240

Editing Externally Described Files 241

Part 3. Specifications 243

Chapter 11. About Specifications . . . 245
RPG IV Specification Types. 245

Main Source Section Specifications 246
Subprocedure Specifications 247
Program Data 247

Common Entries 248
Syntax of Keywords 248
Continuation Rules 249

Chapter 12. Control Specifications 255
Using a Data Area as a Control Specification . . . 255
Control-Specification Statement 255

Position 6 (Form Type) 256
Positions 7-80 (Keywords) 256

Control-Specification Keywords 256
ALLOC(*STGMDL | *TERASPACE | *SNGLVL) 257
ACTGRP(*STGMDL | *NEW | *CALLER |
’activation-group-name’). 257
ALTSEQ{(*NONE | *SRC | *EXT)} 258
ALWNULL(*NO | *INPUTONLY | *USRCTL) 258
AUT(*LIBRCRTAUT | *ALL | *CHANGE |
*USE | *EXCLUDE | ’authorization-list-name’) . 259
BNDDIR(’binding-directory-name’
{:’binding-directory-name’...}) 259
CCSID(*GRAPH : parameter | *UCS2 : number
| *CHAR : *JOBRUN) 260
COPYNEST(number) 261
COPYRIGHT(’copyright string’) 261
CURSYM(’sym’) 261
CVTOPT(*{NO}DATETIME *{NO}GRAPHIC
*{NO}VARCHAR *{NO}VARGRAPHIC) . . . 262
DATEDIT(fmt{separator}) 262
DATFMT(fmt{separator}) 263
DEBUG{(*INPUT | *DUMP | *XMLSAX | *NO
| *YES)} 263
DECEDIT(*JOBRUN | ’value’) 264
DECPREC(30|31|63) 264
DFTACTGRP(*YES | *NO) 265
DFTNAME(rpg_name) 265

ENBPFRCOL(*PEP | *ENTRYEXIT | *FULL) 265
EXPROPTS(*MAXDIGITS | *RESDECPOS) . . 266
EXTBININT{(*NO | *YES)} 266
FIXNBR(*{NO}ZONED *{NO}INPUTPACKED) 266
FLTDIV{(*NO | *YES)} 267
FORMSALIGN{(*NO | *YES)} 267
FTRANS{(*NONE | *SRC)} 268
GENLVL(number) 268
INDENT(*NONE | ’character-value’) 268
INTPREC(10 | 20) 268
LANGID(*JOBRUN | *JOB |
’language-identifier’) 269
MAIN(main_procedure_name) 269
NOMAIN 271
OPENOPT (*NOINZOFL | *INZOFL) 271
OPTIMIZE(*NONE | *BASIC | *FULL) . . . 271
OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL
*{NO}SHOWCPY *{NO}EXPDDS *{NO}EXT
*{NO}SHOWSKP) *{NO}SRCSTMT)
*{NO}DEBUGIO) *{NO}UNREF 271
PGMINFO(*PCML | *NO { : *MODULE }) . . 273
PRFDTA(*NOCOL | *COL) 274
SRTSEQ(*HEX | *JOB | *JOBRUN |
*LANGIDUNQ | *LANGIDSHR |
’sort-table-name’) 274
STGMDL(*INHERIT | *SNGLVL |
*TERASPACE) 275
TEXT(*SRCMBRTXT | *BLANK | ’description’) 275
THREAD(*CONCURRENT | *SERIALIZE) . . 275
TIMFMT(fmt{separator}). 277
TRUNCNBR(*YES | *NO) 277
USRPRF(*USER | *OWNER) 277

Chapter 13. File Description
Specifications 279
File Description Specification Statement 279

File-Description Keyword Continuation Line 279
Position 6 (Form Type) 280
Positions 7-16 (File Name) 280
Position 17 (File Type) 281
Position 18 (File Designation) 282
Position 19 (End of File) 283
Position 20 (File Addition) 283
Position 21 (Sequence) 284
Position 22 (File Format) 285
Positions 23-27 (Record Length) 285
Position 28 (Limits Processing) 285
Positions 29-33 (Length of Key or Record
Address) 286
Position 34 (Record Address Type) 286
Position 35 (File Organization). 289
Positions 36-42 (Device) 290
Position 43 (Reserved) 290
Positions 44-80 (Keywords) 290

File-Description Keywords 290
ALIAS. 291
BLOCK(*YES |*NO) 292
COMMIT{(rpg_name)} 293
DATFMT(format{separator}) 293
DEVID(fieldname). 293
EXTDESC(external-filename) 294

Contents v

||
|
||

##

#
#
#
##
##

|
||

##

||

##

EXTFILE(filename | *EXTDESC) 295
EXTIND(*INUx) 296
EXTMBR(membername) 296
FORMLEN(number) 297
FORMOFL(number) 297
IGNORE(recformat{:recformat...}) 297
INCLUDE(recformat{:recformat...}) 298
INDDS(data_structure_name) 298
INFDS(DSname) 298
INFSR(SUBRname) 299
KEYLOC(number) 299
LIKEFILE(parent-filename) 299
MAXDEV(*ONLY | *FILE) 302
OFLIND(indicator) 303
PASS(*NOIND) 303
PGMNAME(program_name) 304
PLIST(Plist_name) 304
PREFIX(prefix{:nbr_of_char_replaced}) 304
PRTCTL(data_struct{:*COMPAT}) 306
QUALIFIED 307
RAFDATA(filename) 308
RECNO(fieldname) 308
RENAME(Ext_format:Int_format). 308
SAVEDS(DSname) 309
SAVEIND(number) 309
SFILE(recformat:rrnfield) 309
SLN(number) 310
STATIC 310
TEMPLATE 311
TIMFMT(format{separator}) 311
USROPN 312

File Types and Processing Methods 312

Chapter 14. Definition Specifications 315
Definition Specification Statement 315

Definition Specification Keyword Continuation
Line 316
Definition Specification Continued Name Line 316
Position 6 (Form Type) 316
Positions 7-21 (Name) 316
Position 22 (External Description) 317
Position 23 (Type of Data Structure) 317
Positions 24-25 (Definition Type) 318
Positions 26-32 (From Position) 318
Positions 33-39 (To Position / Length) 319
Position 40 (Internal Data Type) 320
Positions 41-42 (Decimal Positions) 321
Position 43 (Reserved) 321
Positions 44-80 (Keywords) 321

Definition-Specification Keywords 321
ALIAS. 322
ALIGN 323
ALT(array_name) 324
ALTSEQ(*NONE) 324
ASCEND 324
BASED(basing_pointer_name) 325
CCSID(number | *DFT) 325
CLASS(*JAVA:class-name) 325
CONST{(constant)} 326
CTDATA 326
DATFMT(format{separator}) 326

DESCEND 327
DIM(numeric_constant) 327
DTAARA{({*VAR:} data_area_name)} 328
EXPORT{(external_name)} 329
EXTFLD(field_name) 330
EXTFMT(code) 330
EXTNAME(file-name{:format-name}{:*ALL|
*INPUT|*OUTPUT|*KEY}). 331
EXTPGM(name) 332
EXTPROC({*CL|*CWIDEN|*CNOWIDEN|
{*JAVA:class-name:}}name) 332
FROMFILE(file_name) 337
IMPORT{(external_name)} 337
INZ{(initial value)} 338
LEN(length) 339
LIKE(name) 340
LIKEDS(data_structure_name) 342
LIKEFILE(filename) 343
LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT
|*KEY}) 345
NOOPT 346
OCCURS(numeric_constant) 347
OPDESC 348
OPTIONS(*NOPASS *OMIT *VARSIZE *STRING
*TRIM *RIGHTADJ *NULLIND) 348
OVERLAY(name{:pos | *NEXT}) 359
PACKEVEN 361
PERRCD(numeric_constant) 361
PREFIX(prefix{:nbr_of_char_replaced}) 362
PROCPTR 363
QUALIFIED 363
RTNPARM 363
STATIC{(*ALLTHREAD)} 367
TEMPLATE 368
TIMFMT(format{separator}) 369
TOFILE(file_name) 369
VALUE 370
VARYING{(2 | 4)} 370

Summary According to Definition Specification
Type 370

Chapter 15. Input Specifications . . . 375
Input Specification Statement 375

Program Described 375
Externally Described 376

Program Described Files. 376
Position 6 (Form Type) 376

Record Identification Entries 376
Positions 7-16 (File Name) 376
Positions 16-18 (Logical Relationship) 377
Positions 17-18 (Sequence) 377
Position 19 (Number). 377
Position 20 (Option) 378
Positions 21-22 (Record Identifying Indicator, or
**) 378
Positions 23-46 (Record Identification Codes) 379

Field Description Entries 382
Position 6 (Form Type) 382
Positions 7-30 (Reserved) 382
Positions 31-34 (Data Attributes) 382
Position 35 (Date/Time Separator) 382

vi ILE RPG Reference

##

##

##

##
##

||

##

||
##
##

##

Position 36 (Data Format) 382
Positions 37-46 (Field Location) 383
Positions 47-48 (Decimal Positions) 384
Positions 49-62 (Field Name) 384
Positions 63-64 (Control Level) 384
Positions 65-66 (Matching Fields) 385
Positions 67-68 (Field Record Relation) 386
Positions 69-74 (Field Indicators) 386

Externally Described Files 387
Position 6 (Form Type) 387

Record Identification Entries 387
Positions 7-16 (Record Name) 387
Positions 17-20 (Reserved) 387
Positions 21-22 (Record Identifying Indicator) 387
Positions 23-80 (Reserved) 387

Field Description Entries 388
Positions 7-20 (Reserved) 388
Positions 21-30 (External Field Name) 388
Positions 31-48 (Reserved) 388
Positions 49-62 (Field Name) 388
Positions 63-64 (Control Level) 388
Positions 65-66 (Matching Fields) 389
Positions 67-68 (Reserved) 389
Positions 69-74 (Field Indicators) 389
Positions 75-80 (Reserved) 389

Chapter 16. Calculation Specifications 391
Traditional Syntax 391

Calculation Specification Extended Factor-2
Continuation Line 392
Position 6 (Form Type) 392
Positions 7-8 (Control Level) 392
Positions 9-11 (Indicators) 394
Positions 12-25 (Factor 1) 394
Positions 26-35 (Operation and Extender) . . . 394
Positions 36-49 (Factor 2) 396
Positions 50-63 (Result Field) 396
Positions 64-68 (Field Length) 396
Positions 69-70 (Decimal Positions) 396
Positions 71-76 (Resulting Indicators) 397

Extended Factor 2 Syntax 397
Positions 7-8 (Control Level) 397
Positions 9-11 (Indicators) 397
Positions 12-25 (Factor 1) 398
Positions 26-35 (Operation and Extender) . . . 398
Positions 36-80 (Extended Factor 2) 398

Free-Form Syntax 399
Positions 8-80 (Free-form Operations) 400

Chapter 17. Output Specifications . . 401
Output Specification Statement 401

Program Described 401
Externally Described 402

Program Described Files. 402
Position 6 (Form Type) 402

Record Identification and Control Entries 402
Positions 7-16 (File Name) 402
Positions 16-18 (Logical Relationship) 403
Position 17 (Type) 403
Positions 18-20 (Record Addition/Deletion) . . 403

Position 18 (Fetch Overflow/Release) 404
Positions 21-29 (Output Conditioning Indicators) 405
Positions 30-39 (EXCEPT Name) 406
Positions 40-51 (Space and Skip) 407
Positions 40-42 (Space Before) 407
Positions 43-45 (Space After) 407
Positions 46-48 (Skip Before) 407
Positions 49-51 (Skip After) 407

Field Description and Control Entries 408
Positions 21-29 (Output Indicators) 408
Positions 30-43 (Field Name) 408
Position 44 (Edit Codes) 409
Position 45 (Blank After) 410
Positions 47-51 (End Position) 410
Position 52 (Data Format) 411
Positions 53-80 (Constant, Edit Word, Data
Attributes, Format Name) 412

Externally Described Files 413
Position 6 (Form Type) 413

Record Identification and Control Entries 414
Positions 7-16 (Record Name) 414
Positions 16-18 (Logical Relationship) 414
Position 17 (Type) 414
Position 18 (Release) 414
Positions 18-20 (Record Addition) 414
Positions 21-29 (Output Indicators) 414
Positions 30-39 (EXCEPT Name) 415

Field Description and Control Entries 415
Positions 21-29 (Output Indicators) 415
Positions 30-43 (Field Name) 415
Position 45 (Blank After) 415

Chapter 18. Procedure Specifications 417
Procedure Specification Statement 417

Procedure Specification Keyword Continuation
Line 418
Procedure Specification Continued Name Line 418
Position 6 (Form Type) 418
Positions 7-21 (Name) 418
Position 24 (Begin/End Procedure) 419
Positions 44-80 (Keywords) 419

Procedure-Specification Keywords 419
EXPORT 419
SERIALIZE 419

Part 4. Operations, Expressions,
and Functions 421

Chapter 19. Operations 423
Operation Codes 423
Built-in Functions 430
Arithmetic Operations 434

Ensuring Accuracy 435
Performance Considerations 435
Integer and Unsigned Arithmetic 435
Arithmetic Operations Examples 437

Array Operations 438
Bit Operations 439
Branching Operations 439
Call Operations. 440

Contents vii

##

Prototyped Calls 441
Operational Descriptors 442
Parsing Program Names on a Call 442
Parsing System Built-In Names 444
Value of *ROUTINE 445

Compare Operations 445
Conversion Operations 447
Data-Area Operations 448
Date Operations 449

Unexpected Results 451
Declarative Operations 452
Error-Handling Operations 452
File Operations 453

Keys for File Operations. 456
Indicator-Setting Operations 456
Information Operations 457
Initialization Operations 457
Memory Management Operations 458
Message Operation 460
Move Operations 460

Moving Character, Graphic, UCS-2, and
Numeric Data 461
Moving Date-Time Data 462

Move Zone Operations 466
Result Operations 467
Size Operations. 467
String Operations 467
Structured Programming Operations 469
Subroutine Operations 472

Coding Subroutines 472
Test Operations. 475
XML Operations 475

Chapter 20. Expressions 477
General Expression Rules 478
Expression Operands 479
Expression Operators 479
Operation Precedence 481
Data Types 482

Data Types Supported by Expression Operands 482
Format of Numeric Intermediate Results . . . 486

Precision Rules for Numeric Operations 486
Using the Default Precision Rules 487
Precision of Intermediate Results 488
Example of Default Precision Rules 488
Using the ″Result Decimal Position″ Precision
Rules 490
Example of ″Result Decimal Position″ Precision
Rules 491

Short Circuit Evaluation 491
Order of Evaluation 492

Chapter 21. Built-in Functions 493
%ABS (Absolute Value of Expression) 493
%ADDR (Get Address of Variable) 494
%ALLOC (Allocate Storage) 497
%BITAND (Bitwise AND Operation) 498
%BITNOT (Invert Bits) 499
%BITOR (Bitwise OR Operation) 500
%BITXOR (Bitwise Exclusive-OR Operation) . . . 501

Examples of Bit Operations. 502
%CHAR (Convert to Character Data) 505
%CHECK (Check Characters) 507
%CHECKR (Check Reverse) 509
%DATE (Convert to Date) 511
%DAYS (Number of Days) 512
%DEC (Convert to Packed Decimal Format) . . . 513

Numeric or character expression 513
Date, time or timestamp expression 513

%DECH (Convert to Packed Decimal Format with
Half Adjust) 515

%DECH Examples. 515
%DECPOS (Get Number of Decimal Positions) . . 517
%DIFF (Difference Between Two Date, Time, or
Timestamp Values) 518
%DIV (Return Integer Portion of Quotient) . . . 521
%EDITC (Edit Value Using an Editcode) 522
%EDITFLT (Convert to Float External
Representation). 525
%EDITW (Edit Value Using an Editword) 526
%ELEM (Get Number of Elements) 527
%EOF (Return End or Beginning of File Condition) 528
%EQUAL (Return Exact Match Condition) . . . 530
%ERROR (Return Error Condition) 532
%FIELDS (Fields to update) 533
%FLOAT (Convert to Floating Format) 534
%FOUND (Return Found Condition) 535
%GRAPH (Convert to Graphic Value) 537
%HANDLER (handlingProcedure :
communicationArea). 539
%HOURS (Number of Hours) 543
%INT (Convert to Integer Format) 544

%INTH (Convert to Integer Format with Half
Adjust) 544

%KDS (Search Arguments in Data Structure) . . . 546
%LEN (Get or Set Length) 547

%LEN Used for its Value 547
%LEN Used to Set the Length of
Variable-Length Fields 548
%LEN Used to Get the Maximum Length of
Varying-Length Expressions 549

%LOOKUPxx (Look Up an Array Element) . . . 551
Sequenced arrays that are not in the correct
sequence 553

%MINUTES (Number of Minutes) 554
%MONTHS (Number of Months). 555
%MSECONDS (Number of Microseconds) 556
%NULLIND (Query or Set Null Indicator). . . . 557
%OCCUR (Set/Get Occurrence of a Data Structure) 558
%OPEN (Return File Open Condition) 559
%PADDR (Get Procedure Address) 560

%PADDR Used with a Prototype 560
%PARMS (Return Number of Parameters) 563
%PARMNUM (Return Parameter Number) . . . 565
%REALLOC (Reallocate Storage) 566
%REM (Return Integer Remainder) 567
%REPLACE (Replace Character String) 568
%SCAN (Scan for Characters) 570
%SCANRPL (Scan and Replace Characters) . . . 572
%SECONDS (Number of Seconds) 574
%SHTDN (Shut Down) 575

viii ILE RPG Reference

|
||

||

||

%SIZE (Get Size in Bytes) 576
%SQRT (Square Root of Expression) 578
%STATUS (Return File or Program Status). . . . 579
%STR (Get or Store Null-Terminated String) . . . 582

%STR Used to Get Null-Terminated String . . 582
%STR Used to Store Null-Terminated String . . 583

%SUBARR (Set/Get Portion of an Array) 584
%SUBDT (Extract a Portion of a Date, Time, or
Timestamp) 587
%SUBST (Get Substring). 588

%SUBST Used for its Value. 588
%SUBST Used as the Result of an Assignment 588

%THIS (Return Class Instance for Native Method) 590
%TIME (Convert to Time) 591
%TIMESTAMP (Convert to Timestamp) 592
%TLOOKUPxx (Look Up a Table Element) . . . 593
%TRIM (Trim Characters at Edges) 595
%TRIML (Trim Leading Characters) 597
%TRIMR (Trim Trailing Characters) 598
%UCS2 (Convert to UCS-2 Value) 599
%UNS (Convert to Unsigned Format) 600

%UNSH (Convert to Unsigned Format with
Half Adjust) 600

%XFOOT (Sum Array Expression Elements) . . . 602
%XLATE (Translate) 603
%XML (xmlDocument {:options}) 604
%YEARS (Number of Years) 606

Chapter 22. Operation Codes 607
ACQ (Acquire) 608
ADD (Add) 609
ADDDUR (Add Duration) 610
ALLOC (Allocate Storage) 612
ANDxx (And) 613
BEGSR (Beginning of Subroutine) 614
BITOFF (Set Bits Off) 615
BITON (Set Bits On) 617
CABxx (Compare and Branch). 619
CALL (Call a Program) 621
CALLB (Call a Bound Procedure). 622
CALLP (Call a Prototyped Procedure or Program) 623
CASxx (Conditionally Invoke Subroutine) 628
CAT (Concatenate Two Strings) 630
CHAIN (Random Retrieval from a File) 633
CHECK (Check Characters) 636
CHECKR (Check Reverse) 639
CLEAR (Clear) 642

Clearing Variables 642
Clearing Record Formats 642
CLEAR Examples 643

CLOSE (Close Files) 646
COMMIT (Commit) 647
COMP (Compare) 648
DEALLOC (Free Storage) 649
DEFINE (Field Definition) 651

*LIKE DEFINE 651
*DTAARA DEFINE 653

DELETE (Delete Record) 655
DIV (Divide) 657
DO (Do) 658
DOU (Do Until) 660

DOUxx (Do Until) 661
DOW (Do While) 663
DOWxx (Do While) 664
DSPLY (Display Message) 666
DUMP (Program Dump) 669
ELSE (Else) 671
ELSEIF (Else If). 672
ENDyy (End a Structured Group) 673
ENDSR (End of Subroutine) 675
EVAL (Evaluate expression) 676
EVALR (Evaluate expression, right adjust) 678
EVAL-CORR (Assign corresponding subfields) . . 678

Examples of the EVAL-CORR operation . . . 681
EXCEPT (Calculation Time Output) 684
EXFMT (Write/Then Read Format) 686
EXSR (Invoke Subroutine) 688
EXTRCT (Extract Date/Time/Timestamp) 689
FEOD (Force End of Data) 691
FOR (For) 692
FORCE (Force a Certain File to Be Read Next
Cycle) 695
GOTO (Go To) 696
IF (If) 698
IFxx (If) 699
IN (Retrieve a Data Area) 701
ITER (Iterate) 703
KFLD (Define Parts of a Key) 705
KLIST (Define a Composite Key) 706
LEAVE (Leave a Do/For Group) 708
LEAVESR (Leave a Subroutine) 710
LOOKUP (Look Up a Table or Array Element) . . 711
MHHZO (Move High to High Zone) 714
MHLZO (Move High to Low Zone) 715
MLHZO (Move Low to High Zone) 716
MLLZO (Move Low to Low Zone) 717
MONITOR (Begin a Monitor Group) 718
MOVE (Move) 720
MOVEA (Move Array) 734

Character, graphic, and UCS-2 MOVEA
Operations 734
Numeric MOVEA Operations 734
General MOVEA Operations 735

MOVEL (Move Left) 741
MULT (Multiply) 751
MVR (Move Remainder) 752
NEXT (Next) 753
OCCUR (Set/Get Occurrence of a Data Structure) 754
ON-ERROR (On Error) 758
OPEN (Open File for Processing) 759
ORxx (Or) 761
OTHER (Otherwise Select) 762
OUT (Write a Data Area) 764
PARM (Identify Parameters) 765
PLIST (Identify a Parameter List) 768
POST (Post) 770
READ (Read a Record) 772
READC (Read Next Changed Record) 775
READE (Read Equal Key) 777
READP (Read Prior Record) 780
READPE (Read Prior Equal) 782
REALLOC (Reallocate Storage with New Length) 785

Contents ix

REL (Release) 787
RESET (Reset) 788

Resetting Variables 788
Resetting Record Formats 789
Additional Considerations 789
RESET Examples 790

RETURN (Return to Caller) 795
ROLBK (Roll Back) 798
SCAN (Scan String) 799
SELECT (Begin a Select Group) 802
SETGT (Set Greater Than) 804
SETLL (Set Lower Limit) 808
SETOFF (Set Indicator Off) 812
SETON (Set Indicator On) 813
SHTDN (Shut Down). 814
SORTA (Sort an Array) 815
SQRT (Square Root) 820
SUB (Subtract) 821
SUBDUR (Subtract Duration) 822

Subtract a duration 822
Calculate a duration 823
Possible error situations 824
SUBDUR Examples 824

SUBST (Substring) 825
TAG (Tag) 828
TEST (Test Date/Time/Timestamp) 829
TESTB (Test Bit) 831
TESTN (Test Numeric) 834
TESTZ (Test Zone). 836
TIME (Retrieve Time and Date) 837
UNLOCK (Unlock a Data Area or Release a
Record) 839

Unlocking data areas 839
Releasing record locks 840

UPDATE (Modify Existing Record) 841
WHEN (When True Then Select) 843

WHENxx (When True Then Select) 844
WRITE (Create New Records) 847
XFOOT (Summing the Elements of an Array). . . 849
XLATE (Translate) 850
XML-INTO (Parse an XML Document into a
Variable) 852

%XML options for the XML-INTO operation
code 856
Expected format of XML data 877
Rules for transferring XML data to RPG
variables 881
Examples of the XML-INTO operation 882

XML-SAX (Parse an XML Document) 886
%XML options for the XML-SAX operation code 887
XML-SAX event-handling procedure 888
XML events 889
Examples of the XML-SAX operation 896

Z-ADD (Zero and Add) 902
Z-SUB (Zero and Subtract) 903

Part 5. Appendixes 905

Appendix A. RPG IV Restrictions . . . 907

Appendix B. EBCDIC Collating
Sequence 909

Bibliography. 913

Notices 915
Programming Interface Information 916
Trademarks 916

Index 919

x ILE RPG Reference

About This Reference

This reference provides information about the RPG IV language as it is
implemented using the ILE RPG compiler with the IBM i5/OS® (i5/OS®) operating
system, formerly Operating System/400® (OS/400®).

This reference covers:
v Basics of RPG IV:

– RPG IV character set
– RPG IV reserved words
– Compiler directives
– RPG IV program cycle
– Indicators
– Error Handling
– Subprocedures

v Definitions:
– Defining Data and Prototypes
– Data types and Data formats

v RPG IV specifications:
– Control
– File description
– Definition
– Input
– Calculation
– Output
– Procedure

v Ways to manipulate data or devices:
– Built-in Functions
– Expressions
– Operation Codes

Who Should Use This Reference
This reference is for programmers who are familiar with the RPG IV programming
language.

This reference provides a detailed description of the RPG IV language. It does not
provide information on how to use the ILE RPG compiler or how to convert RPG
III programs to ILE RPG. For information on those subjects, see the IBM Rational
Development Studio for i: ILE RPG Programmer’s Guide, SC09-2507-08.

Before using this reference, you should
v Know how to use applicable i5/OS menus and displays or Control Language

(CL) commands.
v Have a firm understanding of Integrated Language Environment® as described

in detail in the ILE Concepts, SC41-5606-09.

© Copyright IBM Corp. 1994, 2010 xi

Prerequisite and Related Information
Use the iSeries Information Center as your starting point for looking up iSeries and
AS/400e technical information. You can access the Information Center in two ways:
v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

v From CD-ROMs that ship with your Operating System/400 order:
i5/OS Information Center CD, SK3T-4091.

The iSeries Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java ™ , TCP/IP, Web serving, and secured networks. It also includes
links to related IBM® Redbooks and Internet links to other IBM Web sites such as
the Technical Studio and the IBM home page.

For a list of related publications, see the “Bibliography” on page 913.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other iSeries documentation.
v If you prefer to send comments by mail, use the the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

If you are mailing a readers’ comment form from a country other than the
United States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by FAX, use this number: 1–845–491–7727
v If you prefer to send comments electronically, use one of these e-mail addresses:

– Comments on books:
RCHCLERK@us.ibm.com

– Comments on the iSeries Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book.
v The publication number of the book.
v The page number or topic to which your comment applies.

What's New
There have been several releases of RPG IV since the first V3R1 release. The
following is a list of enhancements made for each release since V3R1 to the current
release:
v “What's New in this Release” on page xiii
v “What's New in V6R1” on page xvii
v “What’s New in V5R4?” on page xxi
v “What's New in V5R3?” on page xxv

xii ILE RPG Reference

|

|

v “What's New in V5R2?” on page xxx
v “What's New in V5R1?” on page xxxii
v “What's New in V4R4?” on page xxxvii
v “What's New in V4R2?” on page xli
v “What's New in V3R7?” on page xlv
v “What's New in V3R6/V3R2?” on page xlix

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the V7R1 release of RPG
IV. If you are using a previous release of the compiler, you will need to
determine what functions are supported on your system. For example, if
you are using a V5R1 system, the functions new to the V7R1 release will not
be supported.

What's New in this Release
This section describes the enhancements made to ILE RPG in V7R1.

Sort and search data structure arrays

Data structure arrays can be sorted and searched using one of the subfields
as a key.

// Sort the custDs array by the amount_owing subfield
SORTA custDs(*).amount_owing;

// Search for an element in the custDs array where the
// account_status subfield is "K"
elem = %LOOKUP("K" : custDs(*).account_status);

Sort an array either ascending or descending

An array can be sorted ascending using SORTA(A) and descending using
SORTA(D). The array cannot be a sequenced array (ASCEND or DESCEND
keyword).

// Sort the salary array in descending order
SORTA(D) salary;

New built-in function %SCANRPL (scan and replace)

The %SCANRPL built-in function scans for all occurrences of a value
within a string and replaces them with another value.

// Replace NAME with 'Tom'
string1 = 'See NAME. See NAME run. Run NAME run.';
string2 = %ScanRpl('NAME' : 'Tom' : string1);
// string2 = 'See Tom. See Tom run. Run Tom run.'

%LEN(varying : *MAX)

The %LEN builtin function can be used to obtain the maximum number of
characters for a varying-length character, UCS-2 or Graphic field.

Use ALIAS names in externally-described data structures

Use the ALIAS keyword on a Definition specification to indicate that you
want to use the alternate names for the subfields of externally-described
data structures. Use the ALIAS keyword on a File specification to indicate
that you want to use the alternate names for LIKEREC data structures
defined from the records of the file.

What’s New

About This Reference xiii

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|

|

|
|
|
|
|

A R CUSTREC
A CUSTNM 25A ALIAS(CUSTOMER_NAME)
A CUSTAD 25A ALIAS(CUSTOMER_ADDRESS)
A ID 10P 0

D custDs e ds ALIAS
D QUALIFIED EXTNAME(custFile)
/free

custDs.customer_name = 'John Smith';
custDs.customer_address = '123 Mockingbird Lane';
custDs.id = 12345;

Faster return values

A procedure defined with the RTNPARM keyword handles the return
value as a hidden parameter. When a procedure is prototyped to return a
very large value, especially a very large varying value, the performance for
calling the procedure can be significantly improved by defining the
procedure with the RTNPARM keyword.

D getFileData pr a varying len(1000000)
D rtnparm
D file a const varying len(500)
D data S a varying len(1000)
/free

data = getFileData ('/home/mydir/myfile.txt');

%PARMNUM built-in function

The %PARMNUM(parameter_name) built-in function returns the ordinal
number of the parameter within the parameter list. It is especially
important to use this built-in function when a procedure is coded with the
RTNPARM keyword.

D pi
D name 100a const varying
D id 10i 0 value
D errorInfo likeds(errs_t)
D options(*nopass)
/free

// Check if the "errorInfo" parameter was passed
if %parms >= %parmnum(errorInfo);

Optional prototypes

If a program or procedure is not called by another RPG module, it is
optional to specify the prototype. The prototype may be omitted for the
following types of programs and procedures:
v A program that is only intended to be used as an exit program or as the

command-processing program for a command
v A program that is only intended to be called from a different

programming language
v A procedure that is not exported from the module
v A procedure that is exported from the module but only intended to be

called from a different programming language

Pass any type of string parameter
Implicit conversion will be done for string parameters passed by value or
by read-only reference. For example, a procedure can be prototyped to
have a CONST UCS-2 parameter, and character expression can be passed
as a parameter on a call to the procedure. This enables you to write a
single procedure with the parameters and return value prototyped with the
UCS-2 type. To call that procedure, you can pass any type of string
parameter, and assign the return value to any type of string variable.

What’s New

xiv ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|

// The makeTitle procedure upper-cases the value
// and centers it within the provided length
alphaTitle = makeTitle(alphaValue : 50);
ucs2Title = makeTitle(ucs2Value : 50);
dbcsTitle = makeTitle(dbcsValue : 50);

Two new options for XML-INTO

v The datasubf option allows you to name a subfield that will receive the
text data for an XML element that also has attributes.

v The countprefix option reduces the need for you to specify the
allowmissing=yes option. It specifies the prefix for the names of the
additional subfields that receive the number of RPG array elements or
non-array subfields set by the XML-INTO operation.

These options are also available through a PTF for V6R1.

Teraspace storage model

RPG modules and programs can be created to use the teraspace storage
model or to inherit the storage model of their caller. With the teraspace
storage model, the system limits regarding automatic storage are
significantly higher that for the single-level storage model. There are limits
for the amount of automatic storage for a single procedure and for the
total automatic storage of all the procedures on the call stack.

Use the storage model (STGMDL) parameter on the CRTRPGMOD or
CRTBNDRPG command, or use the STGMDL keyword on the Control
specification.

*TERASPACE
The program or module uses the teraspace storage model.

*SNGLVL
The program or module uses the single-level storage model.

*INHERIT
The program or module inherits the storage model of its caller.

Change to the ACTGRP parameter of the CRTBNDRPG command and the
ACTGRP keyword on the Control specification

The default value of the ACTGRP parameter and keyword is changed from
QILE to *STGMDL.

ACTGRP(*STGMDL) specifies that the activation group depends on the
storage model of the program. When the storage model is *TERASPACE,
ACTGRP(*STGMDL) is the same as ACTGRP(QILETS). Otherwise,
ACTGRP(*STGMDL) is the same as ACTGRP(QILE).

Note: The change to the ACTGRP parameter and keyword does not affect
the default way the activation group is assigned to the program. The
default value for the STGMDL parameter and keyword is *SNGLVL,
so when the ACTGRP parameter or keyword is not specified, the
activation group of the program will default to QILE as it did in
prior releases.

Allocate teraspace storage

Use the ALLOC keyword on the Control specification to specify whether
the RPG storage-management operations in the module will use teraspace
storage or single-level storage. The maximum size of a teraspace storage
allocation is significantly larger than the maximum size of a single-level
storage allocation.

What’s New

About This Reference xv

|
|
|
|
|

|

|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

Encrypted listing debug view

When a module’s listing debug view is encrypted, the listing view can
only be viewed during a debug session when the person doing the
debugging knows the encryption key. This enables you to send debuggable
programs to your customers without enabling your customers to see your
source code through the listing view. Use the DBGENCKEY parameter on
the CRTRPGMOD, CRTBNDRPG, or CRTSQLRPGI command.

Table 1. Changed Language Elements Since V6R1

Language Unit Element Description

Control specification
keywords

ACTGRP(*STGMDL) *STGMDL is the new default
for the ACTGRP keyword
and command parameter. If
the program uses the
teraspace storage module,
the activation group is
QILETS. Otherwise it is
QILE.

Built-in functions %LEN(varying-field : *MAX) Can now be used to obtain
the maximum number of
characters of a
varying-length field.

Operation codes SORTA(A | D) The SORTA operation code
now allows the A and D
operation extenders
indicating whether the array
should be sorted ascending
(A) or descending (D).

Table 2. New Language Elements Since V6R1

Language Unit Element Description

Control specification
keywords

STGMDL(*INHERIT |
*TERASPACE | *SNGLVL)

Controls the storage model
of the module or program

ALLOC(*STGMDL |
*TERASPACE | *SNGLVL)

Controls the storage model
for the storage-managent
operations %ALLOC,
%REALLOC, DEALLOC,
ALLOC, REALLOC

File specification keywords ALIAS Use the alternate field names
for the subfields of data
structures defined with the
LIKEREC keyword

Definition specification
keywords

ALIAS Use the alternate field names
for the subfields of the
externally-described data
structure

RTNPARM Specifies that the return
value for the procedure
should be handled as a
hidden parameter

What’s New

xvi ILE RPG Reference

|

|
|
|
|
|
|

||

|||

|
|
||
|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

||

|||

|
|
|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|

|
|
||
|
|
|

||
|
|
|

Table 2. New Language Elements Since V6R1 (continued)

Language Unit Element Description

Built-in functions %PARMNUM Returns the ordinal number
of the parameter in the
parameter list

%SCANRPL Scans for all occurrences of a
value within a string and
replaces them with another
value

XML-INTO options datasubf Name a subfield that will
receive the text data for an
XML element that also has
attributes

countprefix Specifies the prefix for the
names of the additional
subfields that receive the
number of RPG array
elements or non-array
subfields set by the
XML-INTO operation

What's New in V6R1
This section describes the enhancements made to ILE RPG in V6R1.

THREAD(*CONCURRENT)

When THREAD(*CONCURRENT) is specified on the Control specification
of a module, it provides ability to run concurrently in multiple threads:
v Multiple threads can run in the module at the same time.
v By default, static variables will be defined so that each thread will have

its own copy of the static variable.
v Individual variables can be defined to be shared by all threads using

STATIC(*ALLTHREAD).
v Individual procedures can be serialized so that only one thread can run

them at one time, by specifying SERIALIZE on the Procedure-Begin
specification.

Ability to define a main procedure which does not use the RPG cycle

Using the MAIN keyword on the Control specification, a subprocedure can
be identified as the program entry procedure. This allows an RPG
application to be developed where none of the modules uses the RPG
cycle.

Files defined in subprocedures

Files can be defined locally in subprocedures. I/O to local files can only be
done with data structures; I and O specifications are not allowed in
subprocedures, and the compiler does not generate I and O specifications
for externally described files. By default, the storage associated with local
files is automatic; the file is closed when the subprocedure returns. The
STATIC keyword can be used to indicate that the storage associated with
the file is static, so that all invocations of the subprocedure will use the
same file, and if the file is open when the subprocedure returns, it will
remain open for the next call to the subprocedure.

What’s New

About This Reference xvii

|

|||

|||
|
|

||
|
|
|

|||
|
|
|

||
|
|
|
|
|
|
|

|

Qualified record formats

When a file is defined with the QUALIFIED keyword, the record formats
must be qualified by the file name, MYFILE.MYFMT. Qualified files do not
have I and O specifications generated by the compiler; I/O can only be
done through data structures.

Files defined like other files

Using the LIKEFILE keyword, a file can be defined to use the same
settings as another File specification, which is important when passing a
file as a parameter. If the file is externally-described, the QUALIFIED
keyword is implied. I/O to the new file can only be done through data
structures.

Files passed as parameters

A prototyped parameter can be defined as a File parameter using the
LIKEFILE keyword. Any file related through the same LIKEFILE definition
may be passed as a parameter to the procedure. Within the called
procedure or program, all supported operations can be done on the file;
I/O can only be done through data structures.

EXTDESC keyword and EXTFILE(*EXTDESC)

The EXTDESC keyword identifies the file to be used by the compiler at
compile time to obtain the external decription of the file; the filename is
specified as a literal in one of the forms ’LIBNAME/FILENAME’ or
’FILENAME’. This removes the need to provide a compile-time override
for the file.

The EXTFILE keyword is enhanced to allow the special value *EXTDESC,
indicating that the file specified by EXTDESC is also to be used at runtime.

EXTNAME to specify the library for the externally-described data structure

The EXTNAME keyword is enhanced to allow a literal to specify the
library for the external file. EXTNAME(’LIBNAME/FILENAME’) or
EXTNAME(’FILENAME’) are supported. This removes the need to provide
a compile-time override for the file.

EXFMT allows a result data structure

The EXFMT operation is enhanced to allow a data structure to be specified
in the result field. The data structure must be defined with usage type
*ALL, either as an externally-described data structure for the record format
(EXTNAME(file:fmt:*ALL), or using LIKEREC of the record format
(LIKEREC(fmt:*ALL).

Larger limits for data structures, and character, UCS-2 and graphic variables

v Data structures can have a size up to 16,773,104.
v Character definitions can have a length up to 16,773,104. (The limit is 4

less for variable length character definitions.)
v Character definitions can have a length up to 16,773,104. (The limit is 4

less for variable length character definitions.)
v UCS-2 definitions can have a length up to 8,386,552 UCS-2 characters.

(The limit is 2 less for variable length UCS-2 definitions.)
v Graphic definitions can have a length up to 8,386,552 DBCS characters.

(The limit is 2 less for variable length graphic definitions.)
v The VARYING keyword allows a parameter of either 2 or 4 indicating

the number of bytes used to hold the length prefix.

What’s New

xviii ILE RPG Reference

%ADDR(varying : *DATA)

The %ADDR built-in function is enhanced to allow *DATA as the second
parameter to obtain the address of the data part of a variable length field.

Larger limit for DIM and OCCURS

An array or multiple-occurrence data structure can have up to 16,773,104
elements, provided that the total size is not greater than 16,773,104.

Larger limits for character, UCS-2 and DBCS literals

v Character literals can now have a length up to 16380 characters.
v UCS-2 literals can now have a length up to 8190 UCS-2 characters.
v Graphic literals can now have a length up to 16379 DBCS characters.

TEMPLATE keyword for files and definitions

The TEMPLATE keyword can be coded for file and variable definitions to
indicate that the name will only be used with the LIKEFILE, LIKE, or
LIKEDS keyword to define other files or variables. Template definitions are
useful when defining types for prototyped calls, since the compiler only
uses them at compile time to help define other files and variables, and
does not generate any code related to them.

Template data structures can have the INZ keyword coded for the data
structure and its subfields, which will ease the use of INZ(*LIKEDS).

Relaxation of some UCS-2 rules

The compiler will perform some implicit conversion between character,
UCS-2 and graphic values, making it unnecessary to code %CHAR, %UCS2
or %GRAPH in many cases. This enhancement is also available through
PTFs for V5R3 and V5R4. Implicit conversion is now supported for
v Assignment using EVAL and EVALR.
v Comparison operations in expressions.
v Comparison using fixed form operations IFxx, DOUxx, DOWxx, WHxx,

CASxx, CABxx, COMP.
v Note that implicit conversion was already supported for the conversion

operations MOVE and MOVEL.

UCS-2 variables can now be initialized with character or graphic literals
without using the %UCS2 built-in function.

Eliminate unused variables from the compiled object

New values *UNREF and *NOUNREF are added to the OPTION keyword
for the CRTBNDRPG and CRTRPGMOD commands, and for the OPTION
keyword on the Control specification. The default is *UNREF. *NOUNREF
indicates that unreferenced variables should not be generated into the RPG
module. This can reduce program size, and if imported variables are not
referenced, it can reduce the time taken to bind a module to a program or
service program.

PCML can now be stored in the module

Program Call Markup Language (PCML) can now be stored in the module
as well as in a stream file. By using combinations of the PGMINFO
command parameter and/or the new PGMINFO keyword for the Control
specification, the RPG programmer can choose where the PCML
information should go. If the PCML information is placed in the module, it

What’s New

About This Reference xix

can later be retrieved using the QBNRPII API. This enhancement is also
available through PTFs for V5R4, but only through the Control
specification keyword.

Table 3. Changed Language Elements Since V5R4

Language Unit Element Description

Control specification
keywords

OPTION(*UNREF |
*NOUNREF)

Specifies that unused
variables should not be
generated into the module.

THREAD(*CONCURRENT) New parameter
*CONCURRENT allows
running concurrently in
multiple threads.

File specification keywords EXTFILE(*EXTDESC) Specifies that the value of the
EXTDESC keyword is also to
be used for the EXTFILE
keyword.

Built-in functions %ADDR(varying-field :
*DATA)

Can now be used to obtain
the address of the data
portion of a varying-length
variable.

Definition specification
keywords

DIM(16773104) An array can have up to
16773104 elements.

EXTNAME(’LIB/FILE’) Allows a literal for the file
name. The literal can include
the library for the file.

OCCURS(16773104) A multiple-occurrence data
structure can have up to
16773104 elements.

VARYING{(2|4)} Can now take a parameter
indicating the number of
bytes for the length prefix.

Definition specifications Length entry Can be up to 9999999 for
Data Structures, and
definitions of type A, C or G.
(To define a longer item, the
LEN keyword must be used.)

Input specifications Length entry Can be up to 99999 for
alphanumeric fields, and up
to 99998 for UCS-2 and
Graphic fields.

Calculation specifications Length entry Can be up to 99999 for
alphanumeric fields.

Operation codes EXFMT format { result-ds } Can have a data structure in
the result entry.

Table 4. New Language Elements Since V5R4

Language Unit Element Description

Control specification
keywords

MAIN(subprocedure-name) Specifies the program-entry
procedure for the program.

PGMINFO(*NO | *PCML { :
*MODULE })

Indicates whether Program
Information is to be placed
directly in the module.

What’s New

xx ILE RPG Reference

|
|
||
|

Table 4. New Language Elements Since V5R4 (continued)

Language Unit Element Description

File specification keywords STATIC Indicates that a local file
retains its program state
across calls to a
subprocedure.

QUALIFIED Indicates that the record
format names of the file are
qualified by the file name,
FILE.FMT.

LIKEFILE(filename) Indicates that the file is
defined the same as another
file.

TEMPLATE Indicates that the file is only
to be used for later LIKEFILE
definitions.

EXTDESC(constant-filename) Specifies the external file
used at compile time for the
external definitions.

Definition specification
keywords

STATIC(*ALLTHREAD) Indicates that the same
instance of the static variable
is used by all threads
running in the module.

LIKEFILE(filename) Indicates that the parameter
is a file.

TEMPLATE Indicates that the definition
is only to be used for LIKE
or LIKEDS definitions.

LEN(length) Specifies the length of a data
structure, or a definition of
type A, C or G.

Procedure specification
keywords

SERIALIZE Indicates that the procedure
can be run by only one
thread at a time.

What’s New in V5R4?
The following list describes the enhancements made to ILE RPG in V5R4:

New operation code EVAL-CORR
EVAL-CORR{(EH)} ds1 = ds2

New operation code EVAL-CORR assigns data and null-indicators from the
subfields of the source data structure to the subfields of the target data
structure. The subfields that are assigned are the subfields that have the same
name and compatible data type in both data structures.

For example, if data structure DS1 has character subfields A, B, and C, and
data structure DS2 has character subfields B, C, and D, statement EVAL-CORR
DS1 = DS2; will assign data from subfields DS2.B and DS2.C to DS1.B and
DS1.C. Null-capable subfields in the target data structure that are affected by
the EVAL-CORR operation will also have their null-indicators assigned from
the null-indicators of the source data structure’s subfields, or set to *OFF, if the
source subfield is not null-capable.

What’s New

About This Reference xxi

// DS1 subfields DS2 subfields
// s1 character s1 packed
// s2 character s2 character
// s3 numeric
// s4 date s4 date
// s5 character
EVAL-CORR ds1 = ds2;
// This EVAL-CORR operation is equivalent to the following EVAL operations
// EVAL ds1.s2 = ds2.s2
// EVAL ds1.s4 = ds2.s4
// Other subfields either appear in only one data structure (S3 and S5)
// or have incompatible types (S1).

EVAL-CORR makes it easier to use result data structures for I/O operations to
externally-described files and record formats, allowing the automatic transfer
of data between the data structures of different record formats, when the
record formats have differences in layout or minor differences in the types of
the subfields.

New prototyped parameter option OPTIONS(*NULLIND)

When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is
passed with the parameter, giving the called procedure direct access to the
null-byte map of the caller’s parameter.

New builtin function %XML
%XML (xmldocument { : options })

The %XML builtin function describes an XML document and specifies options
to control how the document should be parsed. The xmldocument parameter
can be a character or UCS-2 expression, and the value may be an XML
document or the name of an IFS file containing an XML document. If the value
of the xmldocument parameter has the name of a file, the ″doc=file″ option
must be specified.

New builtin function %HANDLER
%HANDLER (handlingProcedure : communicationArea)

%HANDLER is used to identify a procedure to handle an event or a series of
events. %HANDLER does not return a value, and it can only be specified as
the first operand of XML-SAX and XML-INTO.

The first operand, handlingProcedure, specifies the prototype of the handling
procedure. The return value and parameters specified by the prototype must
match the parameters required for the handling procedure; the requirements
are determined by the operation that %HANDLER is specified for.

The second operand, communicationArea, specifies a variable to be passed as a
parameter on every call to the handling procedure. The operand must be an
exact match for the first prototyped parameter of the handling procedure,
according to the same rules that are used for checking prototyped parameters
passed by reference. The communication-area parameter can be any type,
including arrays and data structures.

New operation code XML-SAX
XML-SAX{ (e) } %HANDLER(eventHandler : commArea) %XML(xmldocument { : saxOptions });

XML-SAX initiates a SAX parse for the XML document specified by the %XML
builtin function. The XML-SAX operation begins by calling an XML parser
which begins to parse the document. When the parser discovers an event such

What’s New

xxii ILE RPG Reference

as finding the start of an element, finding an attribute name, finding the end of
an element etc., the parser calls the eventHandler with parameters describing
the event. The commArea operand is a variable that is passed as a parameter to
the eventHandler providing a way for the XML-SAX operation code to
communicate with the handling procedure. When the eventHandler returns, the
parser continues to parse until it finds the next event and calls the eventHandler
again.

New operation code XML-INTO
XML-INTO{ (EH) } variable %XML(xmlDoc { : options });
XML-INTO{ (EH) } %HANDLER(handler : commArea) %XML(xmlDoc { : options });

XML-INTO reads the data from an XML document in one of two ways:
v directly into a variable
v gradually into an array parameter that it passes to the procedure specified

by %HANDLER.

Various options may be specified to control the operation.

The first operand specifies the target of the parsed data. It can contain a
variable name or the % HANDLER built-in function.

The second operand contains the %XML builtin function specifying the source
of the XML document and any options to control how the document is parsed.
It can contain XML data or it can contain the location of the XML data. The
doc option is used to indicate what this operand specifies.
// Data structure "copyInfo" has two subfields, "from"
// and "to". Each of these subfields has two subfields
// "name" and "lib".
// File cpyA.xml contains the following XML document
// <copyinfo>
// <from><name>MASTFILE</name><lib>CUSTLIB</lib></from>
// <to><name>MYFILE</name><lib>*LIBL</lib>
// <copyinfo>
xml-into copyInfo %XML('cpyA.xml' : 'doc=file');
// After the XML-INTO operation, the following
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = '*LIBL '

Use the PREFIX keyword to remove characters from the beginning of field
names

PREFIX('' : number_of_characters)

When an empty character literal (two single quotes specified with no
intervening characters) is specified as the first parameter of the PREFIX
keyword for File and Definition specifications, the specified number of
characters is removed from the field names. For example if a file has fields
XRNAME, XRIDNUM, and XRAMOUNT, specifying PREFIX('':2)on the File
specification will cause the internal field names to be NAME, IDNUM, and
AMOUNT.

If you have two files whose subfields have the same names other than a
file-specific prefix, you can use this feature to remove the prefix from the
names of the subfields of externally-described data structures defined from
those files. This would enable you to use EVAL-CORR to assign the
same-named subfields from one data structure to the other. For example, if file
FILE1 has a field F1NAME and file FILE2 has a field F2NAME, and
PREFIX('':2) is specified for externally-described data structures DS1 for FILE1

What’s New

About This Reference xxiii

and DS2 for FILE2, then the subfields F1NAME and F2NAME will both
become NAME. An EVAL-CORR operation between data structures DS1 and
DS2 will assign the NAME subfield.

New values for the DEBUG keyword
DEBUG { (*INPUT *DUMP *XMLSAX *NO *YES) }

The DEBUG keyword determines what debugging aids are generated into the
module. *NO and *YES are existing values. *INPUT, *DUMP and *XMLSAX
provide more granularity than *YES.

*INPUT
Fields that appear only on input specifications are read into the program
fields during input operations.

*DUMP
DUMP operations without the (A) extender are performed.

*XMLSAX
An array of SAX event names is generated into the module to be used
while debugging a SAX event handler.

*NO
Indicates that no debugging aids are to be generated into the module.
Specifying DEBUG(*NO) is the same as omitting the DEBUG keyword.

*YES
This value is kept for compatibility purposes. Specifying DEBUG(*YES) is
the same as specifying DEBUG without parameters, or DEBUG(*INPUT :
*DUMP).

Syntax-checking for free-form calculations

In SEU, free-form statements are now checked for correct syntax.

Improved debugging support for null-capable subfields of a qualified data
structure

When debugging qualified data structures with null-capable subfields, the
null-indicators are now organized as a similar data structure with an indicator
subfield for every null-capable subfield. The name of the data structure is
_QRNU_NULL_data_structure_name, for example _QRNU_NULL_MYDS. If a
subfield of the data structure is itself a data structure with null-capable
subfields, the null- indicator data structure will similarly have a data structure
subfield with indicator subfields. For example, if data structure DS1 has
null-capable subfields DS1.FLD1, DS1.FLD2, and DS1.SUB.FLD3, you can
display all the null-indicators in the entire data structure using the debug
instruction.
===> EVAL _QRNU_NULL_DS
> EVAL _QRNU_NULL_DS1

_QRNU_NULL_DS1.FLD1 = '1'
_QRNU_NULL_DS1.FLD2 = '0'
_QRNU_NULL_DS1.SUB.FLD3 = '1'

===> EVAL _QRNU_NULL_DS.FLD2
_QRNU_NULL_DS1.FLD2 = '0'

===> EVAL _QRNU_NULL_DS.FLD2 = '1'
===> EVAL DSARR(1).FLD2

DSARR(1).FLD2 = 'abcde'

===> EVAL _QRNU_NULL_DSARR(1).FLD2

_QRNU_NULL_DSARR(1).FLD2 = '0'

Change to end-of-file behaviour with shared files

What’s New

xxiv ILE RPG Reference

If a module performs a keyed sequential input operation to a shared file and it
results in an EOF condition, and a different module sets the file cursor using a
positioning operation such as SETLL, a subsequent sequential input operation
by the first module may be successfully done. Before this change, the first RPG
module ignored the fact that the other module had repositioned the shared file.

This change in behaviour is available with PTFs for releases V5R2M0 (SI13932)
and V5R3M0 (SI14185).

Table 5. Changed Language Elements Since V5R3

Language Unit Element Description

Control specification
keywords

DEBUG(*INPUT|*DUMP
*XMLSAX|*NO|*YES)

New parameters *INPUT,
*DUMP and *XMLSAX give
more options for debugging
aids.

File specification keywords PREFIX('':2) An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

Definition specification
keywords

OPTIONS(*NULLIND) Indicates that the null
indicator is passed with the
parameter.

PREFIX('':2) An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

Table 6. New Language Elements Since V5R3

Language Unit Element Description

Built-in functions %HANDLER(prototype:
parameter)

Specifies a handling
procedure for an event.

%XML(document{:options}) Specifies an XML document
and options to control the
way it is parsed.

Operation codes EVAL-CORR Assigns data and
null-indicators from the
subfields of the source data
structure to the subfields of
the target data structure.

XML-INTO Reads the data from an XML
document directly into a
program variable.

XML-SAX Initiates a SAX parse of an
XML document.

What's New in V5R3?
The following list describes the enhancements made to ILE RPG in V5R3:
v New builtin function %SUBARR:

What’s New

About This Reference xxv

New builtin function %SUBARR allows assignment to a sub-array or returning a
sub-array as a value.
Along with the existing %LOOKUP builtin function, this enhancements enables
the implementation of dynamically sized arrays with a varying number of
elements.
%SUBARR(array : start) specifies array elements array(start) to the end of the
array
%SUBARR(array : start : num) specifies array elements array(start) to array(start
+ num - 1)
Example:
// Copy part of an array to another array:
resultArr = %subarr(array1:start:num);
// Copy part of an array to part of another array:
%subarr(Array1:x:y) = %subarr(Array2:m:n);
// Sort part of an array
sorta %subarr(Array3:x:y);

// Sum part of an array
sum = %xfoot(%subarr(Array4:x:y));

v The SORTA operation code is enhanced to allow sorting of partial arrays.

When %SUBARR is specified in factor 2, the sort only affects the partial array
indicated by the %SUBARR builtin function.

v Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp,
and the optional second parameter to specify the format of the resulting numeric
value.
Example:
D numDdMmYy s 6p 0
D date s d datfmt(*jul)
date = D'2003-08-21';
numDdMmYy = %dec(date : *dmy); // now numDdMmYy = 210803

v Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of
character data at runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter
of *CHAR. When the first parameter is *CHAR, the second parameter must be
*JOBRUN. CCSID(*CHAR : *JOBRUN) controls the way character data is
converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,
character data will be assumed to be in the job CCSID; when CCSID(*CHAR :
*JOBRUN) is not specified, character data will be assumed to be in the
mixed-byte CCSID related to the job CCSID.

v Second parameter for %TRIM, %TRIMR and %TRIML indicating what
characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of
characters to be trimmed.
Example:
trimchars = '*-.';
data = '***a-b-c-.'
result = %trim(data : trimchars);
// now result = 'a-b-c'. All * - and . were trimmed from the ends of the data

v New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is
passed be trimmed of leading and trailing blanks. OPTIONS(*TRIM) is valid for
character, UCS-2 and graphic parameters defined with CONST or VALUE. It is

What’s New

xxvi ILE RPG Reference

also valid for pointer parameters defined with OPTIONS(*STRING). With
OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer
is passed on the call.
Example:
D proc pr
D parm1 5a const options(*trim)
D parm2 5a const options(*trim : *rightadj)
D parm3 5a const varying options(*trim)
D parm4 * value options(*string : *trim)
D parm5 * value options(*string : *trim)
D ptr s *
D data s 10a
D fld1 s 5a

/free
data = ' rst ' + x'00';
ptr = %addr(data);

proc (' xyz ' : ' @#$ ' : ' 123 ' : ' abc ' : ptr);
// the called procedure receives the following parameters
// parm1 = 'xyz '
// parm2 = ' @#$'
// parm3 = '123'
// parm4 = a pointer to 'abc.' (where . is x'00')
// parm5 = a pointer to 'rst.' (where . is x'00')

v Support for 63 digit packed and zoned decimal values

Packed and zoned data can be defined with up to 63 digits and 63 decimal
positions. The previous limit was 31 digits.

v Relaxation of the rules for using a result data structure for I/O to
externally-described files and record formats

– The result data structure for I/O to a record format may be an
externally-described data structure.

– A data structure may be specified in the result field for I/O to an
externally-described file name for operation codes CHAIN, READ, READE,
READP and READPE.

Examples:
1. The following program writes to a record format using from an

externally-described data structure.
Foutfile o e k disk
D outrecDs e ds extname(outfile) prefix(O_)
/free

O_FLD1 = 'ABCDE';
O_FLD2 = 7;
write outrec outrecDs;
*inlr = *on;

/end-free

2. The following program reads from a multi-format logical file into data
structure INPUT which contains two overlapping subfields holding the fields
of the respective record formats.
Flog if e k disk infds(infds)
D infds ds
D recname 261 270
D input ds qualified
D rec1 likerec(rec1) overlay(input)
D rec2 likerec(rec2) overlay(input)
/free
read log input;
dow not %eof(log);
dsply recname;

What’s New

About This Reference xxvii

if recname = 'REC1';
// handle rec1
elseif recname = 'REC2';
// handle rec2
endif;
read log input;
enddo;
*inlr = *on;
/end-free

v If a program/module performs a keyed sequential input operation to a shared
file and it results in an EOF condition, a subsequent sequential input operation
by the same program/module may be attempted. An input request is sent data
base and if a record is available for input, the data is moved into the
program/module and the EOF condition is set off.

v Support for new environment variables for use with RPG programs calling
Java methods

– QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the java
properties used to start the JVM
This environment variable must be set before any RPG program calls a Java
method in a job.
This environment variable has contains Java options, separated and
terminated by some character that does not appear in any of the option
strings. Semicolon is usually a good choice.
Examples:
1. Specifying only one option: If the system’s default JDK is 1.3, and you
want your RPG programs to use JDK 1.4, set environment variable
QIBM_RPG_JAVA_PROPERTIES to
'-Djava.version=1.4;'

Note that even with just one option, a terminating character is required. This
example uses the semicolon.
2. Specifying more than one option: If you also want to set the os400.stdout
option to a different value than the default, you could set the environment
variable to the following value:
'-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!'

This example uses the exclamation mark as the separator/terminator. Note:
This support is also available in V5R1 and V5R2 with PTFs. V5R1: SI10069,
V5R2: SI10101.

– QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception
trace when an RPG call to a Java method ends with an exception
This environment variable can be set, changed, or removed at any time.
If this environment variable contains the value ’Y’, then when a Java
exception occurs during a Java method call from RPG, or a called Java
method throws an exception to its caller, the Java trace for the exception will
be printed. By default, it will be printed to the screen, and may not be
possible to read. To get it printed to a file, set the Java option os400.stderr.
(This would have to be done in a new job; it could be done by setting the
QIBM_RPG_JAVA_PROPERTIES environment variable to
'-Dos400.stderr=file:stderr.txt;'

v An RPG preprocessor enabling the SQL preprocessor to handle conditional
compilation and nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter
PPGENOPT, it will behave as an RPG preprocessor. It will generate a new

What’s New

xxviii ILE RPG Reference

source file rather than generating a program. The new source file will contain
the original source lines that are accepted by the conditional compilation
directives such as /DEFINE and /IF. It will also have the source lines from files
included by /COPY statements, and optionally it will have the source lines
included by /INCLUDE statements. The new source file will have the comments
from the original source file if PPGENOPT(*DFT) or
PPGENOPT(*NORMVCOMMENT) is specified.When the SQL precompiler is
called with a value other than *NONE for new parameter RPGPPOPT, the
precompiler will use this RPG preprocessor to handle /COPY, the conditional
compilation directives and possibly the /INCLUDE directive. This will allow
SQLRPGLE source to have nested /COPY statements, and conditionally used
statements.

Table 7. Changed Language Elements Since V5R2

Language Unit Element Description

Control specification
keywords

CCSID(*GRAPH:parameter|
*UCS2:number|
*CHAR:*JOBRUN)

Can now take a first
parameter of *CHAR, with a
second parameter of
*JOBRUN, to control how
character data is treated at
runtime.

Built-in Functions %DEC(expression {format}) Can now take a parameter of
type Date, Time or Timestamp

%TRIM(expression:expression) Can now take a second
parameter indicating the set of
characters to be trimmed

Definition
Specification
Keywords

OPTIONS(*TRIM) Indicates that blanks are to be
trimmed from passed
parameters

Definition
Specifications

Length and decimal place entries The length and number of
decimal places can be 63 for
packed and zoned fields.

Input specifications Length entry The length can be 32 for
packed fields and 63 for zoned
fields.

Decimal place entry The number of decimal places
can be 63 for packed and
zoned fields.

Calculation
specifications

Length and decimal place entries The length and number of
decimal places can be 63 for
packed and zoned fields.

CHAIN, READ, READE, READP,
AND READPE operations

Allow a data structure to be
specified in the result field
when Factor 2 is the name of
an externally-described file.

CHAIN, READ, READC, READE,
READP, READPE, WRITE,
UPDATE operations

Allow an externally-described
data structure to be specified
in the result field when Factor
2 is the name of an
externally-described record
format.

SORTA operation Now has an extended Factor
2, allowing %SUBARR to be
specified.

What’s New

About This Reference xxix

Table 8. New Language Elements Since V5R2

Language Unit Element Description

Built-in Functions %SUBARR(array:starting
element {:number of
elements})

Returns a section of the
array, or allows a section of
the array to be modified.

What's New in V5R2?
The following list describes the enhancements made to ILE RPG in V5R2:
v Conversion from character to numeric

Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and
%FLOAT are enhanced to allow character parameters. For example,
%DEC(’-12345.67’ : 7 : 2) returns the numeric value -12345.67.

v Bitwise logical built-in functions
%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation
within RPG expressions.

v Complex data structures
Data structure definition is enhanced to allow arrays of data structures and
subfields of data structures defined with LIKEDS that are themselves data
structures. This allows the coding of complex structures such as arrays of arrays,
or arrays of structures containing subarrays of structures.
Example: family(f).child(i).hobbyInfo.pets(p).type = 'dog';

family(f).child(i).hobbyInfo.pets(p).name = 'Spot';

In addition, data structures can be defined the same as a record format, using
the new LIKEREC keyword.

v Enhanced externally-described data structures
Externally-described data structures can hold the programmer’s choice of input,
output, both, key or all fields. Currently, externally-described data structures can
only hold input fields.

v Enhancments to keyed I/O
Programmers can specify search arguments in keyed Input/Output operations in
/FREE calculations in two new ways:
1. By specifying the search arguments (which can be expressions) in a list.
2. By specifying a data structure which contains the search arguments.
Examples: D custkeyDS e ds extname(custfile:*key)

/free
CHAIN (keyA : keyB : key3) custrec;
CHAIN %KDS(custkeyDS) custrec;

v Data-structure result for externally-described files
A data structure can be specified in the result field when using I/O operations
for externally-described files. This was available only for program-described files
prior to V5R2. Using a data structure can improve performance if there are
many fields in the file.

v UPDATE operation to update only selected fields
A list of fields to be updated can be specified with an UPDATE operation. Tthis
could only be done by using exception output prior to V5R2.
Example: update record %fields(salary:status).

v 31 digit support

What’s New

xxx ILE RPG Reference

Supports packed and zoned numeric data with up to 31 digits and decimal
places. This is the maximum length supported by DDS. Only 30 digits and
decimal places were supported prior to V5R2.

v Performance option for FEOD
The FEOD operation is enhanced by supporting an extender N which indicates
that the operation should simply write out the blocked buffers locally, without
forcing a costly write to disk.

v Enhanced data area access
The DTAARA keyword is enhanced to allow the name and library of the data
area to be determined at runtime

v New assignment operators
The new assignment operators +=, -=, *=, /=, **= allow a variable to be modified
based on its old value in a more concise manner.
Example: totals(current_customer) += count;

This statement adds ″count″ to the value currently in ″totals(current_customer)″
without having to code ″totals(current_customer)″ twice.

v IFS source files
The ILE RPG compiler can compile both main source files and /COPY files from
the IFS. The /COPY and /INCLUDE directives are enhanced to support IFS file
names.

v Program Call Markup Language (PCML) generation
The ILE RPG compiler will generate an IFS file containing the PCML,
representing the parameters to the program (CRTBNDRPG) or to the exported
procedures (CRTRPGMOD).

Table 9. Changed Language Elements Since V5R1

Language Unit Element Description

Built-in functions %DEC(expression) Can now take parameters of type character.

%DECH(expression)

%FLOAT(expression)

%INT(expression)

%INTH(expression)

%UNS(expression)

%UNSH(expression)

Definition
specification
keywords

DTAARA({*VAR:}data-area-name) The data area name can be a name, a character literal
specifying ’LIBRARY/NAME’ or a character variable
which will determine the actual data area at runtime.

DIM Allowed for data structure specifications.

LIKEDS Allowed for subfield specifications.

EXTNAME(filename{:extrecname}
{:*ALL|*INPUT|*OUTPUT|*KEY}
)

The optional ″type″ parameter controls which type of
field is extracted for the externally-described data
structure.

Definition
Specifications

Length and decimal place entries The length and number of decimal places can be 31 for
packed and zoned fields.

What’s New

About This Reference xxxi

Table 9. Changed Language Elements Since V5R1 (continued)

Language Unit Element Description

Operation codes CHAIN, DELETEREADE, READPE,
SETGT, SETLL

In free-form operations, Factor 1 can be a list of key
values.

CHAIN, READ, READC, READE,
READP, READPE, UPDATE, WRITE

When used with externally-described files or record
formats, a data structure may be specified in the result
field.

UPDATE In free-form calculations, the final argument can contain
a list of the fields to be updated.

FEOD Operation extender N is allowed. This indicates that the
unwritten buffers must be made available to the
database, but not necessarily be written to disk.

Calculation
specifications

Length and decimal place entries The length and number of decimal places can be 31 for
packed and zoned fields.

Table 10. New Language Elements Since V5R1

Language Unit Element Description

Expressions Assignment Operators += -= *= /=
**=

When these assignment operators are used, the
target of the operation is also the first operand of
the operation.

Control Specification
Keywords

DECPREC(30|31) Controls the precision of decimal intermediate
values for presentation, for example, for %EDITC
and %EDITW

Definition specification
keywords

LIKEREC(intrecname{:*ALL|
*INPUT|*OUTPUT|*KEY})

Defines a data structure whose subfields are the
same as a record format.

Built-in functions %BITAND(expression : expression) Returns a result whose bits are on if the
corresponding bits of the operands are both on.

%BITNOT(expression) Returns a result whose bits are the inverse of the
bits in the argument.

%BITOR(expression : expression) Returns a result whose bits are on if either of the
corresponding bits of the operands is on.

%BITXOR(expression : expression) Returns a result whose bits are on if exactly one
of the corresponding bits of the operands is on.

%FIELDS(name{:name...}) Used in free-form ″UPDATE to specify the fields
to be updated.

%KDS(data structure) Used in free-form keyed operation codes CHAIN,
SETLL, SETGT, READE and READPE, to indicate
that the keys for the operation are in the data
structure.

What's New in V5R1?
The ILE RPG compiler is part of the IBM IBM Rational Development Studio for
System i product, which now includes the C/C++ and COBOL compilers, and the
Application Development ToolSet tools.

The major enhancements to RPG IV since V4R4 are easier interfacing with Java,
new built-in functions, free form calculation specifications, control of which file is
opened, qualified subfield names, and enhanced error handling.

The following list describes these enhancements:

What’s New

xxxii ILE RPG Reference

v Improved support for calls between Java and ILE RPG using the Java Native
Interface (JNI):
– A new data type: Object
– A new definition specification keyword: CLASS
– The LIKE definition specification keyword has been extended to support

objects.
– The EXTPROC definition specification keyword has been extended to support

Java procedures.
– New status codes.

v New built-in functions:
– Functions for converting a number into a duration that can be used in

arithmetic expressions: %MSECONDS, %SECONDS, %MINUTES, %HOURS,
%DAYS, %MONTHS, and %YEARS.

– The %DIFF function, for subtracting one date, time, or timestamp value from
another.

– Functions for converting a character string (or date or timestamp) into a date,
time, or timestamp: %DATE, %TIME, and %TIMESTAMP.

– The %SUBDT function, for extracting a subset of a date, time, or timestamp.
– Functions for allocating or reallocating storage: %ALLOC and %REALLOC.
– Functions for finding an element in an array: %LOOKUP, %LOOKUPGT,

%LOOKUPGE, %LOOKUPLT, and %LOOKUPLE.
– Functions for finding an element in a table: %TLOOKUP, %TLOOKUPGT,

%TLOOKUPGE, %TLOOKUPLT, and %TLOOKUPLE.
– Functions for verifying that a string contains only specified characters (or

finding the first or last exception to this rule): %CHECK and %CHECKR
– The %XLATE function, for translating a string based on a list of

from-characters and to-characters.
– The %OCCUR function, for getting or setting the current occurrence in a

multiple-occurrence data structure.
– The %SHTDN function, for determining if the operator has requested

shutdown.
– The %SQRT function, for calculating the square root of a number.

v A new free-form syntax for calculation specifications. A block of free-form
calculation specifcations is delimited by the compiler directives /FREE and
/END-FREE

v You can specify the EXTFILE and EXTMBR keywords on the file specification to
control which external file is used when a file is opened.

v Support for qualified names in data structures:
– A new definition specification keyword: QUALIFIED. This keyword specifies

that subfield names will be qualified with the data structure name.
– A new definition specification keyword: LIKEDS. This keyword specifies that

subfields are replicated from another data structure. The subfield names will
be qualified with the new data structure name. LIKEDS is allowed for
prototyped parameters; it allows the parameter’s subfields to be used directly
in the called procedure.

– The INZ definition specification keyword has been extended to allow a data
structure to be initialized based on its parent data structure.

v Enhanced error handling:

What’s New

About This Reference xxxiii

– Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow
you to define a group of operations with conditional error handling based on
the status code.

Other enhancements have been made to this release as well. These include:
v You can specify parentheses on a procedure call that has no parameters.
v You can specify that a procedure uses ILE C or ILE CL calling conventions, on

the EXTPROC definition specification keyword.
v The following /DEFINE names are predefined: *VnRnMn, *ILERPG,

*CRTBNDRPG, and *CRTRPGMOD.
v The search string in a %SCAN operation can now be longer than string being

searched. (The string will not be found, but this will no longer generate an error
condition.)

v The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs
to be previously defined.

v The %PADDR built-in function can now take either a prototype name or an
entry point name as its argument.

v A new operation code, ELSEIF, combines the ELSE and IF operation codes
without requiring an additional ENDIF.

v The DUMP operation code now supports the A extender, which means that a
dump is always produced - even if DEBUG(*NO) was specified.

v A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is
not expanded by the SQL preprocessor. Included files cannot contain embedded
SQL or host variables.

v The OFLIND file-specification keyword can now take any indicator, including a
named indicator, as an argument.

v The LICOPT (licensed internal code options) keyword is now available on the
CRTRPGMOD and CRTBNDRPG commands.

v The PREFIX file description keyword can now take an uppercase character literal
as an argument. The literal can end in a period, which allows the file to be used
with qualified subfields.

v The PREFIX definition specification keyword can also take an uppercase
character literal as an argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 11. Changed Language Elements Since V4R4

Language Unit Element Description

Built-in functions %CHAR(expression{:format}) The optional second parameter specifies the
desired format for a date, time, or timestamp. The
result uses the format and separators of the
specified format, not the format and separators of
the input.

%PADDR(prototype-name) This function can now take either a prototype
name or an entry point name as its argument.

What’s New

xxxiv ILE RPG Reference

Table 11. Changed Language Elements Since V4R4 (continued)

Language Unit Element Description

Definition specification
keywords

EXTPROC(*JAVA:class-name:proc-
name)

Specifies that a Java method is called.

EXTPROC(*CL:proc-name) Specifies a procedure that uses ILE CL
conventions for return values.

EXTPROC(*CWIDEN:proc-name) Specifies a procedure that uses ILE C conventions
with parameter widening.

EXTPROC(*CNOWIDEN:proc-name) Specifies a procedure that uses ILE C conventions
without parameter widening.

INZ(*LIKEDS) Specifies that a data structure defined with the
LIKEDS keyword inherits the initialization from
its parent data structure.

LIKE(object-name) Specifies that an object has the same class as
another object.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

File specification
keywords

OFLIND(name) This keyword can now take any named indicator
as a parameter.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

Operation codes DUMP (A) This operation code can now take the A extender,
which causes a dump to be produced even if
DEBUG(*NO) was specified.

Table 12. New Language Elements Since V4R4

Language Unit Element Description

Data types Object Used for Java objects

Compiler directives /FREE ... /END-FREE The /FREE... /END-FREE compiler directives
denote a free-form calculation specifications block.

/INCLUDE Equivalent to /COPY, except that it is not
expanded by the SQL preprocessor. Can be used
to inlcude nested files that are within the copied
file. The copied file cannot have embedded SQlL
or host variables.

Definition specification
keywords

CLASS(*JAVA:class-name) Specifies the class for an object.

LIKEDS(dsname) Specifies that a data structure, prototyped
parameter, or return value inherits the subfields of
another data strucutre.

QUALIFIED Specifies that the subfield names in a data
structure are qualified with the data structure
name.

File specification
keywords

EXTFILE(filename) Specifies which file is opened. The value can be a
literal or a variable. The default file name is the
name specified in position 7 of the file
specification. The default library is *LIBL.

EXTMBR(membername) Specifies which member is opened. The value can
be a literal or a variable. The default is *FIRST.

What’s New

About This Reference xxxv

Table 12. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Built-in functions %ALLOC(num) Allocates the specified amount of storage.

%CHECK(comparator:base{:start}) Finds the first character in the base string that is
not in the comparator.

%CHECKR(comparator:base{:start}) Finds the last character in the base string that is
not in the comparator.

%DATE(expression{:date-format}) Converts the expression to a date.

%DAYS(num) Converts the number to a duration, in days.

%DIFF(op1:op2:unit) Calculates the difference (duration) between two
date, time, or timestamp values in the specified
units.

%HOURS(num) Converts the number to a duration, in hours.

%LOOKUPxx(arg:array{:startindex
{:numelems}})

Finds the specified argument, or the specified
type of near-match, in the specified array.

%MINUTES(num) Converts the number to a duration, in minutes.

%MONTHS(num) Converts the number to a duration, in months.

%MSECONDS(num) Converts the number to a duration, in
microseconds.

%OCCUR(dsn-name) Sets or gets the current position of a
multiple-occurrence data structure.

%REALLOC(pointer:number) Reallocates the specified amount of storage for the
specified pointer.

%SECONDS(num) Converts the number to a duration, in seconds.

%SHTDN Checks if the system operator has requested
shutdown.

%SQRT(numeric-expression) Calculates the square root of the specified
number.

%SUBDT(value:unit) Extracts the specified portion of a date, time, or
timestamp value.

%THIS Returns an Object value that contains a reference
to the class instance on whose behalf the native
method is being called.

%TIME(expression{:time-format}) Converts the expression to a time.

%TIMESTAMP(expression
{:*ISO|*ISO0})

Converts the expression to a timestamp.

%TLOOKUP(arg:search-table
{:alt-table})

Finds the specified argument, or the specified
type of near-match, in the specified table.

%XLATE(from:to:string{:startpos}) Translates the specified string, based on the
from-string and to-string.

%YEARS(num) Converts the number to a duration, in years.

What’s New

xxxvi ILE RPG Reference

Table 12. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Operation codes MONITOR Begins a group of operations with conditional
error handling.

ON-ERROR Performs conditional error handling, based on the
status code.

ENDMON Ends a group of operations with conditional error
handling.

ELSEIF Equivalent to an ELSE operation code followed by
an IF operation code.

CRTBNDRPG and
CRTRPGMOD keywords

LICOPT(options) Specifies Licensed Internal Code options.

What's New in V4R4?
The major enhancements to RPG IV since V4R2 are the support for running ILE
RPG modules safely in a threaded environment, the new 3-digit and 20-digit
signed and unsigned integer data types, and support for a new Universal
Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields
and graphic or single-byte character fields.

The following list describes these enhancements:
v Support for calling ILE RPG procedures from a threaded application, such as

Domino® or Java™.
– The new control specification keyword THREAD(*SERIALIZE) identifies

modules that are enabled to run in a multithreaded environment. Access to
procedures in the module is serialized.

v Support for new 1-byte and 8-byte integer data types: 3I and 20I signed integer,
and 3U and 20U unsigned integer
– These new integer data types provide you with a greater range of integer

values and can also improve performance of integer computations, taking full
advantage of the 64-bit AS/400 RISC processor.

– The new 3U type allows you to more easily communicate with ILE C
procedures that have single-byte character (char) return types and parameters
passed by value.

– The new INTPREC control specification keyword allows you to specify
20-digit precision for intermediate values of integer and unsigned binary
arithmetic operations in expressions.

– Built-in functions %DIV and %REM have been added to support integer
division and remainder operations.

v Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type
– The UCS-2 (Unicode) character set can encode the characters for many written

languages. The field is a character field whose characters are two bytes long.
– By adding support for Unicode, a single application can now be developed

for a multinational corporation, minimizing the necessity to perform code
page conversion. The use of Unicode permits the processing of characters in
multiple scripts without loss of integrity.

– Support for conversions between UCS-2 fields and graphic or single-byte
character fields using the MOVE and MOVEL operations, and the new
%UCS2 and %GRAPH built-in functions.

What’s New

About This Reference xxxvii

– Support for conversions between UCS-2 fields or graphic fields with different
Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE, and
MOVEL operations, and the new %UCS2 built-in function.

Other enhancements have been made to this release as well. These include:
v New parameters for the OPTION control specification keyword and on the

create commands:
– *SRCSTMT allows you to assign statement numbers for debugging from the

source IDs and SEU sequence numbers in the compiler listing. (The statement
number is used to identify errors in the compiler listing by the debugger, and
to identify the statement where a run-time error occurs.) *NOSRCSTMT
specifies that statement numbers are associated with the Line Numbers of the
listing and the numbers are assigned sequentially.

– Now you can choose not to generate breakpoints for input and output
specifications in the debug view with *NODEBUGIO. If this option is
selected, a STEP on a READ statement in the debugger will step to the next
calculation, rather than stepping through the input specifications.

v New special words for the INZ definition specification keyword:
– INZ(*EXTDFT) allows you to use the default values in the DDS for

initializing externally described data structure subfields.
– Character variables initialized by INZ(*USER) are initialized to the name of

the current user profile.
v The new %XFOOT built-in function sums all elements of a specified array

expression.
v The new EVALR operation code evaluates expressions and assigns the result to a

fixed-length character or graphic result. The assignment right-adjusts the data
within the result.

v The new FOR operation code performs an iterative loop and allows free-form
expressions for the initial, increment, and limit values.

v The new LEAVESR operation code can be used to exit from any point within a
subroutine.

v The new *NEXT parameter on the OVERLAY(name:*NEXT) keyword indicates
that a subfield overlays another subfield at the next available position.

v The new *START and *END values for the SETLL operation code position to the
beginning or end of the file.

v The ability to use hexadecimal literals with integer and unsigned integer fields
in initialization and free-form operations, such as EVAL, IF, etc.

v New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to
indicate whether the overflow indicators should be reset to *OFF when a file is
opened.

v Ability to tolerate pointers in teraspace — a memory model that allows more
than 16 megabytes of contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

What’s New

xxxviii ILE RPG Reference

Table 13. Changed Language Elements Since V4R2

Language Unit Element Description

Control
specification
keywords

OPTION(*{NO}SRCSTMT) *SRCSTMT allows you to request that
the compiler use SEU sequence
numbers and source IDs when
generating statement numbers for
debugging. Otherwise, statement
numbers are associated with the Line
Numbers of the listing and the
numbers are assigned sequentially.

OPTION(*{NO}DEBUGIO) *{NO}DEBUGIO, determines if
breakpoints are generated for input
and output specifications.

Definition
specification
keywords

INZ(*EXTDFT) All externally described data structure
subfields can now be initialized to the
default values specified in the DDS.

INZ(*USER) Any character field or subfield can be
initialized to the name of the current
user profile.

OVERLAY(name:*NEXT) The special value *NEXT indicates that
the subfield is to be positioned at the
next available position within the
overlayed field.

OPTIONS(*NOPASS *OMIT
*VARSIZE *STRING
*RIGHTADJ)

The new OPTIONS(*RIGHTADJ)
specified on a value or constant
parameter in a function prototype
indicates that the character, graphic, or
UCS-2 value passed as a parameter is
to be right adjusted before being
passed on the procedure call.

Definition
specification
positions 33-39 (To
Position/Length)

3 and 20 digits allowed for I
and U data types

Added to the list of allowed values for
internal data types to support 1-byte
and 8-byte integer and unsigned data.

Internal data type C (UCS-2 fixed or
variable-length format)

Added to the list of allowed internal
data types on the definition
specifications. The UCS-2 (Unicode)
character set can encode the characters
for many written languages. The field
is a character field whose characters
are two bytes long.

Data format C (UCS-2 fixed or
variable-length format)

UCS-2 format added to the list of
allowed data formats on the input and
output specifications for program
described files.

Command
parameter

OPTION *NOSRCSTMT, *SRCSTMT,
*NODEBUGIO, and *DEBUGIO have
been added to the OPTION parameter
on the CRTBNDRPG and
CRTRPGMOD commands.

What’s New

About This Reference xxxix

Table 14. New Language Elements Since V4R2

Language Unit Element Description

Control
specification
keywords

CCSID(*GRAPH: *IGNORE |
*SRC | number)

Sets the default graphic CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
*IGNORE.

CCSID(*UCS2: number) Sets the default UCS-2 CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
13488.

INTPREC(10 | 20) Specifies the decimal precision of
integer and unsigned intermediate
values in binary arithmetic operations
in expressions. The default,
INTPREC(10), indicates that 10-digit
precision is to be used.

OPENOPT{(*NOINZOFL |
*INZOFL)}

Indicates whether the overflow
indicators should be reset to *OFF
when a file is opened.

THREAD(*SERIALIZE) Indicates that the module is enabled to
run in a multithreaded environment.
Access to the procedures in the
module is to be serialized.

Definition
specification
keywords

CCSID(number | *DFT) Sets the graphic and UCS-2 CCSID for
the definition.

Built-in functions %DIV(n:m) Performs integer division on the two
operands n and m; the result is the
integer portion of n/m. The operands
must be numeric values with zero
decimal positions.

%GRAPH(char-expr |
graph-expr | UCS2-expr {:
ccsid})

Converts to graphic data from
single-byte character, graphic, or
UCS-2 data.

%REM(n:m) Performs the integer remainder
operation on two operands n and m;
the result is the remainder of n/m. The
operands must be numeric values with
zero decimal positions.

%UCS2(char-expr |
graph-expr | UCS2-expr {:
ccsid})

Converts to UCS-2 data from
single-byte character, graphic, or
UCS-2 data.

%XFOOT(array-expr) Produces the sum of all the elements
in the specified numeric array
expression.

What’s New

xl ILE RPG Reference

Table 14. New Language Elements Since V4R2 (continued)

Language Unit Element Description

Operation codes EVALR Evaluates an assignment statement of
the form result=expression. The result
will be right-justified.

FOR Begins a group of operations and
indicates the number of times the
group is to be processed. The initial,
increment, and limit values can be
free-form expressions.

ENDFOR ENDFOR ends a group of operations
started by a FOR operation.

LEAVESR Used to exit from anywhere within a
subroutine.

What's New in V4R2?
The major enhancements to RPG IV since V3R7 are the support for variable-length
fields, several enhancements relating to indicators, and the ability to specify
compile options on the control specifications. These further improve the RPG
product for integration with the OS/400 operating system and ILE interlanguage
communication.

The following list describes these enhancements:
v Support for variable-length fields

This enhancement provides full support for variable-length character and
graphic fields. Using variable-length fields can simplify many string handling
tasks.

v Ability to use your own data structure for INDARA indicators
Users can now access logical data areas and associate an indicator data structure
with each WORKSTN and PRINTER file that uses INDARA, instead of using the
*IN array for communicating values to data management.

v Ability to use built-in functions instead of result indicators
Built-in functions %EOF, %EQUAL, %FOUND, and %OPEN have been added to
query the results of input/output operations. Built-in functions %ERROR and
%STATUS, and the operation code extender ’E’ have been added for error
handling.

v Compile options on the control specification
Compile options, specified through the CRTBNDRPG and CRTRPGMOD
commands, can now be specified through the control specification keywords.
These compile options will be used on every compile of the program.

In addition, the following new function has been added:
v Support for import and export of procedures and variables with mixed case

names
v Ability to dynamically set the DECEDIT value at runtime
v Built-in functions %CHAR and %REPLACE have been added to make string

manipulation easier
v New support for externally defined *CMDY, *CDMY, and *LONGJUL date data

formats
v An extended range for century date formats

What’s New

About This Reference xli

v Ability to define indicator variables
v Ability to specify the current data structure name as the parameter for the

OVERLAY keyword
v New status code 115 has been added to indicate variable-length field errors
v Support for application profiling
v Ability to handle packed-decimal data that is not valid when it is retrieved from

files using FIXNBR(*INPUTPACKED)
v Ability to specify the BNDDIR command parameter on the CRTRPGMOD

command.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 15. Changed Language Elements Since V3R7

Language Unit Element Description

Control
specification
keywords

DECEDIT(*JOBRUN |
’value’)

The decimal edit value can now be
determined dynamically at runtime
from the job or system value.

Definition
specification
keywords

DTAARA {(data_area_name)} Users can now access logical data
areas.

EXPORT {(external_name)} The external name of the variable
being exported can now be specified as
a parameter for this keyword.

IMPORT {(external_name)} The external name of the variable
being imported can now be specified
as a parameter for this keyword.

OVERLAY(name{:pos}) The name parameter can now be the
name of the current data structure.

Extended century
format

*CYMD (cyy/mm/dd) The valid values for the century
character ’c’ are now:

'c' Years

0 1900-1999
1 2000-2099
. .
. .
. .
9 2800-2899

Internal data type N (Indicator format) Added to the list of allowed internal
data types on the definition
specifications. Defines character data in
the indicator format.

Data format N (Indicator format) Indicator format added to the list of
allowed data formats on the input and
output specifications for program
described files.

Data Attribute *VAR Added to the list of allowed data
attributes on the input and output
specifications for program described
files. It is used to specify
variable-length fields.

What’s New

xlii ILE RPG Reference

Table 15. Changed Language Elements Since V3R7 (continued)

Language Unit Element Description

Command
parameter

FIXNBR The *INPUTPACKED parameter has
been added to handle packed-decimal
data that is not valid.

Table 16. New Language Elements Since V3R7

Language Unit New Description

Control
specification
keywords

ACTGRP(*NEW | *CALLER
| ’activation- group-name’)

The ACTGRP keyword allows you to
specify the activation group the
program is associated with when it is
called.

ALWNULL(*NO |
*INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how
you will use records containing
null-capable fields from externally
described database files.

AUT(*LIBRCRTAUT | *ALL
| *CHANGE | *USE |
*EXCLUDE |
’authorization-list-name’)

The AUT keyword specifies the
authority given to users who do not
have specific authority to the object,
who are not on the authorization list,
and whose user group has no specific
authority to the object.

BNDDIR(’binding
-directory-name’ {:’binding-
directory-name’...})

The BNDDIR keyword specifies the list
of binding directories that are used in
symbol resolution.

CVTOPT(*{NO}DATETIME
*{NO}GRAPHIC
*{NO}VARCHAR
*{NO}VARGRAPHIC)

The CVTOPT keyword is used to
determine how the ILE RPG compiler
handles date, time, timestamp, graphic
data types, and variable-length data
types that are retrieved from externally
described database files.

DFTACTGRP(*YES | *NO) The DFTACTGRP keyword specifies
the activation group in which the
created program will run when it is
called.

ENBPFRCOL(*PEP |
*ENTRYEXIT | *FULL)

The ENBPFRCOL keyword specifies
whether performance collection is
enabled.

FIXNBR(*{NO}ZONED
*{NO}INPUTPACKED)

The FIXNBR keyword specifies
whether decimal data that is not valid
is fixed by the compiler.

GENLVL(number) The GENLVL keyword controls the
creation of the object.

INDENT(*NONE |
’character-value’)

The INDENT keyword specifies
whether structured operations should
be indented in the source listing for
enhanced readability.

LANGID(*JOBRUN | *JOB |
’language-identifier’)

The LANGID keyword indicates which
language identifier is to be used when
the sort sequence is *LANGIDUNQ or
*LANGIDSHR.

What’s New

About This Reference xliii

Table 16. New Language Elements Since V3R7 (continued)

Language Unit New Description

OPTIMIZE(*NONE | *BASIC
| *FULL)

The OPTIMIZE keyword specifies the
level of optimization, if any, of the
object.

OPTION(*{NO}XREF
*{NO}GEN *{NO}SECLVL
*{NO}SHOWCPY
*{NO}EXPDDS *{NO}EXT
*{NO}SHOWSKP)

The OPTION keyword specifies the
options to use when the source
member is compiled.

PRFDTA(*NOCOL | *COL) The PRFDTA keyword specifies
whether the collection of profiling data
is enabled.

SRTSEQ(*HEX | *JOB |
*JOBRUN | *LANGIDUNQ
| *LANGIDSHR |
’sort-table-name’)

The SRTSEQ keyword specifies the sort
sequence table that is to be used in the
ILE RPG source program.

TEXT(*SRCMBRTXT |
*BLANK | ’description’)

The TEXT keyword allows you to
enter text that briefly describes the
object and its function.

TRUNCNBR(*YES | *NO) The TRUNCNBR keyword specifies if
the truncated value is moved to the
result field or if an error is generated
when numeric overflow occurs while
running the object.

USRPRF(*USER | *OWNER) The USRPRF keyword specifies the
user profile that will run the created
program object.

File Description
Specification
keywords

INDDS(
data_structure_name)

The INDDS keyword lets you associate
a data structure name with the
INDARA indicators for a workstation
or printer file.

Definition
specification
keywords

VARYING Defines variable-length fields when
specified on character data or graphic
data.

Built-in functions %CHAR(graphic, date, time
or timestamp expression)

Returns the value in a character data
type.

%EOF{file name} Returns ’1’ if the most recent file input
operation or write to a subfile (for a
particular file, if specified) ended in an
end-of-file or beginning-of-file
condition; otherwise, it returns ’0’.

%EQUAL{file name} Returns ’1’ if the most recent SETLL
(for a particular file, if specified) or
LOOKUP operation found an exact
match; otherwise, it returns ’0’.

%ERROR Returns ’1’ if the most recent operation
code with extender ’E’ specified
resulted in an error; otherwise, it
returns ’0’.

What’s New

xliv ILE RPG Reference

Table 16. New Language Elements Since V3R7 (continued)

Language Unit New Description

%FOUND{file name} Returns ’1’ if the most recent relevant
operation (for a particular file, if
specified) found a record (CHAIN,
DELETE, SETGT, SETLL), an element
(LOOKUP), or a match (CHECK,
CHECKR and SCAN); otherwise, it
returns ’0’.

%OPEN(file name) Returns ’1’ if the specified file is open
and ’0’ if the specified file is closed.

%REPLACE(replacement
string: source string {:start
position {:source length to
replace}})

Returns the string produced by
inserting a replacement string into a
source string, starting at the start
position and replacing the specified
number of characters.

%STATUS{file name} If no program or file error occurred
since the most recent operation code
with extender ’E’ specified, it returns 0.
If an error occurred, it returns the most
recent value set for any program or file
status. If a file is specified, the value
returned is the most recent status for
that file.

Operation code
Extender

E Allows for error handling using the
%ERROR and %STATUS built-in
functions on the CALLP operation and
all operations that allow error
indicators.

New century
formats

*CMDY (cmm/dd/yy) To be used by the MOVE, MOVEL,
and TEST operations.

*CDMY (cdd/mm/yy) To be used by the MOVE, MOVEL,
and TEST operations.

New 4-digit year
format

*LONGJUL (yyyy/ddd) To be used by the MOVE, MOVEL,
and TEST operations.

Command
parameters

PRFDTA The PRFDTA parameter specifies
whether the collection of profiling data
is enabled.

BNDDIR The BNDDIR parameter was
previously only allowed on the
CRTBNDRPG command and not on
the CRTRPGMOD command, now it is
allowed on both commands.

What's New in V3R7?
The major enhancements to RPG IV since V3R6 are the new support for database
null fields, and the ability to better control the precision of intermediate results in
expressions. Other enhancements include the addition of a floating point data type
and support for null-terminated strings. These further improve the RPG product
for integration with the OS/400 operating system and ILE interlanguage
communication. This means greater flexibility for developing applications.

What’s New

About This Reference xlv

The following is a list of these enhancements including a number of new built-in
functions and usability enhancements:
v Support for database null fields

This enhancement allows users to process database files which contain
null-capable fields, by allowing these fields to be tested for null and set to null.

v Expression intermediate result precision
A new control specification keyword and new operation code extenders on
free-form expression specifications allow the user better control over the
precision of intermediate results.

v New floating point data type
The new floating point data type has a much larger range of values than other
data types. The addition of this data type will improve integration with the
database and improve interlanguage communication in an ILE environment,
specifically with the C and C++ languages.

v Support for null terminated strings
The new support for null terminated strings improves interlanguage
communication. It allows users full control over null terminated data by
allowing users to define and process null terminated strings, and to conveniently
pass character data as parameters to procedures which expect null terminated
strings.

v Pointer addition and subtraction
Free-form expressions have been enhanced to allow adding an offset to a
pointer, subtracting an offset from a pointer, and determining the difference
between two pointers.

v Support for long names
Names longer than 10 characters have been added to the RPG language.
Anything defined on the definition or procedure specifications can have a long
name and these names can be used anywhere where they fit within the bounds
of an entry. In addition, names referenced on any free-form specification may be
continued over multiple lines.

v New built-in functions
A number of new built-in functions have been added to the language which
improve the following language facilities:
– editing (%EDITW, %EDITC, %EDITFLT)
– scanning strings (%SCAN)
– type conversions (%INT, %FLOAT, %DEC, %UNS)
– type conversions with half-adjust (%INTH, %DECH, %UNSH)
– precision of intermediate results for decimal expressions (%DEC)
– length and decimals of variables and expressions (%LEN, %DECPOS)
– absolute value (%ABS)
– set and test null-capable fields (%NULLIND)
– handle null terminated strings (%STR)

v Conditional compilation
RPG IV has been extended to support conditional compilation. This support will
include the following:
– defining conditions (/DEFINE, /UNDEFINE),
– testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)
– stop reading current source file (/EOF)

What’s New

xlvi ILE RPG Reference

– a new command option (DEFINE) to define up to 32 conditions on the
CRTBNDRPG and CRTRPGMOD commands.

v Date enhancements
Several enhancements have been made to improve date handling operations.
The TIME operation code is extended to support Date, Time or Timestamp fields
in the result field. Moving dates or times from and to character fields no longer
requires separator characters. Moving UDATE and *DATE fields no longer
requires a format code to be specified. Date fields can be initialized to the
system (*SYS) or job (*JOB) date on the definition specifications.

v Character comparisons with alternate collating sequence
Specific character variables can be defined so that the alternate collating
sequence is not used in comparisons.

v Nested /COPY members
You can now nest /COPY directives. That is, a /COPY member may contain one
(or more) /COPY directives which can contain further /COPY directives and so
on.

v Storage management
You can now use the new storage management operation codes to allocate,
reallocate and deallocate storage dynamically.

v Status codes for storage management and float underflow errors.
Two status codes 425 and 426 have been added to indicate storage management
errors. Status code 104 was added to indicate that an intermediate float result is
too small.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 17. Changed Language Elements Since V3R6

Language Unit Element Description

Definition
specification
keywords

ALIGN ALIGN can now be used to align float
subfields along with the previously
supported integer and unsigned
alignment.

OPTIONS(*NOPASS *OMIT
*VARSIZE *STRING)

The *STRING option allows you to
pass a character value as a
null-terminated string.

Record address
type

F (Float format) Added to the list of allowed record
address types on the file description
specifications. Signals float processing
for a program described file.

Internal data type F (Float format) Added to the list of allowed internal
data types on the definition
specifications. Defines a floating point
standalone field, parameter, or data
structure subfield.

Data format F (Float format) Added to the list of allowed data
formats on the input and output
specifications for program described
files.

What’s New

About This Reference xlvii

Table 18. New Language Elements Since V3R6

Language Unit New Description

Control
specification
keywords

COPYNEST(’1-2048’) Specifies the maximum depth for
nesting of /COPY directives.

EXPROPTS(*MAXDIGITS |
*RESDECPOS)

Expression options for type of
precision (default or ″Result Decimal
Position″ precision rules)

FLTDIV{(*NO | *YES)} Indicates that all divide operations in
expressions are computed in floating
point.

Definition
specification
keywords

ALTSEQ(*NONE) Forces the normal collating sequence to
be used for character comparison even
when an alternate collating sequence is
specified.

Built-in functions %ABS Returns the absolute value of the
numeric expression specified as the
parameter.

%DEC & %DECH Converts the value of the numeric
expression to decimal (packed) format
with the number of digits and decimal
positions specified as parameters.
%DECH is the same as %DEC, but
with a half adjust applied.

%DECPOS Returns the number of decimal
positions of the numeric variable or
expression. The value returned is a
constant, and may be used where a
constant is expected.

%EDITC This function returns a character result
representing the numeric value edited
according to the edit code.

%EDITFLT Converts the value of the numeric
expression to the character external
display representation of float.

%EDITW This function returns a character result
representing the numeric value edited
according to the edit word.

%FLOAT Converts the value of the numeric
expression to float format.

%INT & %INTH Converts the value of the numeric
expression to integer. Any decimal
digits are truncated with %INT and
rounded with %INTH.

%LEN Returns the number of digits or
characters of the variable expression.

%NULLIND Used to query or set the null indicator
for null-capable fields.

%SCAN Returns the first position of the search
argument in the source string, or 0 if it
was not found.

What’s New

xlviii ILE RPG Reference

Table 18. New Language Elements Since V3R6 (continued)

Language Unit New Description

%STR Used to create or use null-terminated
strings, which are very commonly
used in C and C++ applications.

%UNS & %UNSH Converts the value of the numeric
expression to unsigned format. Any
decimal digits are truncated with
%UNS and rounded with %UNSH.

Operation code
Extenders

N Sets pointer to *NULL after successful
DEALLOC

M Default precision rules

R No intermediate value will have fewer
decimal positions than the result
(″Result Decimal Position″ precision
rules)

Operation codes ALLOC Used to allocate storage dynamically.

DEALLOC Used to deallocate storage dynamically.

REALLOC Used to reallocate storage dynamically.

What's New in V3R6/V3R2?
The major enhancement to RPG IV since V3R1 is the ability to code a module with
more than one procedure. What does this mean? In a nutshell, it means that you
can code an module with one or more prototyped procedures, where the
procedures can have return values and run without the use of the RPG cycle.

Writing a module with multiple procedures enhances the kind of applications you
can create. Any application consists of a series of logical units that are conceived to
accomplish a particular task. In order to develop applications with the greatest
flexibility, it is important that each logical unit be as independent as possible.
Independent units are:
v Easier to write from the point of view of doing a specific task.
v Less likely to change any data objects other than the ones it is designed to

change.
v Easier to debug because the logic and data items are more localized.
v Maintained more readily since it is easier to isolate the part of the application

that needs changing.

The main benefit of coding a module with multiple procedures is greater control
and better efficiency in coding a modular application. This benefit is realized in
several ways. You can now:
v Call procedures and programs by using the same call operation and syntax.
v Define a prototype to provide a check at compile time of the call interface.
v Pass parameters by value or by reference.
v Define a procedure that will return a value and call the procedure within an

expression.
v Limit access to data items by defining local definitions of variables.
v Code a module that does not make use of the cycle.
v Call a procedure recursively.

What’s New

About This Reference xlix

The run-time behavior of the main procedure in a module is the same as that of a
V3R1 procedure. The run-time behavior of any subsequent procedures differs
somewhat from a V3R1 program, most notably in the areas of procedure end and
exception handling. These differences arise because there is no cycle code that is
generated for these procedures.

Other enhancements have been made to for this release as well. These include:
v Support for two new integer data types: signed integer (I), and unsigned integer

(U)
The use of the integer data types provides you with a greater range of values
than the binary data type. Integer data types can also improve performance of
integer computations.

v *CYMD support for the MOVE, MOVEL, and TEST operations
You can now use the *CYMD date format in certain operations to work with
system values that are already in this data format.

v Ability to copyright your programs and modules by using the COPYRIGHT
keyword on the control specification
The copyright information that is specified using this keyword becomes part of
the DSPMOD, DSPPGM, or DSPSRVPGM information.

v User control of record blocking using keyword BLOCK
You can request record blocking of DISK or SEQ files to be done even when
SETLL, SETGT, or CHAIN operations are used on the file. You can also request
that blocking not be done. Use of blocking in these cases may significantly
improve runtime performance.

v Improved PREFIX capability
Changes to the PREFIX keyword for either file-description and definition
specifications allow you to replace characters in the existing field name with the
prefix string.

v Status codes for trigger program errors
Two status codes 1223 and 1224 have been added to indicate trigger program
errors.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 19. Changed Language Elements Since V3R1

Language Unit Element Description

File description
specification
keywords

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field
name or a partial rename of the field
name

Definition
specification
keywords

CONST{(constant)} Specifies the value of a named
constant, or indicates that a prototyped
parameter that is passed by reference
has a constant value

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field
name or a partial rename of the field
name

Operation codes RETURN Returns control to the caller, and
returns a value, if specified

What’s New

l ILE RPG Reference

Table 20. New Language Elements Since V3R1

Language Unit New Description

Control
specification
keywords

COPYRIGHT(’copyright
string’)

Allows you to associate copyright
information with modules and
programs

EXTBININT{(*NO | *YES)} Specifies that binary fields in
externally-described files be assigned
an integer format during program
processing

NOMAIN Indicates that the module has only
subprocedures

File description
specification
keywords

BLOCK(*YES |*NO) Allows you to control whether record
blocking occurs (assuming other
conditions are met)

Definition
specification
keywords

ALIGN Specifies whether integer or unsigned
fields should be aligned

EXTPGM(name) Indicates the external name of the
prototyped program

EXTPROC(name) Indicates the external name of the
prototyped procedure

OPDESC Indicates whether operational
descriptors are to be passed for the
prototyped bound call

OPTIONS(*NOPASS *OMIT
*VARSIZE)

Specifies various options for
prototyped parameters

STATIC Specifies that the local variable is to
use static storage

VALUE Specifies that the prototyped
parameter is to be passed by value

Built-in functions %PARMS Returns the number of parameters
passed on a call

Operation codes CALLP Calls a prototyped program or
procedure

Specification type Procedure specification Signals the beginning and end of a
subprocedure definition

Definition type PR Signals the beginning of a prototype
definition

PI Signals the beginning of a procedure
interface definition

blank in positions 24-25 Defines a prototyped parameter

What’s New

About This Reference li

What’s New

lii ILE RPG Reference

Part 1. RPG IV Concepts

This section describes some of the basics of RPG IV:
v Symbolic names
v Compiler directives
v RPG IV program cycle
v Indicators
v Error Handling
v Subprocedures
v General file considerations

© Copyright IBM Corp. 1994, 2010 1

2 ILE RPG Reference

Chapter 1. Symbolic Names and Reserved Words

The valid character set for the RPG IV language consists of:
v The letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
v RPG IV accepts lowercase letters in symbolic names but translates them to

uppercase during compilation
v The numbers 0 1 2 3 4 5 6 7 8 9
v The characters + − * , . ’ & / $ # : @ _ > < = () %
v The blank character

Note: The $, #, and @ may appear as different symbols on some codepages. For
more information, see the iSeries Information Center globalization topic.

Symbolic Names
A symbolic name is a name that uniquely identifies a specific entity in a program
or procedure. In the RPG IV language, symbolic names are used for the following:
v Arrays (see “Array Names” on page 4)
v Conditional compile names (see “Conditional Compile Names” on page 4)
v Data structures (see “Data Structure Names” on page 4)
v Exception output records (see “EXCEPT Names” on page 4)
v Fields (see “Field Names” on page 4)
v Key field lists (see “KLIST Names” on page 4)
v Labels (see “Labels” on page 4)
v Named constants (see “Named Constants” on page 133)
v Parameter lists (see “PLIST Names” on page 5)
v Prototype names (see “Prototype Names” on page 5)
v Record names (see “Record Names” on page 5)
v Subroutines (see “Subroutine Names” on page 5)
v Tables (see “Table Names” on page 5).

The following rules apply to all symbolic names except for deviations noted in the
description of each symbolic name:
v The first character of the name must be alphabetic. This includes the characters

$, #, and @.
v The remaining characters must be alphabetic or numeric. This includes the

underscore (_).
v The name must be left-adjusted in the entry on the specification form except in

fields which allow the name to float (definition specification, keyword fields,
and the extended factor 2 field).

v A symbolic name cannot be an RPG IV reserved word.
v A symbolic name can be from 1 to 4096 characters. The practical limits are

determined by the size of the entry used for defining the name. A name that is
up to 15 characters can be specified in the Name entry of the definition or
procedure specification. For names longer than 15 characters, use a continuation
specification. For more information, see Chapter 11, “About Specifications,” on
page 245.

© Copyright IBM Corp. 1994, 2010 3

v A symbolic name must be unique within the procedure in which it is defined.

Array Names
The following additional rule applies to array names:
v An array name in a standalone field cannot begin with the letters TAB. Array

names may begin with TAB if they are either prototyped parameters or data
structures defined with the DIM keyword.

Conditional Compile Names
The symbolic names used for conditional compilation have no relationship to other
symbolic names. For example, if you define a file called MYFILE, you may later
use /DEFINE to define condition name MYFILE, and you may also use
/UNDEFINE to remove condition name MYFILE. This has no effect on the file
name MYFILE.

Conditional compile names can be up to 50 characters long.

Data Structure Names
A data structure is an area in storage and is considered to be a character field.

EXCEPT Names
An EXCEPT name is a symbolic name assigned to an exception output record. The
following additional rule applies to EXCEPT names:
v The same EXCEPT name can be assigned to more than one output record.

Field Names
The following additional rules apply to field names:
v A field name can be defined more than once if each definition using that name

has the same data type, the same length, and the same number of decimal
positions. All definitions using the same name refer to a single field (that is, the
same area in storage). However, it can be defined only once on the definition
specification.

v A field can be defined as a data structure subfield only once unless the data
structure is qualified (defined with QUALIFIED or LIKEDS). In this case, when
the subfield is used, it must be qualified (specified in the form
dsname.subfieldname).

v A subfield name cannot be specified as the result field on an *ENTRY PLIST
parameter.

KLIST Names
A KLIST name is a symbolic name assigned to a list of key fields.

Labels
A label is a symbolic name that identifies a specific location in a program (for
example, the name assigned to a TAG or ENDSR operation).

Named Constants
A named constant is a symbolic name assigned to a constant.

Symbolic Names

4 ILE RPG Reference

PLIST Names
A PLIST name is a symbolic name assigned to a list of parameters.

Prototype Names
A prototype name is a symbolic name assigned to a prototype definition. This
name must be used when calling a prototyped procedure or program. A prototype
maybe explicitly specified, or it may be implicitly generated by the compiler from
the procedure interface when the procedure is defined in the same module as the
call.

Record Names
A record name is a symbolic name assigned to a record format in an externally
described file. The following additional rules apply to record names in an RPG IV
program:
v If the file is qualified, due to the QUALIFIED or LIKEFILE keyword on the File

specification, the record name is specified as a qualified name in the form
FILENAME.FMTNAME. The record name must be unique within the other
record names of the file.

v If the file is not qualified, the record name is specified without qualification in
the form FMTNAME. If the file is a global file, the record name must be unique
within the other global names. If the file is a local file in a subprocedure, the
record name must be unique within the other local names.

Note: See “RENAME(Ext_format:Int_format)” on page 308 for information on
how to handle the situation where the record name conflicts with other
names in your RPG program.

Subroutine Names
The name is defined in factor 1 of the BEGSR (begin subroutine) operation.

Table Names
The following additional rules apply to table names:
v A table name can contain from 3 to 10 characters.
v A table name must begin with the letters TAB.
v A table cannot be defined in a subprocedure.

RPG IV Words with Special Functions/Reserved Words
The RPG IV reserved words listed below have special functions within a program.
v The following reserved words allow you to access the job date, or a portion of it,

to be used in the program:
UDATE
*DATE
UMONTH
*MONTH
UYEAR
*YEAR
UDAY
*DAY

Symbolic Names

Chapter 1. Symbolic Names and Reserved Words 5

|
|
|
|
|

#
#
#
#

#
#
#
#

#
#
#

v The following reserved words can be used for numbering the pages of a report,
for record sequence numbering, or to sequentially number output fields:

PAGE
PAGE1-PAGE7

v Figurative constants are implied literals that allow specifications without
referring to length:

*BLANK/*BLANKS
*ZERO/*ZEROS
*HIVAL
*LOVAL
*NULL
*ON
*OFF
*ALLX’x1..’
*ALLG’oK1K2i’
*ALL’X..’

v The following reserved words are used for positioning database files. *START
positions to beginning of file and *END positions to end of file.

*END
*START

v The following reserved words allow RPG IV indicators to be referred to as data:
*IN
*INxx

v The following are special words used with date and time:
*CDMY
*CMDY
*CYMD
*DMY
*EUR
*HMS
*ISO
*JIS
*JOB
*JOBRUN
*JUL
*LONGJUL
*MDY
*SYS
*USA
*YMD

v The following are special words used with translation:
*ALTSEQ
*EQUATE
*FILE
*FTRANS

RPG IV Words with Special Functions/Reserved Words

6 ILE RPG Reference

v *PLACE allows repetitive placement of fields in an output record. (See
“*PLACE” on page 409 for more information.)

v *ALL allows all fields that are defined for an externally described file to be
written on output. (See “Rules for Figurative Constants” on page 135 for more
information on *ALL)

v The following are special words used within expressions:
AND
NOT
OR

Note: NOT can only be used within expressions. It cannot be used as a name
anywhere in the source.

v The following are special words used with parameter passing:
*NOPASS
*OMIT
*RIGHTADJ
*STRING
*TRIM
*VARSIZE

v The following special words aid in interpreting the event parameter in an event
handling procedure for the XML-SAX operation code:

XML_ATTR_UCS2_REF
XML_ATTR_NAME
XML_ATTR_PREDEF_REF
XML_ATTR_CHARS
XML_CHARS
XML_COMMENT
XML_UCS2_REF
XML_PREDEF_REF
XML_DOCTYPE_DECL
XML_ENCODING_DECL
XML_END_CDATA
XML_END_DOCUMENT
XML_END_ELEMENT
XML_END_PREFIX_MAPPING
XML_EXCEPTION
XML_PI_TARGET
XML_PI_DATA
XML_STANDALONE_DECL
XML_START_CDATA
XML_START_DOCUMENT
XML_START_ELEMENT
XML_START_PREFIX_MAPPING
XML_UNKNOWN_ATTR_REF
XML_UNKNOWN_REF
XML_VERSION_INFO

RPG IV Words with Special Functions/Reserved Words

Chapter 1. Symbolic Names and Reserved Words 7

XML_END_ATTR

User Date Special Words
The user date special words (UDATE, *DATE, UMONTH, *MONTH, UDAY, *DAY,
UYEAR, *YEAR) allow the programmer to supply a date for the program at run
time. The user date special words access the job date that is specified in the job
description. The user dates can be written out at output time; UDATE and *DATE
can be written out using the Y edit code in the format specified by the control
specification.

(For a description of the job date, see theWork Management manual.)

Rules for User Date
Remember the following rules when using the user date:
v UDATE, when specified in positions 30 through 43 of the output specifications,

prints a 6-character numeric date field. *DATE, when similarly specified, prints
an 8-character (4-digit year portion) numeric date field. These special words can
be used in three different date formats:

Month/day/year
Year/month/day
Day/month/year

Use the DATEDIT keyword on the control specification to specify the date
formats of UDATE and *DATE:

DATEDIT UDATE format *DATE format

*MDY *MDY *USA (mmddyyyy)

*DMY *DMY *EUR (ddmmyyyy)

*YMD *YMD *ISO (yyyymmdd)

Note that the DATEDIT keyword also controls the format of the Y edit code.
If this keyword is not specified, the default is *MDY.

v For an interactive job or batch program, the user date special words are set to
the value of the job date when the program starts running in the system. The
value of the user date special words are not updated during program
processing, even if the program runs past midnight or if the job date is changed.
Use the TIME operation code to obtain the time and date while the program is
running.

v UMONTH, *MONTH, UDAY, *DAY, and UYEAR when specified in positions 30
through 43 of the output specifications, print a 2-position numeric date field.
*YEAR can be used to print a 4-position numeric date field. Use UMONTH or
*MONTH to print the month only, UDAY or *DAY to print the day only, and
UYEAR or *YEAR to print the year only.

v UDATE and *DATE can be edited when they are written if the Y edit code is
specified in position 44 of the output specifications. The
“DATEDIT(fmt{separator})” on page 262 keyword on the control specification
determines the format and the separator character to be inserted; for example,
12/31/88, 31.12.88., 12/31/1988.

v UMONTH, *MONTH, UDAY, *DAY, UYEAR and *YEAR cannot be edited by the
Y edit code in position 44 of the output specifications.

v The user date fields cannot be modified. This means they cannot be used:
– In the result field of calculations

RPG IV Words with Special Functions/Reserved Words

8 ILE RPG Reference

– As factor 1 of PARM operations
– As the factor 2 index of LOOKUP operations
– With blank after in output specifications
– As input fields

v The user date special words can be used in factor 1 or factor 2 of the calculation
specifications for operation codes that use numeric fields.

v User date fields are not date data type fields but are numeric fields.

PAGE, PAGE1-PAGE7
PAGE is used to number the pages of a report, to serially number the output
records in a file, or to sequentially number output fields. It does not cause a page
eject.

The eight possible PAGE fields (PAGE, PAGE1, PAGE2, PAGE3, PAGE4, PAGE5,
PAGE6, and PAGE7) may be needed for numbering different types of output pages
or for numbering pages for different printer files.

PAGE fields can be specified in positions 30 through 43 of the output specifications
or in the input or calculation specifications.

Rules for PAGE, PAGE1-PAGE7
Remember the following rules when using the PAGE fields:
v When a PAGE field is specified in the output specifications, without being

defined elsewhere, it is assumed to be a four-digit, numeric field with zero
decimal positions.

v Page numbering, unless otherwise specified, starts with 0001; and 1 is
automatically added for each new page.

v To start at a page number other than 1, set the value of the PAGE field to one
less than the starting page number. For example, if numbering starts with 24,
enter a 23 in the PAGE field. The PAGE field can be of any length but must have
zero decimal positions (see Figure 1 on page 10).

v Page numbering can be restarted at any point in a job. The following methods
can be used to reset the PAGE field:
– Specify blank-after (position 45 of the output specifications).
– Specify the PAGE field as the result field of an operation in the calculation

specifications.
– Specify an output indicator in the output field specifications (see Figure 2 on

page 10). When the output indicator is on, the PAGE field will be reset to 1.
Output indicators cannot be used to control the printing of a PAGE field,
because a PAGE field is always written.

– Specify the PAGE field as an input field as shown in Figure 1 on page 10.
v Leading zeros are automatically suppressed (Z edit code is assumed) when a

PAGE field is printed unless an edit code, edit word, or data format (P/B/L/R
in position 52) has been specified. Editing and the data format override the
suppression of leading zeros. When the PAGE field is defined in input and
calculation specifications, it is treated as a field name in the output specifications
and zero suppression is not automatic.

User Date Special Words

Chapter 1. Symbolic Names and Reserved Words 9

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IINPUT PG 50 1 CP
I 2 5 0PAGE

Figure 1. Page Record Description

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
O* When indicator 15 is on, the PAGE field is set to zero and 1 is
O* added before the field is printed. When indicator 15 is off, 1
O* is added to the contents of the PAGE field before it is printed.
OPRINT H L1 01
O 15 PAGE 1 75

Figure 2. Resetting the PAGE Fields to Zero

PAGE, PAGE1-PAGE7

10 ILE RPG Reference

Chapter 2. Compiler Directives

The compiler directive statements /FREE... /END-FREE denote a free-form
calculation specification block. The compiler directive statements /TITLE, /EJECT,
/SPACE, /COPY, and /INCLUDE allow you to specify heading information for
the compiler listing, to control the spacing of the compiler listing, and to insert
records from other file members during a compile. The conditional compilation
directive statements /DEFINE, /UNDEFINE, /IF, /ELSEIF, /ELSE, /ENDIF, and
/EOF allow you to select or omit source records. The compiler directive statements
must precede any compile-time array or table records, translation records, and
alternate collating sequence records (that is, ** records).

/FREE... /END-FREE (Positions 7-11)
Positions Entry

7-11 /FREE or /END-FREE

12-80 Blank

The /FREE compiler directive specifies the beginning of a free-form calculation
specifications block. /END-FREE specifies the end of the block. Positions 12
through 80 must be blank. The remaining positions may be used for comments.
See “Free-Form Syntax” on page 399 for information on using free-form
statements.

/TITLE (Positions 7-12)
Use the compiler directive /TITLE to specify heading information (such as security
classification or titles) that is to appear at the top of each page of the compiler
listing. The following entries are used for /TITLE:

Positions Entry

7-12 /TITLE

13 Blank

14-100 Title information

A program can contain more than one /TITLE statement. Each /TITLE statement
provides heading information for the compiler listing until another /TITLE
statement is encountered. A /TITLE statement must be the first RPG specification
encountered to print information on the first page of the compiler listing. The
information specified by the /TITLE statement is printed in addition to compiler
heading information.

The /TITLE statement causes a skip to the next page before the title is printed. The
/TITLE statement is not printed on the compiler listing.

/EJECT (Positions 7-12)
Positions Entry

7-12 /EJECT

© Copyright IBM Corp. 1994, 2010 11

13-49 Blank

50-100 Comments

Enter /EJECT in positions 7 through 12 to indicate that subsequent specifications
are to begin on a new page of the compiler listing. Positions 13 through 49 of the
/EJECT statement must be blank. The remaining positions may be used for
comments. If the spool file is already at the top of a new page, /EJECT will not
advance to a new page. /EJECT is not printed on the compiler listing.

/SPACE (Positions 7-12)
Use the compiler directive /SPACE to control line spacing within the source
section of the compiler listing. The following entries are used for /SPACE:

Positions Entry

7-12 /SPACE

13 Blank

14-16 A positive integer value from 1 through 112 that defines the
number of lines to space on the compiler listing. The number must
be left-adjusted.

17-49 Blank

50-100 Comments

If the number specified in positions 14 through 16 is greater 112, 112 will be used
as the /SPACE value. If the number specified in positions 14 through 16 is greater
than the number of lines remaining on the current page, subsequent specifications
begin at the top of the next page.

/SPACE is not printed on the compiler listing, but is replaced by the specified line
spacing. The line spacing caused by /SPACE is in addition to the two lines that are
skipped between specification types.

/COPY or /INCLUDE
The /COPY and /INCLUDE directives have the same purpose and the same
syntax, but are handled differently by the SQL precompiler. If your program does
not have embedded SQL, you can freely choose which directive to use. If your
program has embedded SQL, see “Using /COPY, /INCLUDE in Source Files with
Embedded SQL” on page 14 for information about which directive to use.

The /COPY and /INCLUDE compiler directives cause records from other files to
be inserted, at the point where the directive occurs, with the file being compiled.
The inserted files may contain any valid specification including /COPY and
/INCLUDE up to the maximum nesting depth specified by the COPYNEST
keyword (32 when not specified).

/COPY and /INCLUDE files can be either physical files or IFS files. To specify a
physical file, code your /COPY and /INCLUDE statement in the following way :
v /COPY or /INCLUDE followed by exactly one space followed by the file name

or path
v when specifying a physical file, the library, file, and member name, can be in

one of these formats:

/EJECT (Positions 7-12)

12 ILE RPG Reference

libraryname/filename,membername
filename,membername
membername
– A member name must be specified.
– If a file name is not specified, QRPGLESRC is assumed.
– If a library is not specified, the library list is searched for the file. All

occurrences of the specified source file in the library list are searched for the
member until it is located or the search is complete.

– If a library is specified, a file name must also be specified.
v When specifying an IFS (Integrated File System) file, the path can be either

absolute (beginning with /) or relative.
– The path can be enclosed in single or double quotes. If the path contains

blanks, it must be enclosed in quotes.
– If the path does not end with a suffix (for example ″.txt″), the compiler will

search for the file as named, and also for files with suffixes of ″.rpgle″ or
″.rpgleinc″.

– See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide for
information on using IFS /COPY files.

v Optionally, at least one space and a comment.

/COPY members are considered fixed-form by default, even if the /COPY
directive is coded within a free-form group. If the /COPY member will contain
free-form specifications, these must be delimited with /FREE and /END-FREE
directives.

TIP
To facilitate application maintenance, you may want to place the prototypes
of exported procedures in a separate source member. If you do, be sure to
place a /COPY or /INCLUDE directive for that member in both the module
containing the exported procedure and any modules that contain calls to the
exported procedure.

Figure 3 shows some examples of the /COPY and /INCLUDE directive statements.

C/COPY MBR1 �1�

I/INCLUDE SRCFIL,MBR2 �2�

O/COPY SRCLIB/SRCFIL,MBR3 �3�

O/INCLUDE "SRCLIB!"/"SRC>3","MBR¬3" �4�

O/COPY /dir1/dir2/file.rpg �5�

O/COPY /dir1/dir2/file �6�

O/COPY dir1/dir2/file.rpg �7�

O/COPY "ifs file containing blanks" �8�

O/COPY 'ifs file containing blanks' �8�

Figure 3. Examples of the /COPY and /INCLUDE Compiler Directive Statements

/COPY or /INCLUDE

Chapter 2. Compiler Directives 13

�1� Copies from member MBR1 in source file QRPGLESRC. The current library
list is used to search for file QRPGLESRC. If the file is not found in the
library list, the search will proceed to the IFS, looking for file MBR1,
MBR1.rpgle or MBR1.rpgleinc in the include search path. See the IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide for
information on using IFS source files.

�2� Copies from member MBR2 in file SRCFIL. The current library list is used
to search for file SRCFIL. Note that the comma is used to separate the file
name from the member name. If the file is not found in the library list, the
search will proceed to the IFS, looking for file SRCFIL, MBR1 in the
include search path, possibly with the .rpgle or .rpgleinc suffixes.

�3� Copies from member MBR3 in file SRCFIL in library SRCLIB or from the
IFS file SRCFIL, MBR3 in directory SRCLIB.

�4� Copies from member ″MBR¬3″ in file ″SRC>3″ in library ″SRCLIB!″

�5� Copies from the IFS file file.rpg in directory /dir1/dir2.

�6� Copies from file, or file.rpgleinc or file.rpgle in directory /dir1/dir2

�7� Copies from the IFS file file.rpg in directory dir1/dir2, searching for
directory dir1/dir2 using the IFS search path.

�8� Copies from a file whose name contains blanks.

Results of the /COPY or /INCLUDE during Compile
During compilation, the specified file members are merged into the program at the
point where the /COPY or /INCLUDE statement occurs. All members will appear
in the COPY member table.

Nested /COPY or /INCLUDE
Nesting of /COPY and /INCLUDE directives is allowed. A /COPY or /INCLUDE
member may contain one or more /COPY or /INCLUDE directives (which in turn
may contain further /COPY or /INCLUDE directives and so on). The maximum
depth to which nesting can occur can be set using the COPYNEST control
specification keyword. The default maximum depth is 32.

TIP
You must ensure that your nested /COPY or /INCLUDE files do not include
each other infinitely. Use conditional compilation directives at the beginning
of your /COPY or /INCLUDE files to prevent the source lines from being
used more than once.

For an example of how to prevent multiple inclusion, see Figure 4 on page 19.

Using /COPY, /INCLUDE in Source Files with Embedded SQL
The /COPY and /INCLUDE directives are identical except that they are handled
differently by the SQL precompiler.

The way the /COPY and /INCLUDE directives are handled by the SQL
precompiler is different depending on the RPG preprocessor options parameter
(RPGPPOPT) specified on the CRTSQLRPGI command. Refer to ″Coding SQL
statements in ILE RPG applications″ in the Embedded SQL Programming topic or
the CRTSQLRPGI command in the CL topic for more information.

/COPY or /INCLUDE

14 ILE RPG Reference

Conditional Compilation Directives
The conditional compilation directive statements allow you to conditionally include
or exclude sections of source code from the compile.
v Condition-names can be added or removed from a list of currently defined

conditions using the defining condition directives /DEFINE and /UNDEFINE.
v Condition expressions DEFINED(condition-name) and NOT

DEFINED(condition-name) are used within testing condition /IF groups.
v Testing condition directives, /IF, /ELSEIF, /ELSE and /ENDIF, control which

source lines are to be read by the compiler.
v The /EOF directive tells the compiler to ignore the rest of the source lines in the

current source member.

Defining Conditions
Condition-names can be added to or removed from a list of currently defined
conditions using the defining condition directives /DEFINE and /UNDEFINE.

/DEFINE (Positions 7-13)
The /DEFINE compiler directive defines conditions for conditional compilation.
The entries in the condition-name area are free-format (do not have to be left
justified). The following entries are used for /DEFINE:

Positions Entry

7 - 13 /DEFINE

14 Blank

15 - 80 condition-name

81 - 100 Comments

The /DEFINE directive adds a condition-name to the list of currently defined
conditions. A subsequent /IF DEFINED(condition-name) would be true. A
subsequent /IF NOT DEFINED(condition-name) would be false.

Note: The command parameter DEFINE can be used to predefine up to 32
conditions on the CRTBNDRPG and CRTRPGMOD commands.

/UNDEFINE (Positions 7-15)
Use the /UNDEFINE directive to indicate that a condition is no longer defined.
The entries in the condition-name area are free-format (do not have to be left
justified).

Positions Entry

7 - 15 /UNDEFINE

16 Blank

17 - 80 condition-name

81 - 100 Comments

The /UNDEFINE directive removes a condition-name from the list of currently
defined conditions. A subsequent /IF DEFINED(condtion-name) would be false. A
subsequent /IF NOT DEFINED(condition-name) would be true.

Conditional Compilation Directives

Chapter 2. Compiler Directives 15

Note: Any conditions specified on the DEFINE parameter will be considered to be
defined when processing /IF and /ELSEIF directives. These conditions can
be removed using the /UNDEFINE directive.

Predefined Conditions
Several conditions are defined for you by the RPG compiler. These conditions
cannot be used with /DEFINE or /UNDEFINE. They can only be used with /IF
and /ELSEIF.

Conditions Relating to the Environment
*ILERPG This condition is defined if your program is being compiled by the

ILE RPG IV compiler (the compiler described in this document).
* This module is to be defined on different platforms. With
* the ILE RPG compiler, the BNDDIR keyword is used to
* indicate where procedures can be found. With a different
* compiler, the BNDDIR keyword might not be valid.
/IF DEFINED(*ILERPG)
H BNDDIR('QC2LE')
/ENDIF

To learn what conditions are available with another version of the
RPG IV compiler, consult the reference for the compiler. For
example, for VisualAge RPG see VisualAge RPG Language Reference,
SC09-2451-06.

Conditions Relating to the Command Being Used
*CRTBNDRPG

This condition is defined if your program is being compiled by the
CRTBNDRPG command, which creates a program.

/IF DEFINED(*CRTBNDRPG)
H DFTACTGRP(*NO)
/ENDIF

*CRTRPGMOD
This condition is defined if your program is being compiled by the
CRTRPGMOD command, which creates a module.

* This code might appear in a generic Control specification
* contained in a /COPY file. The module that contains the
* main procedure would define condition THIS_IS_MAIN before
* coding the /COPY directive.

* If the CRTRPGMOD command is not being used, or if
* THIS_IS_MAIN is defined, the NOMAIN keyword will not
* be used in this Control specification.

/IF DEFINED(*CRTRPGMOD)
/IF NOT DEFINED(THIS_IS_MAIN)
H NOMAIN
/ENDIF
/ENDIF

Conditions Relating to the Target Release
*VxRxMx This condition is defined if your program is being compiled for a

version that is greater than or equal to the release in the condition,
starting with *V4R4M0 (Version 4 Release 4 Modification 0).

Use this condition if you will run the same program on different
target releases, and want to take advantage of features that are not

Conditional Compilation Directives

16 ILE RPG Reference

available in every release. Support for this condition is available
starting with *V4R4M0 systems with the appropriate PTF installed.

/IF DEFINED(*V5R1M0)

* Specify code that is valid in V5R1M0 and subsequent releases

I/INCLUDE SRCFIL,MBR2

/ELSE
* Specify code that is available in V4R4M0

I/COPY SRCFIL,MBR2

/ENDIF

Condition Expressions
A condition expression has one of the following forms:
v DEFINED(condition-name)
v NOT DEFINED(condition-name)

The condition expression is free-format but cannot be continued to the next line.

Testing Conditions
Conditions are tested using /IF groups, consisting of an /IF directive, followed by
zero or more /ELSEIF directives, followed optionally by an /ELSE directive,
followed by an /ENDIF directive.

Any source lines except compile-time data, are valid between the directives of an
/IF group. This includes nested /IF groups.

Note: There is no practical limit to the nesting level of /IF groups.

/IF Condition-Expression (Positions 7-9)
The /IF compiler directive is used to test a condition expression for conditional
compilation. The following entries are used for /IF:

Positions Entry

7 - 9 /IF

10 Blank

11 - 80 Condition expression

81 - 100 Comments

If the condition expression is true, source lines following the /IF directive are
selected to be read by the compiler. Otherwse, lines are excluded until the next
/ELSEIF, /ELSE or /ENDIF in the same /IF group.

/ELSEIF Condition-Expression (Positions 7-13)
The /ELSEIF compiler directive is used to test a condition expression within an
/IF or /ELSEIF group. The following entries are used for /ELSEIF:

Positions Entry

7 - 13 /ELSEIF

14 Blank

15 - 80 Condition expression

Conditional Compilation Directives

Chapter 2. Compiler Directives 17

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, and the condition expression is
true, then source lines following the /ELSEIF directive are selected to be read.
Otherwise, lines are excluded until the next /ELSEIF, /ELSE or /ENDIF in the
same /IF group is encountered.

/ELSE (Positions 7-11)
The /ELSE compiler directive is used to unconditionally select source lines to be
read following a failed /IF or /ELSEIF test. The following entries are used for
/ELSE:

Positions Entry

7 - 11 /ELSE

12 - 80 Blank

81 - 100 Comments

If the previous /IF or /ELSEIF was not satisfied, source lines are selected until the
next /ENDIF.

If the previous /IF or /ELSEIF was satisfied, source lines are excluded until the
next /ENDIF.

/ENDIF (Positions 7-12)
The /ENDIF compiler directive is used to end the most recent /IF, /ELSEIF or
/ELSE group. The following entries are used for /ENDIF:

Positions Entry

7 - 12 /ENDIF

13 - 80 Blank

81 - 100 Comments

Following the /ENDIF directive, if the matching /IF directive was a selected line,
lines are unconditionally selected. Otherwise, the entire /IF group was not
selected, so lines continue to be not selected.

Rules for Testing Conditions
v /ELSEIF, and /ELSE are not valid outside an /IF group.
v An /IF group can contain at most one /ELSE directive. An /ELSEIF directive

cannot follow an /ELSE directive.
v /ENDIF is not valid outside an /IF, /ELSEIF or /ELSE group.
v Every /IF must be matched by a subsequent /ENDIF.
v All the directives associated with any one /IF group must be in the same source

file. It is not valid to have /IF in one file and the matching /ENDIF in another,
even if the second file is in a nested /COPY. However, a complete /IF group can
be in a nested /COPY.

The /EOF Directive
The /EOF directive tells the compiler to ignore the rest of the source lines in the
current source member.

Conditional Compilation Directives

18 ILE RPG Reference

/EOF (Positions 7-10)
The /EOF compiler directive is used to indicate that the compiler should consider
that end-of-file has been reached for the current source file. The following entries
are used for /EOF:

Positions Entry

7 - 10 /EOF

11 - 80 Blank

81 - 100 Comments

/EOF will end any active /IF group that became active during the reading of the
current source member. If the /EOF was in a /COPY file, then any conditions that
that were active when the /COPY directive was read will still be active.

Note: If excluded lines are being printed on the listing, the source lines will
continue to be read and listed after /EOF, but the content of the lines will be
completely ignored by the compiler. No diagnostic messages will ever be
issued after /EOF.

TIP
Using the /EOF directive will enhance compile-time performance when an
entire /COPY member is to be used only once, but may be copied in multiple
times. (This is not true if excluded lines are being printed).

The following is an example of the /EOF directive.

The first time this /COPY member is read, XYZ_COPIED will not be defined, so
the /EOF will not be considered.

The second time this member is read, XYZ_COPIED is defined, so the /EOF is
processed. The /IF DEFINED(XYZ_COPIED) (�3�) is considered ended, and the
file is closed. However, the /IF DEFINED(READ_XYZ) (�1�) from the main source
member is still active until its own /ENDIF (�2�) is reached.

*---
* Main source file
*---
....
/IF DEFINED(READ_XYZ) �1�
/COPY XYZ
/ENDIF �2�
....
*---
* /COPY file XYZ
*---
/IF DEFINED(XYZ_COPIED) �3�
/EOF
/ELSE
/DEFINE XYZ_COPIED
D
/ENDIF

Figure 4. /EOF Directive

Conditional Compilation Directives

Chapter 2. Compiler Directives 19

Handling of Directives by the RPG Preprocessor
The handling of compiler directives by the RPG preprocessor depends on the
options specified on the PPGENOPT parameter on the compile command. There
are several actions the preprocessor can take on a particular directive:
v The directive may be kept in the generated source file (indicated by ″keep″ in

the table below)
v The directive may be removed from the generated source file (indicated by

″remove″ in the table below)
v The directive may be kept in the generated source file, but as a comment

(indicated by ″comment″ in the table below)

In general, with option *RMVCOMMENT, only the directives neccessary for
successful compilation are output to the generated source file. With option
NORMVCOMMENT, the directives not necessary for successful compilation of the
generated source file are converted into comments.

The following table summarizes how each directive is handled by the preprocessor
for the various PPGENOPT parameter values:

Directive

*RMVCOMMENT *NORMVCOMMENT

*EXPINCLUDE *NOEXPINCLUDE *EXPINCLUDE *NOEXPINCLUDE

/COPY remove remove comment comment

/DEFINE remove keep comment keep

/EJECT remove remove keep keep

/ELSE remove remove comment comment

/ELSEIF remove remove comment comment

/END-EXEC keep keep keep keep

/END-FREE keep keep keep keep

/ENDIF remove remove comment comment

/EOF remove remove comment comment

/EXEC keep keep keep keep

/FREE keep keep keep keep

/IF remove remove comment comment

/INCLUDE remove keep comment keep

/SPACE remove remove keep keep

/TITLE remove remove keep keep

/UNDEFINE remove keep comment keep

Conditional Compilation Directives

20 ILE RPG Reference

Chapter 3. Procedures and the Program Logic Cycle

A procedure is a collection of statements that can be called and run.

There are three kinds of procedures in RPG: regular subprocedures, linear-main
procedures and cycle-main procedures. RPG source programs can be compiled into
one of three kinds of modules depending on the types of procedures present, and
as indicated by the presence of the NOMAIN or MAIN keyword on the Control
specification: Cycle, Nomain, or Linear-main modules.

The term ″subprocedure″ is used to denote both regular subprocedures and
linear-main procedures.

An RPG source program can be divided into these sections which contain
procedures:
v Main source section: The source lines from the first line in the source program

up to the first Procedure specification. In a cycle module, this section may
contain calculation specifications (standard or free-form) which make up a
cycle-main procedure. A cycle-main procedure is implied even if there are no
calculation specifications in this section. This kind of procedure does not have
Procedure-Begin and Procedure-End specifications to identify it.
A cycle module may be designed without sub-procedures, and thus have no
separate Procedure section.

v Procedure section: Zero or one linear-main procedures, and one or more regular
sub-procedures, defined within the source program. Each procedure begins with
a Procedure-Begin specification, and ends with a Procedure-End specification.
The linear-main procedure is indicated by the use of the MAIN keyword on a
Control specification, making it a special kind of sub-procedure.

Subprocedure Definition
A subprocedure is a procedure defined after the main source section.

A subprocedure differs from a cycle-main procedure in several respects, the main
difference being that a subprocedure does not (and cannot) use the RPG cycle
while running.

A subprocedure may have a corresponding prototype in the definition
specifications of the main source section. If specified, the prototype is used by the
compiler to call the program or procedure correctly, and to ensure that the caller
passes the correct parameters. If not specified, the prototype is implicitly generated
from the procedure interface.

TIP
Although it is optional to specify a prototype within the module that defines
the procedure, it should not be considered optional when it is exported from
the module, and the procedure will be called from other RPG modules. In
this case, a prototype should be specified in a copy file and copied into the
module that defines the subprocedure and into every module that calls the
subprocedure.

© Copyright IBM Corp. 1994, 2010 21

#

#
#
#

|
|
|
|
|

|
|
|
|
|
|

Figure 5 shows a subprocedure, highlighting the different parts of it.

�1� A Prototype which specifies the name, return value if any, and parameters
if any. Since the procedure is not exported from this module, it is optional
to specify the prototype.

�2� A Begin-Procedure specification (B in position 24 of a procedure
specification)

�3� A Procedure-Interface definition, which specifies the return value and
parameters, if any. The procedure interface must match the corresponding
prototype. The procedure-interface definition is optional if the
subprocedure does not return a value and does not have any parameters
that are passed to it. If the prototype had not been specified, the
procedure-interface definition would be used by the compiler to implicitly
define the prototype.

�4� Other definition specifications of variables, constants and prototypes
needed by the subprocedure. These definitions are local definitions.

�5� Any calculation specifications, standard or free-form, needed to perform
the task of the procedure. The calculations may refer to both local and
global definitions. Any subroutines included within the subprocedure are
local. They cannot be used outside of the subprocedure. If the
subprocedure returns a value, then the subprocedure must contain a
RETURN operation.

�6� An End-Procedure specification (E in position 24 of a procedure
specification)

* Prototype for procedure FUNCTION
D FUNCTION PR 10I 0 �1�
D TERM1 5I 0 VALUE
D TERM2 5I 0 VALUE
D TERM3 5I 0 VALUE

P Function B �2�
*---
* This procedure performs a function on the 3 numeric values
* passed to it as value parameters.
*
* This illustrates how a procedure interface is specified for a
* procedure and how values are returned from a procedure.
*---
D Function PI 10I 0 �3�
D Term1 5I 0 VALUE
D Term2 5I 0 VALUE
D Term3 5I 0 VALUE
D Result S 10I 0 �4�
/free

Result = Term1 ** 2 * 17
+ Term2 * 7 �5�
+ Term3;

return Result * 45 + 23;
/end-free
P E �6�

Figure 5. Example of a Subprocedure

22 ILE RPG Reference

#

|
|
|

|
|
|
|
|
|
|

Except for the procedure-interface definition, which may be placed anywhere
within the definition specifications, a subprocedure must be coded in the order
shown above.

No cycle code is generated for subprocedures. Consequently, you cannot code:
v Prerun-time and compile-time arrays and tables
v *DTAARA definitions
v Total calculations

The calculation specifications are processed only once and the procedure returns at
the end of the calculation specifications. See “Subprocedure Calculations” on page
43 for more information.

A subprocedure may be exported, meaning that procedures in other modules in
the program can call it. To indicate that it is to be exported, specify the keyword
EXPORT on the Procedure-Begin specification. If not specified, the subprocedure
can only be called from within the module.

Procedure Interface Definition
If a prototyped procedure has call parameters or a return value, then it must have
a procedure interface definition. If a prototype has been specified for the
procedure, the procedure interface definition is a repeat of the prototype
information within the definition of a procedure. Otherwise, the procedure
interface definition is used to implicitly define the prototype for the procedure. The
procedure interface definition is used to declare the entry parameters for the
procedure and to ensure that the internal definition of the procedure is consistent
with the external definition (the prototype).

You specify a procedure interface by placing PI in the Definition-Type entry
(positions 24-25). Any parameter definitions, indicated by blanks in positions 24-25,
must immediately follow the PI specification. The procedure interface definition
ends with the first definition specification with non-blanks in positions 24-25 or by
a non-definition specification.

For more information on procedure interface definitions, see “Procedure Interface”
on page 157.

Return Values
A procedure that returns a value is essentially a user-defined function, similar to a
built-in function. To define a return value for a subprocedure, you must
1. Define the return value on both the prototype and procedure-interface

definitions of the subprocedure.
2. Code a RETURN operation with an expression in the extended-factor 2 field

that contains the value to be returned.

You define the length and the type of the return value on the procedure-interface
specification (the definition specification with PI in positions 24-25). The following
keywords are also allowed:

DATFMT(fmt)
The return value has the date format specified by the keyword.

DIM(N)
The return value is an array with N elements.

Chapter 3. Procedures and the Program Logic Cycle 23

|
|
|
|
|
|
|
|

LIKE(name)
The return value is defined like the item specified by the keyword.

LIKEDS(name)
The return value is a data structure defined like the data structure
specified by the keyword.

LIKEREC(name{,type})
The return value is a data structure defined like the record name specified
by the keyword.

PROCPTR
The return value is a procedure pointer.

TIMFMT(fmt)
The return value has the time format specified by the keyword.

To return the value to the caller, you must code a RETURN operation with an
expression containing the return value. The expression in the extended-factor 2
field is subject to the same rules as an expression with EVAL. The actual returned
value has the same role as the left-hand side of the EVAL expression, while the
extended factor 2 of the RETURN operation has the same role as the right-hand
side. You must ensure that a RETURN operation is performed if the subprocedure
has a return value defined; otherwise an exception is issued to the caller of the
subprocedure.

Scope of Definitions
Any items defined within a subprocedure are local to the subprocedure. If a local
item is defined with the same name as a global data item, then any references to
that name inside the subprocedure use the local definition.

However, keep in mind the following:
v Subroutine names and tag names are known only to the procedure in which

they are defined, even those defined in the cycle-main procedure.
v All fields specified on input and output specifications are global. When a

subprocedure uses input or output specifications (for example, while processing
a read operation), the global name is used even if there is a local variable of the
same name.

When using a global KLIST or PLIST in a subprocedure some of the fields may
have the same names as local fields. If this occurs, the global field is used. This
may cause problems when setting up a KLIST or PLIST prior to using it.

For example, consider the following source.

24 ILE RPG Reference

#
#
#

#
#

For more information on scope, see “Scope of Definitions” on page 126.

Subprocedures and Subroutines
A subprocedure is similar to a subroutine, except that a subprocedure offers the
following improvements:
v You can pass parameters to a subprocedure, even passing by value.

This means that the parameters used to communicate with subprocedures do not
have to be modifiable. Parameters that are passed by reference, as they are with
programs, must be modifiable, and so may be less reliable.

v The parameters passed to a subprocedure and those received by it are checked
at compile time for consistency. This helps to reduce run-time errors, which can
be more costly.

v You can use a subprocedure like a built-in function in an expression.
When used in this way, they return a value to the caller. This basically allows
you to custom-define any operators you might need in an expression.

v Names defined in a subprocedure are not visible outside the subprocedure.
This means that there is less chance of the procedure inadvertently changing a
item that is shared by other procedures. Furthermore, the caller of the procedure
does not need to know as much about the items used inside the subprocedure.

v You can call the subprocedure from outside the module, if it is exported.

* Main procedure definitions
D Fld1 S 1A
D Fld2 S 1A

* Define a global key field list with 2 fields, Fld1 and Fld2
C global_kl KLIST
C KFLD Fld1
C KFLD Fld2

* Subprocedure Section
P Subproc B
D Fld2 S 1A

* local_kl has one global kfld (fld1) and one local (fld2)
C local_kl KLIST
C KFLD Fld1
C KFLD Fld2

* Even though Fld2 is defined locally in the subprocedure,
* the global Fld2 is used by the global_kl, since global KLISTs
* always use global fields. As a result, the assignment to the
* local Fld2 will NOT affect the CHAIN operation.

C EVAL Fld1 = 'A'
C EVAL Fld2 = 'B'
C global_kl SETLL file

* Local KLISTs use global fields only when there is no local
* field of that name. local_kl uses the local Fld2 and so the
* assignment to the local Fld2 WILL affect the CHAIN operation.
C EVAL Fld1 = 'A'
C EVAL Fld2 = 'B'
C local_kl SETLL file
...
P E

Figure 6. Scope of Key Fields Inside a Module

Subprocedures and Subroutines

Chapter 3. Procedures and the Program Logic Cycle 25

#
#

#

#
#
#

#
#
#

#

#
#

#

#
#
#

#

v You can call subprocedures recursively.
v Procedures are defined on a different specification type, namely, procedure

specifications. This different type helps you to immediately recognize that you
are dealing with a separate unit.

If you do not require the improvements offered by subprocedures, you may want
to use a subroutine because an EXSR operation is usually faster than a call to a
subprocedure.

Program Flow in RPG Modules: Cycle Versus Linear
The ILE RPG compiler supplies part of the logic for an RPG module. Depending
on the type of module you choose, this supplied logic will control a large or small
part of the control flow of your module. By default, an RPG module will include
the full RPG Cycle, which begins with the *INIT phase and ends with the *TERM
phase. The other two types of RPG modules do not include the full RPG Cycle; the
only remnant of the RPG cycle is the module initialization, which is similar to the
*INIT phase. The ILE RPG compiler supplies additional implicit logic that is
separate from the RPG cycle; for example, the implicit opening and closing of local
files in subprocedures.

All ILE RPG modules can have one or more procedures.

The three types of RPG modules are distinguished by the nature of the main
procedure in the module.

A program or a service program can consist of multiple modules, each of which
can have an RPG main procedure. If an RPG module is selected to be the
program-entry module of a program, then you call the main procedure using a
program call. If an RPG module is not the program-entry module of a program, or
if it is a module in a service program, then you call its main procedure using a
bound call. Calling a main procedure through a bound call is only available for
cycle-main procedures; if a module contains a linear-main procedure and that
module is not selected to be a program-entry module, than that procedure cannot
be called.

A module with a cycle-main procedure
The module contains a cycle-main procedure and zero or more
subprocedures. The cycle-main procedure includes the logic for the full
RPG cycle. A cycle-main procedure can be called through a bound call, or
through a program call. See “Cycle Module” on page 27 and “Program
Cycle” on page 31 for more information.

A module with a linear-main procedure
The module contains a linear-main procedure and zero or more ordinary
subprocedures. The linear-main procedure is identified by the MAIN
keyword on the Control specification. The main procedure itself is coded
as a subprocedure (with Procedure specifications). The linear-main
procedure can only be called through a program call; it cannot be called
using a bound call.

Note: Other than the way it is called, the linear-main procedure is
considered to be a subprocedure.

The module does not include the logic for the RPG cycle. See “Linear Main
Module” on page 30 for more information.

A module with no main procedure
The NOMAIN keyword on the Control specification indicates that there is

Subprocedures and Subroutines

26 ILE RPG Reference

#

#
#
#

#
#
#

no main procedure in the module. The module contains only
subprocedures. The module does not include the logic for the RPG cycle.

This type of module cannot be the program-entry module of a program,
since it has no main procedure.

See “NOMAIN Module” on page 30 for more information.

Table 21. Summary of RPG module types

Module
Type Keyword

Cycle
Features
Allowed Main Procedure

Initialization of global variables,
opening of files, and UDS data areas

Implicit closing of
global files and
unlocking of data
areas

Cycle-
main

Yes Implicitly defined in
the main source
section

v When the first procedure in the
module is called after the activation
group is created.

v When the main procedure is called,
if the main procedure previously
ended with LR on, or ended
abnormally.

When the main
procedure ends with
LR on, or ends
abnormally.

Linear-
main

MAIN No Explicitly defined
with the MAIN
keyword and
Procedure
specifications

When the main procedure is first
called after the activation group is
created, or if somehow a
sub-procedure is called first.

Never

No
main

NOMAINNo None, indicated by
the presence of the
NOMAIN keyword

When the first procedure in the
module is called after the activation
group is created

Never

Cycle Module
A cycle module has a cycle-main procedure which uses the RPG Program Cycle;
the procedure is implicitly specified in the main source section . (See “Program
Cycle” on page 31.) You do not need to code anything special to define the main
procedure; it consists of everything before the first Procedure specification. The
parameters for the cycle-main procedure can be coded using a procedure interface
and an optional prototype in the global Definition specifications, or using a
*ENTRY PLIST in the cycle-main procedure’s calculations.

The name of the cycle-main procedure must be the same as the name of the
module being created. You can either use this name for the prototype and
procedure interface, or specify this name in the EXTPROC keyword of the
prototype, or of the procedure interface, if the prototype is not specified.

Any procedure interface found in the global definitions is assumed to be the
procedure interface for the cycle-main procedure. If a prototype is specified, the
name is required for the procedure interface for the cycle-main procedure, and the
prototype with the matching name must precede the procedure interface in the
source.

In the following example, module CheckFile is created. Its cycle-main procedure
has three parameters:
1. A file name (input)
2. A library name (input)
3. An indicator indicating whether the file was found (output)

Subprocedures and Subroutines

Chapter 3. Procedures and the Program Logic Cycle 27

##

#
##

#
#
##
#
#

#
#
#
#

#
#
###
#
#

#
#
#

#
#
#
#

#
#
#
#

#
#
###
#
#
#
#

#
#
#
#

#

#
#
###
#
#

#
#
#

#

#

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

#
#

#

#

#

In this example, the procedure is intended to be called from another module, so a
prototype must be specified in a /COPY file.

/COPY file CHECKFILEC with the prototype for the cycle-main procedure:
D CheckFile PR
D file 10a const
D library 10a const
D found 1N

Module CheckFile:
/COPY CHECKFILEC
D CheckFile PI
D file 10a const
D library 10a const
D found 1N
C ... code using parameters file, library and found

Using a *ENTRY PLIST, you would define the parameters this way:
D file S 10a const
D library S 10a const
D found S 1N
C *ENTRY PLIST
C PARM file
C PARM library
C PARM found
C ... code using parameters file, library and found

You can also use a prototype and procedure interface to define your cycle-main
procedure as a program. In this case, you would specify the EXTPGM keyword for
the prototype. In this example, the program is intended to be called by other RPG
programs, so a prototype must be specified in a /COPY file.

/COPY file CHECKFILEC with the prototype for the program:
D CheckFile PR extpgm('CHECKFILE')
D file 10a const
D library 10a const
D found 1N

In the module source, the procedure interface would be defined the same way.

In the following example, the program is not intended to be called by any other
RPG programs, so a prototype is not necessary. In this case, the EXTPGM keyword
is specified for the procedure interface. Since a prototype is not specified, a name is
not necessary for the procedure interface.

A procedure interface with the EXTPGM keyword:
F ... file specifications
D PI extpgm('CUSTREPORT')
D custfile 10a const
D custlib 10a const
... code using the custfile and custlib parameters

Use Caution Exporting Subprocedures in Cycle Modules
If a module contains both a cycle-main procedure and exported subprocedures,
take great care to ensure that the RPG cycle in the cycle-main procedure does not
adversely affect the global data, files, and data areas that the subprocedures are
using.

Subprocedures and Subroutines

28 ILE RPG Reference

|
|

#

#
#
#
#

|
|
|
|

|
|
|
|

|

|
|
|
|
|

#
#
#
#

You must be aware of when files are opened and closed implicitly, when data areas
are locked and unlocked implicitly, and when global data is initialized or
re-initialized.

Potential Problem Situations: A cycle module having exported subprocedures
introduces potential scenarios where the cycle-main procedure initialization is
performed at an unexpected time, with the effect that has on files, data area locks,
and global data then leading to errors. An exported subprocedure can be called
first in the module, from a procedure outside the module, before the cycle-main
procedure is called. If the cycle-main procedure is then called, it will initialize at
that time.
v If module initialization occurs because a subprocedure is the first procedure to

be called, and cycle-main procedure initialization occurs later, errors can occur if
files are already open or data areas are already locked.

v If a subprocedure calls the cycle-main procedure, global data may or may not be
reinitialized during the call, depending on the way the main procedure ended
the last time it was called. If the subprocedure is using any global data, this can
cause unexpected results.

v If the cycle-main procedure was last called and ended and implicitly closed the
files and unlocked the data areas, and an exported subroutine is then called
from outside the module, errors can occur if it expects those files to be open or
data areas to be locked.

Recommendations: Consider moving the cycle-main procedure logic into a
subprocedure, and making the module a NOMAIN module, or changing the
cycle-main procedure to be a linear-main procedure.

If you mix cycle-main procedures with exported subprocedures, ensure that your
cycle-main procedure is called first, before any subprocedures.

Do not allow cycle-main-procedure initialization to happen more than once, since
this would reinitialize your global data. The best way to prevent reinitialization is
to avoid using the LR indicator.

If you want to call your cycle-main procedure intermixed with your
subprocedures, you should declare all your files as USROPN and not use UDS
data areas. Open files and lock data areas as you need them, and close files and
unlock data areas when you no longer need them. You might consider having a
subprocedure in the module that will close any open files and unlock any locked
data areas.

Linear Module
A module which specifies the MAIN or NOMAIN keyword on the Control
specification is compiled without incorporating the program cycle.

When the program cycle is not included in the module, you are restricted in terms
of what can be coded in the main source section. Specifically, you cannot code
specifications for:
v Primary and secondary files
v Heading, detail and total output
v Executable calculations, including the *INZSR Initialization subroutine
v *ENTRY PLIST

Instead you would code in the main source section:

Subprocedures and Subroutines

Chapter 3. Procedures and the Program Logic Cycle 29

#

#
#

#
#
#

#

#

#

#

#

v Full-procedural files
v Input specifications
v Definition specifications
v Declarative calculations such as DEFINE, KFLD, KLIST, PARM, and PLIST (but

not *ENTRY PLIST)
v Exception output

Caution: There is no implicit closing of global files or unlocking of data areas in a
linear module. These objects will remain open or locked until they are explicitly
closed or unlocked.

Linear Main Module
A module which has a program entry procedure but does not use the RPG
Program Cycle can be generated by specifying the MAIN keyword on the control
specification.

This type of module has one or more procedures, one of which is identified as the
main procedure. It does not allow specifications which relate to the RPG Program
Cycle.

See “MAIN(main_procedure_name)” on page 269 for more information.

NOMAIN Module
You can code one or more subprocedures in a module without coding a main
procedure. Such a module is called a NOMAIN module, since it requires the
specification of the NOMAIN keyword on the control specification. No cycle code
is generated for the NOMAIN module.

TIP
You may want to consider converting all your Cycle modules to NOMAIN
modules except the ones that actually contain the program entry procedure
for a program, to reduce the individual size of those modules by eliminating
the unnecessary cycle code in each of those modules.

Note: A module with NOMAIN specified will not have a program entry
procedure. Consequently you cannot use the CRTBNDRPG command to
compile the source.

See “NOMAIN” on page 271 for more information.

Module Initialization
Module initialization occurs when the first procedure (either the main procedure or
a subprocedure) is called.

A cycle module has an additional form of initialization which can occur repeatedly.
Cycle-main procedure initialization occurs when the cycle-main procedure is called
the first time. It also occurs on subsequent calls if the cycle-main procedure ended
abnormally or with LR on.

Initialization of Global Data
Global data in the module is initialized during module initialization and during
cycle-main procedure initialization.

Subprocedures and Subroutines

30 ILE RPG Reference

#

#

#

#
#

#

#
#
#

#
#
#
#

#
#
#

#

#
#
#
#
#
#

#
#
#
#
####

#
#
#

#

#

#
#

#
#
#
#

#
#
#

For special concerns regarding initialization in cycle-main procedures, see “Use
Caution Exporting Subprocedures in Cycle Modules” on page 28.

RPG Cycle and other implicit Logic
The ILE RPG compiler supplies part of the logic for an RPG program.
v For a cycle-main procedure, the compiler supplies the program cycle; the

program cycle is also called the logic cycle or the RPG cycle

v For a subprocedure or linear-main procedure, the compiler supplies the
initialization and termination of the subprocedure.

Program Cycle
The ILE RPG compiler supplies part of the logic for an RPG program. For a
cycle-main procedure, the logic the compiler supplies is called the program cycle
or logic cycle. The program cycle is a series of ordered steps that the main
procedure goes through for each record read.

The information that you code on RPG IV specifications in your source program
need not explicitly specify when records should be read or written. The ILE RPG
compiler can supply the logical order for these operations when your source
program is compiled. Depending on the specifications you code, your program
may or may not use each step in the cycle.

Primary (identified by a P in position 18 of the file description specifications) and
secondary (identified by an S in position 18 of the file description specifications)
files indicate input is controlled by the program cycle. A full procedural file
(identified by an F in position 18 of the file description specifications) indicates
that input is controlled by program-specified calculation operations (for example,
READ and CHAIN).

To control the cycle, you can have:
v One primary file and, optionally, one or more secondary files
v Only full procedural files
v A combination of one primary file, optional secondary files, and one or more full

procedural files in which some of the input is controlled by the cycle, and other
input is controlled by the program.

v No files (for example, input can come from a parameter list or a data area data
structure).

Note: No cycle code is generated for a module when MAIN or NOMAIN is
specified on the control specification. See “Linear Module” on page 29 for
more information.

General RPG IV Program Cycle
Figure 7 on page 32 shows the specific steps in the general flow of the RPG IV
program cycle. A program cycle begins with step 1 and continues through step 7,
then begins again with step 1.

The first and last time a program goes through the RPG IV cycle differ somewhat
from the normal cycle. Before the first record is read the first time through the
cycle, the program resolves any parameters passed to it, writes the records
conditioned by the 1P (first page) indicator, does file and data initialization, and
processes any heading or detail output operations having no conditioning
indicators or all negative conditioning indicators. For example, heading lines

NOMAIN Module

Chapter 3. Procedures and the Program Logic Cycle 31

#
#

printed before the first record is read might consist of constant or page heading
information or fields for reserved words, such as PAGE and *DATE. In addition,
the program bypasses total calculations and total output steps on the first cycle.

During the last time a program goes through the cycle, when no more records are
available, the LR (last record) indicator and L1 through L9 (control level) indicators
are set on, and file and data area cleanup is done.

�1� All heading and detail lines (H or D in position 17 of the output
specifications) are processed.

�2� The next input record is read and the record identifying and control level
indicators are set on.

�3� Total calculations are processed. They are conditioned by an L1 through L9
or LR indicator, or an L0 entry.

�4� All total output lines are processed. (identified by a T in position 17 of the
output specifications).

�5� It is determined if the LR indicator is on. If it is on, the program is ended.

�6� The fields of the selected input records are moved from the record to a
processing area. Field indicators are set on.

�7� All detail calculations are processed (those not conditioned by control level
indicators in positions 7 and 8 of the calculation specifications) on the data
from the record read at the beginning of the cycle.

Detailed RPG IV Program Cycle
In “General RPG IV Program Cycle” on page 31, the basic RPG IV Logic Cycle was
introduced. The following figures provide a detailed explanation of the RPG IV
Logic Cycle.

Write
heading and
detail lines

Get input
record

Perform
total

calculations

Write
total

output

Perform
detail

calculations

LR on
Move fields

Start

Yes

No

End of
program

Figure 7. RPG IV Program Logic Cycle

NOMAIN Module

32 ILE RPG Reference

Figure 8. Detailed RPG IV Object Program Cycle (Part 1 of 2)

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 33

Detailed RPG IV Object Program Cycle: Figure 8 on page 33 shows the specific
steps in the detailed flow of the RPG IV program cycle. The item numbers in the

Figure 8. Detailed RPG IV Object Program Cycle (Part 2 of 2)

Detailed RPG IV Program Cycle

34 ILE RPG Reference

following description refer to the numbers in the figure. Routines are flowcharted
in Figure 11 on page 42 and in Figure 9 on page 39.

�1� The RT indicator is set off. If *ENTRY PLIST is specified the parameters are
resolved.

�2� RPG IV checks for the first invocation of the program. If it is the first
invocation, program initialization continues. If not, it moves the result field
to factor 1 in the PARM statements in *ENTRY PLIST and branches to step
5.

�3� The program is initialized at *INIT in the cycle. This process includes:
performing data structure and subfield initialization, setting user date
fields; opening global files; loading all data area data structures, arrays and
tables; moving the result field to factor 1 in the PARM statements in
*ENTRY PLIST; running the initialization subroutine *INZSR; and storing
the structures and variables for the RESET operation. Global files are
opened in reverse order of their specification on the File Description
Specifications.

�4� Heading and detail lines (identified by an H or D in position 17 of the
output specifications) are written before the first record is read. Heading
and detail lines are always processed at the same time. If conditioning
indicators are specified, the proper indicator setting must be satisfied. If
fetch overflow logic is specified and the overflow indicator is on, the
appropriate overflow lines are written. File translation, if specified, is done
for heading and detail lines and overflow output. This step is the return
point in the program if factor 2 of an ENDSR operation contains the value
*DETL.

�5� The halt indicators (H1 through H9) are tested. If all the halt indicators are
off, the program branches to step 8. Halt indicators can be set on anytime
during the program. This step is the return point in the program if factor 2
of an ENDSR operation contains the value *GETIN.

a. If any halt indicators are on, a message is issued to the user.

b. If the response is to continue, the halt indicator is set off, and the
program returns to step 5. If the response is to cancel, the program
goes to step 6.

�6� If the response is to cancel with a dump, the program goes to step 7;
otherwise, the program branches to step 36.

�7� The program issues a dump and branches to step 36 (abnormal ending).

�8� All record identifying, 1P (first page), and control level (L1 through L9)
indicators are set off. All overflow indicators (OA through OG, OV) are set
off unless they have been set on during preceding detail calculations or
detail output. Any other indicators that are on remain on.

�9� If the LR (last record) indicator is on, the program continues with step 10.
If it is not on, the program branches to step 11.

�10� The appropriate control level (L1 through L9) indicators are set on and the
program branches to step 29.

�11� If the RT indicator is on, the program continues with step 12; otherwise,
the program branches to step 14.

�12� Factor 2 is moved to the result field for the parameters of the *ENTRY
PLIST.

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 35

�13� If the RT indicator is on (return code set to 0), the program returns to the
caller.

�14� If a primary file is present in the program, the program continues with
step 15; otherwise, the program branches to step 29.

�15� During the first program cycle, the first record from the primary file and
from each secondary file in the program is read. File translation is done on
the input records. In other program cycles, a record is read from the last
file processed. If this file is processed by a record address file, the data in
the record address file defines the record to be retrieved. If lookahead
fields are specified in the last record processed, the record may already be
in storage; therefore, no read may be done at this time.

�16� If end of file has occurred on the file just read, the program branches to
step 20. Otherwise, the program continues with step 17.

�17� If a record has been read from the file, the record type and record sequence
(positions 17 through 20 of the input specifications) are determined.

�18� It is determined whether the record type is defined in the program, and if
the record sequence is correct. If the record type is undefined or the record
sequence is incorrect, the program continues with step 19; otherwise, the
program branches to step 20.

�19� The RPG IV exception/error handling routine receives control.

�20� It is determined whether a FORCE operation was processed on the
previous cycle. If a FORCE operation was processed, the program selects
that file for processing (step 21) and branches around the processing for
match fields (steps 22 and 23). The branch is processed because all records
processed with a FORCE operation are processed with the matching record
(MR) indicator off.

�21� If FORCE was issued on the previous cycle, the program selects the forced
file for processing after saving any match fields from the file just read. If
the file forced is at end of file, normal primary/secondary multifile logic
selects the next record for processing and the program branches to step 24.

�22� If match fields are specified, the program continues with step 23;
otherwise, the program branches to step 24.

�23� The match fields routine receives control. (For detailed information on the
match fields routine, see “Match Fields Routine” on page 39.)

�24� The LR (last record) indicator is set on when all records are processed from
the files that have an E specified in position 19 of the file description
specifications and all matching secondary records have been processed. If
the LR indicator is not set on, processing continues with step 26.

�25� The LR (last record) indicator is set on and all control level (L1 through L9)
indicators, and processing continues with step 29.

�26� The record identifying indicator is set on for the record selected for
processing.

�27� It is determined whether the record selected for processing caused a
control break. A control break occurs when the value in the control fields
of the record being processed differs from the value of the control fields of
the last record processed. If a control break has not occurred, the program
branches to step 29.

�28� When a control break occurs, the appropriate control level indicator (L1

Detailed RPG IV Program Cycle

36 ILE RPG Reference

through L9) is set on. All lower level control indicators are set on. The
program saves the contents of the control fields for the next comparison.

�29� It is determined whether the total-time calculations and total-time output
should be done. Totals are always processed when the LR indicator is on.
If no control level is specified on the input specifications, totals are
bypassed on the first cycle and after the first cycle, totals are processed on
every cycle. If control levels are specified on the input specifications, totals
are bypassed until after the first record containing control fields has been
processed.

�30� All total calculations conditioned by a control level entry (positions 7 and 8
of the calculation specifications). are processed. This step is the return
point in the program if factor 2 of an ENDSR operation contains the value
*TOTC.

�31� All total output is processed. If fetch overflow logic is specified and the
overflow indicator (OA through OG, OV) associated with the file is on, the
overflow lines are written. File translation, if specified, is done for all total
output and overflow lines. This step is the return point in the program if
factor 2 of an ENDSR operation contains the value *TOTL.

�32� If LR is on, the program continues with step 33; otherwise, the program
branches to step 41.

�33� The halt indicators (H1 through H9) are tested. If any halt indicators are
on, the program branches to step 36 (abnormal ending). If the halt
indicators are off, the program continues with step 34. If the RETURN
operation code is used in calculations, the program branches to step 33
after processing of that operation.

�34� If LR is on, the program continues with step 35. If it is not on, the program
branches to step 38.

�35� RPG IV program writes all arrays or tables for which the TOFILE keyword
has been specified on the definition specification and writes all locked data
area data structures. Output arrays and tables are translated, if necessary.

�36� All open global files are closed. The RPG IV program also unlocks all data
areas that have been locked but not unlocked by the program. If factor 2 of
an ENDSR operation contains the value *CANCL, this step is the return
point.

�37� The halt indicators (H1 through H9) are tested. If any halt indicators are
on, the program branches to step 39 (abnormal ending). If the halt
indicators are off, the program continues with step 38.

�38� The factor 2 fields are moved to the result fields on the PARMs of the
*ENTRY PLIST.

�39� The return code is set. 1 = LR on, 2 = error, 3 = halt.

�40� Control is returned to the caller.

Note: Steps 32 through 40 constitute the normal ending routine. For an abnormal
ending, steps 34 through 35 are bypassed.

�41� It is determined whether any overflow indicators (OA through OG OV) are
on. If an overflow indicator is on, the program continues with step 42;
otherwise, the program branches to step 43.

�42� The overflow routine receives control. (For detailed information on the

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 37

overflow routine, see “Overflow Routine” on page 39.) This step is the
return point in the program if factor 2 of an ENDSR operation contains the
value *OFL.

�43� The MR indicator is set on and remains on for the complete cycle that
processes the matching record if this is a multifile program and if the
record to be processed is a matching record. Otherwise, the MR indicator is
set off.

�44� Data from the last record read is made available for processing. Field
indicators are set on, if specified.

�45� If lookahead fields are specified, the program continues with step 46;
otherwise, the program branches to step 47.

�46� The lookahead routine receives control. (For detailed information on the
lookahead routine, see “Lookahead Routine” on page 40.)

�47� Detail calculations are processed. This step is the return point in the
program if factor 2 of an ENDSR operation contains the value *DETC. The
program branches to step 4.

Initialization Subroutine: Refer to Figure 8 on page 33 to see a detailed
explanation of the RPG IV initialization subroutine.

The initialization subroutine allows you to process calculation specifications before
1P output. A specific subroutine that is to be run at program initialization time can
be defined by specifying *INZSR in factor 1 of the subroutine’s BEGSR operation.
Only one subroutine can be defined as an initialization subroutine. It is called at
the end of the program initialization step of the program cycle (that is, after data
structures and subfields are initialized, external indicators and user data fields are
retrieved, global files are opened, data area data structures, arrays, and tables are
loaded, and PARM result fields moved to factor 1 for *ENTRY PLIST). *INZSR may
not be specified as a file/program error/exception subroutine.

If a program ends with LR off, the initialization subroutine does not automatically
run during the next invocation of that program because the subroutine is part of
the initialization step of the program. However, if the initialization subroutine does
not complete before an exit is made from the program with LR off, the
initialization subroutine will be re-run at the next invocation of that program.

The initialization subroutine is like any other subroutine in the program, other
than being called at program initialization time. It may be called using the EXSR or
CASxx operations, and it may call other subroutines or other programs. Any
operation that is valid in a subroutine is valid in the initialization subroutine, with
the exception of the RESET operation. This is because the value used to reset a
variable is not defined until after the initialization subroutine is run.

Any changes made to a variable during the initialization subroutine affect the
value that the variable is set to on a subsequent RESET operation. Default values
can be defined for fields in record formats by, for example, setting them in the
initialization subroutine and then using RESET against the record format whenever
the default values are to be used. The initialization subroutine can also retrieve
information such as the current time for 1P output.

There is no *INZSR associated with subprocedures. If a subprocedure is the first
procedure called in a module, the *INZSR of the main procedure will not be run,
although other initialization of global data will be done. The *INZSR of the main

Detailed RPG IV Program Cycle

38 ILE RPG Reference

procedure will be run when the main procedure is called.

Match Fields Routine: Figure 9 shows the specific steps in the RPG IV match fields
routine. The item numbers in the following descriptions refer to the numbers in the
figure.

�1� If multifile processing is being used, processing continues with step 2;
otherwise, the program branches to step 3.

�2� The value of the match fields in the hold area is tested to determine which
file is to be processed next.

�3� The RPG IV program extracts the match fields from the match files and
processes sequence checking. If the match fields are in sequence, the
program branches to step 5.

�4� If the match fields are not in sequence, the RPG IV exception/error
handling routine receives control.

�5� The match fields are moved to the hold area for that file. A hold area is
provided for each file that has match fields. The next record is selected for
processing based on the value in the match fields.

Overflow Routine: Figure 9 shows the specific steps in the RPG IV overflow
routine. The item numbers in the following descriptions refer to the numbers in the
figure.

�1� The RPG IV program determines whether the overflow lines were written
previously using the fetch overflow logic (step 30 in Figure 8 on page 33).
If the overflow lines were written previously, the program branches to the
specified return point; otherwise, processing continues with step 2.

�2� All output lines conditioned with an overflow indicator are tested and
written to the conditioned overflow lines.

Figure 9. Detail Flow of RPG IV Match Fields, Overflow, and Lookahead Routines

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 39

The fetch overflow routine allows you to alter the basic RPG IV overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the RPG IV program checks only once,
immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the RPG IV program checks overflow on each
line for which fetch overflow is specified.

Specify fetch overflow with an F in position 18 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to
determine whether the line is to be written. If the line is to be written and an F is
specified in position 18, the RPG IV program tests to determine whether the
overflow indicator is on. If the overflow indicator is on, the overflow routine is
fetched and the following operations occur:
v Only the overflow lines for the file with the fetch specified are checked for

output.
v All total lines conditioned by the overflow indicator are written.
v Forms advance to a new page when a skip to a line number less than the line

number the printer is currently on is specified in a line conditioned by an
overflow indicator.

v Heading, detail, and exception lines conditioned by the overflow indicator are
written.

v The line that fetched the overflow routine is written.
v Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an
overflow indicator is specified in positions 21 through 29 of the same specification
line. If this occurs, the overflow routine is not fetched.

Use the fetch overflow routine when there is not enough space left on the page to
print the remaining detail, total, exception, and heading lines conditioned by the
overflow indicator. To determine when to fetch the overflow routine, study all
possible overflow situations. By counting lines and spaces, you can calculate what
happens if overflow occurs on each detail, total, and exception line.

Lookahead Routine: Figure 9 on page 39 shows the specific steps in the RPG IV
lookahead routine. The item numbers in the following descriptions refer to the
numbers in the figure.

�1� The next record for the file being processed is read. However, if the file is a
combined or update file (identified by a C or U, respectively, in position 17
of the file description specifications), the lookahead fields from the current
record being processed is extracted.

�2� The lookahead fields are extracted.

Ending a Program without a Primary File: If your program does not contain a
primary file, you must specify a way for the program to end:
v By setting the LR indicator on
v By setting the RT indicator on
v By setting an H1 through H9 indicator on
v By specifying the RETURN operation code

Detailed RPG IV Program Cycle

40 ILE RPG Reference

The LR, RT, H1 through H9 indicators, and the RETURN operation code, can be
used in conjunction with each other.

Program Control of File Processing: Specify a full procedural file (F in position
18 of the file description specifications) to control all or partial input of a program.
A full procedural file indicates that input is controlled by program-specified
calculation operations (for example, READ, CHAIN). When both full procedural
files and a primary file (P in position 18 of the file description specifications) are
specified in a program, some of the input is controlled by the program, and other
input is controlled by the cycle. Even if the program cycle exists in your module,
all the processing of a full-procedural file is done in your calculations.

The file operation codes can be used for program control of input. These file
operation codes are discussed in “File Operations” on page 453.

Figure 10. Programmer Control of Input Operation within the Program-Cycle

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 41

RPG IV Exception/Error Handling Routine: Figure 11 shows the specific steps in the
RPG IV exception/error handling routine. The item numbers in the following
description refer to the numbers in the figure.

Figure 11. Detail Flow of RPG IV Exception/Error Handling Routine

Detailed RPG IV Program Cycle

42 ILE RPG Reference

�1� Set up the file information or procedure status data structure, if specified,
with status information.

�2� If the exception/error occurred on an operation code that has an indicator
specified in positions 73 and 74, the indicator is set on, and control returns
to the next sequential instruction in the calculations.

�3� If the appropriate exception/error subroutine (INFSR or *PSSR) is present
in the procedure, the procedure branches to step 13; otherwise, the
procedure continues with step 4.

�4� If the Status code is 1121-1126 (see “File Status Codes” on page 91), control
returns to the current instruction in the calculations. If not, the procedure
continues with step 5.

�5� If the exception is a function check, the procedure continues with step 6. If
not, it branches to step 15.

�6� An inquiry message is issued to the requester. For an interactive job, the
message goes to the requester. For a batch job, the message goes to
QSYSOPR. If QSYSOPR is not in break mode, a default response is issued.

�7� If the user’s response is to cancel the procedure, the procedure continues
with step 8. If not, the procedure continues.

�8� If the user’s response is to cancel with a dump, the procedure continues
with step 9. If not, the procedure branches to step 10.

�9� A dump is issued.

�10� All global files are closed and data areas are unlocked

�11� The procedure is set so that it can be called again.

�12� The return code is set and the function check is percolated.

�13� Control passes to the exception/error subroutine (INFSR or *PSSR).

�14� If a return point is specified in factor 2 of the ENDSR operation for the
exception/error subroutine, the procedure goes to the specified return
point. If a return point is not specified, the procedure goes to step 4. If a
field name is specified in factor 2 of the ENDSR operation and the content
is not one of the RPG IV-defined return points (such as *GETIN or *DETC),
the procedure goes to step 6. No error is indicated, and the original error is
handled as though the factor 2 entry were blank.

�15� If no invocation handles the exception, then it is promoted to function
check and the procedure branches to step 5. Otherwise, depending on the
action taken by the handler, control resumes in this procedure either at
step 10 or at the next machine instruction after the point at which the
exception occurred.

Subprocedure Calculations
No cycle code is generated for a subprocedure, and so you must code it differently
than you would code a cycle-main procedure. The subprocedure ends when one of
the following occurs:
v A RETURN operation is processed
v The last calculation in the body of the subprocedure is processed.

Figure 12 on page 44 shows the normal processing steps for a subprocedure.
Figure 13 on page 45 shows the exception/error handling sequence.

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 43

#
#
#

#

#

�1� Taking the ″No″ branch means that another procedure has already been
called since the program was activated. You should ensure that you do not
make any incorrect assumptions about the state of files, data areas, etc.,
since another procedure may have closed files, or unlocked data areas.

�2� If an entry parameter to the main procedure is RESET anywhere in the
module, this will cause an exception. If it is possible that a subprocedure
will be called before the main procedure, it is not advised to RESET any
entry parameters for the cycle-main procedure.

Figure 12. Normal Processing Sequence for a Subprocedure

Detailed RPG IV Program Cycle

44 ILE RPG Reference

#
#
#
#

Here are some points to consider when coding subprocedures:
v There is no *INZSR associated with subprocedures. Data is initialized (with

either INZ values or default values) when the subprocedure is first called, but
before the calculations begin.
Note also that if the subprocedure is the first procedure to be called in a module,
the *INZSR of the cycle-main procedure (if present) will not be run, although
other initialization of global data will be done. The *INZSR of the cycle-main
procedure will be run when the cycle-main procedure is called.

v When a subprocedure returns normally, the return value, if specified on the
prototype of the called program or procedure, is passed to the caller. Nothing
else occurs automatically. All files and data areas must be closed manually. Files
must be written out manually. You can set on the LR or RT indicators, but it will
have no immediate effect on the program termination. If the the subprocedure
was called by a cycle-main procedure, the setting of the LR or RT indicators
would take effect when the RPG cycle reached the point at which RPG checks
those indicators.

v Exception handling within a subprocedure differs from a cycle-main procedure
primarily because there is no default exception handler for subprocedures and
so situations where the default handler would be called for a cycle-main
procedure correspond to abnormal end of the subprocedure. For example, Factor
2 of an ENDSR operation for a *PSSR subroutine within a subprocedure must be
blank. A blank Factor 2 of the ENDSR for the *PSSR subroutine in a cycle-main
procedure would result in control being passed to the default handler. In a
subprocedure, if the ENDSR of the *PSSR subroutine is reached, then the
subprocedure will end abnormally and RNX9001 will be signalled to the caller
of the subprocedure.
You can avoid abnormal termination either by coding a RETURN operation in
the *PSSR, or by coding a GOTO and label in the subprocedure to continue
processing.

v The *PSSR error subroutine is local to the subprocedure.
v You cannot code an INFSR in a subprocedure, nor can you use a file for which

an INFSR is coded.
v Indicators that control the cycle function solely as conditioning indicators when

used in a linear module (MAIN or NOMAIN on control specification); or in a

Figure 13. Exception/Error Handling Sequence for a Subprocedure

Detailed RPG IV Program Cycle

Chapter 3. Procedures and the Program Logic Cycle 45

#
#
#

#
#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

#
#
#

subprocedure that is active, but where the cycle-main procedure of the module
is not. Indicators that control the cycle include: LR, RT, H1-H9, and control level
indicators.

Implicit Opening of Files and Locking of Data Areas
UDS data areas and global files that do not have the USROPN keyword are
opened or locked implicitly during module initialization and during
cycle-main-procedure initialization. Static files in subprocedures that do not have
the USROPN keyword are opened implicitly the first time the subprocedure is
called. Automatic files in subprocedures that do not have the USROPN keyword
are opened every time the procedure is called.

Implicit Closing of Files and Unlocking of Data Areas
Global files that are open are closed implicitly, and data areas that are locked are
unlocked implicitly during cycle-main procedure termination, when the cycle-main
procedure ends abnormally or with LR on. Automatic files in subprocedures are
closed implicitly when the subprocedure ends normally or abnormally.

Caution: There is no implicit closing of static files in subprocedures. There is no
closing of global files or implicit unlocking of data areas in a linear module. These
objects will remain open or locked unless they are explicitly closed or unlocked.

Detailed RPG IV Program Cycle

46 ILE RPG Reference

Chapter 4. RPG IV Indicators

An indicator is a one byte character field which contains either ’1’ (on) or ’0’ (off).
It is generally used to indicate the result of an operation or to condition (control)
the processing of an operation.

The indicator format can be specified on the definition specifications to define
indicator variables. For a description of how to define character data in the
indicator format, see “Character Format” on page 182 and “Position 40 (Internal
Data Type)” on page 320. This chapter describes a special set of predefined RPG IV
indicators (*INxx).

RPG IV indicators are defined either by an entry on a specification or by the RPG
IV program itself. The positions on the specification in which you define the
indicator determine how the indicator is used. An indicator that has been defined
can then be used to condition calculation and output operations.

The RPG IV program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of most indicators can be changed by
calculation operations. All indicators except MR, 1P, KA through KN, and KP
through KY can be set on with the SETON operation code; all indicators except
MR and 1P can be set off with the SETOFF operation code.

This chapter is divided into the following topics:
v Indicators defined on the RPG IV specifications
v Indicators not defined on the RPG IV specifications
v Using indicators
v Indicators referred to as data.

Indicators Defined on RPG IV Specifications
You can specify the following indicators on the RPG IV specifications:
v Overflow indicator (the OFLIND keyword on the file description specifications).
v Record identifying indicator (positions 21 and 22 of the input specifications).
v Control level indicator (positions 63 and 64 of the input specifications).
v Field indicator (positions 69 through 74 of the input specifications).
v Resulting indicator (positions 71 through 76 of the calculation specifications).
v *IN array, *IN(xx) array element or *INxx field (See “Indicators Referred to As

Data” on page 73 for a description of how an indicator is defined when used
with one of these reserved words.).

The defined indicator can then be used to condition operations in the program.

Overflow Indicators
An overflow indicator is defined by the OFLIND keyword on the file description
specifications. It is set on when the last line on a page has been printed or passed.
Valid indicators are *INOA through *INOG, *INOV, and *IN01 through *IN99. A
defined overflow indicator can then be used to condition calculation and output
operations. A description of the overflow indicator and fetch overflow logic is
given in “Overflow Routine” on page 39.

© Copyright IBM Corp. 1994, 2010 47

Record Identifying Indicators
A record identifying indicator is defined by an entry in positions 21 and 22 of the
input specifications and is set on when the corresponding record type is selected
for processing. That indicator can then be used to condition certain calculation and
output operations. Record identifying indicators do not have to be assigned in any
particular order.

The valid record identifying indicators are:
v 01-99
v H1-H9
v L1-L9
v LR
v U1-U8
v RT

For an externally described file, a record identifying indicator is optional, but, if
you specify it, it follows the same rules as for a program described file.

Generally, the indicators 01 through 99 are used as record identifying indicators.
However, the control level indicators (L1 through L9) and the last record indicator
(LR) can be used. If L1 through L9 are specified as record identifying indicators,
lower level indicators are not set on.

When you select a record type for processing, the corresponding record identifying
indicator is set on. All other record identifying indicators are off except when a file
operation code is used at detail and total calculation time to retrieve records from a
file (see below). The record identifying indicator is set on after the record is
selected, but before the input fields are moved to the input area. The record
identifying indicator for the new record is on during total time for the old record;
therefore, calculations processed at total time using the fields of the old record
cannot be conditioned by the record identifying indicator of the old record. You
can set the indicators off at any time in the program cycle; they are set off before
the next primary or secondary record is selected.

If you use a file operation code on the calculation specifications to retrieve a
record, the record identifying indicator is set on as soon as the record is retrieved
from the file. The record identifying indicator is not set off until the appropriate
point in the RPG IV cycle. (See Figure 10 on page 41.) Therefore, it is possible to
have several record identifying indicators for the same file, as well as
record-not-found indicators, set on concurrently if several operations are issued to
the same file within the same RPG IV program cycle.

Rules for Assigning Record Identifying Indicators
When you assign record identifying indicators to records in a program described
file, remember the following:
v You can assign the same indicator to two or more different record types if the

same operation is to be processed on all record types. To do this, you specify the
record identifying indicator in positions 21 and 22, and specify the record
identification codes for the various record types in an OR relationship.

v You can associate a record identifying indicator with an AND relationship, but it
must appear on the first line of the group. Record identifying indicators cannot
be specified on AND lines.

Indicators Defined on RPG IV Specifications

48 ILE RPG Reference

v An undefined record (a record in a program described file that was not
described by a record identification code in positions 23 through 46) causes the
program to halt.

v A record identifying indicator can be specified as a record identifying indicator
for another record type, as a field indicator, or as a resulting indicator. No
diagnostic message is issued, but this use of indicators may cause erroneous
results.

When you assign record identifying indicators to records in an externally described
file, remember the following:
v AND/OR relationships cannot be used with record format names; however, the

same record identifying indicator can be assigned to more than one record.
v The record format name, rather than the file name, must be specified in

positions 7 through 16.

For an example of record identifying indicators, see Figure 14.

Control Level Indicators (L1-L9)
A control level indicator is defined by an entry in positions 63 and 64 of the input
specifications, designating an input field as a control field. It can then be used to
condition calculation and output operations. The valid control level indicator
entries are L1 through L9.

A control level indicator designates an input field as a control field. When a control
field is read, the data in the control field is compared with the data in the same
control field from the previous record. If the data differs, a control break occurs,
and the control level indicator assigned to the control field is set on. You can then
use control level indicators to condition operations that are to be processed only

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
*
I*Record identifying indicator 01 is set on if the record read
I*contains an S in position 1 or an A in position 1.
IINPUT1 NS 01 1 CS
I OR 1 CA
I 1 25 FLD1
* Record identifying indicator 02 is set on if the record read
* contains XYZA in positions 1 through 4.
I NS 02 1 CX 2 CY 3 CZ
I AND 4 CA
I 1 15 FLDA
I 16 20 FLDB
* Record identifying indicator 95 is set on if any record read
* does not meet the requirements for record identifying indicators
* 01 or 02.
I NS 95
*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IRcdname+++....Ri..
*
* For an externally described file, record identifying indicator 10
* is set on if the ITMREC record is read and record identifying
* indicator 20 is set on if the SLSREC or COMREC records are read.
IITMREC 10
ISLSREC 20
ICOMREC 20

Figure 14. Examples of Record Identifying Indicators

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 49

when all records with the same information in the control field have been read.
Because the indicators stay on for both total time and the first detail time, they can
also be used to condition total printing (last record of a control group) or detail
printing (first record in a control group). Control level indicators are set off before
the next record is read.

A control break can occur after the first record containing a control field is read.
The control fields in this record are compared to an area in storage that contains
hexadecimal zeros. Because fields from two different records are not being
compared, total calculations and total output operations are bypassed for this
cycle.

Control level indicators are ranked in order of importance with L1 being the lowest
and L9 the highest. All lower level indicators are set on when a higher level
indicator is set on as the result of a control break. However, the lower level
indicators can be used in the program only if they have been defined. For example,
if L8 is set on by a control break, L1 through L7 are also set on. The LR (last
record) indicator is set on when the input files are at end of file. LR is considered
the highest level indicator and forces L1 through L9 to be set on.

You can also define control level indicators as record identifying or resulting
indicators. When you use them in this manner, the status of the lower level
indicators is not changed when a higher level indicator is set on. For example, if
L3 is used as a resulting indicator, the status of L2 and L1 would not change if L3
is set on.

The importance of a control field in relation to other fields determines how you
assign control level indicators. For example, data that demands a subtotal should
have a lower control level indicator than data that needs a final total. A control
field containing department numbers should have a higher control level indicator
than a control field containing employee numbers if employees are to be grouped
within departments (see Figure 15 on page 52).

Rules for Control Level Indicators
When you assign control level indicators, remember the following:
v You can specify control fields only for primary or secondary files.
v You cannot specify control fields for full procedural files; numeric input fields of

type binary, integer, unsigned or float; or look-ahead fields.
v You cannot use control level indicators when an array name is specified in

positions 49 through 62 of the input specifications; however, you can use control
level indicators with an array element. Control level indicators are not allowed
for null-capable fields.

v Control level compare operations are processed for records in the order in which
they are found, regardless of the file from which they come.

v If you use the same control level indicator in different record types or in
different files, the control fields associated with that control level indicator must
be the same length (see Figure 15 on page 52) except for date, time, and
timestamp fields which need only match in type (that is, they can be different
formats).

v The control level indicator field length is the length of a control level indicator
in a record. For example, if L1 has a field length of 10 bytes in a record, the
control level indicator field length for L1 is 10 positions.
The control level indicator field length for split control fields is the sum of the
lengths of all fields associated with a control level indicator in a record. If L2 has

Indicators Defined on RPG IV Specifications

50 ILE RPG Reference

a split control field consisting of 3 fields of length: 12 bytes, 2 bytes and 4 bytes;
then the control level indicator field length for L2 is 18 positions.
If multiple records use the same control level indicator, then the control level
indicator field length is the length of only one record, not the sum of all the
lengths of the records.
Within a program, the sum of the control level indicator field lengths of all
control level indicators cannot exceed 256 positions.

v Record positions in control fields assigned different control level indicators can
overlap in the same record type (see Figure 16 on page 52). For record types that
require control or match fields, the total length of the control or match field
must be less than or equal to 256. For example, in Figure 16 on page 52, 15
positions have been assigned to control levels.

v Field names are ignored in control level operations. Therefore, fields from
different record types that have been assigned the same control level indicator
can have the same name.

v Control levels need not be written in any sequence. An L2 entry can appear
before L1. All lower level indicators need not be assigned.

v If different record types in a file do not have the same number of control fields,
unwanted control breaks can occur.

Figure 17 on page 53 shows an example of how to avoid unwanted control breaks.

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 51

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
A* EMPLOYEE MASTER FILE -- EMPMSTL
A R EMPREC PFILE(EMPMSTL)
A EMPLNO 6
A DEPT 3
A DIVSON 1
A*
A* (ADDITIONAL FIELDS)
A*
A R EMPTIM PFILE(EMPMSTP)
A EMPLNO 6
A DEPT 3
A DIVSON 1
A*
A* (ADDITIONAL FIELDS)
*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
*
* In this example, control level indicators are defined for three
* fields. The names of the control fields (DIVSON, DEPT, EMPLNO)
* give an indication of their relative importance.
* The division (DIVSON) is the most important group.
* It is given the highest control level indicator used (L3).
* The department (DEPT) ranks below the division;
* L2 is assigned to it. The employee field (EMPLNO) has
* the lowest control level indicator (L1) assigned to it.
*
IEMPREC 10
I EMPLNO L1
I DIVSON L3
I DEPT L2
*
* The same control level indicators can be used for different record
* types. However, the control fields having the same indicators must
* be the same length. For records in an externally described file,
* the field attributes are defined in the external description.
*
IEMPTIM 20
I EMPLNO L1
I DEPT L2
I DIVSON L3

Figure 15. Control Level Indicators (Two Record Types)

Figure 16. Overlapping Control Fields

Indicators Defined on RPG IV Specifications

52 ILE RPG Reference

Figure 17. How to Avoid Unwanted Control Breaks (Part 1 of 4)

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 53

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
ISALES 01
I 1 2 L2FLD L2
I 3 15 NAME
IITEM 02
I 1 2 L2FLD L2
I 3 5 L1FLD L1
I 6 8 AMT
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
* Indicator 11 is set on when the salesman record is read.
*
C 01 SETON 11
*
* Indicator 11 is set off when the item record is read.
* This allows the normal L1 control break to occur.
*
C 02 SETOFF 11
C 02AMT ADD L1TOT L1TOT 5 0
CL1 L1TOT ADD L2TOT L2TOT 5 0
CL2 L2TOT ADD LRTOT LRTOT 5 0
*

Figure 17. How to Avoid Unwanted Control Breaks (Part 2 of 4)

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
OPRINTER D 01 1 1
O L2FLD 5
O NAME 25
O D 02 1
O L1FLD 15
O AMT Z 15
*
* When the next item record causes an L1 control break, no total
* output is printed if indicator 11 is on. Detail calculations
* are then processed for the item record.
*
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
O T L1N11 1
O L1TOT ZB 25
O 27 '*'
O T L2 1
O L2TOT ZB 25
O 28 '**'
O T LR 1
O LRTOT ZB 25

Figure 17. How to Avoid Unwanted Control Breaks (Part 3 of 4)

Indicators Defined on RPG IV Specifications

54 ILE RPG Reference

Different record types normally contain the same number of control fields.
However, some applications require a different number of control fields in some
records.

The salesman records contain only the L2 control field. The item records contain
both L1 and L2 control fields. With normal RPG IV coding, an unwanted control
break is created by the first item record following the salesman record. This is
recognized by an L1 control break immediately following the salesman record and
results in an asterisk being printed on the line below the salesman record.
v Numeric control fields are compared in zoned decimal format. Packed numeric

input fields lengths can be determined by the formula:
d = 2n - 1

Where d = number of digits in the field and n = length of the input field. The
number of digits in a packed numeric field is always odd; therefore, when a
packed numeric field is compared with a zoned decimal numeric field, the
zoned field must have an odd length.

v When numeric control fields with decimal positions are compared to determine
whether a control break has occurred, they are always treated as if they had no
decimal positions. For instance, 3.46 is considered equal to 346.

v If you specify a field as numeric, only the positive numeric value determines
whether a control break has occurred; that is, a field is always considered to be
positive. For example, -5 is considered equal to +5.

v Date and time fields are converted to *ISO format before being compared
v Graphic data is compared by hexadecimal value

Split Control Field
A split control field is formed when you assign more than one field in an input
record the same control level indicator. For a program described file, the fields that
have the same control level indicator are combined by the program in the order
specified in the input specifications and treated as a single control field (see
Figure 18 on page 56). The first field defined is placed in the high-order (leftmost)

Figure 17. How to Avoid Unwanted Control Breaks (Part 4 of 4)

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 55

position of the control field, and the last field defined is placed in the low-order
(rightmost) position of the control field.

For an externally described file, fields that have the same control level indicator are
combined in the order in which the fields are described in the data description
specifications (DDS), not in the order in which the fields are specified on the input
specifications. For example, if these fields are specified in DDS in the following
order:
v EMPNO
v DPTNO
v REGNO

and if these fields are specified with the same control level indicator in the
following order on the input specifications:
v REGNO L3
v DPTNO L3
v EMPNO L3

the fields are combined in the following order to form a split control field: EMPNO
DPTNO REGNO.

Some special rules for split control fields are:
v For one control level indicator, you can split a field in some record types and not

in others if the field names are different. However, the length of the field,
whether split or not, must be the same in all record types.

v You can vary the length of the portions of a split control field for different
record types if the field names are different. However, the total length of the
portions must always be the same.

v A split control field can be made up of a combination of packed decimal fields
and zoned decimal fields so long as the field lengths (in digits or characters) are
the same.

v You must assign all portions of a split control field in one record type the same
field record relation indicator and it must be defined on consecutive specification
lines.

v When a split control field contains a date, time, or timestamp field than all fields
in the split control field must be of the same type.

Figure 19 on page 57 shows examples of the preceding rules.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IMASTER 01
I 28 31 CUSNO L4
I 15 20 ACCTNO L4
I 50 52 REGNO L4

Figure 18. Split Control Fields

Indicators Defined on RPG IV Specifications

56 ILE RPG Reference

The record identified by a ’1’ in position 95 has two split control fields:
1. FLD1A and FLD1B
2. FLD2A and FLD2B

The record identified with a ’2’ in position 95 has three split control fields:
1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3A, FLD3B, and FLD3C

The third record type, identified by the 3 in position 95, also has three split control
fields:
1. FLD1A and FLD1B
2. FLD2A and FLD2B
3. FLD3D and FLD3E

Field Indicators
A field indicator is defined by an entry in positions 69 and 70, 71 and 72, or 73 and
74 of the input specifications. The valid field indicators are:
v 01-99
v H1-H9
v U1-U8
v RT

You can use a field indicator to determine if the specified field or array element is
greater than zero, less than zero, zero, or blank. Positions 69 through 72 are valid
for numeric fields only; positions 73 and 74 are valid for numeric or character
fields. An indicator specified in positions 69 and 70 is set on when the numeric
input field is greater than zero; an indicator specified in positions 71 and 72 is set
on when the numeric input field is less than zero; and an indicator specified in

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IDISK BC 91 95 C1
I OR 92 95 C2
I OR 93 95 C3
I
* All portions of the split control field must be assigned the same
* control level indicator and all must have the same field record
* relation entry.
I 1 5 FLD1A L1
I 46 50 FLD1B L1
I 11 13 FLDA L2
I 51 60 FLD2A L3
I 31 40 FLD2B L3
I 71 75 FLD3A L4 92
I 26 27 FLD3B L4 92
I 41 45 FLD3C L4 92
I 61 70 FLDB 92
I 21 25 FLDC 92
I 6 10 FLD3D L4 93
I 14 20 FLD3E L4 93

Figure 19. Split Control Fields–Special Rules

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 57

positions 73 and 74 is set on when the numeric input field is zero or when the
character input field is blank. You can then use the field indicator to condition
calculation or output operations.

A field indicator is set on when the data for the field or array element is extracted
from the record and the condition it represents is present in the input record. This
field indicator remains on until another record of the same type is read and the
condition it represents is not present in the input record, or until the indicator is
set off as the result of a calculation.

You can use halt indicators (H1 through H9) as field indicators to check for an
error condition in the field or array element as it is read into the program.

Rules for Assigning Field Indicators
When you assign field indicators, remember the following:
v Indicators for plus, minus, zero, or blank are set off at the beginning of the

program. They are not set on until the condition (plus, minus, zero, or blank) is
satisfied by the field being tested on the record just read.

v Field indicators cannot be used with entire arrays or with look-ahead fields.
However, an entry can be made for an array element. Field indicators are
allowed for null-capable fields only if ALWNULL(*USRCTL) is used.

v A numeric input field can be assigned two or three field indicators. However,
only the indicator that signals the result of the test on that field is set on; the
others are set off.

v If the same field indicator is assigned to fields in different record types, its state
(on or off) is always based on the last record type selected.

v When different field indicators are assigned to fields in different record types, a
field indicator remains on until another record of that type is read. Similarly, a
field indicator assigned to more than one field within a single record type
always reflects the status of the last field defined.

v The same field indicator can be specified as a field indicator on another input
specification, as a resulting indicator, as a record identifying indicator, or as a
field record relation indicator. No diagnostic message is issued, but this use of
indicators could cause erroneous results, especially when match fields or level
control is involved.

v If the same indicator is specified in all three positions, the indicator is always set
on when the record containing this field is selected.

Resulting Indicators
Resulting indicators are used by calculation specifications in the traditional format
(C specifications). They are not used by free-form calculation specifications. For
most operation codes, in either traditional format or free-form, you can use built-in
functions instead of resulting indicators. For more information, see “Built-in
Functions” on page 430.

A resulting indicator is defined by an entry in positions 71 through 76 of the
calculation specifications. The purpose of the resulting indicators depends on the
operation code specified in positions 26 through 35. (See the individual operation
code in Chapter 22, “Operation Codes,” on page 607 for a description of the
purpose of the resulting indicators.) For example, resulting indicators can be used
to test the result field after an arithmetic operation, to identify a record-not-found
condition, to indicate an exception/error condition for a file operation, or to
indicate an end-of-file condition.

Indicators Defined on RPG IV Specifications

58 ILE RPG Reference

The valid resulting indicators are:
v 01-99
v H1-H9
v OA-OG, OV
v L1-L9
v LR
v U1-U8
v KA-KN, KP-KY (valid only with SETOFF)
v RT

You can specify resulting indicators in three places (positions 71-72, 73-74, and
75-76) of the calculation specifications. The positions in which the resulting
indicator is defined determine the condition to be tested.

In most cases, when a calculation is processed, the resulting indicators are set off,
and, if the condition specified by a resulting indicator is satisfied, that indicator is
set on. However, there some exceptions to this rule, notably “LOOKUP (Look Up a
Table or Array Element)” on page 711, “SETOFF (Set Indicator Off)” on page 812,
and “SETON (Set Indicator On)” on page 813. A resulting indicator can be used as
a conditioning indicator on the same calculation line or in other calculations or
output operations. When you use it on the same line, the prior setting of the
indicator determines whether or not the calculation is processed. If it is processed,
the result field is tested and the current setting of the indicator is determined (see
Figure 20 on page 60).

Rules for Assigning Resulting Indicators
When assigning resulting indicators, remember the following:
v Resulting indicators cannot be used when the result field refers to an entire

array.
v If the same indicator is used to test the result of more than one operation, the

last operation processed determines the setting of the indicator.
v When L1 through L9 indicators are used as resulting indicators and are set on,

lower level indicators are not set on. For example, if L8 is set on, L1 through L7
are not set on.

v If H1 through H9 indicators are set on when used as resulting indicators, the
program halts unless the halt indicator is set off prior to being checked in the
program cycle. (See “RPG Cycle and other implicit Logic” on page 31).

v The same indicator can be used to test for more than one condition depending
on the operation specified.

Indicators Defined on RPG IV Specifications

Chapter 4. RPG IV Indicators 59

Indicators Not Defined on the RPG IV Specifications
Not all indicators that can be used as conditioning indicators in an RPG IV
program are defined on the specification forms. External indicators (U1 through
U8) are defined by a CL command or by a previous RPG IV program. Internal
indicators (1P, LR, MR, and RT) are defined by the RPG IV program cycle itself.

External Indicators
The external indicators are U1 through U8. These indicators can be set in a CL
program or in an RPG IV program. In a CL program, they can be set by the SWS
(switch-setting) parameter on the CL commands CHGJOB (Change Job) or
CRTJOBD (Create Job Description). In an RPG IV program, they can be set as a
resulting indicator or field indicator.

The status of the external indicators can be changed in the program by specifying
them as resulting indicators on the calculation specifications or as field indicators
on the input specifications. However, changing the status of the i5/OS job switches
with a CL program during processing of an RPG IV program has no effect on the
copy of the external indicators used by the RPG IV program. Setting the external
indicators on or off in the program has no effect on file operations. File operations
function according to the status of the U1 through U8 indicators when the program
is initialized. However, when a program ends normally with LR on, the external
indicators are copied back into storage, and their status reflects their last status in
the RPG IV program. The current status of the external indicators can then be used
by other programs.

Note: When using “RETURN (Return to Caller)” on page 795 with the LR
indicator off, you are specifying a return without an end and, as a result, no
external indicators are updated.

Internal Indicators
Internal indicators include:
v First page indicator

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* Two resulting indicators are used to test for the different
* conditions in a subtraction operation. These indicators are
* used to condition the calculations that must be processed for
* a payroll job. Indicator 10 is set on if the hours worked (HRSWKD)
* are greater than 40 and is then used to condition all operations
* necessary to find overtime pay. If Indicator 20 is not on
* (the employee worked 40 or more hours), regular pay based on a
* 40-hour week is calculated.
*
C HRSWKD SUB 40 OVERTM 3 01020
*
C N20PAYRAT MULT (H) 40 PAY 6 2
C 10OVERTM MULT (H) OVRRAT OVRPAY 6 2
C 10OVRPAY ADD PAY PAY
*
* If indicator 20 is on (employee worked less than 40 hours), pay
* based on less than a 40-hour week is calculated.
C 20PAYRAT MULT (H) HRSWKD PAY
*

Figure 20. Resulting Indicators Used to Condition Operations

Indicators Not Defined on the RPG IV Specifications

60 ILE RPG Reference

v Last record indicator
v Matching record indicator
v Return Indicator.

First Page Indicator (1P)
The first page (1P) indicator is set on by the RPG IV program when the program
starts running and is set off by the RPG IV program after detail time output. The
first record will be processed after detail time output. The 1P indicator can be used
to condition heading or detail records that are to be written at 1P time. Do not use
the 1P indicator in any of the following ways:
v To condition output fields that require data from input records; this is because

the input data will not be available.
v To condition total or exception output lines
v In an AND relationship with control level indicators
v As a resulting indicator
v When MAIN or NOMAIN is specified on a control specification

Last Record Indicator (LR)
In a program that contains a primary file, the last record indicator (LR) is set on
after the last record from a primary/secondary file has been processed, or it can be
set on by the programmer.

The LR indicator can be used to condition calculation and output operations that
are to be done at the end of the program. When the LR indicator is set on, all other
control level indicators (L1 through L9) are also set on. If any of the indicators L1
through L9 have not been defined as control level indicators, as record identifying
indicators, as resulting indicators, or by *INxx, the indicators are set on when LR is
set on, but they cannot be used in other specifications.

In a program that does not contain a primary file, you can set the LR indicator on
as one method to end the program. (For more information on how to end a
program without a primary file, see “RPG Cycle and other implicit Logic” on page
31.) To set the LR indicator on, you can specify the LR indicator as a record
identifying indicator or a resulting indicator. If LR is set on during detail
calculations, all other control level indicators are set on at the beginning of the next
cycle. LR and the record identifying indicators are both on throughout the
remainder of the detail cycle, but the record identifying indicators are set off before
LR total time.

Matching Record Indicator (MR)
The matching record indicator (MR) is associated with the matching field entries
M1 through M9. It can only be used in a program when Match Fields are defined
in the primary and at least one secondary file.

The MR indicator is set on when all the matching fields in a record of a secondary
file match all the matching fields of a record in the primary file. It remains on
during the complete processing of primary and secondary records. It is set off
when all total calculations, total output, and overflow for the records have been
processed.

At detail time, MR always indicates the matching status of the record just selected
for processing; at total time, it reflects the matching status of the previous record. If
all primary file records match all secondary file records, the MR indicator is always
on.

Indicators Not Defined on the RPG IV Specifications

Chapter 4. RPG IV Indicators 61

Use the MR indicator as a field record relation indicator, or as a conditioning
indicator in the calculation specifications or output specifications to indicate
operations that are to be processed only when records match. The MR indicator
cannot be specified as a resulting indicator.

For more information on Match Fields and multi-file processing, see Chapter 6,
“General File Considerations,” on page 107.

Return Indicator (RT)
You can use the return indicator (RT) to indicate to the internal RPG IV logic that
control should be returned to the calling program. The test to determine if RT is on
is made after the test for the status of LR and before the next record is read. If RT
is on, control returns to the calling program. RT is set off when the program is
called again.

Because the status of the RT indicator is checked after the halt indicators (H1
through H9) and LR indicator are tested, the status of the halt indicators or the LR
indicator takes precedence over the status of the RT indicator. If both a halt
indicator and the RT indicator are on, the halt indicator takes precedence. If both
the LR indicator and RT indicator are on, the program ends normally.

RT can be set on as a record identifying indicator, a resulting indicator, or a field
indicator. It can then be used as a conditioning indicator for calculation or output
operations.

For a description of how RT can be used to return control to the calling program,
see the chapter on calling programs in the IBM Rational Development Studio for i:
ILE RPG Programmer’s Guide.

Using Indicators
Indicators that you have defined as overflow indicators, control level indicators,
record identifying indicators, field indicators, resulting indicators, *IN, *IN(xx),
*INxx, or those that are defined by the RPG IV language can be used to condition
files, calculation operations, or output operations. An indicator must be defined
before it can be used as a conditioning indicator. The status (on or off) of an
indicator is not affected when it is used as a conditioning indicator. The status can
be changed only by defining the indicator to represent a certain condition.

Note: Indicators that control the cycle function solely as conditioning indicators
when used in a MAIN or NOMAIN module; or in a subprocedure that is
active, but where the cycle-main procedure of the module is not. Indicators
that control the cycle include: LR, RT, H1-H9, and control level indicators.

File Conditioning
The file conditioning indicators are specified by the EXTIND keyword on the file
description specifications. Only the external indicators U1 through U8 are valid for
file conditioning. (The USROPN keyword can be used to specify that no implicit
OPEN should be done.)

If the external indicator specified is off when the program is called, the file is not
opened and no data transfer to or from the file will occur when the program is
running. Primary and secondary input files are processed as if they were at

Indicators Not Defined on the RPG IV Specifications

62 ILE RPG Reference

end-of-file. The end-of-file indicator is set on for all READ operations to that file.
Input, calculation, and output specifications for the file need not be conditioned by
the external indicator.

Rules for File Conditioning
When you condition files, remember the following:
v A file conditioning entry can be made for input, output, update, or combined

files.
v A file conditioning entry cannot be made for table or array input.
v Output files for tables can be conditioned by U1 through U8. If the indicator is

off, the table is not written.
v A record address file can be conditioned by U1 through U8, but the file

processed by the record address file cannot be conditioned by U1 through U8.
v If the indicator conditioning a primary file with matching records is off, the MR

indicator is not set on.
v Input does not occur for an input, an update, or a combined file if the indicator

conditioning the file is off. Any indicators defined on the associated Input
specifications in positions 63-74 will be processed as usual using the existing
values in the input fields.

v Data transfer to the file does not occur for an output, an update, or a combined
file if the indicator conditioning the file is off. Any conditioning indicators,
numeric editing, or blank after that are defined on the output specifications for
these files will be processed as usual.

v If the indicator conditioning an input, an update, or a combined file is off, the
file is considered to be at end of file. All defined resulting indicators are set off
at the beginning of each specified I/O operation. The end-of-file indicator is set
on for READ, READC, READE, READPE, and READP operations. CHAIN,
EXFMT, SETGT, SETLL, and UNLOCK operations are ignored and all defined
resulting indicators remain set off.

Field Record Relation Indicators
Field record relation indicators are specified in positions 67 and 68 of the input
specifications. The valid field record relation indicators are:
v 01-99
v H1-H9
v MR
v RT
v L1-L9
v U1-U8

Field record relation indicators cannot be specified for externally described files.

You use field record relation indicators to associate fields with a particular record
type when that record type is one of several in an OR relationship. The field
described on the specification line is available for input only if the indicator
specified in the field record relation entry is on or if the entry is blank. If the entry
is blank, the field is common to all record types defined by the OR relationship.

Assigning Field Record Relation Indicators
You can use a record identifying indicator (01 through 99) in positions 67 and 68 to
relate a field to a particular record type. When several record types are specified in
an OR relationship, all fields that do not have a field record relation indicator in

Using Indicators

Chapter 4. RPG IV Indicators 63

positions 67 and 68 are associated with all record types in the OR relationship. To
relate a field to just one record type, you enter the record identifying indicator
assigned to that record type in positions 67 and 68 (see Figure 21 on page 65).

An indicator (01 through 99) that is not a record identifying indicator can also be
used in positions 67 and 68 to condition movement of the field from the input area
to the input fields.

Control fields, which you define with an L1 through L9 indicator in positions 63
and 64 of the input specifications, and match fields, which are specified by a match
value (M1 through M9) in positions 65 and 66 of the input specifications, can also
be related to a particular record type in an OR relationship if a field record relation
indicator is specified. Control fields or match fields in the OR relationship that do
not have a field record relation indicator are used with all record types in the OR
relationship.

If two control fields have the same control level indicator or two match fields have
the same matching level value, a field record relation indicator can be assigned to
just one of the match fields. In this case, only the field with the field record
relation indicator is used when that indicator is on. If none of the field record
relation indicators are on for that control field or match field, the field without a
field record relation indicator is used. Control fields and match fields can only
have entries of 01 through 99 or H1 through H9 in positions 67 and 68.

You can use positions 67 and 68 to specify that the program accepts and uses data
from a particular field only when a certain condition occurs (for example, when
records match, when a control break occurs, or when an external indicator is on).
You can indicate the conditions under which the program accepts data from a field
by specifying indicators L1 through L9, MR, or U1 through U8 in positions 67 and
68. Data from the field named in positions 49 through 62 is accepted only when
the field record relation indicator is on.

External indicators are primarily used when file conditioning is specified with the
“EXTIND(*INUx)” on page 296 keyword on the file description specifications.
However, they can be used even though file conditioning is not specified.

A halt indicator (H1 through H9) in positions 67 and 68 relates a field to a record
that is in an OR relationship and also has a halt indicator specified in positions 21
and 22.

Remember the following points when you use field record relation indicators:
v Control level (positions 63 and 64) and matching fields (positions 65 and 66)

with the same field record relation indicator must be grouped together.
v Fields used for control level (positions 63 and 64) and matching field entries

(positions 65 and 66) without a field record relation indicator must appear before
those used with a field record relation indicator.

v Control level (positions 63 and 64) and matching fields (positions 65 and 66)
with a field record relation indicator (positions 67 and 68) take precedence, when
the indicator is on, over control level and matching fields of the same level
without an indicator.

v Field record relations (positions 67 and 68) for matching and control level fields
(positions 63 through 66) must be specified with record identifying indicators (01
through 99 or H1 through H9) from the main specification line or an OR relation
line to which the matching field refers. If multiple record types are specified in

Using Indicators

64 ILE RPG Reference

an OR relationship, an indicator that specifies the field relation can be used to
relate matching and control level fields to the pertinent record type.

v Noncontrol level (positions 63 and 64) and matching field (positions 65 and 66)
specifications can be interspersed with groups of field record relation entries
(positions 67 and 68).

v The MR indicator can be used as a field record relation indicator to reduce
processing time when certain fields of an input record are required only when a
matching condition exists.

v The number of control levels (L1 through L9) specified for different record types
in the OR relationship can differ. There can be no control level for certain record
types and a number of control levels for other record types.

v If all matching fields (positions 65 and 66) are specified with field record relation
indicators (positions 67 and 68), each field record relation indicator must have a
complete set of matching fields associated with it.

v If one matching field is specified without a field record relation indicator, a
complete set of matching fields must be specified for the fields without a field
record relation indicator.

The file contains two different types of records, one identified by a 5 in position 1
and the other by a 6 in position 1. The FLDC field is related by record identifying
indicator 14 to the record type identified by a 5 in position 1. The FLDD field is
related to the record type having a 6 in position 1 by record identifying indicator
16. This means that FLDC is found on only one type of record (that identified by a
5 in position 1) and FLDD is found only on the other type. FLDA is conditioned by
indicator 07, which was previously defined elsewhere in the program. FLDB is
found on both record types because it is not related to any one type by a record
identifying indicator.

Function Key Indicators
You can use function key indicators in a program that contains a WORKSTN
device if the associated function keys are specified in data description
specifications (DDS). Function keys are specified in DDS with the CFxx or CAxx
keyword. For an example of using function key indicators with a WORKSTN file,
see the WORKSTN chapter in the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

Function Key
Indicator

Corresponding
Function Key

Function Key
Indicator

Corresponding
Function Key

KA 1 KM 13

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IREPORT AA 14 1 C5
I OR 16 1 C6
I 20 30 FLDB
I 2 10 FLDA 07
*
* Indicator 07 was specified elsewhere in the program.
*
I 40 50 FLDC 14
I 60 70 FLDD 16

Figure 21. Field Record Relation

Using Indicators

Chapter 4. RPG IV Indicators 65

Function Key
Indicator

Corresponding
Function Key

Function Key
Indicator

Corresponding
Function Key

KB 2 KN 14

KC 3 KP 15

KD 4 KQ 16

KE 5 KR 17

KF 6 KS 18

KG 7 KT 19

KH 8 KU 20

KI 9 KV 21

KJ 10 KW 22

KK 11 KX 23

KL 12 KY 24

The function key indicators correspond to function keys 1 through 24. Function
key indicator KA corresponds to function key 1, KB to function key 2 ... KY to
function key 24.

Function key indicators that are set on can then be used to condition calculation or
output operations. Function key indicators can be set off by the SETOFF operation.

Halt Indicators (H1-H9)
You can use the halt indicators (H1 through H9) to indicate errors that occur
during the running of a program. The halt indicators can be set on as record
identifying indicators, field indicators, or resulting indicators.

The halt indicators are tested at the *GETIN step of the RPG IV cycle (see “RPG
Cycle and other implicit Logic” on page 31). If a halt indicator is on, a message is
issued to the user. The following responses are valid:
v Set off the halt indicator and continue the program.
v Issue a dump and end the program.
v End the program with no dump.

If a halt indicator is on when a RETURN operation inside a cycle-main procedure
is processed, or when the LR indicator is on, the called program ends abnormally.
The calling program is informed that the called program ended with a halt
indicator on.

Note: If the keyword MAIN or NOMAIN is specified on a control specification,
then any halt indicators are ignored except as conditioning indicators.

For a detailed description of the steps that occur when a halt indicator is on, see
the detailed flowchart of the RPG IV cycle in “RPG Cycle and other implicit Logic”
on page 31.

Indicators Conditioning Calculations
Calculation specifications in the traditional format (C specifications) can include
conditioning indicators in positions 7 and 8, and positions 9 through 11.
Conditioning indicators are not used by free-form calculation specifications.

Using Indicators

66 ILE RPG Reference

#
#
#
#

#
#

Indicators that specify the conditions under which a calculation is performed are
defined elsewhere in the program.

Positions 7 and 8
You can specify control level indicators (L1 through L9 and LR) in positions 7 and
8 of the calculation specifications.

If positions 7 and 8 are blank, the calculation is processed at detail time, is a
statement within a subroutine, or is a declarative statement. If indicators L1
through L9 are specified, the calculation is processed at total time only when the
specified indicator is on. If the LR indicator is specified, the calculation is
processed during the last total time.

Note: An L0 entry can be used to indicate that the calculation is a total calculation
that is to be processed on every program cycle.

Positions 9-11
You can use positions 9 through 11 of the calculation specifications to specify
indicators that control the conditions under which an operation is processed. You
can specify N is position 9 to indicate that the indicator should be tested for the
value of off (’0’) The valid entries for positions 10 through 11 are:
v 01-99
v H1-H9
v MR
v OA-OG, OV
v L1-L9
v LR
v U1-U8
v KA-KN, KP-KY
v RT

Any indicator that you use in positions 9 through 11 must be previously defined as
one of the following types of indicators:
v Overflow indicators (file description specifications “OFLIND(indicator)” on page

303
v Record identifying indicators (input specifications, positions 21 and 22)
v Control level indicators (input specifications, positions 63 and 64)
v Field indicators (input specifications, positions 69 through 74)
v Resulting indicators (calculation specifications, positions 71 through 76)
v External indicators
v Indicators are set on, such as LR and MR
v *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As

Data” on page 73 for a description of how an indicator is defined when used
with one of these reserved words).

If the indicator must be off to condition the operation, place an N in positions 9.
The indicators in grouped AND/OR lines, plus the control level indicators (if
specified in positions 7 and 8), must all be exactly as specified before the operation
is done as in Figure 22 on page 68.

Using Indicators

Chapter 4. RPG IV Indicators 67

Assume that indicator 25 represents a record type and that a control level 2 break
occurred when record type 25 was read. L1 and L2 are both on. All operations
conditioned by the control level indicators in positions 7 and 8 are done before
operations conditioned by control level indicators in positions 9 through 11.
Therefore, the operation in �B� occurs before the operation in �A�. The operation in
�A� is done on the first record of the new control group indicated by 25, whereas
the operation in �B� is a total operation done for all records of the previous control
group.

The operation in �B� can be done when the L2 indicator is on provided the other
conditions are met: Indicator 10 must be on; the L3 indicator must not be on.

The operation conditioned by both L2 and NL3 is done only when a control level 2
break occurs. These two indicators are used together because this operation is not
to be done when a control level 3 break occurs, even though L2 is also on.

Some special considerations you should know when using conditioning indicators
in positions 9 through 11 are as follows:
v With externally described work station files, the conditioning indicators on the

calculation specifications must be either defined in the RPG program or be
defined in the DDS source for the workstation file.

v With program described workstation files, the indicators used for the
workstation file are unknown at compile time of the RPG program. Thus
indicators 01-99 are assumed to be declared and they can be used to condition
the calculation specifications without defining them.

v Halt indicators can be used to end the program or to prevent the operation from
being processed when a specified error condition is found in the input data or in
another calculation. Using a halt indicator is necessary because the record that
causes the halt is completely processed before the program stops. Therefore, if
the operation is processed on an error condition, the results are in error. A halt
indicator can also be used to condition an operation that is to be done only
when an error occurs.

v If LR is specified in positions 9 through 11, the calculation is done after the last
record has been processed or after LR is set on.

v If a control level indicator is used in positions 9 through 11 and positions 7 and
8 are not used (detail time), the operation conditioned by the indicator is done
only on the record that causes a control break or any higher level control break.

v If a control level indicator is specified in positions 7 and 8 (total time) and MR is
specified in positions 9 through 11, MR indicates the matching condition of the
previous record and not the one just read that caused the control break. After all
operations conditioned by control level indicators in positions 7 and 8 are done,
MR then indicates the matching condition of the record just read.

v If positions 7 and 8 and positions 9 through 11 are blank, the calculation
specified on the line is done at detail calculation time.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
C 25
CAN L1 SUB TOTAL TOTAL �A�
CL2 10
CANNL3TOTAL MULT 05 SLSTAX �B�
*

Figure 22. Conditioning Operations (Control Level Indicators)

Using Indicators

68 ILE RPG Reference

Figure 23 and Figure 24 show examples of conditioning indicators.

Indicators Used in Expressions
Indicators can be used as booleans in expressions in the extended factor 2 field of
the calculation specification. They must be referred to as data (that is, using *IN or
*INxx). The following examples demonstrate this.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilenameSqNORiPos1NCCPos2NCCPos3NCC.PFromTo++DField+L1M1FrPlMnZr...*
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
*
* Field indicators can be used to condition operations. Assume the
* program is to find weekly earnings including overtime. The over-
* time field is checked to determine if overtime was entered.
* If the employee has worked overtime, the field is positive and -
* indicator 10 is set on. In all cases the weekly regular wage
* is calculated. However, overtime pay is added only if
* indicator 10 is on.
*
ITIME AB 01
I 1 7 EMPLNO
I 8 10 0OVERTM 10
I 15 20 2RATE
I 21 25 2RATEOT
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
*
* Field indicator 10 was assigned on the input specifications.
* It is used here to condition calculation operations.
*
C EVAL (H) PAY = RATE * 40
C 10 EVAL (H) PAY = PAY + (OVERTM * RATEOT)

Figure 23. Conditioning Operations (Field Indicators)

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
*
* A record identifying indicator is used to condition an operation.
* When a record is read with a T in position 1, the 01 indicator is
* set on. If this indicator is on, the field named SAVE is added
* to SUM. When a record without T in position 1 is read, the 02
* indicator is set on. The subtract operation, conditioned by 02,
* then performed instead of the add operation.
*
IFILE AA 01 1 CT
I OR 02 1NCT
I 10 15 2SAVE
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* Record identifying indicators 01 and 02 are assigned on the input
* specifications. They are used here to condition calculation
* operations.
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C 01 ADD SAVE SUM 8 2
C 02 SUB SAVE SUM 8 2

Figure 24. Conditioning Operations (Record Identifying Indicators)

Using Indicators

Chapter 4. RPG IV Indicators 69

See the expressions chapter and the operation codes chapter in this document for
more examples and further details.

Indicators Conditioning Output
Indicators that you use to specify the conditions under which an output record or
an output field is written must be previously defined in the program. Indicators to
condition output are specified in positions 21 through 29. All indicators are valid
for conditioning output.

The indicators you use to condition output must be previously defined as one of
the following types of indicators:
v Overflow indicators (file description specifications, “OFLIND(indicator)” on page

303)
v Record identifying indicators (input specifications, positions 21 and 22)
v Control level indicators (input specifications, positions 63 and 64)
v Field indicators (input specifications, positions 69 through 74)
v Resulting indicators (calculation specifications, positions 71 through 76)
v Indicators set by the RPG IV program such as 1P and LR
v External indicators set prior to or during program processing
v *IN array, *IN(xx) array element, or *INxx field (see “Indicators Referred to As

Data” on page 73 for a description of how an indicator is defined when used
with one of these reserved words).

If an indicator is to condition an entire record, you enter the indicator on the line
that specifies the record type (see Figure 26 on page 72). If an indicator is to
condition when a field is to be written, you enter the indicator on the same line as
the field name (see Figure 26 on page 72).

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that type of record is checked for
output. If you specify conditioning indicators, one indicator can be entered in each
of the three separate output indicator fields (positions 22 and 23, 25 and 26, and 28
and 29). If these indicators are on, the output operation is done. An N in the
position preceding each indicator (positions 21, 24, or 27) means that the output
operation is done only if the indicator is not on (a negative indicator). No output
line should be conditioned by all negative indicators; at least one of the indicators
should be positive. If all negative indicators condition a heading or detail
operation, the operation is done at the beginning of the program cycle when the
first page (1P) lines are written.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
* In these examples, the IF structure is performed only if 01 is on.
* *IN01 is treated as a boolean with a value of on or off.

* In the first example, the value of the indicator ('0' or '1') is
* checked.
C IF *IN01

* In the second example, the logical expression B < A is evaluated.
* If true, 01 is set on. If false 01 is set off. This is analogous
* to using COMP with A and B and placing 01 in the appropriate
* resulting indicator position.
C EVAL *IN01 = B < A

Figure 25. Indicators Used in Expressions

Using Indicators

70 ILE RPG Reference

You can specify output indicators in an AND/OR relationship by specifying
AND/OR in positions 16 through 18. An unlimited number of AND/OR lines can
be used. AND/OR lines can be used to condition output records, but they cannot
be used to condition fields. However, you can condition a field with more than
three indicators by using the EVAL operation in calculations. The following
example illustrates this.

Other special considerations you should know about for output indicators are as
follows:
v The first page indicator (1P) allows output on the first cycle before the primary

file read, such as printing on the first page. The line conditioned by the 1P
indicator must contain constant information used as headings or fields for
reserved words such as PAGE and UDATE. The constant information is specified
in the output specifications in positions 53 through 80. If 1P is used in an OR
relationship with an overflow indicator, the information is printed on every page
(see Figure 27 on page 72). Use the 1P indicator only with heading or detail
output lines. It cannot be used to condition total or exception output lines or
should not be used in an AND relationship with control level indicators.

v If certain error conditions occur, you might not want output operation
processed. Use halt indicators to prevent the data that caused the error from
being used (see Figure 28 on page 73).

v To condition certain output records on external conditions, use external
indicators to condition those records.

See the Printer File section in the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide for a discussion of the considerations that apply to assigning
overflow indicators on the output specifications.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
* Indicator 20 is set on only if indicators 10, 12, 14,16, and 18
* are set on.
C EVAL *IN20 = *IN10 AND *IN12 AND *IN14
C AND *IN16 AND *IN18
OFilename++DAddN01N02N03Excnam++++.......................................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
* OUTFIELD is conditioned by indicator 20, which effectively
* means it is conditioned by all the indicators in the EVAL
* operation.
OPRINTER E
O 20 OUTFIELD

Using Indicators

Chapter 4. RPG IV Indicators 71

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
*
* One indicator is used to condition an entire line of printing.
* When 44 is on, the fields named INVOIC, AMOUNT, CUSTR, and SALSMN
* are all printed.
*
OPRINT D 44 1
O INVOIC 10
O AMOUNT 18
O CUSTR 65
O SALSMN 85
*
* A control level indicator is used to condition when a field should
* be printed. When indicator 44 is on, fields INVOIC, AMOUNT, and
* CUSTR are always printed. However, SALSMN is printed for the
* first record of a new control group only if 44 and L1 are on.
*
OPRINT D 44 1
O INVOIC 10
O AMOUNT 18
O CUSTR 65
O L1 SALSMN 85

Figure 26. Output Indicators

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
*
* The 1P indicator is used when headings are to be printed
* on the first page only.
*
OPRINT H 1P 3
O 8 'ACCOUNT'
*
* The 1P indicator and an overflow indicator can be used to print
* headings on every page.
*
OPRINT H 1P 3 1
O OR OF
O 8 'ACCOUNT'

Figure 27. 1P Indicator

Using Indicators

72 ILE RPG Reference

Indicators Referred to As Data
An alternative method of referring to and manipulating RPG IV indicators is
provided by the RPG IV reserved words *IN and *INxx.

*IN
The array *IN is a predefined array of 99 one-position, character elements
representing the indicators 01 through 99. The elements of the array should contain
only the character values '0' (zero) or '1' (one).

The specification of the *IN array or the *IN(xx) variable-index array element as a
field in an input record, as a result field, or as factor 1 in a PARM operation
defines indicators 01 through 99 for use in the program.

The operations or references valid for an array of single character elements are
valid with the array *IN except that the array *IN cannot be specified as a subfield
in a data structure, or as a result field of a PARM operation.

*INxx
The field *INxx is a predefined one-position character field where xx represents
any one of the RPG IV indicators except 1P or MR.

The specification of the *INxx field or the *IN(n) fixed-index array element (where
n = 1 - 99) as a field in an input record, as a result field, or as factor 1 in a PARM
operation defines the corresponding indicator for use in the program.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
*
* When an error condition (zero in FIELDB) is found, the halt
* indicator is set on.
*
IDISK AA 01
I 1 3 FIELDA L1
I 4 8 0FIELDB H1
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* When H1 is on, all calculations are bypassed.
*
C H1 GOTO END
C :
C : Calculations
C :
C END TAG
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
*
* FIELDA and FIELDB are printed only if H1 is not on.
* Use this general format when you do not want information that
* is in error to be printed.
*
OPRINT H L1 0 2 01
O 50 'HEADING'
O D 01NH1 1 0
O FIELDA 5
O FIELDB Z 15

Figure 28. Preventing Fields from Printing

Indicators Referred to As Data

Chapter 4. RPG IV Indicators 73

You can specify the field *INxx wherever a one-position character field is valid
except that *INxx cannot be specified as a subfield in a data structure, as the result
field of a PARM operation, or in a SORTA operation.

Additional Rules
Remember the following rules when you are working with the array *IN, the array
element *IN(xx) or the field *INxx:
v Moving a character '0' (zero) or *OFF to any of these fields sets the

corresponding indicator off.
v Moving a character '1' (one) or *ON to any of these fields sets the corresponding

indicator on.
v Do not move any value, other than '0' (zero) or '1' (one), to *INxx. Any

subsequent normal RPG IV indicator tests may yield unpredictable results.
v If you take the address of *IN, *IN01 - *IN99, or *IN(index), indicators *IN01 to

*IN99 will be defined. If you take the address of any other indicator, such as
*INLR or *INL1, only that indicator will be defined.

See Figure 29 for some examples of indicators referred to as data.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* When this program is called, a single parameter is passed to
* control some logic in the program. The parameter sets the value
* of indicator 50. The parameter must be passed with a character
* value of 1 or 0.
*
C *ENTRY PLIST
C *IN50 PARM SWITCH 1
*
*
* Subroutine SUB1 uses indicators 61 through 68. Before the
* subroutine is processed, the status of these indicators used in
* the mainline program is saved. (Assume that the indicators are
* set off in the beginning of the subroutine.) After the subroutine
* is processed, the indicators are returned to their original state.
*
*
C MOVEA *IN(61) SAV8 8
C EXSR SUB1
C MOVEA SAV8 *IN(61)
*
* A code field (CODE) contains a numeric value of 1 to 5 and is
* used to set indicators 71 through 75. The five indicators are set
* off. Field X is calculated as 70 plus the CODE field. Field X is
* then used as the index into the array *IN. Different subroutines
* are then used based on the status of indicators 71 through 75.
*
C MOVEA '00000' *IN(71)
C 70 ADD CODE X 3 0
C MOVE *ON *IN(X)
C 71 EXSR CODE1
C 72 EXSR CODE2
C 73 EXSR CODE3
C 74 EXSR CODE4
C 75 EXSR CODE5

Figure 29. Examples of Indicators Referred to as Data

Indicators Referred to As Data

74 ILE RPG Reference

Summary of Indicators
Table 22 and Table 23 on page 76 show summaries of where RPG IV indicators are
defined, what the valid entries are, where the indicators are used, and when the
indicators are set on and off. Table 23 indicates the primary condition that causes
each type of indicator to be set on and set off by the RPG IV program. “Function
Key Indicators” on page 65 lists the function key indicators and the corresponding
function keys.

Table 22. Indicator Entries and Uses

Where Defined/Used 01-99 1P H1-H9 L1-L9 LR MR
OA-OG

OV U1-U8
KA-KN
KP-KY RT

User
Defined

Overflow indicator, file
description
specifications, OFLIND
keyword

X X

Record identifying
indicator input
specifications, positions
21-22

X X X X X X

Control level, input
specifications, positions
63-64

X

Field level, input
specifications, positions
69-74

X X X X

Resulting indicator,
calculation
specifications, positions
71-76

X X X X X1 X X2 X

RPG
Defined

Internal Indicator X X X X

External Indicator X

Used

File conditioning, file
description
specifications

X

File record relation,
input specifications
67-683

X X X X X X

Control level,
calculation
specifications, positions
7-8

X X

Conditioning indicators,
calculation
specifications, positions
9-11

X X X X X X X X X

Output indicators,
output specifications,
positions 21-29

X X4 X X X X X X X X

Summary of Indicators

Chapter 4. RPG IV Indicators 75

Table 22. Indicator Entries and Uses (continued)

Where Defined/Used 01-99 1P H1-H9 L1-L9 LR MR
OA-OG

OV U1-U8
KA-KN
KP-KY RT

Notes:

1. The overflow indicator must be defined on the file description specification first.

2. KA through KN and KP through KY can be used as resulting indicators only with the SETOFF operation.

3. Only a record identifying indicator from a main or OR record can be used to condition a control or match field.
L1 or L9 cannot be used to condition a control or match field.

4. The 1P indicator is allowed only on heading and detail lines.

Table 23. When Indicators Are Set On and Off by the RPG IV Logic Cycle

Type of Indicator Set On Set Off

Overflow When printing on or spacing or skipping
past the overflow line.

OA-OG, OV: After the following heading
and detail lines are completed,
or after the file is opened unless
the H-specification keyword
OPENOPT(*NOINZOFL) is used.
01-99: By the user.

Record identifying When specified primary / secondary record
has been read and before total calculations
are processed; immediately after record is
read from a full procedural file.

Before the next primary/secondary record is
read during the next processing cycle.

Control level When the value in a control field changes.
All lower level indicators are also set on.

At end of following detail cycle.

Field indicator By blank or zero in specified fields, by plus
in specified field, or by minus in specified
field.

Before this field status is to be tested the next
time.

Resulting When the calculation is processed and the
condition that the indicator represents is met.

The next time a calculation is processed for
which the same indicator is specified as a
resulting indicator and the specified
condition is not met.

Function key When the corresponding function key is
pressed for WORKSTN files and at
subsequent reads to associated subfiles.

By SETOFF or move fields logic for a
WORKSTN file.

External U1-U8 By CL command prior to beginning the
program, or when used as a resulting or a
field indicator.
Note: The value of the external indicators is
set from the job switches during
initialization. For a cycle module, it is done
during the *INIT phase of the cycle; for other
modules, it is done only once, when the first
procedure in the module is called.

By CL command prior to beginning the
program, or when used as a resulting or
when used as a resulting or a field indicator.

H1-H9 As specified by programmer. When the continue option is selected as a
response to a message, or by the
programmer.

RT As specified by programmer. When the program is called again.

Internal Indicators 1P At beginning of processing before any input
records are read.

Before the first record is read.

LR After processing the last primary/secondary
record of the last file or by the programmer.

At the beginning of processing, or by the
programmer.

Summary of Indicators

76 ILE RPG Reference

##
#
#
#
#
#
#
#
#

#
#
#

Table 23. When Indicators Are Set On and Off by the RPG IV Logic Cycle (continued)

Type of Indicator Set On Set Off

MR If the match field contents of the record of a
secondary file correspond to the match field
contents of a record in the primary file.

When all total calculations and output are
completed for the last record of the matching
group.

Summary of Indicators

Chapter 4. RPG IV Indicators 77

Summary of Indicators

78 ILE RPG Reference

Chapter 5. File and Program Exception/Errors

RPG categorizes exception/errors into two classes: program and file. Information
on file and program exception/errors is made available to an RPG IV program
using file information data structures and program status data structures,
respectively. File and Program exception/error subroutines may be specified to
handle these types of exception/errors.

File Exception/Errors
Some examples of file exception/errors are: undefined record type, an error in
trigger program, an I/O operation to a closed file, a device error, and an
array/table load sequence error. They can be handled in one of the following
ways:
v The operation code extender ’E’ can be specified. When specified, before the

operation begins, this extender sets the %ERROR and %STATUS built-in
functions to return zero. If an exception/error occurs during the operation, then
after the operation %ERROR returns ’1’ and %STATUS returns the file status.
The optional file information data structure is updated with the exception/error
information. You can determine the action to be taken by testing %ERROR and
%STATUS.

v An indicator can be specified in positions 73 and 74 of the calculation
specifications for an operation code. This indicator is set on if an exception/error
occurs during the processing of the specified operation. The optional file
information data structure is updated with the exception/error information. You
can determine the action to be taken by testing the indicator.

v ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

v You can create a user-defined ILE exception handler that will take control when
an exception occurs. For more information, see IBM Rational Development Studio
for i: ILE RPG Programmer’s Guide.

v A file exception/error subroutine can be specified for a global file in a cycle
module. The subroutine is defined by the INFSR keyword on a file description
specification with the name of the subroutine that is to receive the control.
Information regarding the file exception/error is made available through a file
information data structure that is specified with the INFDS keyword on the file
description specification. You can also use the %STATUS built-in function, which
returns the most recent value set for the program or file status. If a file is
specified, %STATUS returns the value contained in the INFDS *STATUS field for
the specified file.

v If the indicator, ’E’ extender, MONITOR block, or file exception/error subroutine
is not present, any file exception/errors are handled by the RPG IV default error
handler.

File Information Data Structure
A file information data structure (INFDS) can be defined for each file to make file
exception/error and file feedback information available to the program or
procedure.

© Copyright IBM Corp. 1994, 2010 79

#
#
#
#
#
#
#
#
#

#
#
#

The file information data structure, which must be unique for each file, must be
defined in the same scope as the file. For global files, the INFDS must be defined
in the main source section. For local files in a subprocedure, the INFDS must be
defined in the Definition specifications of the subprocedure. Furthermore, the
INFDS must be defined with the same storage type, automatic or static, as the file.

The INFDS for a file is used by all procedures using the file. If the file is passed as
a parameter, the called program or procedure uses the same INFDS.

The INFDS contains the following feedback information:
v File Feedback (length is 80)
v Open Feedback (length is 160)
v Input/Output Feedback (length is 126)
v Device Specific Feedback (length is variable)
v Get Attributes Feedback (length is variable)

Note: The get attributes feedback uses the same positions in the INFDS as the
input/output feedback and device specific feedback. This means that if you
have a get attributes feedback, you cannot have input/output feedback or
device feedback, and vice versa.

The length of the INFDS depends on what fields you have declared in your
INFDS. The minimum length of the INFDS is 80.

File Feedback Information
The file feedback information starts in position 1 and ends in position 80 in the file
information data structure. The file feedback information contains data about the
file which is specific to RPG. This includes information about the error/exception
that identifies:
v The name of the file for which the exception/error occurred
v The record being processed when the exception/error occurred or the record

that caused the exception/error
v The last operation being processed when the exception/error occurred
v The status code
v The RPG IV routine in which the exception/error occurred.

The fields from position 1 to position 66 in the file feedback section of the INFDS
are always provided and updated even if INFDS is not specified in the program.
The fields from position 67 to position 80 of the file feedback section of the INFDS
are only updated after a POST operation to a specific device.

If INFDS is not specified, the information in the file feedback section of the INFDS
can be output using the DUMP operation. For more information see “DUMP
(Program Dump)” on page 669.

Overwriting the file feedback section of the INFDS may cause unexpected results
in subsequent error handling and is not recommended.

The location of some of the more commonly used subfields in the file feedback
section of the INFDS is defined by special keywords. The contents of the file
feedback section of the INFDS along with the special keywords and their
descriptions can be found in the following tables:

File Exception/Errors

80 ILE RPG Reference

Table 24. Contents of the File Feedback Information Available in the File Information Data Structure (INFDS)

From
(Pos.
26-32)

To
(Pos.
33-39) Format Length Keyword Information

1 8 Character 8 *FILE The first 8 characters of the file name.

9 9 Character 1 Open indication (1 = open).

10 10 Character 1 End of file (1 = end of file)

11 15 Zoned decimal 5,0 *STATUS Status code. For a description of these codes, see
“File Status Codes” on page 91.

16 21 Character 6 *OPCODE Operation code The first five positions
(left-adjusted) specify the type of operation by
using the character representation of the calculation
operation codes. For example, if a READE was
being processed, READE is placed in the leftmost
five positions. If the operation was an implicit
operation (for example, a primary file read or
update on the output specifications), the equivalent
operation code is generated (such as READ or
UPDAT) and placed in location *OPCODE.
Operation codes which have 6 letter names will be
shortened to 5 letters.

DELETE
DELET

EXCEPT
EXCPT

READPE
REDPE

UNLOCK
UNLCK

UPDATE
UPDAT

The remaining position contains one of the
following:

F The last operation was specified for a file
name.

R The last operation was specified for a
record.

I The last operation was an implicit file
operation.

22 29 Character 8 *ROUTINE First 8 characters of the name of the routine
(including a subprocedure) in which the file
operation was done.

File Exception/Errors

Chapter 5. File and Program Exception/Errors 81

Table 24. Contents of the File Feedback Information Available in the File Information Data Structure
(INFDS) (continued)

From
(Pos.
26-32)

To
(Pos.
33-39) Format Length Keyword Information

30 37 Character 8 If OPTION(*NOSRCSTMT) is specified, this is the
source listing line number of the file operation. If
OPTION(*SRCSTMT) is specified, this is the source
listing statement number of the file operation. The
full statement number is included when it applies
to the root source member. If the statement number
is greater than 6 digits, that is, it includes a source
ID other than zero, the first 2 positions of the
8-byte feedback area will have a ″+ ″ indicating that
the rest of the statement number is stored in
positions 53-54.

38 42 Zoned decimal 5,0 User-specified reason for error on SPECIAL file.

38 45 Character 8 *RECORD For a program described file the record identifying
indicator is placed left-adjusted in the field; the
remaining six positions are filled with blanks. For
an externally described file, the first 8 characters of
the name of the record being processed when the
exception/error occurred.

46 52 Character 7 Machine or system message number.

53 66 Character 14 Unused.

77 78 Binary 2 Source Id matching the statement number from
positions 30-37.

Table 25. Contents of the File Feedback Information Available in the File-Information Data Structure (INFDS) Valid
after a POST

From
(Pos.
26-32)

To
(Pos.
33-39) Format Length Keyword Information

67 70 Zoned decimal 4,0 *SIZE Screen size (product of the number of rows and the
number of columns on the device screen).

71 72 Zoned decimal 2,0 *INP The display’s keyboard type. Set to 00 if the
keyboard is alphanumeric or katakana. Set to 10 if
the keyboard is ideographic.

73 74 Zoned decimal 2,0 *OUT The display type. Set to 00 if the display is
alphanumeric or katakana. Set to 10 if the display is
ideographic. Set to 20 if the display is DBCS.

75 76 Zoned decimal 2,0 *MODE Always set to 00.

INFDS File Feedback Example: To specify an INFDS which contains fields in the
file feedback section, you can make the following entries:
v Specify the INFDS keyword on the file description specification with the name

of the file information data structure
v Specify the file information data structure and the subfields you wish to use on

a definition specification.
v Specify special keywords left-adjusted, in the FROM field (positions 26-32) on

the definition specification, or specify the positions of the fields in the FROM
field (position 26-32) and the TO field (position 33-39).

File Exception/Errors

82 ILE RPG Reference

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Open Feedback Information
Positions 81 through 240 in the file information data structure contain open
feedback information. The contents of the file open feedback area are copied by
RPG to the open feedback section of the INFDS whenever the file associated with
the INFDS is opened. This includes members opened as a result of a read
operation on a multi-member processed file.

A description of the contents of the open feedback area, and what file types the
fields are valid for, can be found in the iSeries Information Center.

INFDS Open Feedback Example: To specify an INFDS which contains fields in
the open feedback section, you can make the following entries:
v Specify the INFDS keyword on the file description specification with the name

of the file information data structure
v Specify the file information data structure and the subfields you wish to use on

a definition specification.
v Use information in the iSeries Information Center database and file systems

category to determine which fields you wish to include in the INFDS. To
calculate the From and To positions (positions 26 through 32 and 33 through 39
of the definition specifications) that specify the subfields of the open feedback
section of the INFDS, use the Offset, Data Type, and Length given in the
Information Center and do the following calculations:

From = 81 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for overflow line number of a printer file, the Information Center
gives:

Offset = 107
Data Type is binary
Length = 2

Therefore,

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE IF E DISK INFDS(FILEFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DFILEFBK DS
D FILE *FILE * File name
D OPEN_IND 9 9N * File open?
D EOF_IND 10 10N * File at eof?
D STATUS *STATUS * Status code
D OPCODE *OPCODE * Last opcode
D ROUTINE *ROUTINE * RPG Routine
D LIST_NUM 30 37 * Listing line
D SPCL_STAT 38 42S 0 * SPECIAL status
D RECORD *RECORD * Record name
D MSGID 46 52 * Error MSGID
D SCREEN *SIZE * Screen size
D NLS_IN *INP * NLS Input?
D NLS_OUT *OUT * NLS Output?
D NLS_MODE *MODE * NLS Mode?

Figure 30. Example of Coding an INFDS with File Feedback Information

File Exception/Errors

Chapter 5. File and Program Exception/Errors 83

From = 81 + 107 = 188,
To = 188 - 1 + 2 = 189.
See subfield OVERFLOW in example below

Input/Output Feedback Information
Positions 241 through 366 in the file information data structure are used for
input/output feedback information. The contents of the file common input/output
feedback area are copied by RPG to the input/output feedback section of the
INFDS:
v If the presence of a POST operation affects the file:

– only after a POST for the file.
v Otherwise:

– after each I/O operation, if blocking is not active for the file.
– after the I/O request to data management to get or put a block of data, if

blocking is active for the file.

For more information see “POST (Post)” on page 770.

A description of the contents of the input/output feedback area can be found in
the Information Center.

INFDS Input/Output Feedback Example: To specify an INFDS which contains
fields in the input/output feedback section, you can make the following entries:

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE O F 132 PRINTER INFDS(OPNFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DOPNFBK DS
D ODP_TYPE 81 82 * ODP Type
D FILE_NAME 83 92 * File name
D LIBRARY 93 102 * Library name
D SPOOL_FILE 103 112 * Spool file name
D SPOOL_LIB 113 122 * Spool file lib
D SPOOL_NUM_OLD 123 124I 0 * Spool file num
D RCD_LEN 125 126I 0 * Max record len
D KEY_LEN 127 128I 0 * Max key len
D MEMBER 129 138 * Member name
D TYPE 147 148I 0 * File type
D ROWS 152 153I 0 * Num PRT/DSP rows
D COLUMNS 154 155I 0 * Num PRT/DSP cols
D NUM_RCDS 156 159I 0 * Num of records
D SPOOL_NUM 160 163I 0 * 6 digit Spool Nbr
D VOL_OFF 184 185I 0 * Vol label offset
D BLK_RCDS 186 187I 0 * Max rcds in blk
D OVERFLOW 188 189I 0 * Overflow line
D BLK_INCR 190 191I 0 * Blk increment
D FLAGS1 196 196 * Misc flags
D REQUESTER 197 206 * Requester name
D OPEN_COUNT 207 208I 0 * Open count
D BASED_MBRS 211 212I 0 * Num based mbrs
D FLAGS2 213 213 * Misc flags
D OPEN_ID 214 215 * Open identifier
D RCDFMT_LEN 216 217I 0 * Max rcd fmt len
D CCSID 218 219I 0 * Database CCSID
D FLAGS3 220 220 * Misc flags
D NUM_DEVS 227 228I 0 * Num devs defined

Figure 31. Example of Coding an INFDS with Open Feedback Information

File Exception/Errors

84 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#

#

#

#
#

v Specify the INFDS keyword on the file description specification with the name
of the file information data structure

v Specify the file information data structure and the subfields you wish to use on
a definition specification.

v Use information in the Information Center to determine which fields you wish
to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the input/output feedback section of the INFDS, use the Offset,
Data Type, and Length given in the Information Center and do the following
calculations:

From = 241 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device class of a file, the Information Center gives:
Offset = 30
Data Type is character
Length = 2

Therefore,
From = 241 + 30 = 271,
To = 271 - 1 + 2 = 272.
See subfield DEV_CLASS in example below

Device Specific Feedback Information
The device specific feedback information in the file information data structure
starts at position 367 in the INFDS, and contains input/output feedback
information specific to a device.

The length of the INFDS when device specific feedback information is required,
depends on two factors: the device type of the file, and on whether DISK files are
keyed or not. The minimum length is 528; but some files require a longer INFDS.
v For WORKSTN files, the INFDS is long enough to hold the device-specific

feedback information for any type of display or ICF file starting at position 241.
For example, if the longest device-specific feedback information requires 390
bytes, the INFDS for WORKSTN files is 630 bytes long (240+390=630).

v For externally described DISK files, the INFDS is at least long enough to hold
the longest key in the file beginning at position 401.

More information on the contents and length of the device feedback for database
file, printer files, ICF and display files can be found in the iSeries Information
Center database and file systems category.

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE IF E DISK INFDS(MYIOFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DMYIOFBK DS
D * 241-242 not used
D WRITE_CNT 243 246I 0 * Write count
D READ_CNT 247 250I 0 * Read count
D WRTRD_CNT 251 254I 0 * Write/read count
D OTHER_CNT 255 258I 0 * Other I/O count
D OPERATION 260 260 * Cuurent operation
D IO_RCD_FMT 261 270 * Rcd format name
D DEV_CLASS 271 272 * Device class
D IO_PGM_DEV 273 282 * Pgm device name
D IO_RCD_LEN 283 286I 0 * Rcd len of I/O

Figure 32. Example of Coding an INFDS with Input/Output Feedback Information

File Exception/Errors

Chapter 5. File and Program Exception/Errors 85

The contents of the device specific input/output feedback area of the file are
copied by RPG to the device specific feedback section of the INFDS:
v If the presence of a POST operation affects the file:

– only after a POST for the file.
v Otherwise:

– after each I/O operation, if blocking is not active for the file.
– after the I/O request to data management to get or put a block of data, if

blocking is active for the file.

Notes:

1. After each keyed input operation, only the key fields will be updated.
2. After each non-keyed input operation, only the relative record number will be

updated.

For more information see “POST (Post)” on page 770.

INFDS Device Specific Feedback Examples: To specify an INFDS which contains
fields in the device-specific feedback section, you can make the following entries:
v Specify the INFDS keyword on the file description specification with the name

of the file information data structure
v Specify the file information data structure and the subfields you wish to use on

a definition specification.
v Use information in the Information Center to determine which fields you wish

to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the input/output feedback section of the INFDS, use the Offset,
Data Type, and Length given in the Information Center and do the following
calculations:

From = 367 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for relative record number of a data base file, the Information
Center gives:

Offset = 30
Data Type is binary
Length = 4

Therefore,
From = 367 + 30 = 397,
To = 397 - 1 + 4 = 400.
See subfield DB_RRN in DBFBK data structure in example below

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE O F 132 PRINTER INFDS(PRTFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DPRTFBK DS
D CUR_LINE 367 368I 0 * Current line num
D CUR_PAGE 369 372I 0 * Current page cnt
* If the first bit of PRT_FLAGS is on, the spooled file has been
* deleted. Use TESTB X'80' or TESTB '0' to test this bit.
D PRT_FLAGS 373 373
D PRT_MAJOR 401 402 * Major ret code
D PRT_MINOR 403 404 * Minor ret code

Figure 33. Example of Coding an INFDS with Printer Specific Feedback Information

File Exception/Errors

86 ILE RPG Reference

#

#

#

#

#
#

Get Attributes Feedback Information
The get attributes feedback information in the file information data structure starts
at position 241 in the INFDS, and contains information about a display device or
ICF session (a device associated with a WORKSTN file). The end position of the
get attributes feedback information depends on the length of the data returned by
a get attributes data management operation. The get attributes data management
operation is performed when a POST with a program device specified for factor 1
is used.

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE IF E DISK INFDS(DBFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DDBFBK DS
D FDBK_SIZE 367 370I 0 * Size of DB fdbk
D JOIN_BITS 371 374I 0 * JFILE bits
D LOCK_RCDS 377 378I 0 * Nbr locked rcds
D POS_BITS 385 385 * File pos bits
D DLT_BITS 384 384 * Rcd deleted bits
D NUM_KEYS 387 388I 0 * Num keys (bin)
D KEY_LEN 393 394I 0 * Key length
D MBR_NUM 395 396I 0 * Member number
D DB_RRN 397 400I 0 * Relative-rcd-num
D KEY 401 2400 * Key value (max
D * size 2000)

Figure 34. Example of Coding an INFDS with Database Specific Feedback Information

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE CF E WORKSTN INFDS(ICFFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DICFFBK DS
D ICF_AID 369 369 * AID byte
D ICF_LEN 372 375I 0 * Actual data len
D ICF_MAJOR 401 402 * Major ret code
D ICF_MINOR 403 404 * Minor ret code
D SNA_SENSE 405 412 * SNA sense rc
D SAFE_IND 413 413 * Safe indicator
D RQSWRT 415 415 * Request write
D RMT_FMT 416 425 * Remote rcd fmt
D ICF_MODE 430 437 * Mode name

Figure 35. Example of Coding an INFDS with ICF Specific Feedback Information

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE CF E WORKSTN INFDS(DSPFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DDSPFBK DS
D DSP_FLAG1 367 368 * Display flags
D DSP_AID 369 369 * AID byte
D CURSOR 370 371 * Cursor location
D DATA_LEN 372 375I 0 * Actual data len
D SF_RRN 376 377I 0 * Subfile rrn
D MIN_RRN 378 379I 0 * Subfile min rrn
D NUM_RCDS 380 381I 0 * Subfile num rcds
D ACT_CURS 382 383 * Active window
D * cursor location
D DSP_MAJOR 401 402 * Major ret code
D DSP_MINOR 403 404 * Minor ret code

Figure 36. Example of Coding an INFDS with Display Specific Feedback Information

File Exception/Errors

Chapter 5. File and Program Exception/Errors 87

More information about the contents and the length of the get attributes data can
be found in the Information Center.

INFDS Get Attributes Feedback Example: To specify an INFDS which contains
fields in the get attributes feedback section, you can make the following entries:
v Specify the INFDS keyword on the file description specification with the name

of the file information data structure
v Specify the file information data structure and the subfields you wish to use on

a definition specification.
v Use information in the Information Center to determine which fields you wish

to include in the INFDS. To calculate the From and To positions (positions 26
through 32 and 33 through 39 of the definition specifications) that specify the
subfields of the get attributes feedback section of the INFDS, use the Offset, Data
Type, and Length given in the Information Center and do the following
calculations:

From = 241 + Offset
To = From - 1 + Character_Length
Character_Length = Length (in bytes)

For example, for device type of a file, the Information Center gives:
Offset = 31
Data Type is character
Length = 6

Therefore,
From = 241 + 31 = 272,
To = 272 - 1 + 6 = 277.
See subfield DEV_TYPE in example below

File Exception/Errors

88 ILE RPG Reference

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE CF E WORKSTN INFDS(DSPATRFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DDSPATRFBK DS
D PGM_DEV 241 250 * Program device
D DEV_DSC 251 260 * Dev description
D USER_ID 261 270 * User ID
D DEV_CLASS 271 271 * Device class
D DEV_TYPE 272 277 * Device type
D REQ_DEV 278 278 * Requester?
D ACQ_STAT 279 279 * Acquire status
D INV_STAT 280 280 * Invite status
D DATA_AVAIL 281 281 * Data available
D NUM_ROWS 282 283I 0 * Number of rows
D NUM_COLS 284 285I 0 * Number of cols
D BLINK 286 286 * Allow blink?
D LINE_STAT 287 287 * Online/offline?
D DSP_LOC 288 288 * Display location
D DSP_TYPE 289 289 * Display type
D KBD_TYPE 290 290 * Keyboard type
D CTL_INFO 342 342 * Controller info
D COLOR_DSP 343 343 * Color capable?
D GRID_DSP 344 344 * Grid line dsp?
* The following fields apply to ISDN.
D ISDN_LEN 385 386I 0 * Rmt number len
D ISDN_TYPE 387 388 * Rmt number type
D ISDN_PLAN 389 390 * Rmt number plan
D ISDN_NUM 391 430 * Rmt number
D ISDN_SLEN 435 436I 0 * Rmt sub-address
D * length
D ISDN_STYPE 437 438 * Rmt sub-address
D * type
D ISDN_SNUM 439 478 * Rmt sub-address
D ISDN_CON 480 480 * Connection
D ISDN_RLEN 481 482I 0 * Rmt address len
D ISDN_RNUM 483 514 * Rmt address
D ISDN_ELEN 519 520 * Extension len
D ISDN_ETYPE 521 521 * Extension type
D ISDN_ENUM 522 561 * Extension num
D ISDN_XTYPE 566 566 * X.25 call type
D

Figure 37. Example of Coding an INFDS with Display file Get Attributes Feedback Information

File Exception/Errors

Chapter 5. File and Program Exception/Errors 89

FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++
FMYFILE CF E WORKSTN INFDS(ICFATRFBK)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++
DICFATRFBK DS
D PGM_DEV 241 250 * Program device
D DEV_DSC 251 260 * Dev description
D USER_ID 261 270 * User ID
D DEV_CLASS 271 271 * Device class
D DEV_TYPE 272 272 * Device type
D REQ_DEV 278 278 * Requester?
D ACQ_STAT 279 279 * Acquire status
D INV_STAT 280 280 * Invite status
D DATA_AVAIL 281 281 * Data available
D SES_STAT 291 291 * Session status
D SYNC_LVL 292 292 * Synch level
D CONV_TYPE 293 293 * Conversation typ
D RMT_LOC 294 301 * Remote location
D LCL_LU 302 309 * Local LU name
D LCL_NETID 310 317 * Local net ID
D RMT_LU 318 325 * Remote LU
D RMT_NETID 326 333 * Remote net ID
D APPC_MODE 334 341 * APPC Mode
D LU6_STATE 345 345 * LU6 conv state
D LU6_COR 346 353 * LU6 conv
D * correlator
* The following fields apply to ISDN.
D ISDN_LEN 385 386I 0 * Rmt number len
D ISDN_TYPE 387 388 * Rmt number type
D ISDN_PLAN 389 390 * Rmt number plan
D ISDN_NUM 391 430 * Rmt number
D ISDN_SLEN 435 436I 0 * sub-addr len
D ISDN_STYPE 437 438 * sub-addr type
D ISDN_SNUM 439 478 * Rmt sub-address
D ISDN_CON 480 480 * Connection
D ISDN_RLEN 481 482I 0 * Rmt address len
D ISDN_RNUM 483 514 * Rmt address
D ISDN_ELEN 519 520 * Extension len
D ISDN_ETYPE 521 521 * Extension type
D ISDN_ENUM 522 561 * Extension num
D ISDN_XTYPE 566 566 * X.25 call type

* The following information is available only when program was started
* as result of a received program start request. (P_ stands for protected)
D TRAN_PGM 567 630 * Trans pgm name
D P_LUWIDLN 631 631 * LUWID fld len
D P_LUNAMELN 632 632 * LU-NAME len
D P_LUNAME 633 649 * LU-NAME
D P_LUWIDIN 650 655 * LUWID instance
D P_LUWIDSEQ 656 657I 0 * LUWID seq num

* The following information is available only when a protected conversation
* is started on a remote system. (U_ stands for unprotected)
D U_LUWIDLN 658 658 * LUWID fld len
D U_LUNAMELN 659 659 * LU-NAME len
D U_LUNAME 660 676 * LU-NAME
D U_LUWIDIN 677 682 * LUWID instance
D U_LUWIDSEQ 683 684I 0 * LUWID seq num

Figure 38. Example of Coding an INFDS with ICF file Get Attributes Feedback Information

File Exception/Errors

90 ILE RPG Reference

Blocking Considerations
The fields of the input/output specific feedback in the INFDS and in most cases
the fields of the device specific feedback information section of the INFDS, are not
updated for each operation to the file in which the records are blocked and
unblocked. The feedback information is updated only when a block of records is
transferred between an RPG program and the operating system. However, if you
are doing blocked input on a data base file, the relative record number and the key
value in the data base feedback section of the INFDS are updated:
v On every input/output operation, if the file is not affected by the presence of a

POST operation in the program.
v Only after a POST for the file, if file is affected by a POST operation in the

program.

See “POST (Post)” on page 770.

You can obtain valid updated feedback information by using the CL command
OVRDBF (Override with Database File) with SEQONLY(*NO) specified. If you use
a file override command, the ILE RPG compiler does not block or unblock the
records in the file.

For more information on blocking and unblocking of records in RPG see IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide.

File Status Codes
Any code placed in the subfield location *STATUS that is greater than 99 is
considered to be an exception/error condition. When the status code is greater
than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the
%ERROR built-in function — if the ’E’ extender is specified — is set to return ’1’;
otherwise, the file exception/error subroutine receives control. Location *STATUS is
updated after every file operation.

You can use the %STATUS built-in function to get information on exception/errors.
It returns the most recent value set for the program or file status. If a file is
specified, %STATUS returns the value contained in the INFDS *STATUS field for
the specified file.

The codes in the following tables are placed in the subfield location *STATUS for
the file information data structure:

Table 26. Normal Codes

Code Device1 RC2 Condition

00000 No exception/error.

00002 W n/a Function key used to end display.

00011 W,D,SQ 11xx End of file on a read (input).

00012 W,D,SQ n/a No-record-found condition on a CHAIN, SETLL, and SETGT
operations.

00013 W n/a Subfile is full on WRITE operation.

Note: 1“Device” refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files. 2The formula mmnn is used to described major/minor return codes: mm
is the major and nn the minor.

File Exception/Errors

Chapter 5. File and Program Exception/Errors 91

#
#

#
#

Table 27. Exception/Error Codes

Code Device1 RC2 Condition

01011 W,D,SQ n/a Undefined record type (input record does not match record
identifying indicator).

01021 W,D,SQ n/a Tried to write a record that already exists (file being used has
unique keys and key is duplicate, or attempted to write
duplicate relative record number to a subfile).

01022 D n/a Referential constraint error detected on file member.

01023 D,SQ n/a Error in trigger program before file operation performed.

01024 D,SQ n/a Error in trigger program after file operation performed.

01031 W,D,SQ n/a Match field out of sequence.

01041 n/a n/a Array/table load sequence error.

01042 n/a n/a Array/table load sequence error. Alternate collating sequence
used.

01051 n/a n/a Excess entries in array/table file.

01061 n/a n/a Error handling for an associated variable for a file parameter

01071 W,D,SQ n/a Numeric sequence error.

011214 W n/a No indicator on the DDS keyword for Print key.

011224 W n/a No indicator on the DDS keyword for Roll Up key.

011234 W n/a No indicator on the DDS keyword for Roll Down key.

011244 W n/a No indicator on the DDS keyword for Clear key.

011254 W n/a No indicator on the DDS keyword for Help key.

011264 W n/a No indicator on the DDS keyword for Home key.

01201 W 34xx Record mismatch detected on input.

01211 all n/a I/O operation to a closed file.

01215 all n/a OPEN issued to a file already opened.

012163 all yes Error on an implicit OPEN/CLOSE operation.

012173 all yes Error on an explicit OPEN/CLOSE operation.

01218 D,SQ n/a Record already locked.

01221 D,SQ n/a Update operation attempted without a prior read.

01222 D,SQ n/a Record cannot be allocated due to referential constraint error

01231 SP n/a Error on SPECIAL file.

01235 P n/a Error in PRTCTL space or skip entries.

01241 D,SQ n/a Record number not found. (Record number specified in record
address file is not present in file being processed.)

01251 W 80xx 81xx Permanent I/O error occurred.

01255 W 82xx 83xx Session or device error occurred. Recovery may be possible.

01261 W n/a Attempt to exceed maximum number of acquired devices.

01271 W n/a Attempt to acquire unavailable device

01281 W n/a Operation to unacquired device.

01282 W 0309 Job ending with controlled option.

01284 W n/a Unable to acquire second device for single device file

01285 W 0800 Attempt to acquire a device already acquired.

File Exception/Errors

92 ILE RPG Reference

####

Table 27. Exception/Error Codes (continued)

Code Device1 RC2 Condition

01286 W n/a Attempt to open shared file with SAVDS or IND options.

01287 W n/a Response indicators overlap IND indicators.

01299 W,D,SQ yes Other I/O error detected.

01331 W 0310 Wait time exceeded for READ from WORKSTN file.

Notes:

1. “Device” refers to the devices for which the condition applies. The following abbreviations are used: P =
PRINTER; D = DISK; W = WORKSTN; SP = SPECIAL; SQ = Sequential. The major/minor return codes under
column RC apply only to WORKSTN files.

2. The formula mmnn is used to described major/minor return codes: mm is the major and nn the minor.

3. Any errors that occur during an open or close operation will result in a *STATUS value of 1216 or 1217
regardless of the major/minor return code value.

4. See Figure 11 on page 42 for special handling.

The following table shows the major/minor return code to *STATUS value
mapping for errors that occur to AS/400 programs using WORKSTN files only. See
the Information Center for more information on major/minor return codes.

Major Minor *STATUS

00,02 all 00000

03 all (except 09,10) 00000

03 09 01282

03 10 01331

04 all 01299

08 all 012851

11 all 00011

34 all 01201

80,81 all 01251

82,83 all 01255

Notes:

1. The return code field will not be updated for a *STATUS value of 1285, 1261, or 1281
because these conditions are detected before calling data management. To monitor for
these errors, you must check for the *STATUS value and not for the corresponding
major/minor return code value.

File Exception/Error Subroutine (INFSR)
To identify the user-written RPG IV subroutine that may receive control following
file exception/errors, specify the INFSR keyword on the File Description
specification with the name of the subroutine that receives control when
exception/errors occur on this file. The subroutine name can be *PSSR, which
indicates that the program exception/error subroutine is given control for the
exception/errors on this file.

A file exception/error subroutine (INFSR) receives control when an
exception/error occurs on an implicit (primary or secondary) file operation or on
an explicit file operation that does not have an indicator specified in positions 73

File Exception/Errors

Chapter 5. File and Program Exception/Errors 93

and 74,does not have an (E) extender, and is not in the monitor block of a
MONITOR group that can handle the error.. The file exception/error subroutine
can also be run by the EXSR operation code. Any of the RPG IV operations can be
used in the file exception/error subroutine. Factor 1 of the BEGSR operation and
factor 2 of the EXSR operation must contain the name of the subroutine that
receives control (same name as specified with the INFSR keyword on the file
description specifications).

Note: The INFSR keyword cannot be specified if the keyword MAIN or NOMAIN
keyword is specified on the Control specification, or if the file is to be
accessed by a subprocedure. To handle errors for the file in your procedure,
you can use the (E) extender to handle errors for an individual I/O
operation, or you can use a MONITOR group to handle errors for several
operations. The ON-ERROR section of your MONITOR group could call a
subprocedure to handle the details of the error handling.

The ENDSR operation must be the last specification for the file exception/error
subroutine and should be specified as follows:

Position
Entry

6 C

7-11 Blank

12-25 Can contain a label that is used in a GOTO specification within the
subroutine.

26-35 ENDSR

36-49 Optional entry to designate where control is to be returned following
processing of the subroutine. The entry must be a 6-position character
field, literal, or array element whose value specifies one of the following
return points.

Note: If the return points are specified as literals, they must be enclosed in
apostrophes. If they are specified as named constants, the constants
must be character and must contain only the return point with no
leading blanks. If they are specified in fields or array elements, the
value must be left-adjusted in the field or array element.

*DETL
Continue at the beginning of detail lines.

*GETIN
Continue at the get input record routine.

*TOTC
Continue at the beginning of total calculations.

*TOTL
Continue at the beginning of total lines.

*OFL Continue at the beginning of overflow lines.

*DETC
Continue at the beginning of detail calculations.

*CANCL
Cancel the processing of the program.

Blanks Return control to the RPG IV default error handler. This applies

File Exception/Errors

94 ILE RPG Reference

#
#
#
#
#
#
#

when factor 2 is a value of blanks and when factor 2 is not
specified. If the subroutine was called by the EXSR operation and
factor 2 is blank, control returns to the next sequential instruction.
Blanks are only valid at runtime.

50-76 Blank.

Remember the following when specifying the file exception/error subroutine:
v The programmer can explicitly call the file exception/error subroutine by

specifying the name of the subroutine in factor 2 of the EXSR operation.
v After the ENDSR operation of the file exception/error subroutine is run, the

RPG IV language resets the field or array element specified in factor 2 to blanks.
Thus, if the programmer does not place a value in this field during the
processing of the subroutine, the RPG IV default error handler receives control
following processing of the subroutine unless the subroutine was called by the
EXSR operation. Because factor 2 is set to blanks, the programmer can specify
the return point within the subroutine that is best suited for the exception/error
that occurred. If the subroutine was called by the EXSR operation and factor 2 of
the ENDSR operation is blank, control returns to the next sequential instruction
following the EXSR operation. A file exception/error subroutine can handle
errors in more than one file.

v If a file exception/error occurs during the start or end of a program, control
passes to the RPG IV default error handler, and not to the user-written file
exception/error or subroutine (INFSR).

v Because the file exception/error subroutine may receive control whenever a file
exception/error occurs, an exception/error could occur while the subroutine is
running if an I/O operation is processed on the file in error. If an
exception/error occurs on the file already in error while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem. One way to avoid
such a program loop is to set a first-time switch in the subroutine. If it is not the
first time through the subroutine, set on a halt indicator and issue the RETURN
operation as follows:

File Exception/Errors

Chapter 5. File and Program Exception/Errors 95

Note: It may not be possible to continue processing the file after an I/O error has
occurred. To continue, it may be necessary to issue a CLOSE operation and
then an OPEN operation to the file.

Program Exception/Errors
Some examples of program exception/errors are: division by zero, SQRT of a
negative number, invalid array index, error on a CALL, error return from called
program, and start position or length out of range for a string operation. They can
be handled in one of the following ways:
v The operation code extender ’E’ can be specified for some operation codes.

When specified, before the operation begins, this extender sets the %ERROR and
%STATUS built-in functions to return zero. If an exception/error occurs during
the operation, then after the operation %ERROR returns ’1’ and %STATUS
returns the program status. The optional program status data structure is
updated with the exception/error information. You can determine the action to
be taken by testing %ERROR and %STATUS.

v An indicator can be specified in positions 73 and 74 of the calculation
specifications for some operation codes. This indicator is set on if an
exception/error occurs during the processing of the specified operation. The
optional program status data structure is updated with the exception/error
information. You can determine the action to be taken by testing the indicator.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C* If INFSR is already handling the error, exit.

C ERRRTN BEGSR

C SW IFEQ '1'

C SETON H1

C RETURN

C* Otherwise, flag the error handler.

C ELSE

C MOVE '1' SW

C :

C :

C :

C ENDIF

C* End error processing.

C MOVE '0' SW

C ENDSR

Figure 39. Setting a First-time Switch

File Exception/Errors

96 ILE RPG Reference

v ON-ERROR groups can be used to handle errors for statements processed within
a MONITOR block. If an error occurs when a statement is processed, control
passes to the appropriate ON-ERROR group.

v You can create a user-defined ILE exception handler that will take control when
an exception occurs. For more information, see IBM Rational Development Studio
for i: ILE RPG Programmer’s Guide.

v A program exception/error subroutine can be specified. You enter *PSSR in
factor 1 of a BEGSR operation to specify this subroutine. Information regarding
the program exception/error is made available through a program status data
structure that is specified with an S in position 23 of the data structure statement
on the definition specifications. You can also use the %STATUS built-in function,
which returns the most recent value set for the program or file status.

v If the indicator, ’E’ extender, monitor block, or program exception/error
subroutine is not present, program exception/errors are handled by the RPG IV
default error handler.

Program Status Data Structure
A program status data structure (PSDS) can be defined to make program
exception/error information available to an RPG IV program. The PSDS must be
defined in the main source section; therefore, there is only one PSDS per module.

A data structure is defined as a PSDS by an S in position 23 of the data structure
statement. A PSDS contains predefined subfields that provide you with information
about the program exception/error that occurred. The location of the subfields in
the PSDS is defined by special keywords or by predefined From and To positions.
In order to access the subfields, you assign a name to each subfield. The keywords
must be specified, left-adjusted in positions 26 through 39.

Information from the PSDS is also provided in a formatted dump. However, a
formatted dump might not contain information for fields in the PSDS if the PSDS
is not coded, or the length of the PSDS does not include those fields. For example,
if the PSDS is only 275 bytes long, the time and date or program running will
appear as *N/A*. in the dump, since this information starts at byte 276. For more
information see “DUMP (Program Dump)” on page 669.

TIP
Call performance with LR on will be greatly improved by having no PSDS, or
a PSDS no longer than 80 bytes, since some of the information to fill the
PSDS after 80 bytes is costly to obtain.

Table 28 on page 98 provides the layout of the subfields of the data structure and
the predefined From and To positions of its subfields that can be used to access
information in this data structure.

Program Exception/Errors

Chapter 5. File and Program Exception/Errors 97

Table 28. Contents of the Program Status Data Structure

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

1 10 Character 10 *PROC If the module was compiled with CRTRPGMOD,
this is the name of the module that was created; if
the program was created using CRTBNDRPG, this
is the name of the program that was created. For a
cycle-main module, this is the name of the main
procedure.

11 15 Zoned decimal 5,0 *STATUS Status code. For a description of these codes, see
“Program Status Codes” on page 101.

16 20 Zoned decimal 5,0 Previous status code.

21 28 Character 8 RPG IV source listing line number or statement
number. The source listing line number is replaced
by the source listing statement number if
OPTION(*SRCSTMT) is specified instead of
OPTION(*NOSRCSTMT). The full statement
number is included when it applies to the root
source member. If the statement number is greater
than 6 digits (that is, it includes a source ID other
than zero), the first 2 positions of the 8-byte
feedback area will have a ″+ ″ indicating that the
rest of statement number is stored in positions
354-355.

29 36 Character 8 *ROUTINE Name of the RPG IV routine in which the exception
or error occurred. This subfield is updated at the
beginning of an RPG IV routine or after a program
call only when the *STATUS subfield is updated
with a nonzero value. The following names identify
the routines:

*INIT Program initialization

*DETL Detail lines

*GETIN
Get input record

*TOTC Total calculations

*TOTL Total lines

*DETC Detail calculations

*OFL Overflow lines

*TERM
Program ending

*ROUTINE
Name of program or procedure called (first
8 characters).

Note: *ROUTINE is not valid unless you use the
normal RPG IV cycle. Logic that takes the program
out of the normal RPG IV cycle may cause
*ROUTINE to reflect an incorrect value.

Program Exception/Errors

98 ILE RPG Reference

Table 28. Contents of the Program Status Data Structure (continued)

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

37 39 Zoned decimal 3,0 *PARMS Number of parameters passed to this program from
a calling program. The value is the same as that
returned by %PARMS. If no information is
available, -1 is returned.

40 42 Character 3 Exception type (CPF for an operating system
exception or MCH for a machine exception).

43 46 Character 4 Exception number. For a CPF exception, this field
contains a CPF message number. For a machine
exception, it contains a machine exception number.

47 50 Character 4 Reserved

51 80 Character 30 Work area for messages. This area is only meant for
internal use by the ILE RPG compiler. The
organization of information will not always be
consistent. It can be displayed by the user.

81 90 Character 10 Name of library in which the program is located.

91 170 Character 80 Retrieved exception data. CPF messages are placed
in this subfield when location *STATUS contains
09999.

171 174 Character 4 Identification of the exception that caused RNX9001
exception to be signaled.

175 184 Character 10 Name of file on which the last file operation
occurred (updated only when an error occurs). This
information always contains the full file name.

185 190 Character 6 Unused.

191 198 Character 8 Date (*DATE format) the job entered the system. In
the case of batch jobs submitted for overnight
processing, those that run after midnight will carry
the next day’s date. This value is derived from the
job date, with the year expanded to the full four
years. The date represented by this value is the
same date represented by positions 270 - 275.

199 200 Zoned decimal 2,0 First 2 digits of a 4-digit year. The same as the first
2 digits of *YEAR. This field applies to the century
part of the date in positions 270 to 275. For
example, for the date 1999-06-27, UDATE would be
990627, and this century field would be 19. The
value in this field in conjunction with the value in
positions 270 - 275 has the combined information of
the value in positions 191 -198.
Note: This century field does not apply to the dates
in positions 276 to 281, or positions 288 to 293.

201 208 Character 8 Name of file on which the last file operation
occurred (updated only when an error occurs). This
file name will be truncated if a long file name is
used. See positions 175-184 for long file name
information.

Program Exception/Errors

Chapter 5. File and Program Exception/Errors 99

Table 28. Contents of the Program Status Data Structure (continued)

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

209 243 Character 35 Status information on the last file used. This
information includes the status code, the RPG IV
opcode, the RPG IV routine name, the source listing
line number or statement number, and record
name. It is updated only when an error occurs.
Note: The opcode name is in the same form as
*OPCODE in the INFDS The source listing line
number is replaced by the source listing statement
number if OPTION(*SRCSTMT) is specified instead
of OPTION(*NOSRCSTMT). The full statement
number is included when it applies to the root
source member. If the statement number is greater
than 6 digits (that is, it includes a source ID other
than zero), the first 2 positions of the 8-byte
feedback area will have a ″+ ″ indicating that the
rest of statement number is stored in positions
356-357.

244 253 Character 10 Job name.

254 263 Character 10 User name from the user profile.

264 269 Zoned decimal 6,0 Job number.

270 275 Zoned decimal 6,0 Date (in UDATE format) the program started
running in the system (UDATE is derived from this
date). See “User Date Special Words” on page 8 for
a description of UDATE. This is commonly known
as the ’job date’. The date represented by this value
is the same date represented by positions 191 - 198.

276 281 Zoned decimal 6,0 Date of program running (the system date in
UDATE format). If the year part of this value is
between 40 and 99, the date is between 1940 and
1999. Otherwise the date is between 2000 and 2039.
The ’century’ value in positions 199 - 200 does not
apply to this field.

282 287 Zoned decimal 6,0 Time (in the format hhmmss) of the program
running.

288 293 Character 6 Date (in UDATE format) the program was
compiled. If the year part of this value is between
40 and 99, the date is between 1940 and 1999.
Otherwise the date is between 2000 and 2039. The
’century’ value in positions 199 - 200 does not
apply to this field.

294 299 Character 6 Time (in the format hhmmss) the program was
compiled.

300 303 Character 4 Level of the compiler.

304 313 Character 10 Source file name.

314 323 Character 10 Source library name.

324 333 Character 10 Source file member name.

334 343 Character 10 Program containing procedure.

Program Exception/Errors

100 ILE RPG Reference

Table 28. Contents of the Program Status Data Structure (continued)

From

(Pos.

26-32)

To

(Pos.

33-39) Format Length Keyword Information

344 353 Character 10 Module containing procedure.

354 355 Binary 2 Source Id matching the statement number from
positions 21-28.

356 357 Binary 2 Source Id matching the statement number from
positions 228-235.

358 367 Character 10 Current user profile name.

368 371 Integer 10,0 External error code

372 379 Integer 20,0 XML elements set by operation

380 429 Character 50 Unused.

Program Status Codes
Any code placed in the subfield location *STATUS that is greater than 99 is
considered to be an exception/error condition. When the status code is greater
than 99; the error indicator — if specified in positions 73 and 74 — is set on, or the
%ERROR built-in function — if the ’E’ extender is specified — is set to return ’1’,
or control passes to the appropriate ON-ERROR group within a MONITOR block;
otherwise, the program exception/error subroutine receives control. Location
*STATUS is updated when an exception/error occurs.

The %STATUS built-in function returns the most recent value set for the program
or file status.

The following codes are placed in the subfield location *STATUS for the program
status data structure:

Normal Codes

Code Condition

00000 No exception/error occurred

00001 Called program returned with the LR indicator on.

00050 Conversion resulted in substitution.

Exception/Error Codes

Code Condition

00100 Value out of range for string operation

00101 Negative square root

00102 Divide by zero

00103 An intermediate result is not large enough to contain the result.

00104 Float underflow. An intermediate value is too small to be contained in the
intermediate result field.

00105 Invalid characters in character to numeric conversion functions.

00112 Invalid Date, Time or Timestamp value.

Program Exception/Errors

Chapter 5. File and Program Exception/Errors 101

00113 Date overflow or underflow. (For example, when the result of a Date
calculation results in a number greater than *HIVAL or less than *LOVAL.)

00114 Date mapping errors, where a Date is mapped from a 4-character year to a
2-character year, and the date range is not 1940-2039.

00115 Variable-length field has a current length that is not valid.

00120 Table or array out of sequence.

00121 Array index not valid

00122 OCCUR outside of range

00123 Reset attempted during initialization step of program

00202 Called program or procedure failed; halt indicator (H1 through H9) not on

00211 Error calling program or procedure

00222 Pointer or parameter error

00231 Called program or procedure returned with halt indicator on

00232 Halt indicator on in this program

00233 Halt indicator on when RETURN operation run

00299 RPG IV formatted dump failed

00301 Class or method not found for a method call, or error in method call.

00302 Error while converting a Java array to an RPG parameter on entry to a
Java native method.

00303 Error converting RPG parameter to Java array on exit from an RPG native
method.

00304 Error converting RPG parameter to Java array in preparation for a Java
method call.

00305 Error converting Java array to RPG parameter or return value after a Java
method.

00306 Error converting RPG return value to Java array.

00333 Error on DSPLY operation

00351 Error parsing XML document

00352 Invalid option for %XML

00353 XML document does not match RPG variable

00354 Error preparing for XML parsing

00401 Data area specified on IN/OUT not found

00402 *PDA not valid for non-prestart job

00411 Data area type or length does not match

00412 Data area not locked for output

00413 Error on IN/OUT operation

00414 User not authorized to use data area

00415 User not authorized to change data area

00421 Error on UNLOCK operation

Program Exception/Errors

102 ILE RPG Reference

00425 Length requested for storage allocation is out of range

00426 Error encountered during storage management operation

00431 Data area previously locked by another program

00432 Data area locked by program in the same process

00450 Character field not entirely enclosed by shift-out and shift-in characters

00451 Conversion between two CCSIDs is not supported.

00501 Failure to retrieve sort sequence.

00502 Failure to convert sort sequence.

00802 Commitment control not active.

00803 Rollback operation failed.

00804 Error occurred on COMMIT operation

00805 Error occurred on ROLBK operation

00907 Decimal data error (digit or sign not valid)

00970 The level number of the compiler used to generate the program does not
agree with the level number of the RPG IV run-time subroutines.

09998 Internal failure in ILE RPG compiler or in run-time subroutines

09999 Program exception in system routine.

PSDS Example
To specify a PSDS in your program, you code the program status data structure
and the subfields you wish to use on a definition specification.

Program Exception/Errors

Chapter 5. File and Program Exception/Errors 103

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++

DMYPSDS SDS

D PROC_NAME *PROC * Procedure name

D PGM_STATUS *STATUS * Status code

D PRV_STATUS 16 20S 0 * Previous status

D LINE_NUM 21 28 * Src list line num

D ROUTINE *ROUTINE * Routine name

D PARMS *PARMS * Num passed parms

D EXCP_TYPE 40 42 * Exception type

D EXCP_NUM 43 46 * Exception number

D PGM_LIB 81 90 * Program library

D EXCP_DATA 91 170 * Exception data

D EXCP_ID 171 174 * Exception Id

D DATE 191 198 * Date (*DATE fmt)

D YEAR 199 200S 0 * Year (*YEAR fmt)

D LAST_FILE 201 208 * Last file used

D FILE_INFO 209 243 * File error info

D JOB_NAME 244 253 * Job name

D USER 254 263 * User name

D JOB_NUM 264 269S 0 * Job number

D JOB_DATE 270 275S 0 * Date (UDATE fmt)

D RUN_DATE 276 281S 0 * Run date (UDATE)

D RUN_TIME 282 287S 0 * Run time (UDATE)

D CRT_DATE 288 293 * Create date

D CRT_TIME 294 299 * Create time

D CPL_LEVEL 300 303 * Compiler level

D SRC_FILE 304 313 * Source file

D SRC_LIB 314 323 * Source file lib

D SRC_MBR 324 333 * Source file mbr

D PROC_PGM 334 343 * Pgm Proc is in

D PROC_MOD 344 353 * Mod Proc is in

Figure 40. Example of Coding a PSDS

Program Exception/Errors

104 ILE RPG Reference

Note: The keywords are not labels and cannot be used to access the subfields.
Short entries are padded on the right with blanks.

Program Exception/Error Subroutine
To identify the user-written RPG IV subroutine that is to receive control when a
program exception/error occurs, specify *PSSR in factor 1 of the subroutine’s
BEGSR operation. If an indicator is not specified in positions 73 and 74 for the
operation code, or if the operation does not have an (E) extender, or if the
statement is not in a MONITOR block that can handle the error, or if an exception
occurs that is not expected for the operation code (that is, an array indexing error
during a SCAN operation), control is transferred to this subroutine when a
program exception/error occurs. In addition, the subroutine can also be called by
the EXSR operation. *PSSR can be specified on the INFSR keyword on the file
description specifications and receives control if a file exception/error occurs.

Any of the RPG IV operation codes can be used in the program exception/error
subroutine. The ENDSR operation must be the last specification for the subroutine,
and the factor 2 entry on the ENDSR operation specifies the return point following
the running of the subroutine. For a discussion of the valid entries for factor 2, see
“File Exception/Error Subroutine (INFSR)” on page 93.

Remember the following when specifying a program exception/error subroutine:
v You can explicitly call the *PSSR subroutine by specifying *PSSR in factor 2 of

the EXSR operation.
v After the ENDSR operation of the *PSSR subroutine is run, the RPG IV language

resets the field, subfield, or array element specified in factor 2 to blanks. This
allows you to specify the return point within the subroutine that is best suited
for the exception/error that occurred. If factor 2 contains blanks at the end of
the subroutine, the RPG IV default error handler receives control; if the
subroutine was called by an EXSR or CASxx operation, control returns to the
next sequential instruction following the EXSR or ENDCS.

v Because the program exception/error subroutine may receive control whenever a
non-file exception/error occurs, an exception/error could occur while the
subroutine is running. If an exception/error occurs while the subroutine is
running, the subroutine is called again; this will result in a program loop unless
the programmer codes the subroutine to avoid this problem.

v If you have used the OPTIMIZE(*FULL) option on either the CRTBNDRPG or
the CRTRPGMOD command, you have to declare all fields that you refer to
during exception handling with the NOOPT keyword in the definition
specification for the field. This will ensure that when you run your program, the
fields referred to during exception handling will have current values.

v A *PSSR can be defined in a subprocedure, and each subprocedure can have its
own *PSSR. Note that the *PSSR in a subprocedure is local to that subprocedure.
If you want the subprocedures to share the same exception routine then you
should have each *PSSR call a shared procedure.

Program Exception/Errors

Chapter 5. File and Program Exception/Errors 105

Program Exception/Errors

106 ILE RPG Reference

Chapter 6. General File Considerations

This chapter contains a more detailed explanation of:
v Global and Local files
v File Parameters
v Variables Associated with Files
v Multi-file Processing
v Match fields
v Alternate collating sequence
v File translation.

Global and Local Files
In an RPG IV module, you can define global files which are available to every
procedure in the module, or local files which are only available to one procedure.
Global files are defined in the main source section, between the Control
specifications and the Definition specifications. They can be primary, secondary,
table, or full-procedural files. Local files are defined within subprocedures, between
the Procedure specifications and the Definition specifications of the subprocedure.
They can only be full-procedural files. Input and Output specifications can be
defined to handle the field data for global files.

Input and Output specifications are not supported for subprocedures, so all input
and output operations must be done using data structures for local files.

File Parameters
You can pass files as parameters using prototyped calls to RPG programs and
procedures. You can define file parameters for prototypes and procedure interface
definitions, using the LIKEFILE keyword. The called program or procedure can
perform any operation that is valid on the original file that was used to define the
file parameter.

Note: RPG file parameters are in a form that is not related to the forms used for
file parameters in other languages such as C and C++. The file parameters
used by RPG are not interchangeable with the file parameters used by other
languages; you cannot pass a C file to an RPG procedure that is expecting
an RPG file parameter, and you cannot pass an RPG file to a C program.

For an example of a program that passes a file parameter, see “Example of passing
a file and passing a data structure with the associated variables.” on page 109

Variables Associated with Files
Using File specification keywords, you can associate several variables with a file.
For example, the INFDS keyword associates a File Information Data Structure with
the file; this data structure is updated by RPG during file operations with
information about the current state of the file. The SFILE keyword defines a
numeric variable that you set to the relative record number for a record that you
are writing.

© Copyright IBM Corp. 1994, 2010 107

#

#

#

#

#

#

#

#
#
#
#
#
#
#
#

#
#

#

#
#
#
#
#

#
#
#
#
#

#
#

#

#
#
#
#
#
#

When a file is passed as a parameter, the file parameter in the called procedure
continues to be associated with the same physical variables that it was associated
with in the calling procedure. The called procedure has access to the associated
variables of the file parameter, although this access is only available to the RPG
compiler. This allows the RPG compiler to work with the associated variables
when the called procedure performs operations on the file parameter. If a file
operation to a file parameter requires the value of an associated variable, the
current value of the associated variable will be used. If a file operation to a file
parameter changes the contents of an associated variable, the associated variable
will immediately be updated with the new value. Passing a file parameter does not
give the called procedure direct access to the associated variables. The called
procedure can only access the associated variables if they are global variables, or if
they were passed as additional parameters to the procedure.

Tip: If you pass a file parameter to another procedure, and the procedure needs to
be able to access the associated variables, define a data structure with a subfield
for each associated variable, and pass that data structure as an additional
parameter to the procedure. See Figure 41 on page 109. The following table lists the
keywords that you can use to associate variables with a file.

Table 29. File specification keywords for associated variables

Keyword Usage Description

COMMIT Input The RPG programmer sets it to indicate whether the file is opened for
commitment control.

DEVID Input/Feedback The RPG programmer sets it to direct file operations to a particular device.
The RPG compiler sets it to indicate which device was used for the previous
file operation.

EXTFILE Input The RPG programmer sets it to indicate the external file that is to be
opened. The application developer sets it before the program is called to
control whether a file is to be used. The RPG programmer sets it to indicate
the external member that is to be opened.

EXTIND Input The RPG programmer sets some output-capable indicators for use by file
operation. The system sets input-capable indicators during a operation.

EXTMBR Input The RPG compiler sets it to indicate the current state of a file.

INDDS Input/Output The RPG programmer sets some output-capable indicators for use by file
operation. The system sets input-capable indicators during a operation

INFDS Input The RPG compiler sets it to indicate the current state of a file.

PRTCTL Input/Feedback The RPG programmer sets the space and skip fields to control the printer
file.

RECNO Input/Feedback The RPG compiler sets it to indicate the current line of the printer file.

SAVEDS Any The RPG programmer sets it to indicate which relative record number is to
be written to the subfile record.

SFILE Input/Feedback The RPG compiler sets it to indicate the relative record number that was
retrieved by an input operation to the subfile record.

SLN Input The RPG programmer sets it to indicate the starting line for a display file
record format.

108 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

##

###

###
#
#
####
#
#

###
#
#
#

###
#

###

###
#

###

###
#

###

###
#

###
#

###
#
#

Example of passing a file and passing a data structure with
the associated variables.

The following example shows you how to define a data structure to hold the
associated variables for a file, how to pass the file and the data structure as
parameters to a procedure, and how to use the parameters within the procedure.

* The /COPY file has template definitions for the File and Associated Variables

/if defined(FILE_DEFINITIONS)
// Template for the "INFILE" file type
Finfile_t if e disk template block(*yes)
F extdesc('MYLIB/MYFILE')
/eof
/endif
/if defined(DATA_DEFINITIONS)
// Template for the associated variables for an INFILE file
D infileVars_t ds qualified template
D filename 21a
D mbrname 10a
// Prototype for a procedure to open an INFILE file
D open_infile pr
D theFile likefile(infile_t)
D kwVars likeds(infileVars)
D options(*nullind)
/eof
/endif

Figure 41. /COPY file INFILE_DEFS

P myproc b
// Copy in the template and prototype definitions
/define FILE_DEFINITIONS
/COPY INFILE_DEFS
/undefine FILE_DEFINITIONS

/define DATA_DEFINITIONS
/COPY INFILE_DEFS
/undefine DATA_DEFINITIONS
// Define the file using LIKEFILE, to enable it to be passed as
// a parameter to the "open_infile" procedure.

// Define all the associated variables as subfields of a data
// structure, so that all the associated variables can be
// passed to the procedure as a single parameter
Ffile1 likefile(infile_t)
F extfile(file1Vars.filename)
F extmbr(file1Vars.mbrname)
F usropn

D file1Vars ds likeds(infileVars_t)

/free
open_infile (file1 : file1Vars);

. . .

Figure 42. The calling procedure that passes the file parameter

Chapter 6. General File Considerations 109

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#

#

#
#
#
###

Primary/Secondary Multi-file Processing
In an RPG IV program, the processing of a primary input file and one or more
secondary input files, with or without match fields, is termed multi-file processing.
Selection of records from more than one file based on the contents of match fields
is known as multi-file processing by matching records. Multi-file processing can be
used with externally described or program described input files that are designated
as primary/secondary files.

Multi-file Processing with No Match Fields
When no match fields are used in multi-file processing, records are selected from
one file at a time. When the records from one file are all processed, the records
from the next file are selected. The files are selected in this order:
1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description

specifications.

Multi-file Processing with Match Fields
When match fields are used in multi-file processing, the program selects the
records for processing according to the contents of the match fields. At the
beginning of the first cycle, the program reads one record from every
primary/secondary input file and compares the match fields in the records. If the
records are in ascending order, the program selects the record with the lowest
match field. If the records are in descending order, the program selects the record
with the highest match field.

// Copy in the template and prototype definitions
/define FILE_DEFINITIONS
/COPY INFILE_DEFS
/undefine FILE_DEFINITIONS

/define DATA_DEFINITIONS
/COPY INFILE_DEFS
/undefine DATA_DEFINITIONS
P open_infile b
// The open_infile procedure has two parameters
// - a file
// - a data structure containing all the associated variables for the file
D open_infile pi
D theFile likefile(infile_t)
D kwVars likeds(infileVars)

/free
// The %OPEN(filename) built-in function reflects the
// current state of the file
if not %open(theFile);

// The called procedure modifies the calling procedure's "file1Vars"
// variables directly, through the passed parameter
kwVars.extfile = 'LIB1/FILE1';
kwVars.extmbr = 'MBR1';
// The OPEN operation uses the file1Vars subfields in the
// calling procedure to open the file, opening file LIB1/FILE1(MBR1)
open theFile;

endif;
. . .

Figure 43. The called procedure that uses the file parameter

Primary/Secondary Multi-file Processing

110 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

When a record is selected from a file, the program reads the next record from that
file. At the beginning of the next program cycle, the new record is compared with
the other records in the read area that are waiting for selection, and one record is
selected for processing.

Records without match fields can also be included in the files. Such records are
selected for processing before records with match fields. If two or more of the
records being compared have no match fields, selection of those records is
determined by the priority of the files from which the records came. The priority of
the files is:
1. Primary file, if specified
2. Secondary files in the order in which they are described on the file description

specifications.

When the primary file record matches one or more of the secondary records, the
MR (matching record) indicator is set on. The MR indicator is on for detail time
processing of a matching record through the total time that follows the record. This
indicator can be used to condition calculation or output operations for the record
that is selected. When one of the matching records must be selected, the selection
is determined by the priority of the files from which the records came.

Figure 9 on page 39 shows the logic flow of multi-file processing.

A program can be written where only one input file is defined with match fields
and no other input files have match fields. The files without the match fields are
then processed completely according to the previously mentioned priority of files.
The file with the match fields is processed last, and sequence checking occurs for
that file.

Assigning Match Field Values (M1-M9)
When assigning match field values (M1 through M9) to fields on the input
specifications in positions 65 and 66, consider the following:
v Sequence checking is done for all record types with match field specifications.

All match fields must be in the same order, either all ascending or all
descending. The contents of the fields to which M1 through M9 are assigned are
checked for correct sequence. An error in sequence causes the RPG IV
exception/error handling routine to receive control. When the program
continues processing, the next record from the same file is read.

v Not all files used in the program must have match fields. Not all record types
within one file must have match fields either. However, at least one record type
from two files must have match fields if files are ever to be matched.

v The same match field values must be specified for all record types that are used
in matching. See Figure 44 on page 113.

v Date, time, and timestamp match fields with the same match field values (M1
through M9) must be the same type (for example, all date) but can be different
formats.

v All character, graphic, or numeric match fields with the same match field values
(M1 through M9) should be the same length and type. If the match field
contains packed data, the zoned decimal length (two times packed length - 1) is
used as the length of the match field. It is valid to match a packed field in one
record against a zoned decimal field in another if the digit lengths are identical.
The length must always be odd because the length of a packed field is always
odd.

Primary/Secondary Multi-file Processing

Chapter 6. General File Considerations 111

v Record positions of different match fields can overlap, but the total length of all
fields must not exceed 256 characters.

v If more than one match field is specified for a record type, all the fields are
combined and treated as one continuous field (see Figure 44 on page 113). The
fields are combined according to descending sequence (M9 to M1) of matching
field values.

v Match fields values cannot be repeated in a record.
v All match fields given the same matching field value (M1 through M9) are

considered numeric if any one of the match fields is described as numeric.
v When numeric fields having decimal positions are matched, they are treated as

if they had no decimal position. For instance 3.46 is considered equal to 346.
v Only the digit portions of numeric match fields are compared. Even though a

field is negative, it is considered to be positive because the sign of the numeric
field is ignored. Therefore, a -5 matches a +5.

v Date and time fields are converted to *ISO format for comparisons
v Graphic data is compared hexadecimally
v Whenever more than one matching field value is used, all match fields must

match before the MR indicator is set on. For example, if match field values M1,
M2, and M3 are specified, all three fields from a primary record must match all
three match fields from a secondary record. A match on only the fields specified
by M1 and M2 fields will not set the MR indicator on (see Figure 44 on page
113).

v UCS-2 fields cannot be used for matching fields.
v Matching fields cannot be used for lookahead fields, and arrays.
v Field names are ignored in matching record operations. Therefore, fields from

different record types that are assigned the same match level can have the same
name.

v If an alternate collating sequence or a file translation is defined for the program,
character fields are matched according to the alternate sequence specified.

v Null-capable fields, character fields defined with ALTSEQ(*NONE), and binary,
float, integer and unsigned fields (B, F, I, or U in position 36 of the input
specifications) cannot be assigned a match field value.

v Match fields that have no field record relation indicator must be described
before those that do. When the field record relation indicator is used with match
fields, the field record relation indicator should be the same as a record
identifying indicator for this file, and the match fields must be grouped
according to the field record relation indicator.

v When any match value (M1 through M9) is specified for a field without a field
record relation indicator, all match values used must be specified once without a
field record relation indicator. If all match fields are not common to all records, a
dummy match field should be used. Field record relation indicators are invalid
for externally described files. (see Figure 45 on page 114).

v Match fields are independent of control level indicators (L1 through L9).
v If multi-file processing is specified and the LR indicator is set on, the program

bypasses the multi-file processing routine.

Figure 44 on page 113 is an example of how match fields are specified.

Primary/Secondary Multi-file Processing

112 ILE RPG Reference

Three files are used in matching records. All the files have three match fields
specified, and all use the same values (M1, M2, M3) to indicate which fields must
match. The MR indicator is set on only if all three match fields in either of the files
EMPMAS and DEPTMS are the same as all three fields from the WEEKRC file.

The three match fields in each file are combined and treated as one match field
organized in the following descending sequence:

DIVSON M3

DEPT M2

EMPLNO M1

The order in which the match fields are specified in the input specifications does
not affect the organization of the match fields.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
* The files in this example are externally described (E in position
* 22) and are to be processed by keys (K in position 34).
FMASTER IP E K DISK
FWEEKLY IS E K DISK
*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IRcdname+++....Ri..
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr....
* MASTER FILE
IEMPMAS 01
I EMPLNO M1
I DIVSON M3
I DEPT M2
IDEPTMS 02
I EMPLNO M1
I DEPT M2
I DIVSON M3
* WEEKLY FILE
IWEEKRC 03
I EMPLNO M1
I DIVSON M3
I DEPT M2

Figure 44. Match Fields in Which All Values Match

Primary/Secondary Multi-file Processing

Chapter 6. General File Considerations 113

Three different record types are found in the input file. All three contain a match
field in positions 1 through 10. Two of them have a second match field. Because
M1 is found on all record types, it can be specified without a field record relation
entry in positions 67 and 68. If one match value (M1 through M9) is specified
without field record relation entries, all match values must be specified once
without field record relation entries. Because the value M1 is specified without
field record relationship, an M2 value must also be specified once without field
record relationship. The M2 field is not on all record types; therefore a dummy M2
field must be specified next. The dummy field can be given any unique name, but
its specified length must be equal to the length of the true M2 field. The M2 field
is then related to the record types on which it is found by field record relation
entries.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IDISK AB 01 1 C1
I OR 02 1 C2
I OR 03 1 C3
I 1 10 0EMPNO M1
I 11 15 0DUMMY M2
I 11 15 0DEPT M202
I 16 20 0DEPT M203

Record Identifying Indicator 01

M 1
E M P N O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Record Identifying Indicator 02

M 1
E M P N O

M 2
D E P T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Record Identifying Indicator 03

M 1
E M P N O

M 2
D E P T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 45. Match Fields with a Dummy M2 Field

Primary/Secondary Multi-file Processing

114 ILE RPG Reference

Processing Matching Records
Matching records for two or more files are processed in the following manner:
v Whenever a record from the primary file matches a record from the secondary

file, the primary file is processed first. Then the matching secondary file is
processed. The record identifying indicator that identifies the record type just
selected is on at the time the record is processed. This indicator is often used to
control the type of processing that takes place.

v Whenever records from ascending files do not match, the record having the
lowest match field content is processed first. Whenever records from descending
files do not match, the record having the highest match field content is
processed first.

v A record type that has no match field specification is processed immediately
after the record it follows. The MR indicator is off. If this record type is first in
the file, it is processed first even if it is not in the primary file.

v The matching of records makes it possible to enter data from primary records
into their matching secondary records because the primary record is processed
before the matching secondary record. However, the transfer of data from
secondary records to matching primary records can be done only when
look-ahead fields are specified.

Figure 47 on page 116 through Figure 48 on page 117 show how records from three
files are selected for processing.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
FPRIMARY IPEA F 64 DISK
FFIRSTSEC IS A F 64 DISK
FSECSEC IS A F 64 DISK

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IPRIMARY AA 01 1 CP 2NC
I 2 3 MATCH M1
*
I BB 02 1 CP 2 C
I 2 3 NOM
*
IFIRSTSEC AB 03 1 CS 2NC
I 2 3 MATCH M1
*
I BC 04 1 CS 2 C
I 2 3 NOM
*
ISECSEC AC 05 1 CT 2NC
I 2 3 MATCH M1
*
I BD 06 1 CT 2 C
I 2 3 NOM

Figure 46. Match Field Specifications for Three Disk Files

Primary/Secondary Multi-file Processing

Chapter 6. General File Considerations 115

Table 30. Normal Record Selection from Three Disk Files

Cycle File Processed Indicators On Reason for Setting Indicator

1 PRIMARY 02 No match field specified

2 PRIMARY 02 No match field specified

3 FIRSTSEC 04 No match field specified

4 SECSEC 05 Second secondary low; no primary match

5 PRIMARY 01, MR Primary matches first secondary

6 PRIMARY 01, MR Primary matches first secondary

7 FIRSTSEC 03, MR First secondary matches primary

8 FIRSTSEC 03 First secondary low; no primary match

9 FIRSTSEC 03 First secondary low; no primary match

10 SECSEC 05 Second secondary low; no primary match

11 PRIMARY 01 Primary low; no secondary match

12 PRIMARY 01, MR Primary matches second secondary

13 PRIMARY 02 No match field specified

14 SECSEC 05, MR Second secondary matches primary

15 SECSEC 05, MR Second secondary matches primary

16 SECSEC 06 No match field specified

17 PRIMARY 01, MR Primary matches both secondary files

18 FIRSTSEC 03, MR First secondary matches primary

19 FIRSTSEC 04 No match field specified

20 SECSEC 05, MR Second secondary matches primary

21 FIRSTSEC 03 First secondary low; no primary match

22 PRIMARY 01, MR Primary matches both secondary files

23 FIRSTSEC 03, MR First secondary matches primary

24 FIRSTSEC 02, MR First secondary matches primary

Primary File

First Secondary File

Second Secondary File

No Match Field

Match Field

S SS SS SS S S

P PP PP PP P P

20 30 30 60 70 80 80

2020 40 6050 80

3 7 8 9 18 19 21 23 24

1 2 5 6 11 12 13 17 22

T TT TT TT T

3010 50 50 60 80 80

4 10 14 15 16 20 25 26

The records from the three disk files above are selected in the order indicated by the dark
numbers.
Figure 47. Normal Record Selection from Three Disk Files

Primary/Secondary Multi-file Processing

116 ILE RPG Reference

Table 30. Normal Record Selection from Three Disk Files (continued)

Cycle File Processed Indicators On Reason for Setting Indicator

25 SECSEC 05, MR Second secondary matches primary

26 SECSEC 05, MR Second secondary matches primary

P

STEP 1

S T 10

The first record from each file is read. The P and S
records have no match field, so they are processed
before the T record that has a match field. Because
the P record comes from the pr imary file, it is selected
for processing first.

P

STEP 2

S T 10

The next P record is read. It contains no match field
and comes from the primary file, so the new P record
is also selected for processing before the S record.

P 20

P 20

P 20

STEP 3

STEP 4

STEP 5

S

S 20

S 20

T 10

T 10

T 30

The next P record has a match field. The S record
has no match field, so it is selected for processing.

The next S record is read. All three records have
match fields. Because the value in the match field
of the T record is lower than the value in the other
two, the T record is selected for processing.

The next T record is read. The matching P and S
records both have the low match field value, so
they are processed before the T record. Because
the matching P record comes from the pr imary file,
it is selected for processing first.

Figure 48. Normal Record Selection from Three Disk Files (Part 1 of 2)

Primary/Secondary Multi-file Processing

Chapter 6. General File Considerations 117

File Translation
The file translation function translates any of the 8-bit codes used for characters
into another 8-bit code. The use of file translation indicates one or both of the
following:
v A character code used in the input data must be translated into the system code.
v The output data must be translated from the system code into a different code.

The translation on input data occurs before any field selection has taken place.
The translation on output data occurs after any editing taken place.

Remember the following when specifying file translation:
v File translation can be specified for data in array or table files (T in position 18

of the file description specifications).
v File translation can be used with data in combined, input, or update files that

are translated at input and output time according to the file translation table
provided. If file translation is used to translate data in an update file, each
record must be written before the next record is read.

P 20

STEP 6

S 20 T 30

The next P record is read. Because it contains the
same match field and comes from the pr imary file,
the new P record is selected instead of the S record.

P 40

STEP 7

S 20 T 30

The next P record is read. The value of the match
field in the S record is the lowest of the three, so the
S record is selected for processing.

P 40

P 40

P 40

STEP 8

STEP 9

STEP 10

S 30

S 30

S 60

T 30

T 30

T 30

The next S record is read. Because the S and T
records have the lowest match field, they are
selected before the P record. Because the S record
comes from the first secondary file, it is selected for
processing before the T record.

The next S record is read. Because it also has
the same match field as the S record just selected,
it too is selected before the T record.

The next S record is read. The T record contains
the lowest match field value, and is selected for
processing.

Figure 48. Normal Record Selection from Three Disk Files (Part 2 of 2)

File Translation

118 ILE RPG Reference

v For any I/O operation that specifies a search argument in factor 1 (such as
CHAIN, READE, READPE, SETGT, or SETLL) for files accessed by keys, the
search argument is translated before the file is accessed.

v If file translation is specified for both a record address file and the file being
processed (if the file being processed is processed sequentially within limits), the
records in the record address file are first translated according to the file
translation specified for that file, and then the records in the file being processed
are translated according to the file translation specified for that file.

v File translation applies only on a single byte basis.
v Every byte in the input and output record is translated.
v File translation is not supported for local files defined in subprocedures.

Specifying File Translation
To specify file translation, use the FTRANS keyword on the control specification.
The translations must be transcribed into the correct record format for entry into
the system. These records, called the file translation table records, must precede
any alternate collating sequence records, or arrays and tables loaded at compile
time. They must be preceded by a record with **� (� = blank) in positions 1
through 3 or **FTRANS in positions 1 through 8. The remaining positions in this
record can be used for comments.

Translating One File or All Files
File translation table records must be formatted as follows:

Record
Position Entry

1-8 (to
translate all
files)

Enter *FILES�� (� represents a blank) to indicate that all files are to be
translated. Complete the file translation table record beginning with
positions 11 and 12. If *FILES�� is specified, no other file translation table
can be specified in the program.

1-8 (to
translate a
specific file)

Enter the name of the file to be translated. Complete the file translation
table record beginning with positions 11 and 12. The *FILES�� entry is not
made in positions 1 through 8 when a specific file is to be translated.

9-10 Blank

11-12 Enter the hexadecimal value of the character to be translated from on input
or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG IV
language works with. It will replace the character in positions 11 and 12 on
input and be replaced by the character in positions 11 and 12 on output.

15-18
19-22
23-26
...
77-80

All groups of four beginning with position 15 are used in the same manner
as positions 11 through 14. In the first two positions of a group, enter the
hexadecimal value of the character to be replaced. In the last two positions,
enter the hexadecimal value of the character that replaces it.

The first blank entry ends the record. There can be one or more records per file
translation table. When multiple records are required in order to define the table,
the same file name must be entered on all records. A change in file name is used to
separate multiple translation tables. An *FILES record causes all files, including
tables and arrays specified by a T in position 18 of the file description
specifications, to be translated by the same table.

File Translation

Chapter 6. General File Considerations 119

#

Translating More Than One File
If the same file translation table is needed for more than one file but not for all
files, two types of records must be specified. The first record type specifies the file
using the tables, and the second record type specifies the table. More than one
record for each of these record types can be specified. A change in file names is
used to separate multiple translation tables.

Specifying the Files
File translation table records must be formatted as follows:

Record
Position Entry

1-7 *EQUATE

8-10 Leave these positions blank.

11-80 Enter the name(s) of file(s) to be translated. If more than one file is to be
translated, the file names must be separated by commas.

Additional file names are associated with the table until a file name not followed
by a comma is encountered. A file name cannot be split between two records; a
comma following a file name must be on the same record as the file name. You can
create only one file translation table by using *EQUATE.

Specifying the Table
File translation table records must be formatted as follows:

Record
Position Entry

1-7 *EQUATE

HKeywords++
* In this example all the files are translated
H FTRANS
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++
FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS
*FILES 81C182C283C384C4

HKeywords++
* In this example different translate tables are used and
* FILE3 is not translated.
H FTRANS
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++
FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS
FILE1 8182
FILE2 C1C2
FILE4 81C182C283C384C4

File Translation

120 ILE RPG Reference

Record
Position Entry

8-10 Leave these positions blank.

11-12 Enter the hexadecimal value of the character to be translated from on
input or to be translated to on output.

13-14 Enter the hexadecimal equivalent of the internal character the RPG IV
language works with. It will replace the character in positions 11 and 12
on input and be replaced by the character in positions 11 and 12 on
output.

15-18
19-22
23-26
...
77-80

All groups of four beginning with position 15 are used the same way as
positions 11 through 14. In the first two positions of a group, enter the
hexadecimal value of the character to be replaced. In the last two
positions, enter the hexadecimal value of the character that replaces it.

The first blank record position ends the record. If the number of entries exceeds 80
positions, duplicate positions 1 through 10 on the next record and continue as
before with the translation pairs in positions 11 through 80. All table records for
one file must be kept together.

The records that describe the file translation tables must be preceded by a record
with **� (� = blank) in positions 1 through 3 or with **FTRANS. The remaining
positions in this record can be used for comments.

HKeywords++
* In this example several files are translated with the
* same translation table. FILE2 is not translated.
H FTRANS
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++
FFILE1 IP F 10 DISK
FFILE2 IS F 10 DISK
FFILE3 IS F 10 DISK
FFILE4 IS F 10 DISK

**FTRANS
*EQUATE FILE1,FILE3,FILE4
*EQUATE 81C182C283C384C485C586C687C788C889C98ACA8BCB8CCC8DCD8ECE8F
*EQUATE 91D192D2

File Translation

Chapter 6. General File Considerations 121

File Translation

122 ILE RPG Reference

Part 2. Definitions

This section provides information on the different types of definitions that can be
coded in your source. It describes:
v How to define

– Standalone fields, arrays, and tables
– Named constants
– Data structures and their subfields
– Prototypes
– Prototyped parameters
– Procedure interface

v Scope and storage of definitions as well as how to define each definition type.
v Data types and Data formats
v Editing numeric fields

For information on how to define files, see Chapter 13, “File Description
Specifications,” on page 279 and also the chapter on defining files in the IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide.

© Copyright IBM Corp. 1994, 2010 123

124 ILE RPG Reference

Chapter 7. Defining Data and Prototypes

ILE RPG allows you to define the following items:
v Data items such as data structures, data-structure subfields, standalone fields,

and named constants. Arrays and tables can be defined as either a data-structure
subfield or a standalone field.

v Prototypes, procedure interfaces, and prototyped parameters

This chapter presents information on the following topics:
v General considerations, including definition types, scope, and storage
v Standalone fields
v Constants
v Data Structures
v Prototypes, parameters, and procedure interfaces

General Considerations
You define items by using definition specifications. Definitions can appear in two
places within a module or program: within the cycle-main source section and
within a subprocedure. (The main source section consists of the first set of H, F, D,
I, C, and O specifications in a module; it corresponds to the specifications found in
a standalone program or a cycle-main procedure.) Depending on where the
definition occurs, there are differences both in what can be defined and also the
scope of the definition. Specify the type of definition in positions 24 through 25, as
follows:

Entry Definition Type

Blank A data structure subfield or parameter definition

C Named constant

DS Data structure

PI Procedure interface

PR Prototype

S Standalone field

Definitions of data structures, prototypes, and procedure interfaces end with the
first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

© Copyright IBM Corp. 1994, 2010 125

#
#
#
#
#
#
#
#

##

##

##

##

##

##

##

Scope of Definitions
Depending on where a definition occurs, it will have different scope. Scope refers
to the range of source lines where a name is known. There are two types of scope:
global and local, as shown in Figure 50.

In general, all items that are defined in the main source section are global, and
therefore, known throughout the module. Global definitions are definitions that
can be used by both the cycle-main procedure and any subprocedures within the
module. They can also be exported.

Items in a subprocedure, on the other hand, are local. Local definitions are
definitions that are known only inside that subprocedure. If an item is defined

* Global Definitions

D String S 6A INZ('ABCDEF')
D Spcptr S *
D SpcSiz C 8
D DS1 DS OCCURS(3)
D Fld1 5A INZ('ABCDE')
D Fld1a 1A DIM(5) OVERLAY(Fld1)
D Fld2 5B 2 INZ(123.45)
D Switch PR
D Parm 1A
...

* Local Definitions

P Switch B
D Switch PI
D Parm 1A
* Define a local variable.
D Local S 5A INZ('aaaaa')
...
P E

Figure 49. Sample Definitions

Figure 50. Scope of Definitions

General Considerations

126 ILE RPG Reference

#
#
#
#

with the same name as a global item, then any references to that name inside the
subprocedure will use the local definition.

However, note the following exceptions:
v Subroutine names and tag names are known only to the procedure in which

they are defined. This includes subroutine or tag names that are defined in the
cycle-main procedure.

v All fields specified on input and output specifications are global. For example, if
a subprocedure does an operation using a record format, say a WRITE
operation, the global fields will be used even if there are local definitions with
the same names as the record format fields.

Sometimes you may have a mix of global and local definitions. For example,
KLISTs and PLISTs can be global or local. The fields associated with global KLISTs
and PLISTs contain only global fields. The fields associated with local KLISTs and
PLISTs can contain both global and local fields. For more information on the
behavior of KLISTs and KFLDs inside subprocedures, see “Scope of Definitions” on
page 24.

Storage of Definitions
Local definitions use automatic storage. Automatic storage is storage that exists
only for the duration of the call to the procedure. Variables in automatic storage do
not save their values across calls.

Global definitions, on the other hand, use static storage. Static storage is storage
that has a constant location in memory for all calls of a program or procedure. It
keeps its value across calls.

Specify the STATIC keyword to indicate that a local field definition use static
storage, in which case it will keep its value on each call to the procedure. If the
keyword STATIC is specified, the item will be initialized at module initialization
time.

In a cycle module, static storage for global definitions is subject to the RPG cycle,
and so the value changes on the next call to the cycle-main procedure if LR was on
at the end of the last call. However, local static variables will not get reinitialized
because of LR in the cycle-main procedure.

TIP
Using automatic storage reduces the amount of storage that is required at run
time by the program. The storage is reduced largely because automatic
storage is only allocated while the procedure is running. On the other hand,
all static storage associated with the program is allocated when the program
starts, even if no procedure using the static storage is ever called.

Standalone Fields
Standalone fields allow you to define individual work fields. A standalone field
has the following characteristics:
v It has a specifiable internal data type
v It may be defined as an array, table, or field
v It is defined in terms of data length, not in terms of absolute byte positions.

General Considerations

Chapter 7. Defining Data and Prototypes 127

#
#
#

#
#
#
#

For more information on standalone fields, see:
v Chapter 8, “Using Arrays and Tables,” on page 159
v Chapter 9, “Data Types and Data Formats,” on page 179
v “Definition-Specification Keywords” on page 321

Variable Initialization
You can initialize data with the “INZ{(initial value)}” on page 338 keyword on the
definition specification. Specify an initial value as a parameter on the INZ
keyword, or specify the keyword without a parameter and use the default initial
values. If the initialization is too complicated to express using the INZ keyword,
you can further initialize data in the initialization subroutine.

Default initial values for the various data types are described in Chapter 9, “Data
Types and Data Formats,” on page 179. See Chapter 8, “Using Arrays and Tables,”
on page 159 for information on initializing arrays.

To reinitialize data while the program is running, use the CLEAR and RESET
operations.

The CLEAR operation code sets a record format or variable (field, subfield,
indicator, data structure, array, or table) to its default value. All fields in a record
format, data structure, or array are cleared in the order in which they are declared.

The RESET operation code restores a variable to its reset value. The reset value for
a global variable is the value it had at the end of the initialization step in the RPG
IV cycle, after the initialization subroutine has been invoked.

You can use the initialization subroutine to assign initial values to a global variable
and then later use RESET to set the variable back to this value. This applies only to
the initialization subroutine when it is run automatically as a part of the
initialization step.

For local variables the reset value is the value of the variable when the
subprocedure was first called, but before the calculations begin.

Constants
Literals and named constants are types of constants. They can be specified in any
of the following places:
v In factor 1
v In factor 2
v In an extended factor 2 on the calculation specifications
v As parameters to keywords on the control specification
v As parameters to built-in functions
v In the Field Name, Constant, or Edit Word fields in the output specifications.
v As array indexes
v As the format name in a WORKSTN output specification
v With keywords on the definition specification.

Literals
A literal is a self-defining constant that can be referred to in a program. A literal
can belong to any of the RPG IV data types.

Standalone Fields

128 ILE RPG Reference

Character Literals

The following are the rules for specifying a character literal:
v Any combination of characters can be used in a character literal. This includes

DBCS characters. DBCS characters must be enclosed by shift-out and shift-in
characters and must be an even number of bytes. Embedded blanks are valid.

v A character literal with no characters between the apostrophes is allowed. See
Figure 52 on page 133 for examples.

v Character literals must be enclosed in apostrophes (’).
v An apostrophe required as part of a literal is represented by two apostrophes.

For example, the literal O’CLOCK is coded as ‘O’’CLOCK’.
v Character literals are compatible only with character data.
v Indicator literals are one byte character literals which contain either ’1’ (on) or ’0’

(off).

Hexadecimal Literals

The following are the rules for specifying a hexadecimal literal:
v Hexadecimal literals take the form:

X'x1x2...xn'

where X'x1x2...xn' can only contain the characters A-F, a-f, and 0-9.
v The literal coded between the apostrophes must be of even length.
v Each pair of characters defines a single byte.
v Hexadecimal literals are allowed anywhere that character literals are supported

except as factor 2 of ENDSR and as edit words.
v Except when used in the bit operations BITON, BITOFF, and TESTB, a

hexadecimal literal has the same meaning as the corresponding character literal.
For the bit operations, factor 2 may contain a hexadecimal literal representing 1
byte. The rules and meaning are the same for hexadecimal literals as for
character fields.

v If the hexadecimal literal contains the hexadecimal value for a single quote, it
does not have to be specified twice, unlike character literals. For example, the
literal A'B is specified as 'A''B' but the hexadecimal version is X'C17DC2' not
X'C17D7DC2'.

v Normally, hexadecimal literals are compatible only with character data.
However, a hexadecimal literal that contains 16 or fewer hexadecimal digits can
be treated as an unsigned numeric value when it is used in a numeric
expression or when a numeric variable is initialized using the INZ keyword.

Numeric Literals

The following are the rules for specifying a numeric literal:
v A numeric literal consists of any combination of the digits 0 through 9. A

decimal point or a sign can be included.
v The sign (+ or -), if present, must be the leftmost character. An unsigned literal is

treated as a positive number.
v Blanks cannot appear in a numeric literal.
v Numeric literals are not enclosed in apostrophes (’).
v Numeric literals are used in the same way as a numeric field, except that values

cannot be assigned to numeric literals.

Constants

Chapter 7. Defining Data and Prototypes 129

v The decimal separator may be either a comma or a period

Numeric literals of the float format are specified differently. Float literals take the
form:

<mantissa>E<exponent>

Where

<mantissa> is a literal as described above with 1 to 16 digits
<exponent> is a literal with no decimal places, with a value

between -308 and +308

v Float literals do not have to be normalized. That is, the mantissa does not have
to be written with exactly one digit to the left of the decimal point. (The decimal
point does not even have to be specified.)

v Lower case e may be used instead of E.
v Either a period (’.’) or a comma (’,’) may be used as the decimal point.
v Float literals are allowed anywhere that numeric constants are allowed except in

operations that do not allow float data type. For example, float literals are not
allowed in places where a numeric literal with zero decimal positions is
expected, such as an array index.

v Float literals follow the same continuation rules as for regular numeric literals.
The literal may be split at any point within the literal.

The following lists some examples of valid float literals:

1E1 = 10
1.2e-1 = .12
-1234.9E0 = -1234.9
12e12 = 12000000000000
+67,89E+0003 = 67890 (the comma is the decimal point)

The following lists some examples of invalid float literals:

1.234E <--- no exponent
1.2e- <--- no exponent
-1234.9E+309 <--- exponent too big
12E-2345 <--- exponent too small
1.797693134862316e308 <--- value too big
179.7693134862316E306 <--- value too big
0.0000000001E-308 <--- value too small

Date Literals

Date literals take the form D’xx-xx-xx’ where:
v D indicates that the literal is of type date
v xx-xx-xx is a valid date in the format specified on the control specification

(separator included)
v xx-xx-xx is enclosed by apostrophes

Time Literals

Time literals take the form T’xx:xx:xx’ where:
v T indicates that the literal is of type time
v xx:xx:xx is a valid time in the format specified on the control specification

(separator included)

Constants

130 ILE RPG Reference

v xx:xx:xx is enclosed by apostrophes

Timestamp Literals

Timestamp literals take the form Z’yyyy-mm-dd-hh.mm.ss.mmmmmm’ where:
v Z indicates that the literal is of type timestamp
v yyyy-mm-dd is a valid date (year-month-day)
v hh.mm.ss.mmmmmm is a valid time (hours.minutes.seconds.microseconds)
v yyyy-mm-dd-hh.mm.ss.mmmmmm is enclosed by apostrophes
v Microseconds are optional and if not specified will default to zeros

Graphic Literals

Graphic literals take the form G’oK1K2i’ where:
v G indicates that the literal is of type graphic
v o is a shift-out character
v K1K2 is an even number of bytes (possibly zero) and does not contain a shift-out

or shift-in character
v i is a shift-in character
v oK1K2i is enclosed by apostrophes

UCS-2 Literals

UCS-2 literals take the form U’Xxxx...Yyyy’ where:
v U indicates that the literal is of type UCS-2.
v Each UCS-2 literal requires four bytes per UCS-2 character in the literal. Each

four bytes of the literal represents one double-byte UCS-2 character.
v UCS-2 literals are compatible only with UCS-2 data.

UCS-2 literals are assumed to be in the default UCS-2 CCSID of the module.

Constants

Chapter 7. Defining Data and Prototypes 131

Example of Defining Literals

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
H DATFMT(*ISO)
* Examples of literals used to initialize fields
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
D DateField S D INZ(D'1988-09-03')
D NumField S 5P 1 INZ(5.2)
D CharField S 10A INZ('abcdefghij')
D UCS2Field S 2C INZ(U'00610062')
* Even though the date field is defined with a 2-digit year, the
* initialization value must be defined with a 4-digit year, since
* all literals must be specified in date format specified
* on the control specification.
D YmdDate S D INZ(D'2001-01-13')
D DATFMT(*YMD)
* Examples of literals used to define named constants
D DateConst C CONST(D'1988-09-03')
D NumConst C CONST(5.2)
D CharConst C CONST('abcdefghij')

* Note that the CONST keyword is not required.
D Upper C 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

* Note that the literal may be continued on the next line
D Lower C 'abcdefghijklmn-
D opqrstuvwxyz'

* Examples of literals used in operations
C EVAL CharField = 'abc'
C IF NumField > 12
C EVAL DateField = D'1995-12-25'
C ENDIF

Figure 51. Defining named constants

Constants

132 ILE RPG Reference

Example of Using Literals with Zero Length

Named Constants
You can give a name to a constant. This name represents a specific value which
cannot be changed when the program is running. Numeric named constants have
no predefined precision. Their actual precision is defined by the context that is
specified.

See Figure 51 on page 132 for examples of defining named constants. The value of
the named constant is specified in the keyword section of the definition
specification. The presence of the keyword CONST is optional, however. For
example, to assign a value of ’ab’ to a constant, you could specify either
CONST(’ab’) or ’ab’ in the keyword section.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
* The following two definitions are equivalent:
D varfld1 S 5 INZ VARYING
D varfld2 S 5 INZ('') VARYING
* Various fields used by the examples below:
D blanks S 10 INZ
D vblanks S 10 INZ(' ') VARYING
D fixfld1 S 5 INZ('abcde')
* VGRAPHIC and VUCS2 are initialized with zero-length literals.
D vgraphic S 10G INZ(G'oi') VARYING
D vucs2 S 10C INZ(U'') VARYING
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq++++
* The following statements do the same thing:
C eval varfld1 = ''
C clear varfld1
* Moving '' to a variable-length field using MOVE(P) or MOVEL(P)
* sets the field to blanks up to the fields current length.
C move(p) '' varfld1
C movel(p) '' varfld1

* Moving '' to a fixed-length field has no effect in the following
* examples: (The rightmost or leftmost 0 characters are changed.)
C move '' fixfld1
C movel '' fixfld1

* The following comparisons demonstrate how the shorter operand
* is padded with blanks:
C eval *in01 = (blanks = '')
* *in01 is '1'

C eval *in02 = (vblanks = '')
* *in02 is '1'

C eval *in03 = (varfld2 = blanks)
* *in03 is '1'

C eval *in04 = (varfld2 = vblanks)
* *in04 is '1'

C eval *in05 = (%len(vgraphic)=0)
* *in05 is '1'

C eval *in06 = (%len(vucs2)=0)
* *in06 is '1'

Figure 52. Character, Graphic, and UCS-2 Literals with Zero Length

Constants

Chapter 7. Defining Data and Prototypes 133

Figurative Constants
The figurative constants *BLANK/*BLANKS, *ZERO/*ZEROS, *HIVAL, *LOVAL,
*NULL, *ALL’x..’, *ALLG’oK1K2i’, *ALLU’XxxxYyyy’, *ALLX’x1..’, and *ON/*OFF
are implied literals that can be specified without a length, because the implied
length and decimal positions of a figurative constant are the same as those of the
associated field. (For exceptions, see the following section, “Rules for Figurative
Constants” on page 135.)

Figurative constants can be specified in factor 1 and factor 2 of the calculation
specifications. The following shows the reserved words and implied values for
figurative constants:

Reserved Words
Implied Values

*BLANK/*BLANKS
All blanks. Valid only for character, graphic, or UCS-2 fields. The value for
character is ’ ’ (blank) or X'40', for graphic is X'4040', and for UCS-2 is
X'0020'.

*ZERO/*ZEROS
Character/numeric fields: All zeros. The value is ’0’ or X'F0'. For numeric
float fields: The value is ’0 E0’.

*HIVAL
Character, graphic, or UCS-2 fields: The highest collating character for the
system (hexadecimal FFs). Numeric fields: The maximum value allowed
for the corresponding field (with a positive sign if applicable). For Float
fields: *HIVAL for 4-byte float = 3.402 823 5E38 (/x’7F7FFFFF’/) *HIVAL
for 8-byte float = 1.797 693 134 862 315 E308 (/x’7FEFFFFFFFFFFFFF’/)
Date, time and timestamp fields: See “Date Data Type” on page 206,
“Time Data Type” on page 208 and “Timestamp Data Type” on page 210
for *HIVAL values for date, time, and timestamp data.

*LOVAL
Character, graphic, or UCS-2 fields: The lowest collating character for the
system (hexadecimal zeros). Numeric fields: The minimum value allowed
(with a negative sign if applicable). For Float fields: *LOVAL for 4-byte
float = -3.402 823 5E38 (/x’FF7FFFFF’/) *LOVAL for 8-byte float = -1.797
693 134 862 315 E308 (/x’FFEFFFFFFFFFFFFF’/) Date, time and timestamp
fields: See “Date Data Type” on page 206, “Time Data Type” on page 208
and “Timestamp Data Type” on page 210 for *LOVAL values for date,
time, and timestamp data.

*ALL’x..’
Character/numeric fields: Character string x . . is cyclically repeated to a
length equal to the associated field. If the field is a numeric field, all
characters within the string must be numeric (0 through 9). No sign or
decimal point can be specified when *ALL’x..’ is used as a numeric
constant.

Note: You cannot use *ALL’x..’ with numeric fields of float format.

Note: For numeric integer or unsigned fields, the value is never greater
than the maximum value allowed for the corresponding field. For
example, *ALL’95’ represents the value 9595 if the corresponding
field is a 5-digit integer field, since 95959 is greater than the
maximum value allowed for a 5-digit signed integer.

Constants

134 ILE RPG Reference

*ALLG’oK1K2i’
Graphic fields: The graphic string K1K2 is cyclically repeated to a length
equal to the associated field.

*ALLU’XxxxYyyy’
UCS-2 fields: A figurative constant of the form *ALLU’XxxxYyyy’ indicates
a literal of the form ’XxxxYyyyXxxxYyyy...’ with a length determined by
the length of the field associated with the *ALLU’XxxxYyyy’ constant. Each
double-byte character in the constant is represented by four hexadecimal
digits. For example, *ALLU’0041’ represents a string of repeated UCS-2
’A’s.

*ALLX’x1..’
Character fields: The hexadecimal literal X’x1..’ is cyclically repeated to a
length equal to the associated field.

*NULL
A null value valid for basing pointers, procedure pointers, or objects.

*ON/*OFF
*ON is all ones (’1’ or X'F1'). *OFF is all zeros (’0’ or X'F0'). Both are only
valid for character fields.

Rules for Figurative Constants
Remember the following rules when using figurative constants:
v MOVE and MOVEL operations allow you to move a character figurative

constant to a numeric field. The figurative constant is first expanded as a zoned
numeric with the size of the numeric field, then converted to packed or binary
numeric if needed, and then stored in the target numeric field. The digit portion
of each character in the constant must be valid. If not, a decimal data error will
occur.

v Figurative constants are considered elementary items. Except for MOVEA,
figurative constants act like a field if used in conjunction with an array. For
example: MOVE *ALL’XYZ’ ARR.
If ARR has 4-byte character elements, then each element will contain ’XYZX’.

v MOVEA is considered to be a special case. The constant is generated with a
length equal to the portion of the array specified. For example:
– MOVEA *BLANK ARR(X)

Beginning with element X, the remainder of ARR will contain blanks.
– MOVEA *ALL’XYZ’ ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as is
always the case with character MOVEA operations. Beginning with element
X, the remainder of the array will contain ’XYZXYZXYZ...’.

Note that the results of MOVEA are different from those of the MOVE example
above.
v After figurative constants are set/reset to their appropriate length, their normal

collating sequence can be altered if an alternate collating sequence is specified.
v The move operations MOVE and MOVEL produce the same result when moving

the figurative constants *ALL’x..’, *ALLG’oK1K2i’, and *ALLX’x1..’. The string is
cyclically repeated character by character (starting on the left) until the length of
the associated field is the same as the length of the string.

v Figurative constants can be used in compare operations as long as one of the
factors is not a figurative constant.

Constants

Chapter 7. Defining Data and Prototypes 135

v The figurative constants, *BLANK/*BLANKS, are moved as zeros to a numeric
field in a MOVE operation.

Data Structures
The ILE RPG compiler allows you to define an area in storage and the layout of
the fields, called subfields, within the area. This area in storage is called a data
structure. You define a data structure by specifying DS in positions 24 through 25
on a definition specification.

You can use a data structure to:
v Define the same internal area multiple times using different data formats
v Define a data structure and its subfields in the same way a record is defined.
v Define multiple occurrences of a set of data.
v Group non-contiguous data into contiguous internal storage locations.
v Operate on all the subfields as a group using the name of the data structure.
v Operate on an individual subfield using its name.

In addition, there are four special data structures, each with a specific purpose:
v A data area data structure (identified by a U in position 23 of the definition

specification)
v A file information data structure (identified by the keyword INFDS on a file

description specification)
v A program-status data structure (identified by an S in position 23 of the

definition specification)
v An indicator data structure (identified by the keyword INDDS on a file

description specification).

Data structures can be either program-described or externally described, except for
indicator data structures, which are program-described only. One data structure
can be defined like another using the LIKEDS keyword.

A program-described data structure is identified by a blank in position 22 of the
definition specification. The subfield definitions for a program-described data
structure must immediately follow the data structure definition.

An externally described data structure, identified by an E in position 22 of the
definition specification, has subfield descriptions contained in an externally
described file. At compile time, the ILE RPG compiler uses the external name to
locate and extract the external description of the data structure subfields. You
specify the name of the external file either in positions 7 through 21, or as a
parameter for the keyword EXTNAME .

Note: The data formats specified for the subfields in the external description are
used as the internal formats of the subfields by the compiler. This differs
from the way in which externally described files are treated.

An external subfield name can be renamed in the program using the keyword
EXTFLD. The keyword PREFIX can be used to add a prefix to the external subfield
names that have not been renamed with EXTFLD. Note that the data structure
subfields are not affected by the PREFIX keyword specified on a file-description
specification even if the file name is the same as the parameter specified in the
EXTNAME keyword when defining the data structure using an external file name.

Constants

136 ILE RPG Reference

Additional subfields can be added to an externally described data structure by
specifying program-described subfields immediately after the list of external
subfields.

Qualifying Data Structure Names
The keyword QUALIFIED indicates that subfields of the data structure are
referenced using qualified notation. This permits access by specifying the data
structure name followed by a period and the subfield name, for example DS1.FLD1.
If the QUALIFIED keyword is not used, the subfield name remains unqualified, for
example FLD1. If QUALIFIED is used the subfield name can be specified by one of
the following:
v A ″Simply Qualified Name″ is a name of the form ″A.B″. Simply qualified

names are allowed as arguments to keywords on File and Definition
Specifications; in the Field-Name entries on Input and Output Specifications; and
in the Factor 1, Factor 2, and Result-Field entries on fixed-form calculation
specifications, i.e.dsname.subf. While spaces are permitted between elements of a
fully-qualified name, they are not permitted in simply qualified names.

v A ″Fully Qualified Name″ is a name with qualification and indexing to an
arbitrary number of levels, for example, ″A(X).B.C(Z+17)″. Fully qualified names
are allowed in most free-form calculation specifications, or in any
Extended-Factor-2 entry. This includes operation codes CLEAR and DSPLY
coded in free-form calculations.

In addition, arbitrary levels of indexing and qualification are allowed. For example,
a programmer could code:ds(x).subf1.s2.s3(y+1).s4 as an operand within an
expression. Please see “QUALIFIED” on page 363 for further information on the
use of the QUALIFIED keyword.

Fully qualified names may be specified as the Result-Field operand for opcodes
CLEAR and DSPLY when coded in free-form calc specs. Expressions are allowed as
Factor 1 and Factor 2 operands for opcode DSPLY (coded in free-form calculation
specifications), however, if the operand is more complex than a fully qualified
name, the expression must be enclosed in parentheses.

Array Data Structures
An ″Array Data Structure″ is a data structure defined with keyword DIM. An
array data structure is like a multiple-occurrence data structure, except that the
index is explicitly specified, as with arrays.

A ″Keyed Array Data Structure″ is an array data structure with one subfield
identified as the search or sort key. The array data structure is indexed by (*) and
followed by the specification of the key subfield. For example, consider array data
structure FAMILIES with one scalar subfield NAME, and another array subfield
CHILDREN. To use the FAMILIES data structure as an array data structure keyed
by NAME, specify FAMILIES(*).NAME. To use the first CHILDREN element as the
key, specify FAMILIES(*).CHILDREN(1).

Notes:

1. Keyword DIM is allowed for data structures defined as QUALIFIED.
2. When keyword DIM is coded for a data structure or LIKEDS subfield, array

keywords CTDATA, FROMFILE, and TOFILE are not allowed. In addition, the
following data structure keywords are not allowed for an array data structure:
v DTAARA
v OCCURS.

Data Structures

Chapter 7. Defining Data and Prototypes 137

|
|
|
|
|
|
|

3. For a data structure X defined with LIKEDS(Y), if data structure Y is defined
with keyword DIM, data structure X is not defined as an array data structure.

4. If X is a subfield in array data structure DS, then an array index must be
specified when referring to X in a qualified name. In addition, the array index
may not be * except in the context of a keyed array data structure. Within a
fully qualified name expression, an array index may only be omitted (or *
specified) for the right-most name.

5. An array data structure can be sorted using the “SORTA (Sort an Array)” on
page 815 operation code. The array is sorted using one of the subfields as a
key.

6. An array data structure can be searched using the %LOOKUP built-in function.
The array is searched using one of the subfields as a key.

7. Here are some examples of statements using keyed array data structure
expressions that are not valid. Assume that TEAMS is an array data structure
with scalar subfield MANAGER and data structure subfield EMPS.
a. These statements are not valid because TEAMS is an array data structure. A

non-array key subfield must be specified.
SORTA TEAMS;
SORTA TEAMS(*);

b. These statements are not valid because TEAMS(1).EMPS is an array data
structure. A non-array key subfield must be specified.

SORTA TEAMS(1).EMPS;
SORTA TEAMS(1).EMPS(*);

c. This statement is not valid because TEAMS(*).EMPS(*) specifies two
different arrays to be sorted. Only one (*) may be specified.

SORTA TEAMS(*).EMPS(*).NAME;

d. These statements are not valid because all arrays in the qualified name must
be indexed. Both the TEAMS and the EMPS subfields must be indexed; one
must be indexed with (*).

SORTA TEAMS(*).EMPS.NAME;
SORTA TEAMS.EMPS(*).NAME;

e. This statement is not valid because at least one array must be indexed by
(*). TEAMS(1).EMPS(1).NAME is a scalar value.

SORTA TEAMS(1).EMPS(1).NAME;

Defining Data Structure Parameters in a Prototype or
Procedure Interface

To define a prototyped parameter as a data structure, you must first define the
layout of the parameter by defining an ordinary data structure. Then, you can
define a prototyped parameter as a data structure by using the LIKEDS keyword.
To use the subfields of the parameter, specify the subfields qualified with
parameter name: dsparm.subfield. For example

Data Structures

138 ILE RPG Reference

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

Defining Data Structure Subfields
You define a subfield by specifying blanks in the Definition-Type entry (positions
24 through 25) of a definition specification. The subfield definition(s) must
immediately follow the data structure definition. The subfield definitions end when
a definition specification with a non-blank Definition-Type entry is encountered, or
when a different specification type is encountered.

The name of the subfield is entered in positions 7 through 21. To improve
readability of your source, you may want to indent the subfield names to show
visually that they are subfields.

If the data structure is defined with the QUALIFIED keyword, the subfield names
can be the same as other names within your program. The subfield names will be
qualified by the owning data structure when they are used.

You can also define a subfield like an existing item using the LIKE keyword. When
defined in this way, the subfield receives the length and data type of the item on
which it is based. Similarly, you can use the LIKEDS keyword to define an entire
data structure like an existing item. See Figure 131 on page 341 for an example
using the LIKE keyword.

The keyword LIKEDS is allowed on any subfield definition. When specified, the
subfield is defined to be a data structure, with its own set of subfields. If data
structure DS has subfield S1 which is defined like a data structure with a subfield
S2, a programmer must refer to S2 using the expression DS.S1.S2.

* PartInfo is a data structure describing a part.
D PartInfo DS QUALIFIED
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
* Procedure "Proc" has a parameter "Part" that is a data
* structure whose subfields are the same as the subfields
* in "PartInfo". When calling this procedure, it is best
* to pass a parameter that is also defined LIKEDS(PartInfo)
* (or pass "PartInfo" itself), but the compiler will allow
* you to pass any character field that has the correct
* length.
D Proc PR
D Part LIKEDS(PartInfo)
P Proc B
* The procedure interface also defines the parameter Part
* with keyword LIKEDS(PartInfo).
* This means the parameter is a data structure, and the subfields
* can be used by specifying them qualified with "Part.", for
* example "Part.Strength"
D Proc PI
D Part LIKEDS(PartInfo)
C IF Part.Strength > getMaxStrength (Part.Drug)
C CALLP PartError (Part : DRUG_STRENGTH_ERROR)
C ELSE
C EVAL Part.Count = Part.Count + 1
C ENDIF
P Proc E

Data Structures

Chapter 7. Defining Data and Prototypes 139

Notes:

1. Keyword LIKEDS is allowed for subfields only within QUALIFIED data
structures.

2. Keywords DIM and LIKEDS are both allowed on the same subfield definition.

You can overlay the storage of a previously defined subfield with that of another
subfield using the OVERLAY keyword. The keyword is specified on the later
subfield definition. See Figure 57 on page 146 for an example using the OVERLAY
keyword.

Specifying Subfield Length
The length of a subfield may be specified using absolute (positional) or length
notation, or its length may be implied.

Absolute Specify a value in both the From-Position (positions 26 through 32)
and the To-Position/Length (positions 33 through 39) entries on the
definition specification.

Length Specify a value in the To-Position/Length (positions 33 through 39)
entry. The From-Position entry is blank.

Implied Length
If a subfield appears in the first parameter of one or more
OVERLAY keywords, the subfield can be defined without
specifying any type or length information. In this case, the type is
character and the length is determined by the overlaid subfields.

In addition, some data types, such as Pointers, Dates, Times and
Timestamps have a fixed length. For these types, the length is
implied, although it can be specified.

When using length notation, the subfield is positioned such that its starting
position is greater than the maximum To-Position of all previously defined
subfields. For examples of each notation, see “Data Structure Examples” on page
142.

Aligning Data Structure Subfields
Alignment of subfields may be necessary. In some cases it is done automatically; in
others, it must be done manually.

For example, when defining subfields of type basing pointer or procedure pointer
using the length notation, the compiler will automatically perform padding if
necessary to ensure that the subfield is aligned properly.

When defining float, integer or unsigned subfields, alignment may be desired to
improve run-time performance. If the subfields are defined using length notation,
you can automatically align float, integer or unsigned subfields by specifying the
keyword ALIGN on the data structure definition. However, note the following
exceptions:
v The ALIGN keyword is not allowed for a file information data structure or a

program status data structure.
v Subfields defined using the keyword OVERLAY are not aligned automatically,

even if the keyword ALIGN is specified for the data structure. In this case, you
must align the subfields manually.

Automatic alignment will align the fields on the following boundaries.
v 2 bytes for 5-digit integer or unsigned subfields

Data Structures

140 ILE RPG Reference

v 4 bytes for 10-digit integer or unsigned subfields or 4-byte float subfields
v 8 bytes for 20-digit integer or unsigned subfields
v 8 bytes for 8-byte float subfields
v 16 bytes for pointer subfields

If you are aligning fields manually, make sure that they are aligned on the same
boundaries. A start-position is on an n-byte boundary if ((position - 1) mod n) =
0. (The value of ″x mod y″ is the remainder after dividing x by y in integer
arithmetic. It is the same as the MVR value after X DIV Y.)

Figure 53 shows a sequence of bytes and identifies the different boundaries used
for alignment.

Note the following about the above byte sequence:
v Position 1 is on a 16-byte boundary, since ((1-1) mod 16) = 0.
v Position 13 is on a 4-byte boundary, since ((13-1) mod 4) = 0.
v Position 7 is not on a 4-byte boundary, since ((7-1) mod 4) = 2.

Initialization of Nested Data Structures
The keyword INZ(*LIKEDS) is allowed on a LIKEDS subfield. The LIKEDS
subfield is initialized exactly the same as the corresponding data structure.

Keyword INZ is allowed on a LIKEDS subfield. All nested subfields of the LIKEDS
subfield are initialized to their default values. This also applies to more deeply
nested LIKEDS subfields, with the exception of nested LIKEDS subfields with
INZ(*LIKEDS) specified.

If keyword INZ is coded on a main data structure definition, keyword INZ is
implied on all subfields of the data structure without explicit initialization. This
includes LIKEDS subfields.

Special Data Structures
Special data structures include:
v Data area data structures
v File information data structures (INFDS)
v Program-status data structures
v Indicator data structures.

Note that the above data structures cannot be defined in subprocedures.

Data Area Data Structure
A data area data structure, identified by a U in position 23 of the definition
specification, indicates to the compiler that it should read in and lock the data area
of the same name at program initialization and should write out and unlock the
same data area at the end of the program. Locking does not apply to the local data

Figure 53. Boundaries for Data Alignment

Data Structures

Chapter 7. Defining Data and Prototypes 141

area (see “Local Data Area (*LDA)”). Data area data structures, as in all other data
structures, have the type character. A data area read into a data area data structure
must also be character. The data area and data area data structure must have the
same name unless you rename the data area within the ILE RPG program by using
the *DTAARA DEFINE operation code or the DTAARA keyword.

You can specify the data area operations (IN, OUT, and UNLOCK) for a data area
that is implicitly read in and written out. Before you use a data area data structure
with these operations, you must specify that data area data structure name in the
result field of the *DTAARA DEFINE operation or with the DTAARA keyword.

A data area data structure cannot be specified in the result field of a PARM
operation in the *ENTRY PLIST.

Local Data Area (*LDA): If you specify blanks for the data area data structure
(positions 7 through 21 of the definition specification that contains a U in position
23), the compiler uses the local data area. To provide a name for the local data
area, use the *DTAARA DEFINE operation, with *LDA in factor 2 and the name in
the result field or DTAARA(*LDA) on the definition specification.

File Information Data Structure
You can specify a file information data structure (defined by the keyword INFDS
on a file description specifications) for each file in the program. This provides you
with status information on the file exception/error that occurred. A file information
data structure can be used for only one file. A file information data structure
contains predefined subfields that provide information on the file exception/error
that occurred. For a discussion of file information data structures and their
subfields, see “File Information Data Structure” on page 79.

Program-Status Data Structure
A program-status data structure, identified by an S in position 23 of the definition
specification, provides program exception/error information to the program. For a
discussion of program-status data structures and their predefined subfields, see
“Program Status Data Structure” on page 97.

Indicator Data Structure
An indicator data structure is identified by the keyword INDDS on the file
description specifications. It is used to store conditioning and response indicators
passed to and from data management for a file. By default, the indicator data
structure is initialized to all zeros (’0’s).

The rules for defining the data structure are:
v It must not be externally described.
v It can only have indicator or fixed-length character subfields.
v It can be defined as a multiple occurrence data structure.
v %SIZE for the data structure will return 99. For a multiple occurrence data

structure, %SIZE(ds:*ALL) will return a multiple of 99. If a length is specified, it
must be 99.

v Subfields may contain arrays of indicators as long as the total length does not
exceed 99.

Data Structure Examples
The following examples show various uses for data structures and how to define
them.

Data Structures

142 ILE RPG Reference

#
#
#
#
#
#
#

#

Example Description

Figure 54 Using a data structure to subdivide a field

Figure 55 on page 144 Using a data structure to group fields

Figure 56 on page 145 Using keywords QUALIFIED, LIKEDS, and DIM with data
structures, and how to code fully-qualified subfields

Figure 57 on page 146 Data structure with absolute and length notation

Figure 58 on page 146 Rename and initialize an externally described data structure

Figure 59 on page 147 Using PREFIX to rename all fields in an external data
structure

Figure 60 on page 147 Defining a multiple occurrence data structure

Figure 61 on page 148 Aligning data structure subfields

Figure 62 on page 149 Defining a *LDA data area data structure

Figure 63 on page 150 Using data area data structures (1)

Figure 64 on page 150 Using data area data structures (2)

Figure 65 on page 151 Using an indicator data structure

Figure 66 on page 152 Using a multiple-occurrence indicator data structure

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Use length notation to define the data structure subfields.
* You can refer to the entire data structure by using Partno, or by
* using the individual subfields Manufactr, Drug, Strength or Count.
*
D Partno DS
D Manufactr 4
D Drug 6
D Strength 3
D Count 3 0
D
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr......
*
* Records in program described file FILEIN contain a field, Partno,
* which needs to be subdivided for processing in this program.
* To achieve this, the field Partno is described as a data structure
* using the above Definition specification
*
IFILEIN NS 01 1 CA 2 CB
I 3 18 Partno
I 19 29 Name
I 30 40 Patno

Figure 54. Using a Data structure to subdivide a field

Data Structures

Chapter 7. Defining Data and Prototypes 143

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* When you use a data structure to group fields, fields from
* non-adjacent locations on the input record can be made to occupy
* adjacent internal locations. The area can then be referred to by
* the data structure name or individual subfield name.
*
D Partkey DS
D Location 4
D Partno 8
D Type 4
D
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr......
*
* Fields from program described file TRANSACTN need to be
* compared to the field retrieved from an Item_Master file
*
ITRANSACTN NS 01 1 C1 2 C2
I 3 10 Partno
I 11 16 0Quantity
I 17 20 Type
I 21 21 Code
I 22 25 Location
I
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Use the data structure name Partkey, to compare to the field
* Item_Nbr
*
C :
C Partkey IFEQ Item_Nbr 99
C :
C*

Figure 55. Using a data structure to group fields

Data Structures

144 ILE RPG Reference

D CustomerInfo DS QUALIFIED BASED(@)
D Name 20A
D Address 50A

D ProductInfo DS QUALIFIED BASED(@)
D Number 5A
D Description 20A
D Cost 9P 2

D SalesTransaction...
D DS QUALIFIED
D Buyer LIKEDS(CustomerInfo)
D Seller LIKEDS(CustomerInfo)
D NumProducts 10I 0
D Products LIKEDS(ProductInfo)
D DIM(10)

/free
TotalCost = 0;
for i = 1 to SalesTransation. Numproducts;

TotalCost = TotalCost + SalesTransaction.Products (i).Cost;
dsply SalesTransaction.Products (i).Cost;

endfor;
dsply ('Total cost is ' + %char(TotalCost));

/end-free

Figure 56. Using Keywords QUALIFIED, LIKEDS and DIM with data structures

Data Structures

Chapter 7. Defining Data and Prototypes 145

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Define a program described data structure called FRED
* The data structure is composed of 5 fields:
* 1. An array with element length 10 and dimension 70(Field1)
* 2. A field of length 30 (Field2)
* 3/4. Divide Field2 in 2 equal length fields (Field3 and Field4)
* 5. Define a binary field over the 3rd field
* Note the indentation to improve readability
*
*
* Absolute notation:
*
* The compiler will determine the array element length (Field1)
* by dividing the total length (700) by the dimension (70)
*
D FRED DS
D Field1 1 700 DIM(70)
D Field2 701 730
D Field3 701 715
D Field5 701 704B 2
D Field4 716 730
*
* Length notation:
*
* The OVERLAY keyword is used to subdivide Field2
*
D FRED DS
D Field1 10 DIM(70)
D Field2 30
D Field3 15 OVERLAY(Field2)
D Field5 4B 2 OVERLAY(Field3)
D Field4 15 OVERLAY(Field2:16)

Figure 57. Data structure with absolute and length notation

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Define an externally described data structure with internal name
* FRED and external name EXTDS and rename field CUST to CUSTNAME
* Initialize CUSTNAME to 'GEORGE' and PRICE to 1234.89.
* Assign to subfield ITMARR the DIM keyword.
* The ITMARR subfield is defined in the external description as a
* 100 byte character field. This divides the 100 byte character
* field into 10 array elements, each 10 bytes long.
* Using the DIM keyword on an externally described numeric subfield
* should be done with caution, because it will divide the field into
* array elements (similar to the way it does when absolute notation
* is used for program described subfields).
*
D Fred E DS EXTNAME(EXTDS)
D CUSTNAME E EXTFLD(CUST) INZ('GEORGE')
D PRICE E INZ(1234.89)
D ITMARR E DIM(10)

Figure 58. Rename and initialize an externally described data structure

Data Structures

146 ILE RPG Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
D
D extds1 E DS EXTNAME (CUSTDATA)
D PREFIX (CU_)
D Name E INZ ('Joe's Garage')
D Custnum E EXTFLD (NUMBER)
D
*
* The previous data structure will expand as follows:
* -- All externally described fields are included in the data
* structure
* -- Renamed subfields keep their new names
* -- Subfields that are not renamed are prefixed with the
* prefix string
*
* Expanded data structure:
*
D EXTDS1 E DS
D CU_NAME E 20A EXTFLD (NAME)
D INZ ('Joe's Garage')
D CU_ADDR E 50A EXTFLD (ADDR)
D CUSTNUM E 9S0 EXTFLD (NUMBER)
D CU_SALESMN E 7P0 EXTFLD (SALESMN)

Figure 59. Using PREFIX to rename all fields in an external data structure

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Define a Multiple Occurrence data structure of 20 elements with:
* -- 3 fields of character 20
* -- A 4th field of character 10 which overlaps the 2nd
* field starting at the second position.
*
* Named constant 'Max_Occur' is used to define the number of
* occurrences.
*
* Absolute notation (using begin/end positions)
*
D Max_Occur C CONST(20)
D
DDataStruct DS OCCURS (Max_Occur)
D field1 1 20
D field2 21 40
D field21 22 31
D field3 41 60
*
* Mixture of absolute and length notation
*
D DataStruct DS OCCURS(twenty)
D field1 20
D field2 20
D field21 22 31
D field3 41 60

Figure 60. Defining a multiple occurrence data structure

Data Structures

Chapter 7. Defining Data and Prototypes 147

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Data structure with alignment:
D MyDS DS ALIGN
* Properly aligned subfields
* Integer subfields using absolute notation.
D Subf1 33 34I 0
D Subf2 37 40I 0
* Integer subfields using length notation.
* Note that Subf3 will go directly after Subf2
* since positions 41-42 are on a 2-byte boundary.
* However, Subf4 must be placed in positions 45-48
* which is the next 4-byte boundary after 42.
D Subf3 5I 0
D Subf4 10I 0
* Integer subfields using OVERLAY.
D Group 101 120A
D Subf6 5I 0 OVERLAY (Group: 3)
D Subf7 10I 0 OVERLAY (Group: 5)
D Subf8 5U 0 OVERLAY (Group: 9)
* Subfields that are not properly aligned:
* Integer subfields using absolute notation:
D SubfX1 10 11I 0
D SubfX2 15 18I 0
* Integer subfields using OVERLAY:
D BadGroup 101 120A
D SubfX3 5I 0 OVERLAY (BadGroup: 2)
D SubfX4 10I 0 OVERLAY (BadGroup: 6)
D SubfX5 10U 0 OVERLAY (BadGroup: 11)
* Integer subfields using OVERLAY:
D WorseGroup 200 299A
D SubfX6 5I 0 OVERLAY (WorseGroup)
D SubfX7 10I 0 OVERLAY (WorseGroup: 3)
*
* The subfields receive warning messages for the following reasons:
* SubfX1 - end position (11) is not a multiple of 2 for a 2 byte field.
* SubfX2 - end position (18) is not a multiple of 4 for a 4 byte field.
* SubfX3 - end position (103) is not a multiple of 2.
* SubfX4 - end position (109) is not a multiple of 4.
* SubfX5 - end position (114) is not a multiple of 4.
* SubfX6 - end position (201) is not a multiple of 2.
* SubfX7 - end position (205) is not a multiple of 4.

Figure 61. Aligning Data Structure Subfields

Data Structures

148 ILE RPG Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Define a data area data structure based on the *LDA.
*
* Example 1:
* A data area data structure with no name is based on the *LDA.
* In this case, the DTAARA keyword does not have to be used.
*
D UDS
D SUBFLD 1 600A
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Example 2:
* This data structure is explicitly based on the *LDA using
* the DTAARA keyword. Since it is not a data area data
* structure, it must be handled using IN and OUT operations.
*
D LDA_DS DS DTAARA(*LDA)
D SUBFLD 1 600A
...
C IN LDA_DS
C OUT LDA_DS
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Example 3:
* This data structure is explicitly based on the *LDA using
* the DTAARA keyword. Since it is a data area data
* structure, it is read in during initialization and written
* out during termination. It can also be handled using IN
* and OUT operations, since the DTAARA keyword was used.
*
D LDA_DS UDS DTAARA(*LDA)
D SUBFLD 1 600A
...
C IN LDA_DS
C OUT LDA_DS

Figure 62. Defining a *LDA data area data structure

Data Structures

Chapter 7. Defining Data and Prototypes 149

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H DFTNAME(Program1)
H
*
FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++++
FSALESDTA IF E DISK
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* This program uses a data area data structure to accumulate
* a series of totals. The data area subfields are then added
* to fields from the file SALESDTA.
D Totals UDS
D Tot_amount 8 2
D Tot_gross 10 2
D Tot_net 10 2
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Factor2++++++++++++++++++++++++++++++++++++++
*
C :
C EVAL Tot_amount = Tot_amount + amount
C EVAL Tot_gross = Tot_gross + gross
C EVAL Tot_net = Tot_net + net

Figure 63. Using data area data structures (program 1)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H DFTNAME(Program2)
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* This program processes the totals accumulated in Program1.
* Program2 then uses the total in the subfields to do calculations.
*
D Totals UDS
D Tot_amount 8 2
D Tot_gross 10 2
D Tot_net 10 2
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
C :
C EVAL *IN91 = (Amount2 <> Tot_amount)
C EVAL *IN92 = (Gross2 <> Tot_gross)
C EVAL *IN93 = (Net2 <> Tot_net)
C :

Figure 64. Using data area data structures (program 2)

Data Structures

150 ILE RPG Reference

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRLen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++
* Indicator data structure "DispInds" is associated to file "Disp".
FDisp CF E WORKSTN INDDS (DispInds)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* This is the indicator data structure:
*
D DispInds DS
* Conditioning indicators for format "Query"
D ShowName 21 21N
* Response indicators for format "Query"
D Exit 3 3N
D Return 12 12N
D BlankNum 31 31N
* Conditioning indicators for format "DispSflCtl"
D SFLDSPCTL 41 41N
D SFLDSP 42 42N
D SFLEND 43 43N
D SFLCLR 44 44N
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Set indicators to display the subfile:
C EVAL SFLDSP = *ON
C EVAL SFLEND = *OFF
C EVAL SFLCLR = *OFF
C EXFMT DispSFLCTL
*
* Using indicator variables, we can write more readable programs:
C EXFMT Query
C IF Exit or Return
C RETURN
C ENDIF

Figure 65. Using an indicator data structure

Data Structures

Chapter 7. Defining Data and Prototypes 151

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRLen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++
* Indicator data structure "ErrorInds" is associated to file "Disp".
FDisp CF E WORKSTN INDDS (ERRORINDS)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
D @NameOk C 0
D @NameNotFound C 1
D @NameNotValid C 2
D @NumErrors C 2
*
* Indicator data structure for ERRMSG:
*
D ERRORINDS DS OCCURS(@NumErrors)
* Indicators for ERRMSG:
D NotFound 1 1N
D NotValid 2 2N
*
* Indicators for QUERY:
D Exit 3 3N
D Refresh 5 5N
D Return 12 12N
*
* Prototype for GetName procedure (code not shown)
D GetName PR 10I 0
D Name 50A CONST
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
C DOU Exit or Return
C EXFMT QUERY
* Check the response indicators
C SELECT
C WHEN Exit or Return
C RETURN
C WHEN Refresh
C RESET QUERY
C ITER
C ENDSL
*
* Check the name
C EVAL RC = GetName(Name)
*
* If it is not valid, display an error message
C IF RC <> @NameOk
C RC OCCURS ErrorInds
C EXFMT ERRMSG
C ENDIF
C ENDDO
...
C *INZSR BEGSR
*
* Initialize the occurrences of the ErrorInds data structure
C @NameNotFound OCCUR ErrorInds
C EVAL NotFound = '1'
C @NameNotValid OCCUR ErrorInds
C EVAL NotValid = '1'
C ENDSR

Figure 66. Using a multiple-occurrence indicator data structure

Data Structures

152 ILE RPG Reference

Prototypes and Parameters
The recommended way to call programs and procedures is to use prototyped calls,
since prototyped calls allow the compiler to check the call interface at compile
time. If you are coding a subprocedure, you will need to code a
procedure-interface definition to allow the compiler to match the call interface to
the subprocedure.

This section describes how to define each of these concepts:
v “Prototypes”
v “Prototyped Parameters” on page 155
v “Procedure Interface” on page 157.

Prototypes
A prototype is a definition of the call interface. It includes the following
information:
v Whether the call is bound (procedure) or dynamic (program)
v How to find the program or procedure (the external name)
v The number and nature of the parameters
v Which parameters must be passed, and which are optionally passed
v Whether operational descriptors should be passed
v The data type of the return value, if any (for a procedure)

A prototype may be explicitly or implicitly defined. If the procedure is called from
a different RPG module, the prototype must be explicitly specified in both the
calling module and the module that defines the procedure. If the procedure is only
called within the same module, the prototype may be explicitly defined, or it may
be omitted. If the prototype is omitted, the compiler will implicitly define it from
the procedure interface.

For modules that call a procedure that is defined in a different module, a prototype
must be included in the definition specifications of the program or procedure that
makes the call. The prototype is used by the compiler to call the program or
procedure correctly, and to ensure that the caller passes the correct parameters.

The following rules apply to prototype definitions.
v A prototype name must be specified in positions 7-21. If the keyword EXTPGM

or EXTPROC is specified on the prototype definition, then any calls to the
program or procedure use the external name specified for that keyword. If
neither keyword is specified, then the external name is the prototype name, that
is, the name specified in positions 7-21 (in uppercase).

v Specify PR in the Definition-Type entry (positions 24-25). Any parameter
definitions must immediately follow the PR specification. The prototype
definition ends with the first definition specification with non-blanks in positions
24-25 or by a non-definition specification.

v Specify any of the following keywords as they pertain to the call interface:

EXTPROC(name)
The call will be a bound procedure call that uses the external
name specified by the keyword.

Prototypes and Parameters

Chapter 7. Defining Data and Prototypes 153

|
|
|
|
|
|

|
|
|
|

EXTPGM(name)
The call will be an external program call that uses the external
name specified by the keyword.

OPDESC Operational descriptors are to be passed with the parameters
that are described in the prototype.

RTNPARM The return value is to be handled as a parameter. This may
improve performance when calling the procedure, especially for
large return values.

v A return value (if any) is specified on the PR definition. Specify the length and
data type of the return value. In addition, you may specify the following
keywords for the return value:

DATFMT(fmt)
The return value has the date format specified by the keyword.

DIM(N) The return value is an array or data structure with N elements.

LIKEDS(data_structure_name)
The returned value is a data structure. (You cannot refer to the
subfields of the return value when you call the procedure.)

LIKEREC(name{,type})
The returned value is a data structure defined like the specified
record format name.

Note: You cannot refer to the subfields of the return value when
you call the procedure.

LIKE(name) The return value is defined like the item specified by the
keyword.

PROCPTR The return value is a procedure pointer.

TIMFMT(fmt) The return value has the time format specified by the keyword.

VARYING{(2|4)}
A character, graphic, or UCS-2 return value has a variable-length
format.

For information on these keywords, see “Definition-Specification Keywords” on
page 321. Figure 67 shows a prototype for a subprocedure CVTCHR that takes a
numeric input parameter and returns a character string. Note that there is no name
associated with the return value. For this reason, you cannot display its contents
when debugging the program.

* The returned value is the character representation of
* the input parameter NUM, left-justified and padded on
* the right with blanks.
D CVTCHR PR 31A
D NUM 31P 0 VALUE
* The following expression shows a call to CVTCHR. If
* variable rrn has the value 431, then after this EVAL,
* variable msg would have the value
* 'Record 431 was not found.'
C EVAL msg = 'Record '
C + %TRIMR(CVTCHR(RRN))
C + ' was not found '

Figure 67. Prototype for CVTCHR

Prototypes and Parameters

154 ILE RPG Reference

||
|
|

#

If you are writing a prototype for an exported subprocedure or for a main
procedure, put the prototype in a /COPY file and copy the prototype into the
source file for both the callers and the module that defines the procedure. This
coding technique provides maximum parameter-checking benefits for both the
callers and the procedure itself, since they all use the same prototype.

Prototyped Parameters
If the prototyped call interface involves the passing of parameters then you must
define the parameter immediately following the PR or PI specification. The
following keywords, which apply to defining the type, are allowed on the
parameter definition specifications:

ASCEND The array is in ascending sequence.

DATFMT(fmt)
The date parameter has the format fmt.

DESCEND The array is in descending sequence.

DIM(N) The parameter is an array or data structure with N elements.

LIKE(name) The parameter is defined like the item specified by the keyword.

LIKEREC(name{,type})
The parameter is a data structure whose subfields are the same as
the fields in the specified record format name.

LIKEDS(data_structure_name)
The parameter is a data structure whose subfields are the same as
the subfields identified in the LIKEDS keyword.

LIKEFILE(filename)
The parameter is a file, either filename or a file related through the
LIKEFILE keyword to filename.

PROCPTR The parameter is a procedure pointer.

TIMFMT(fmt) The time parameter has the format fmt.

VARYING{(2|4)}
A character, graphic, or UCS-2 parameter has a variable-length
format.

For information on these keywords, see “Definition-Specification Keywords” on
page 321.

The following keywords, which specify how the parameter should be passed, are
also allowed on the parameter definition specifications:

CONST
The parameter is passed by read-only reference. A parameter defined with
CONST must not be modified by the called program or procedure. This
parameter-passing method allows you to pass literals and expressions.

NOOPT
The parameter will not be optimized in the called program or procedure.

OPTIONS(opt1 { : opt2 { : opt3 { : opt4 { : opt5 } } } })

Where opt1 ... opt5 can be *NOPASS, *OMIT, *VARSIZE, *STRING, *TRIM,
or *RIGHTADJ. For example, OPTIONS(*VARSIZE : *NOPASS).

Specifies the following parameter passing options:

Prototypes and Parameters

Chapter 7. Defining Data and Prototypes 155

|
|
|
|

||

#
#
#

#
#
#

*NOPASS
The parameter does not have to be passed. If a parameter has
OPTIONS(*NOPASS) specified, then all parameters following it
must also have OPTIONS(*NOPASS) specified.

*OMIT
The special value *OMIT may be passed for this reference
parameter.

*VARSIZE
The parameter may contain less data than is indicated on the
definition. This keyword is valid only for character parameters,
graphic parameters, UCS-2 parameters, or arrays passed by
reference. The called program or procedure must have some way
of determining the length of the passed parameter.

Note: When this keyword is omitted for fixed-length fields, the
parameter may only contain more or the same amount of
data as indicated on the definition; for variable-length fields,
the parameter must have the same declared maximum
length as indicated on the definition.

*STRING
Pass a character value as a null-terminated string. This keyword is
valid only for basing pointer parameters passed by value or by
read-only reference.

*TRIM
The parameter is trimmed before it is passed. This option is valid
for character, UCS-2 or graphic parameters passed by value or by
read-only reference. It is also valid for pointer parameters that
have OPTIONS(*STRING) coded.

Note: When a pointer parameter has OPTIONS(*STRING : *TRIM)
specified, the value will be trimmed even if a pointer is
passed directly. The null-terminated string that the pointer is
pointing to will be copied into a temporary, trimmed of
blanks, with a new null-terminator added at the end, and
the address of that temporary will be passed.

*RIGHTADJ
For a CONST or VALUE parameter, *RIGHTADJ indicates that the
graphic, UCS-2, or character parameter value is to be right
adjusted.

TIP
For the parameter passing options *NOPASS, *OMIT, and *VARSIZE,
it is up to the programmer of the procedure to ensure that these
options are handled. For example, if OPTIONS(*NOPASS) is coded
and you choose not to pass the parameter, the procedure must check
that the parameter was passed before it accesses it. The compiler will
not do any checking for this.

VALUE
The parameter is passed by value.

Prototypes and Parameters

156 ILE RPG Reference

For information on the keywords listed above, see “Definition-Specification
Keywords” on page 321. For more information on using prototyped parameters,
see the chapter on calling programs and procedures in the IBM Rational
Development Studio for i: ILE RPG Programmer’s Guide.

Procedure Interface
If a prototyped program or procedure has call parameters or a return value, then a
procedure interface definition must be defined, either in the main source section
(for a cycle-main procedure) or in the subprocedure section. If a prototype was
specified, the procedure interface definition repeats the prototype information
within the definition of a procedure. Otherwise, the procedure interface provides
the information that allows the compiler to implicitly define the prototype. The
procedure interface is used to declare the entry parameters for the procedure and
to ensure that the internal definition of the procedure is consistent with the
external definition (the prototype).

The following rules apply to procedure interface definitions.
v The name of the procedure interface, specified in positions 7-21, is required for

the cycle-main procedure. It is optional for subprocedures. If specified, it must
match the name specified in positions 7-21 on the corresponding prototype
definition.

v Specify PI in the Definition-Type entry (positions 24-25). The procedure-interface
definition can be specified anywhere in the definition specifications. In the
cycle-main procedure, the procedure interface must be preceded by the
prototype that it refers to. A procedure interface is required in a subprocedure if
the procedure returns a value, or if it has any parameters; otherwise, it is
optional.

v Any parameter definitions, indicated by blanks in positions 24-25, must
immediately follow the PI specification.

v Parameter names must be specified, although they do not have to match the
names specified on the prototype.

v All attributes of the parameters, including data type, length, and dimension,
must match exactly those on the corresponding prototype definition.

v To indicate that a parameter is a data structure, use the LIKEDS keyword to
define the parameter with the same subfields as another data structure.

v The keywords specified on the PI specification and the parameter specifications
must match those specified on the prototype, if the prototype is explicitly
specified.

v If a prototype is not specified, the EXTPGM or EXTPROC keyword may be
specified for the procedure interface.

TIP
If a module contains calls to a prototyped program or procedure that is
defined in a different module, then there must be a prototype definition for
each program and procedure that you want to call. One way of minimizing
the required coding is to store shared prototypes in /COPY files.

If you provide prototyped programs or procedures to other users, be sure to
provide them with the prototypes (in /COPY files) as well.

Prototypes and Parameters

Chapter 7. Defining Data and Prototypes 157

|
|
|
|
|
|
|
|
|

#
#
#
#

#
#
#
#
#
#

|
|
|

|
|

|
|
|
|

Prototypes and Parameters

158 ILE RPG Reference

Chapter 8. Using Arrays and Tables

Arrays and tables are both collections of data fields (elements) of the same:
v Field length
v Data type

– Character
– Numeric
– Data Structure
– Date
– Time
– Timestamp
– Graphic
– Basing Pointer
– Procedure Pointer
– UCS-2

v Format
v Number of decimal positions (if numeric)

Arrays and tables differ in that:
v You can refer to a specific array element by its position
v You cannot refer to specific table elements by their position
v An array name by itself refers to all elements in the array
v A table name always refers to the element found in the last “LOOKUP (Look Up

a Table or Array Element)” on page 711 operation

Note: You can define only run-time arrays in a subprocedure. Tables, prerun-time
arrays, and compile-time arrays are not supported. If you want to use a
pre-run array or compile-time array in a subprocedure, you must define it in
the main source section.

The next section describes how to code an array, how to specify the initial values
of the array elements, how to change the values of an array, and the special
considerations for using an array. The section after next describes the same
information for tables.

Arrays
There are three types of arrays:
v The run-time array is loaded by your program while it is running.
v The compile-time array is loaded when your program is created. The initial data

becomes a permanent part of your program.
v The prerun-time array is loaded from an array file when your program begins

running, before any input, calculation, or output operations are processed.

The essentials of defining and loading an array are described for a run-time array.
For defining and loading compile-time and prerun-time arrays you use these
essentials and some additional specifications.

© Copyright IBM Corp. 1994, 2010 159

Array Name and Index
You refer to an entire array using the array name alone. You refer to the individual
elements of an array using (1) the array name, followed by (2) a left parenthesis,
followed by (3) an index, followed by (4) a right parenthesis -- for example:
AR(IND). The index indicates the position of the element within the array (starting
from 1) and is either a number or a field containing a number.

The following rules apply when you specify an array name and index:
v The array name must be a unique symbolic name.
v The index must be a numeric field or constant greater than zero and with zero

decimal positions
v If the array is specified within an expression in the extended factor 2 field, the

index may be an expression returning a numeric value with zero decimal
positions

v At run time, if your program refers to an array using an index with a value that
is zero, negative, or greater than the number of elements in the array, then the
error/exception routine takes control of your program.

The Essential Array Specifications
You define an array on a definition specification. Here are the essential
specifications for all arrays:
v Specify the array name in positions 7 through 21
v Specify the number of entries in the array using the DIM keyword
v Specify length, data format, and decimal positions as you would any scalar

fields. You may specify explicit From- and To-position entries (if defining a
subfield), or an explicit Length-entry; or you may define the array attributes
using the LIKE keyword; or the attributes may be specified elsewhere in the
program.

v If you need to specify a sort sequence, use the ASCEND or DESCEND
keywords.

Figure 68 shows an example of the essential array specifications.

Coding a Run-Time Array
If you make no further specifications beyond the essential array specifications, you
have defined a run-time array. Note that the keywords ALT, CTDATA, EXTFMT,
FROMFILE, PERRCD, and TOFILE cannot be used for a run-time array.

Loading a Run-Time Array
You can assign initial values for a run-time array using the INZ keyword on the
definition specification. You can also assign initial values for a run-time array
through input or calculation specifications. This second method may also be used
to put data into other types of arrays.

For example, you may use the calculation specifications for the MOVE operation to
put 0 in each element of an array (or in selected elements).

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DARC S 3A DIM(12)

Figure 68. The Essential Array Specifications to Define a Run-Time Array

Arrays

160 ILE RPG Reference

Using the input specifications, you may fill an array with the data from a file. The
following sections provide more details on retrieving this data from the records of
a file.

Note: Date and time runtime data must be in the same format and use the same
separators as the date or time array being loaded.

Loading a Run-Time Array by Reading One Record from a File
If an input record from a database file will contain all the information for the
entire array, the array can be loaded in a single input operation. If the fields in the
database record that correspond to the array occupy consecutive positions in the
database record, then the array can be loaded with a single Input specification, as
shown in Figure 69. The Input specification defines the positions in the database
record for the entire array.

If the fields in the database record that correspond to the array are scattered
throughout the database record, then the array must be loaded with a several
Input specifications. The example in Figure 70 assumes that the database record
contains data for all the array elements, but a blank separates the data for each
array element in the database record. Each Input specification defines the position
in the database record for a single element.

Loading a Run-Time Array by Reading Several Records from A
File
If the data for the array is not available in a single record from the database file,
the array must be loaded by reading more than one record from the database file.
Each record may provide the data for one or more elements of the array. The ILE
RPG program processes one record at a time. Therefore, the entire array is not
processed until all the records containing the array information are read and the
information is moved into the array elements. It may be necessary to suppress
calculation and output operations until the entire array is read into the program.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DINPARR S 12A DIM(6)
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IARRFILE AA 01
I 1 72 INPARR

Figure 69. Using a Run-Time Array with Consecutive Elements

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DARRX S 12A DIM(6)
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IARRFILE AA 01
I 1 12 ARRX(1)
I 14 25 ARRX(2)
I 27 38 ARRX(3)
I 40 51 ARRX(4)
I 53 64 ARRX(5)
I 66 77 ARRX(6)

Figure 70. Defining a Run-Time Array with Scattered Elements

Arrays

Chapter 8. Using Arrays and Tables 161

#
#
#
#
#
#
#
##
#
#

#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

For example, assume that each record from file ARRFILE2 contains the information
for one array element in positions 1-12. You can code the Input specification for the
array element with a variable index. Your program would set the index before the
record was read as shown in Figure 71.

Loading an Array from Identical Externally-Described Fields
If an input record from a externally-described database file has several fields that
are defined identically, you can define a data structure that will allow you to
process those fields as though they were an array. There are three cases to
consider:
1. The fields are consecutive in the record and appear at the beginning of the

record.
A R REC
A FLD1 5P 0
A FLD2 5P 0
A FLD3 5P 0
A OTHER 10A

For this case, you can use an externally-described data structure and define
your array as an additional subfield, mapping the array to the fields using the
OVERLAY keyword:

FMYFILE IF E DISK
D myDS E DS EXTNAME(MYFILE)
D fldArray LIKE(FLD1) DIM(3)
D OVERLAY(myDs)

C READ MYFILE
C FOR i = 1 to %ELEM(fldArray)
C* ... process fldArray(i)
C ENDFOR

2. The fields are consecutive in the record but do not appear at the beginning of
the record.

A R REC
A OTHER1 10A
A ... more fields

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DARRX S 12A DIM(6)
DN S 5P 0 INZ(1)
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....
IARRFILE2 AA 01
I 1 12 ARRX(N)
CL0N01Factor1+++++++Opcode&ExtFactor2;+++++++Result++++++++Len++D+HiLoEq
C IF N = %ELEM(ARR)
* The array has been loaded
..... process the array
* Set the index to 1 to prepare for the next complete array
C EVAL N = 1
C ELSE
* Increment the index so the next input operation will fill
* the next array element
C EVAL N = N + 1
C ENDIF

Figure 71. Loading an array from a file, one element per record

Arrays

162 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#
#
#
#
#

#
#
#
#
#

#
#

#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#

#
#

#
#
#

A FLD1 15A
A FLD2 15A
A FLD3 15A
A OTHER2 10A

For this case, you can use an externally-described data structure and define
your array as a standalone field, mapping the array to the fields using the
BASED keyword, and initializing the basing pointer to the address of the first
field.

FMYFILE IF E DISK
D myDS E DS EXTNAME(MYFILE)

D fldArray S LIKE(FLD1) DIM(3)
D BASED(pFldArray)
D pFldArray S * INZ(%addr(FLD1))

C READ MYFILE
C FOR i = 1 to %ELEM(fldArray)
C* ... process fldArray(i)
C ENDFOR

3. The fields are not consecutive in the record.
A R REC
A OTHER1 10A
A FLD1 T TIMFMT(*ISO)
A FLD2 T TIMFMT(*ISO)
A OTHER2 10A
A FLD3 T TIMFMT(*ISO)
A OTHER3 10A

For this case, you must define a program-described data structure and list the
fields to be used for the array without defining any type information. Then
map the array to the fields using the OVERLAY keyword.

FMYFILE IF E DISK
D myDS DS
D FLD1
D FLD2
D FLD3
D fldArray LIKE(FLD1) DIM(3)
D OVERLAY(myDs)

C READ MYFILE
C FOR i = 1 to %ELEM(fldArray)
C* ... process fldArray(i)
C ENDFOR

Sequencing Run-Time Arrays
Run-time arrays are not sequence checked. If you process a SORTA (sort an array)
operation, the array is sorted into the sequence specified on the definition
specification (the ASCEND or DESCEND keywords) defining the array. If the
sequence is not specified, the array is sorted into ascending sequence. When the
high (positions 71 and 72 of the calculation specifications) or low (positions 73 and
74 of the calculation specifications) indicators are used in the LOOKUP operation,
the array sequence must be specified.

Coding a Compile-Time Array
A compile-time array is specified using the essential array specifications plus the
keyword CTDATA. In addition, on a definition specification you can specify:
v The number of array entries in an input record using the PERRCD keyword. If

the keyword is not specified, the number of entries defaults to 1.

Arrays

Chapter 8. Using Arrays and Tables 163

#
#
#
#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#

#

v The external data format using the EXTFMT keyword. The only allowed values
are L (left-sign), R (right-sign), or S (zoned-decimal). The EXTFMT keyword is
not allowed for float compile-time arrays.

v A file to which the array is to be written when the program ends with LR on.
You specify this using the TOFILE keyword.

See Figure 72 for an example of a compile-time array.

Loading a Compile-Time Array
For a compile-time array, enter array source data into records in the program source
member. If you use the **ALTSEQ, **CTDATA, and **FTRANS keywords, the array
data may be entered in anywhere following the source records. If you do not use
those keywords, the array data must follow the source records, and any alternate
collating sequence or file translation records in the order in which the compile-time
arrays and tables were defined on the definition specifications. This data is loaded
into the array when the program is compiled. Until the program is recompiled
with new data, the array will always initially have the same values each time you
call the program unless the previous call ended with LR off.

Compile-time arrays can be described separately or in alternating format (with the
ALT keyword). Alternating format means that the elements of one array are
intermixed on the input record with elements of another array.

Rules for Array Source Records
The rules for array source records are:
v The first array entry for each record must begin in position 1.
v All elements must be the same length and follow each other with no intervening

spaces
v An entire record need not be filled with entries. If it is not, blanks or comments

can be included after the entries (see Figure 72).
v If the number of elements in the array as specified on the definition specification

is greater than the number of entries provided, the remaining elements are filled
with the default values for the data type specified.

v Each record, except the last, must contain the number of entries specified with
the PERRCD keyword on the definition specifications. In the last record, unused
entries must be blank and comments can be included after the unused entries.

v Each entry must be contained entirely on one record. An entry cannot be split
between two records; therefore, the length of a single entry is limited to the
maximum length of 100 characters (size of source record). If arrays are used and

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++
DARC S 3A DIM(12) PERRCD(5) CTDATA

**CTDATA ARC
48K16343J64044HComments can be placed here
12648A47349K346Comments can be placed here
50B125 Comments can be placed here

Figure 72. Array Source Record with Comments

Arrays

164 ILE RPG Reference

are described in alternating format, corresponding elements must be on the same
record; together they cannot exceed 100 characters.

v For date and time compile-time arrays the data must be in the same format and
use the same separators as the date or time array being loaded.

v Array data may be specified in one of two ways:
1. **CTDATA arrayname: The data for the array may be specified anywhere in

the compile-time data section.
2. **b: (b=blank) The data for the arrays must be specified in the same order in

which they are specified in the Definition specifications.
Only one of these techniques may be used in one program.

v Arrays can be in ascending(ASCEND keyword), descending (DESCEND
keyword), or no sequence (no keyword specified).

v For ascending or descending character arrays when ALTSEQ(*EXT) is specified
on the control specification, the alternate collating sequence is used for the
sequence checking. If the actual collating sequence is not known at compile time
(for example, if SRTSEQ(*JOBRUN) is specified on a control specification or as a
command parameter) the alternate collating sequence table will be retrieved at
runtime and the checking will occur during initialization at *INIT. Otherwise,
the checking will be done at compile time.

v Graphic and UCS-2 arrays will be sorted by hexadecimal values, regardless of
the alternate collating sequence.

v If L or R is specified on the EXTFMT keyword on the definition specification,
each element must include the sign (+ or -). An array with an element size of 2
with L specified would require 3 positions in the source data as shown in the
following example.
....+....1....+....2....+....3....+....4....+....5....+....6....+....

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++
D UPDATES 2 0 DIM(5) PERRCD(5) EXTFMT(L) CTDATA

**CTDATA UDPATES
+37-38+52-63-49+51

v Float compile-time data are specified in the source records as float or numeric
literals. Arrays defined as 4-byte float require 14 positions for each element;
arrays defined as 8-byte float require 23 positions for each element.

v Graphic data must be enclosed in shift-out and shift-in characters. If several
elements of graphic data are included in a single record (without intervening
nongraphic data) only one set of shift-out and shift-in characters is required for
the record. If a graphic array is defined in alternating format with a nongraphic
array, the shift-in and shift-out characters must surround the graphic data. If two
graphic arrays are defined in alternating format, only one set of shift-in and
shift-out characters is required for each record.

Coding a Prerun-Time Array
In addition to the essential array specifications, you can also code the following
specifications or keywords for prerun-time arrays.

On the definition specifications, you can specify
v The name of the file with the array input data, using the FROMFILE keyword.
v The name of a file to which the array is written at the end of the program, using

the TOFILE keyword.
v The number of elements per input record, using the PERRCD keyword.
v The external format of numeric array data using the EXTFMT keyword.
v An alternating format using the ALT keyword.

Arrays

Chapter 8. Using Arrays and Tables 165

Note: The integer or unsigned format cannot be specified for arrays defined with
more than ten digits.

On the file-description specifications, you can specify a T in position 18 for the file
with the array input data.

Example of Coding Arrays
Figure 73 shows the definition specifications required for two prerun-time arrays, a
compile-time array, and a run-time array.

Loading a Prerun-Time Array
For a prerun-time array, enter array input data into a file. The file must be a
sequential program described file. During initialization, but before any input,
calculation, or output operations are processed the array is loaded with initial
values from the file. By modifying this file, you can alter the array’s initial values
on the next call to the program, without recompiling the program. The file is read
in arrival sequence. The rules for prerun-time array data are the same as for
compile-time array data, except there are no restrictions on the length of each
record. See “Rules for Array Source Records” on page 164.

....+....1....+....2....+....3....+....4....+....5....+....6....+....
HKeywords+++
H DATFMT(*USA) TIMFMT(*HMS)
D*ame+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++
* Run-time array. ARI has 10 elements of type date. They are
* initialized to September 15, 1994. This is in month, day,
* year format using a slash as a separator as defined on the
* control specification.
DARI S D DIM(10) INZ(D'09/15/1994')
*
* Compile-time arrays in alternating format. Both arrays have
* eight elements (three elements per record). ARC is a character
* array of length 15, and ARD is a time array with a predefined
* length of 8.
DARC S 15 DIM(8) PERRCD(3)
D CTDATA
DARD S T DIM(8) ALT(ARC)
*
* Prerun-time array. ARE, which is to be read from file DISKIN,
* has 250 character elements (12 elements per record). Each
* element is five positions long. The size of each record
* is 60 (5*12). The elements are arranged in ascending sequence.
DARE S 5A DIM(250) PERRCD(12) ASCEND
D FROMFILE(DISKIN)
*
* Prerun-time array specified as a combined file. ARH is written
* back to the same file from which it is read when the program
* ends normally with LR on. ARH has 250 character elements
* (12 elements per record). Each elements is five positions long.
* The elements are arranged in ascending sequence.
DARH S 5A DIM(250) PERRCD(12) ASCEND
D FROMFILE(DISKOUT)
D TOFILE(DISKOUT)

**CTDATA ARC
Toronto 12:15:00Winnipeg 13:23:00Calgary 15:44:00
Sydney 17:24:30Edmonton 21:33:00Saskatoon 08:40:00
Regina 12:33:00Vancouver 13:20:00

Figure 73. Definition Specifications for Different Types of Arrays

Arrays

166 ILE RPG Reference

Sequence Checking for Character Arrays
Sequence checking for character arrays that have not been defined with
ALTSEQ(*NONE) has two dependencies:
1. Whether the ALTSEQ control specification keyword has been specified, and if

so, how.
2. Whether the array is compile time or prerun time.

The following table indicates when sequence checking occurs.

Control Specification
Entry

ALTSEQ Used for
SORTA, LOOKUP
and Sequence
Checking

When Sequence
Checked for
Compile Time Array

When Sequence
Checked for Prerun
Time Array

ALTSEQ(*NONE) No Compile time Run time

ALTSEQ(*SRC) No Compile time Run time

ALTSEQ(*EXT)
(known at compile
time)

Yes Compile time Run time

ALTSEQ(*EXT)
(known only at run
time)

Yes Run time Run time

Note: For compatibility with RPG III, SORTA and LOOKUP do not use the
alternate collating sequence with ALTSEQ(*SRC). If you want these
operations to be performed using the alternate collating sequence, you can
define a table on the system (object type *TBL), containing your alternate
sequence. Then you can change ALTSEQ(*SRC) to ALTSEQ(*EXT) on your
control specification and specify the name of your table on the SRTSEQ
keyword or parameter of the create command.

Initializing Arrays

Run-Time Arrays
To initialize each element in a run-time array to the same value, specify the INZ
keyword on the definition specification. If the array is defined as a data structure
subfield, the normal rules for data structure initialization overlap apply (the
initialization is done in the order that the fields are declared within the data
structure).

Compile-Time and Prerun-Time Arrays
The INZ keyword cannot be specified for a compile-time or prerun-time array,
because their initial values are assigned to them through other means
(compile-time data or data from an input file). If a compile-time or prerun-time
array appears in a globally initialized data structure, it is not included in the global
initialization.

Note: Compile-time arrays are initialized in the order in which the data is declared
after the program, and prerun-time arrays are initialized in the order of
declaration of their initialization files, regardless of the order in which these
arrays are declared in the data structure. Pre-run time arrays are initialized
after compile-time arrays.

Arrays

Chapter 8. Using Arrays and Tables 167

If a subfield initialization overlaps a compile-time or prerun-time array, the
initialization of the array takes precedence; that is, the array is initialized after the
subfield, regardless of the order in which fields are declared within the data
structure.

Defining Related Arrays
You can load two compile-time arrays or two prerun-time arrays in alternating
format by using the ALT keyword on the definition of the alternating array. You
specify the name of the primary array as the parameter for the ALT keyword. The
records for storing the data for such arrays have the first element of the first array
followed by the first element of the second array, the second element of the first
array followed by the second element of the second array, the third element of the
first array followed by the third element of the second array, and so on.
Corresponding elements must appear on the same record. The PERRCD keyword
on the main array definition specifies the number of corresponding pairs per
record, each pair of elements counting as a single entry. You can specify EXTFMT
on both the main and alternating array.

Figure 74 shows two arrays, ARRA and ARRB, in alternating format.

The records for ARRA and ARRB look like the records below when described as
two separate array files.

This record contains ARRA entries in positions 1 through 60.

This record contains ARRB entries in positions 1 through 50.

Figure 74. Arrays in Alternating and Nonalternating Format

Figure 75. Arrays Records for Two Separate Array Files

Initializing Arrays

168 ILE RPG Reference

The records for ARRA and ARRB look like the records below when described as
one array file in alternating format. The first record contains ARRA and ARRB
entries in alternating format in positions 1 through 55. The second record contains
ARRA and ARRB entries in alternating format in positions 1 through 55.

Searching Arrays
The following can be used to search arrays:
v The LOOKUP operation code
v The %LOOKUP built-in function
v The %LOOKUPLT built-in function
v The %LOOKUPLE built-in function
v The %LOOKUPGT built-in function
v The %LOOKUPGE built-in function

For more information about the LOOKUP operation code, see:
v “Searching an Array with an Index” on page 171
v “Searching an Array Without an Index” on page 170
v “LOOKUP (Look Up a Table or Array Element)” on page 711

For more information about the %LOOKUPxx built-in functions, see
“%LOOKUPxx (Look Up an Array Element)” on page 551.

Figure 76. Arrays Records for One Array File

Figure 77. Arrays Records for One Array File in Alternating Format

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++
DARRA S 6A DIM(6) PERRCD(1) CTDATA
DARRB S 5 0 DIM(6) ALT(ARRA)
DARRGRAPHIC S 3G DIM(2) PERRCD(2) CTDATA
DARRC S 3A DIM(2) ALT(ARRGRAPHIC)
DARRGRAPH1 S 3G DIM(2) PERRCD(2) CTDATA
DARRGRAPH2 S 3G DIM(2) ALT(ARRGRAPH1)

**CTDATA ARRA
345126 373
38A437 498
39K143 1297
40B125 93
41C023 3998
42D893 87
**CTDATA ARRGRAPHIC
ok1k2k3iabcok4k5k6iabc
**CTDATA ARRGRAPH1
ok1k2k3k4k5k6k1k2k3k4k5k6i

Defining Related Arrays

Chapter 8. Using Arrays and Tables 169

Searching an Array Without an Index
When searching an array without an index, use the status (on or off) of the
resulting indicators to determine whether a particular element is present in the
array. Searching an array without an index can be used for validity checking of
input data to determine if a field is in a list of array elements. Generally, an equal
LOOKUP is requested.

In factor 1 in the calculation specifications, specify the search argument (data for
which you want to find a match in the array named) and place the array name
factor 2.

In factor 2 specify the name of the array to be searched. At least one resulting
indicator must be specified. Entries must not be made in both high and low for the
same LOOKUP operation. The resulting indicators must not be specified in high or
low if the array is not in sequence (ASCEND or DESCEND keywords). Control
level and conditioning indicators (specified in positions 7 through 11) can also be
used. The result field cannot be used.

The search starts at the beginning of the array and ends at the end of the array or
when the conditions of the lookup are satisfied. Whenever an array element is
found that satisfies the type of search being made (equal, high, low), the resulting
indicator is set on.

Figure 78 shows an example of a LOOKUP on an array without an index.

ARRFILE, which contains department numbers, is defined in the file description
specifications as an input file (I in position 17) with an array file designation (T in
position 18). The file is program described (F in position 22), and each record is 5
positions in length (5 in position 27).

In the definition specifications, ARRFILE is defined as containing the array
DPTNOS. The array contains 50 entries (DIM(50)). Each entry is 5 positions in
length (positions 33-39) with zero decimal positions (positions 41-42). One
department number can be contained in each record (PERRCD defaults to 1).

Searching an Array Data Structure
You can use the %LOOKUP built-in function to search an array data structure
using one of its subfields as a key.

For more information about searching an array data structure, see “%LOOKUPxx
(Look Up an Array Element)” on page 551.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
FARRFILE IT F 5 DISK
F*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DDPTNOS S 5S 0 DIM(50) FROMFILE(ARRFILE)
D*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C* The LOOKUP operation is processed and, if an element of DPTNOS equal
C* to the search argument (DPTNUM) is found, indicator 20 is set on.
C DPTNUM LOOKUP DPTNOS 20

Figure 78. LOOKUP Operation for an Array without an Index

Searching Arrays

170 ILE RPG Reference

|

|
|

|
|

Searching an Array with an Index
To find out which element satisfies a LOOKUP search, start the search at a
particular element in the array. To do this type of search, make the entries in the
calculation specifications as you would for an array without an index. However, in
factor 2, enter the name of the array to be searched, followed by a parenthesized
numeric field (with zero decimal positions) containing the number of the element
at which the search is to start. This numeric constant or field is called the index
because it points to a certain element in the array. The index is updated with the
element number which satisfied the search or is set to 0 if the search failed.

You can use a numeric constant as the index to test for the existence of an element
that satisfies the search starting at an element other than 1.

All other rules that apply to an array without an index apply to an array with an
index.

Figure 79 shows a LOOKUP on an array with an index.

This example shows the same array of department numbers, DPTNOS, as Figure 78
on page 170. However, an alternating array of department descriptions, DPTDSC,
is also defined. Each element in DPTDSC is 20 positions in length. If there is
insufficient data in the file to initialize the entire array, the remaining elements in
DPTNOS are filled with zeros and the remaining elements in DPTDSC are filled
with blanks.

Using Arrays
Arrays can be used in input, output, or calculation specifications.

Specifying an Array in Calculations
An entire array or individual elements in an array can be specified in calculation
specifications. You can process individual elements like fields.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
FARRFILE IT F 25 DISK
F*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DDPTNOS S 5S 0 DIM(50) FROMFILE(ARRFILE)
DDPTDSC S 20A DIM(50) ALT(DPTNOS)
D*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C* The Z-ADD operation begins the LOOKUP at the first element in DPTNOS.
C Z-ADD 1 X 3 0
C* At the end of a successful LOOKUP, when an element has been found
C* that contains an entry equal to the search argument DPTNUM,
C* indicator 20 is set on and the MOVE operation places the department
C* description, corresponding to the department number, into DPTNAM.
C DPTNUM LOOKUP DPTNOS(X) 20
C* If an element is not found that is equal to the search argument,
C* element X of DPTDSC is moved to DPTNAM.
C IF NOT *IN20
C MOVE DPTDSC(X) DPTNAM 20
C ENDIF

Figure 79. LOOKUP Operation on an Array with an Index

Searching Arrays

Chapter 8. Using Arrays and Tables 171

A noncontiguous array defined with the OVERLAY keyword cannot be used with
the MOVEA operation or in the result field of a PARM operation.

To specify an entire array, use only the array name, which can be used as factor 1,
factor 2, or the result field. The following operations can be used with an array
name: ADD, Z-ADD, SUB, Z-SUB, MULT, DIV, SQRT, ADDDUR, SUBDUR, EVAL,
EXTRCT, MOVE, MOVEL, MOVEA, MLLZO, MLHZO, MHLZO, MHHZO,
DEBUG, XFOOT, LOOKUP, SORTA, PARM, DEFINE, CLEAR, RESET, CHECK,
CHECKR, and SCAN.

Several other operations can be used with an array element only but not with the
array name alone. These operations include but are not limited to: BITON, BITOFF,
COMP, CABxx, TESTZ, TESTN, TESTB, MVR, DO, DOUxx, DOWxx, DOU, DOW,
IFxx, WHENxx, WHEN, IF, SUBST, and CAT.

When specified with an array name without an index or with an asterisk as the
index (for example, ARRAY or ARRAY(*)) certain operations are repeated for each
element in the array. These are ADD, Z-ADD, EVAL, SUB, Z-SUB, ADDDUR,
SUBDUR, EXTRCT, MULT, DIV, SQRT, MOVE, MOVEL, MLLZO, MLHZO,
MHLZO and MHHZO. The following rules apply to these operations when an
array name without an index is specified:
v When factors 1 and 2 and the result field are arrays with the same number of

elements, the operation uses the first element from every array, then the second
element from every array until all elements in the arrays are processed. If the
arrays do not have the same number of entries, the operation ends when the last
element of the array with the fewest elements has been processed. When factor 1
is not specified for the ADD, SUB, MULT, and DIV operations, factor 1 is
assumed to be the same as the result field.

v When one of the factors is a field, a literal, or a figurative constant and the other
factor and the result field are arrays, the operation is done once for every
element in the shorter array. The same field, literal, or figurative constant is used
in all of the operations.

v The result field must always be an array.
v If an operation code uses factor 2 only (for example, Z-ADD, Z-SUB, SQRT,

ADD, SUB, MULT, or DIV may not have factor 1 specified) and the result field is
an array, the operation is done once for every element in the array. The same
field or constant is used in all of the operations if factor 2 is not an array.

v Resulting indicators (positions 71 through 76) cannot be used because of the
number of operations being processed.

v In an EVAL expression, if any arrays on the right-hand side are specified
without an index, the left-hand side must also contain an array without an
index.

Note: When used in an EVAL operation %ADDR(arr) and %ADDR(arr(*)) do not
have the same meaning. See “%ADDR (Get Address of Variable)” on page
494 for more detail.

When coding an EVAL or a SORTA operation, built-in function %SUBARR(arr) can
be used to select a portion of the array to be used in the operation. See
“%SUBARR (Set/Get Portion of an Array)” on page 584 for more detail.

Using Arrays

172 ILE RPG Reference

Sorting Arrays
You can sort an array or a section of an array using the “SORTA (Sort an Array)”
on page 815 operation code. The array is sorted into sequence (ascending or
descending), depending on the sequence specified for the array on the definition
specification. If no sequence is specified for the array, the sequence defaults to
ascending sequence, but you can sort in descending sequence by specifying the ’D’
operation extender.

Sorting using part of the array as a key
You can use the OVERLAY keyword to overlay one array over another. For
example, you can have a base array which contains names and salaries and two
overlay arrays (one for the names and one for the salaries). You could then sort the
base array by either name or salary by sorting on the appropriate overlay array.

Sorting an Array Data Structure
You can use the SORTA operation to sort an array data structure using one of its
subfields as a key.

For more information about sorting an array data structure, see “SORTA (Sort an
Array)” on page 815.

Array Output

Entire arrays can be written out under ILE RPG control only at end of program
when the LR indicator is on. To indicate that an entire array is to be written out,
specify the name of the output file with the TOFILE keyword on the definition
specifications. This file must be described as a sequentially organized output or
combined file in the file description specifications. If the file is a combined file and
is externally described as a physical file, the information in the array at the end of
the program replaces the information read into the array at the start of the
program. Logical files may give unpredictable results.

If an entire array is to be written to an output record (using output specifications),
describe the array along with any other fields for the record:

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D DS
D Emp_Info 50 DIM(500) ASCEND
D Emp_Name 45 OVERLAY(Emp_Info:1)
D Emp_Salary 9P 2 OVERLAY(Emp_Info:46)
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C
C* The following SORTA sorts Emp_Info by employee name.
C* The sequence of Emp_Name is used to determine the order of the
C* elements of Emp_Info.
C SORTA Emp_Name
C* The following SORTA sorts Emp_Info by employee salary
C* The sequence of Emp_Salary is used to determine the order of the
C* elements of Emp_Info.
C SORTA Emp_Salary

Figure 80. SORTA Operation with OVERLAY

Sorting Arrays

Chapter 8. Using Arrays and Tables 173

|
|
|
|
|
|

|

|
|

|
|

v Positions 30 through 43 of the output specifications must contain the array name
used in the definition specifications.

v Positions 47 through 51 of the output specifications must contain the record
position where the last element of the array is to end. If an edit code is specified,
the end position must include blank positions and any extensions due to the edit
code (see “Editing Entire Arrays” listed next in this chapter).

Output indicators (positions 21 through 29) can be specified. Zero suppress
(position 44), blank-after (position 45), and data format (position 52) entries pertain
to every element in the array.

Editing Entire Arrays
When editing is specified for an entire array, all elements of the array are edited. If
different editing is required for various elements, refer to them individually.

When an edit code is specified for an entire array (position 44), two blanks are
automatically inserted between elements in the array: that is, there are blanks to
the left of every element in the array except the first. When an edit word is
specified, the blanks are not inserted. The edit word must contain all the blanks to
be inserted.

Editing of entire arrays is only valid in output specifications, not with the %EDITC
or %EDITW built-in functions.

Using Dynamically-Sized Arrays
If you don’t know the number of elements you will need in an array until runtime,
you can define the array with the maximum size, and then use a subset of the
array in your program.

To do this, you use the %SUBARR built-in function to control which elements are
used when you want to work with all the elements of your array in one operation.
You can also use the %LOOKUP built-in function to search part of your array.

Array Output

174 ILE RPG Reference

Tables
The explanation of arrays applies to tables except for the following differences:

Activity Differences

Defining A table name must be a unique symbolic name that begins with
the letters TAB.

Loading Tables can be loaded only at compilation time and prerun-time.

Using and Modifying table elements
Only one element of a table is active at one time. The table name is
used to refer to the active element. An index cannot be specified
for a table.

Searching The LOOKUP operation is specified differently for tables. Different
built-in functions are used for searching tables.

Note: You cannot define a table in a subprocedure.

* Define the "names" array as large as you think it could grow
D names S 25A VARYING DIM(2000)
* Define a variable to keep track of the number of valid elements
D numNames S 10I 0 INZ(0)
* Define another array
D temp S 50A DIM(20)
D p S 10I 0
/free

// set 3 elements in the names array
names(1) = 'Friendly';
names(2) = 'Rusty';
names(3) = 'Jerome';
names(4) = 'Tom';
names(5) = 'Jane';
numNames = 5;

// copy the current names to the temporary array
// Note: %subarr could also be used for temp, but
// it would not affect the number of elements
// copied to temp
temp = %subarr(names : 1 : numNames);

// change one of the temporary values, and then copy
// the changed part of the array back to the "names" array
temp(3) = 'Jerry';
temp(4) = 'Harry';
// The number of elements actually assigned will be the
// minimum of the number of elements in any array or
// subarray in the expression. In this case, the
// available sizes are 2 for the "names" sub-array,
// and 18 for the "temp" subarray, from element 3
// to the end of the array.
%subarr(names : 3 : 2) = %subarr(temp : 3);
// sort the "names" array
sorta %subarr(names : 1 : numNames);

// search the "names" array
// Note: %SUBARR is not used with %LOOKUP. Instead,
// the start element and number of elements
// are specified in the third and fourth
// parameters of %LOOKUP.
p = %lookup('Jane' : names : 1 : numNames);

Figure 81. Example using a dynamically-sized array

Tables

Chapter 8. Using Arrays and Tables 175

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

The following can be used to search a table:
v The LOOKUP operation code
v The %TLOOKUP built-in function
v The %TLOOKUPLT built-in function
v The %TLOOKUPLE built-in function
v The %TLOOKUPGT built-in function
v The %TLOOKUPGE built-in function

For more information about the LOOKUP operation code, see:
v “LOOKUP with One Table”
v “LOOKUP with Two Tables”
v “LOOKUP (Look Up a Table or Array Element)” on page 711

For more information about the %TLOOKUPxx built-in functions, see
“%TLOOKUPxx (Look Up a Table Element)” on page 593.

LOOKUP with One Table
When a single table is searched, factor 1, factor 2, and at least one resulting
indicator must be specified. Conditioning indicators (specified in positions 7
through 11) can also be used.

Whenever a table element is found that satisfies the type of search being made
(equal, high, low), that table element is made the current element for the table. If
the search is not successful, the previous current element remains the current
element.

Before a first successful LOOKUP, the first element is the current element.

Resulting indicators reflect the result of the search. If the indicator is on, reflecting
a successful search, the element satisfying the search is the current element.

LOOKUP with Two Tables
When two tables are used in a search, only one is actually searched. When the
search condition (high, low, equal) is satisfied, the corresponding elements are
made available for use.

Factor 1 must contain the search argument, and factor 2 must contain the name of
the table to be searched. The result field must name the table from which data is
also made available for use. A resulting indicator must also be used. Control level
and conditioning indicators can be specified in positions 7 through 11, if needed.

The two tables used should have the same number of entries. If the table that is
searched contains more elements than the second table, it is possible to satisfy the
search condition. However, there might not be an element in the second table that
corresponds to the element found in the search table. Undesirable results can occur.

Note: If you specify a table name in an operation other than LOOKUP before a
successful LOOKUP occurs, the table is set to its first element.

Tables

176 ILE RPG Reference

Specifying the Table Element Found in a LOOKUP Operation
Whenever a table name is used in an operation other than LOOKUP, the table
name actually refers to the data retrieved by the last successful search. Therefore,
when the table name is specified in this fashion, elements from a table can be used
in calculation operations.

If the table is used as factor 1 in a LOOKUP operation, the current element is used
as the search argument. In this way an element from a table can itself become a
search argument.

The table can also be used as the result field in operations other than the LOOKUP
operation. In this case the value of the current element is changed by the
calculation specification. In this way the contents of the table can be modified by
calculation operations (see Figure 83).

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C* The LOOKUP operation searches TABEMP for an entry that is equal to
C* the contents of the field named EMPNUM. If an equal entry is
C* found in TABEMP, indicator 09 is set on, and the TABEMP entry and
C* its related entry in TABPAY are made the current elements.
C EMPNUM LOOKUP TABEMP TABPAY 09
C* If indicator 09 is set on, the contents of the field named
C* HRSWKD are multiplied by the value of the current element of
C* TABPAY.
C IF *IN09
C HRSWKD MULT(H) TABPAY AMT 6 2
C ENDIF

Figure 82. Searching for an Equal Entry

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C ARGMNT LOOKUP TABLEA 20
C* If element is found multiply by 1.5
C* If the contents of the entire table before the MULT operation
C* were 1323.5, -7.8, and 113.4 and the value of ARGMNT is -7.8,
C* then the second element is the current element.
C* After the MULT operation, the entire table now has the
C* following value: 1323.5, -11.7, and 113.4.
C* Note that only the second element has changed since that was
C* the current element, set by the LOOKUP.
C IF *IN20
C TABLEA MULT 1.5 TABLEA
C ENDIF

Figure 83. Specifying the Table Element Found in LOOKUP Operations

Tables

Chapter 8. Using Arrays and Tables 177

Tables

178 ILE RPG Reference

Chapter 9. Data Types and Data Formats

This chapter describes the data types supported by RPG IV and their special
characteristics. The supported data types are:
v Character Format
v Numeric Data Type
v Graphic Format
v UCS-2 Format
v Date Data Type
v Time Data Type
v Timestamp Data Type
v Object Data Type
v Basing Pointer Data Type
v Procedure Pointer Data Type

In addition, some of the data types allow different data formats. This chapter
describes the difference between internal and external data formats, describes each
format, and how to specify them.

Internal and External Formats
Numeric, character, date, time, and timestamp fields have an internal format that is
independent of the external format. The internal format is the way the data is
stored in the program. The external format is the way the data is stored in files.

You need to be aware of the internal format when:
v Passing parameters by reference
v Overlaying subfields in data structures

In addition, you may want to consider the internal format of numeric fields, when
the run-time performance of arithmetic operations is important. For more
information, see “Performance Considerations” on page 435.

There is a default internal and external format for numeric and date-time data
types. You can specify an internal format for a specific field on a definition
specification. Similarly, you can specify an external format for a program-described
field on the corresponding input or output specification.

For fields in an externally described file, the external data format is specified in the
data description specifications in position 35. You cannot change the external
format of externally described fields, with one exception. If you specify
EXTBININT on a control specification, any binary field with zero decimal positions
will be treated as having an integer external format.

For subfields in externally described data structures, the data formats specified in
the external description are used as the internal formats of the subfields by the
compiler.

© Copyright IBM Corp. 1994, 2010 179

Internal Format
The default internal format for numeric standalone fields is packed-decimal. The
default internal format for numeric data structure subfields is zoned-decimal. To
specify a different internal format, specify the format desired in position 40 on the
definition specification for the field or subfield.

The default format for date, time, and timestamp fields is *ISO. In general, it is
recommended that you use the default ISO internal format, especially if you have
a mixture of external format types.

For date, time, and timestamp fields, you can use the DATFMT and TIMFMT
keywords on the control specification to change the default internal format, if
desired, for all date-time fields in the program. You can use the DATFMT or
TIMFMT keyword on a definition specification to override the default internal
format of an individual date-time field.

External Format
If you have numeric, character, or date-time fields in program-described files, you
can specify their external format.

The external format does not affect the way in which a field is processed.
However, you may be able to improve performance of arithmetic operations,
depending on the internal format specified. For more information, see
“Performance Considerations” on page 435.

The following table shows how to specify the external format of
program-described fields. For more information on each format type, see the
appropriate section in the remainder of this chapter.

Table 31. Entries and Locations for Specifying External Formats

Type of Field Specification Using

Input Input Position 36

Output Output Position 52

Array or Table Definition EXTFMT keyword

Specifying an External Format for a Numeric Field
For any of the fields in Table 31, specify one of the following valid external
numeric formats:

B Binary

F Float

I Integer

L Left sign

P Packed decimal

R Right sign

S Zoned decimal

U Unsigned

The default external format for float numeric data is called the external display
representation. The format for 4-byte float data is:

Internal and External Formats

180 ILE RPG Reference

+n.nnnnnnnE+ee,
where + represents the sign (+ or -)

n represents digits in the mantissa
e represents digits in the exponent

The format for 8-byte float data is:
+n.nnnnnnnnnnnnnnnE+eee

Note that a 4-byte float value occupies 14 positions and an 8-byte float value
occupies 23 positions.

For numeric data other than float, the default external format is zoned decimal.
The external format for compile-time arrays and tables must be zoned-decimal,
left-sign or right-sign.

For float compile-time arrays and tables, the compile-time data is specified as
either a numeric literal or a float literal. Each element of a 4-byte float array
requires 14 positions in the source record; each element of an 8-byte float array
requires 23 positions.

Non-float numeric fields defined on input specifications, calculation specifications,
or output specifications with no corresponding definition on a definition
specification are stored internally in packed-decimal format.

Specifying an External Format for a Character, Graphic, or UCS-2
Field
For any of the input and output fields in Table 31 on page 180, specify one of the
following valid external data formats:

A Character (valid for character and indicator data)

N Indicator (valid for character and indicator data)

G Graphic (valid for graphic data)

C UCS-2 (valid for UCS-2 data)

The EXTFMT keyword can be used to specify the data for an array or table in
UCS-2 format.

Specify the *VAR data attribute in positions 31-34 on an input specification and in
positions 53-80 on an output specification for variable-length character, graphic, or
UCS-2 data.

Specifying an External Format for a Date-Time Field
If you have date, time, and timestamp fields in program-described files, then you
must specify their external format. You can specify a default external format for all
date, time, and timestamp fields in a program-described file by using the DATFMT
and TIMFMT keywords on a file description specification. You can specify an
external format for a particular field as well. Specify the desired format in
positions 31-34 on an input specification. Specify the appropriate keyword and
format in positions 53-80 on an output specification.

For more information on each format type, see the appropriate section in the
remainder of this chapter.

Internal and External Formats

Chapter 9. Data Types and Data Formats 181

Character Data Type
The character data type represents character values and may have any of the
following formats:

A Character

N Indicator

G Graphic

C UCS-2

Character data may contain one or more single-byte or double-byte characters,
depending on the format specified. Character, graphic, and UCS-2 fields can also
have either a fixed or variable-length format. The following table summarizes the
different character data-type formats.

Character Data
Type

Number of Bytes CCSID

Character One or more single-byte characters
that are fixed or variable in length

If CCSID(*CHAR:*JOBRUN) is
specified on the Control
specification, the character CCSID
is assumed to be the runtime job
CCSID. Otherwise, the CCSID is
assumed to be the mixed graphic
CCSID related to the job CCSID.

Indicator One single-byte character that is
fixed in length

If CCSID(*CHAR:*JOBRUN) is
specified on the Control
specification, the character CCSID
is assumed to be the runtime job
CCSID. Otherwise, the CCSID is
assumed to be the mixed graphic
CCSID related to the job CCSID.

Graphic One or more double-byte
characters that are fixed or variable
in length

65535 or a CCSID with the
EBCDIC double-byte encoding
scheme (x’1200’)

UCS-2 One or more double-byte
characters that are fixed or variable
in length

13488 or a CCSID with the UCS-2
encoding scheme (X’7200’)

For information on the CCSIDs of character data, see “Conversion between
Character, Graphic and UCS-2 Data” on page 194.

Character Format
The fixed-length character format is one or more bytes long with a set length.

For information on the variable-length character format, see “Variable-Length
Character, Graphic and UCS-2 Formats” on page 185.

You define a character field by specifying A in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a character field.

The default initialization value is blanks.

Character, Graphic and UCS-2 Data

182 ILE RPG Reference

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#

Indicator Format
The indicator format is a special type of character data. Indicators are all one byte
long and can only contain the character values ’0’ (off) and ’1’ (on). They are
generally used to indicate the result of an operation or to condition (control) the
processing of an operation. The default value of indicators is ’0’.

You define an indicator field by specifying N in the Data-Type entry of the
appropriate specification. You can also define an indicator field using the LIKE
keyword on the definition specification where the parameter is an indicator field.
Indicator fields are also defined implicitly with the COMMIT keyword on the file
description specification.

A special set of predefined RPG IV indicators (*INxx) is also available. For a
description of these indicators, see Chapter 4, “RPG IV Indicators,” on page 47.

The rules for defining indicator variables are:
v Indicators can be defined as standalone fields, subfields, prototyped parameters,

and procedure return values.
v If an indicator variable is defined as a prerun-time or compile-time array or

table, the initialization data must consist of only ’0’s and ’1’s.

Note: If an indicator contains a value other than ’0’ or ’1’ at runtime, the results
are unpredictable.

v If the keyword INZ is specified, the value must be one of ’0’, *OFF, ’1’, or *ON.
v The keyword VARYING cannot be specified for an indicator field.

The rules for using indicator variables are:
v The default initialization value for indicator fields is ’0’.
v Operation code CLEAR sets an indicator variable to ’0’.
v Blank-after function applied to an indicator variable sets it to ’0’.
v If an array of indicators is specified as the result of a MOVEA(P) operation, the

padding character is ’0’.
v Indicators are implicitly defined with ALTSEQ(*NONE). This means that the

alternate collating sequence is not used for comparisons involving indicators.
v Indicators may be used as key-fields where the external key is a character of

length 1.

Graphic Format
The graphic format is a character string where each character is represented by 2
bytes.

Fields defined as graphic data do not contain shift-out (SO) or shift-in (SI)
characters. The difference between single byte character and double byte graphic
data is shown in the following figure:

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 183

The length of a graphic field, in bytes, is two times the number of graphic
characters in the field.

The fixed-length graphic format is a character string with a set length where each
character is represented by 2 bytes.

For information on the variable-length graphic format, see “Variable-Length
Character, Graphic and UCS-2 Formats” on page 185.

You define a graphic field by specifying G in the Data-Type entry of the
appropriate specification. You can also define one using the LIKE keyword on the
definition specification where the parameter is a graphic field.

The default initialization value for graphic data is X'4040'. The value of *HIVAL is
X'FFFF', and the value of *LOVAL is X'0000'.

Note: The examples of graphic literals in this manual are not valid graphic literals.
They use the letter ’o’ to represent the shift-out character and the letter ’i’ to
represent the shift-in character. Often the graphic data is expressed as D1D2
or AABB; these are not valid double-byte characters. Normally, graphic
literals are entered using a DBCS-capable keyboard that automatically enters
the shift-out and shift-in characters before and after the DBCS characters are
entered.

UCS-2 Format
The Universal Character Set (UCS-2) format is a character string where each
character is represented by 2 bytes. This character set can encode the characters for
many written languages.

Fields defined as UCS-2 data do not contain shift-out (SO) or shift-in (SI)
characters.

The length of a UCS-2 field, in bytes, is two times the number of UCS-2 characters
in the field.

The fixed-length UCS-2 format is a character string with a set length where each
character is represented by 2 bytes.

1 byte

1 byte

1 char

1 graphic char 1 graphic char

1 char 1 char 1 char

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

Single-byte
data

Graphic
data

Figure 84. Comparing Single-byte and graphic data

Character, Graphic and UCS-2 Data

184 ILE RPG Reference

For information on the variable-length UCS-2 format, see “Variable-Length
Character, Graphic and UCS-2 Formats.”

You define a UCS-2 field by specifying C in the Data-Type entry of the appropriate
specification. You can also define one using the LIKE keyword on the definition
specification where the parameter is a UCS-2 field.

The default initialization value for UCS-2 data is X'0020'. The value of *HIVAL is
X'FFFF', *LOVAL is X'0000', and the value of *BLANKS is X'0020'. You can specify
the initialization value for UCS-2 fields using character, UCS-2 or Graphic values.
If the type of the literal is not UCS-2, the compiler will perform an implicit
conversion to UCS-2. For example, to initialize a UCS-2 field with the UCS-2 form
of ’abc’, you can specify INZ(’abc’), INZ(%UCS2(’abc’)) or INZ(U’006100620063’).

For more information on the UCS-2 format, see the iSeries Information Center
globalization topic.

Variable-Length Character, Graphic and UCS-2 Formats
Variable-length character fields have a declared maximum length and a current
length that can vary while a program is running. The length is measured in single
bytes for the character format and in double bytes for the graphic and UCS-2
formats. The storage allocated for variable-length character fields is 2 or 4 bytes
longer than the declared maximum length, depending on how the VARYING
keyword is specified for the field. The leftmost 2 or 4 bytes are an unsigned integer
field containing the current length in characters, graphic characters or UCS-2
characters. The actual data starts at the third or fifth byte of the variable-length
field. Figure 85 shows how variable-length character fields are stored:

The unsigned integer length prefix can be either two bytes long or four bytes long.
You indicate the size of the prefix using the parameter of the VARYING keyword,
either VARYING(2) or VARYING(4). If you specify VARYING without a parameter,
a size of 2 is assumed if the specified length is between 1 and 65535; otherwise, a
size of 4 is assumed.

Figure 86 on page 186 shows how variable-length graphic fields are stored. UCS-2
fields are stored similarly.

| current | character data |
| length | |

UNS(V) CHAR(N)

N = declared maximum length
V = number of bytes specified for the length prefix

V + N = total number of bytes

Figure 85. Character Fields with Variable-Length Format

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 185

#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#

Note: Only the data up to and including the current length is significant.

You define a variable-length character data field by specifying A (character), G
(graphic), or C (UCS-2) and the keyword VARYING on a definition specification. It
can also be defined using the LIKE keyword on a definition specification where the
parameter is a variable-length character field.

You can refer to external variable-length fields, on an input or output specification,
with the *VAR data attribute.

A variable-length field is initialized by default to have a current length of zero.

You can obtain the address of the data portion of a variable-length field using
%ADDR(fieldname:*DATA).

For examples of using variable-length fields, see:
v “Using Variable-Length Fields” on page 189
v “%LEN (Get or Set Length)” on page 547
v “%CHAR (Convert to Character Data)” on page 505
v “%REPLACE (Replace Character String)” on page 568
v “%ADDR (Get Address of Variable)” on page 494

Rules for Variable-Length Character, Graphic, and UCS-2
Formats
The following rules apply when defining variable-length fields:
v The declared length of the field can be from 1 to 16773100 single-byte characters

and from 1 to 8386550 double-byte graphic or UCS-2 characters.
v The current length may be any value from 0 to the maximum declared length

for the field.
v The field may be initialized using keyword INZ. The initial value is the exact

value specified and the initial length of the field is the length of the initial value.
The field is padded with blanks for initialization, but the blanks are not included
in the length.

v Variable-length fields which have different-sized length prefixes are fully
compatible except when passed as reference parameters.

v When a prototyped parameter is defined with the VARYING keyword, and
without either the CONST or VALUE keyword, the passed parameters must
have the same size of length prefix as the prototyped parameter. This rule
applies even if OPTIONS(*VARSIZE) is specified.

v In all cases except subfields defined using positional notation, the length
(specified by the LEN keyword or the length entry in positions 33-39 on the
definition specifications) contains the maximum length of the field in characters;
this length does not include the 2- or 4-byte length prefix.

| current | graphic-data |
| length | |

UNS(V) CHAR(N)

N = declared maximum length = number of double bytes
V = number of bytes specified for the length prefix

V + 2(N) = total number of bytes

Figure 86. Graphic Fields with Variable-Length Format

Character, Graphic and UCS-2 Data

186 ILE RPG Reference

#
#

#

#
#

#
#
#
#

#
#
#
#

v For subfields defined using positional notation, the size specified by the From
and To positions includes the 2- or 4-byte length prefix. As a result, the number
of bytes that you specify using the positional notation must be two or four bytes
longer than the number of bytes required to hold the data. If you specify
VARYING(2), you add two bytes to the bytes required for the data; if you
specify VARYING(4), you add four bytes. If you specify VARYING without a
parameter, you add two bytes if the length is 65535 or less, and you add four
bytes if the length is greater than 65535. For alphanumeric subfields, sizes from 3
to 65537 represent lengths of 1 to 65535; for UCS-2 and Graphic subfields, sizes
from 5 to 131072 represent lengths of 1 to 65535.

Note: A more convenient way to specify variable-length subfields is to use
length notation, and to use the OVERLAY keyword to specify the position
of the subfield within the data structure.

v The keyword VARYING cannot be specified for a data structure.
v For variable-length prerun-time arrays, the initialization data in the file is stored

in variable format, including the length prefix.
v Since prerun-time array data is read from a file and files have a maximum

record length of 32766, variable-length prerun-time arrays have a maximum size
of 32764 single-byte characters, or 16382 double-byte graphic or UCS-2
characters.

v A variable-length array or table may be defined with compile-time data. The
trailing blanks in the field of data are not significant. The length of the data is
the position of the last non-blank character in the field. This is different from
prerun-time initialization since the length prefix cannot be stored in
compile-time data.

v *LIKE DEFINE cannot be used to define a field like a variable-length field.

The following is an example of defining variable-length character fields:

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 187

|
|
|
|
|
|
|
|
|
|

|
|
|

#
#

The following is an example of defining variable-length graphic and UCS-2 fields:

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++
* Standalone fields:
D var5 S 5A VARYING
D var10 S 10A VARYING INZ('0123456789')
D max_len_a S 32767A VARYING
* Prerun-time array:
D arr1 S 100A VARYING FROMFILE(dataf)
* Data structure subfields:
D ds1 DS
* Subfield defined with length notation:
D sf1_5 5A VARYING
D sf2_10 10A VARYING INZ('0123456789')
* Subfield defined using positional notation: A(5)VAR
D sf4_5 101 107A VARYING
* Subfields showing internal representation of varying:
D sf7_25 100A VARYING
D sf7_len 5I 0 OVERLAY(sf7_25:1)
D sf7_data 100A OVERLAY(sf7_25:3)
* Procedure prototype
D Replace PR 32765A VARYING
D String 32765A CONST VARYING OPTIONS(*VARSIZE)
D FromStr 32765A CONST VARYING OPTIONS(*VARSIZE)
D ToStr 32765A CONST VARYING OPTIONS(*VARSIZE)
D StartPos 5U 0 VALUE
D Replaced 5U 0 OPTIONS(*OMIT)

Figure 87. Defining Variable-Length Character and UCS-2 Fields

* .. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+...
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++
*---
* Graphic fields
*---
* Standalone fields:
D GRA20 S 20G VARYING
D MAX_LEN_G S 16383G VARYING
* Prerun-time array:
D ARR1 S 100G VARYING FROMFILE(DATAF)
* Data structure subfields:
D DS1 DS
* Subfield defined with length notation:
D SF3_20 20G VARYING
* Subfield defined using positional notation: G(10)VAR
D SF6_10 11 32G VARYING
*---
* UCS-2 fields
*---
D MAX_LEN_C S 16383C VARYING
D FLD1 S 5C INZ(%UCS2('ABCDE')) VARYING
D FLD2 S 2C INZ(U'01230123') VARYING
D FLD3 S 2C INZ(*HIVAL) VARYING
D DS_C DS
D SF3_20_C 20C VARYING
* Subfield defined using positional notation: C(10)VAR
D SF_110_C 11 32C VARYING

Figure 88. Defining Variable-Length Graphic and UCS-2 Fields

Character, Graphic and UCS-2 Data

188 ILE RPG Reference

Using Variable-Length Fields
The length part of a variable-length field represents the current length of the field
measured in characters. For character fields, this length also represents the current
length in bytes. For double-byte fields (graphic and UCS-2), this represents the
length of the field in double bytes. For example, a UCS-2 field with a current
length of 3 is 3 double-byte characters long, and 6 bytes long.

The following sections describe how to best use variable-length fields and how the
current length changes when using different operation codes.

How the Length of the Field is Set: When a variable-length field is initialized
using INZ, the initial length is set to be the length of the initialization value. For
example, if a character field of length 10 is initialized to the value ’ABC’, the initial
length is set to 3.

The EVAL operation changes the length of a variable-length target. For example, if
a character field of length 10 is assigned the value ’XY’, the length is set to 2.

The DSPLY operation changes the length of a variable-length result field to the
length of the value entered by the user. For example, if the result field is a
character field of length 10, and the value entered by the user is ’12345’, the length
of the field will be set to 5 by the DSPLY operation.

The CLEAR operation changes the length of a variable-length field to 0.

The PARM operation sets the length of the result field to the length of the field in
Factor 2, if specified.

Fixed form operations MOVE, MOVEL, CAT, SUBST and XLATE do not change
the length of variable-length result fields. For example, if the value ’XYZ’ is moved
using MOVE to a variable-length character field of length 10 whose current length
is 2, the length of the field will not change and the data will be truncated.

Note: The recommended use for MOVE and MOVEL, as opposed to EVAL, is for
changing the value of fields that you want to be temporarily fixed in length.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D fld 10A VARYING
* It does not matter what length 'fld' has before the
* EVAL; after the EVAL, the length will be 2.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
C EVAL fld = 'XY'

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D fld 10A VARYING

* Assume fld has a length of 2 before the MOVEL.
* After the first MOVEL, it will have a value of 'XY'

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
C MOVEL 'XYZ' fld

* After the second MOVEL, it will have the value '1Y'
C MOVEL '1' fld

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 189

An example is building a report with columns whose size may vary from
day to day, but whose size should be fixed for any given run of the
program.

When a field is read from a file (Input specifications), the length of a
variable-length field is set to the length of the input data.

The ″Blank After″ function of Output specifications sets the length of a
variable-length field to 0.

You can set the length of a variable-length field yourself using the %LEN built-in
function on the left-hand-side of an EVAL operation.

How the Length of the Field is Used: When a variable-length field is used for its
value, its current length is used. For the following example, assume ’result’ is a
fixed length field with a length of 7.

Why You Should Use Variable-Length Fields: Using variable-length fields for
temporary variables can improve the performance of string operations, as well as
making your code easier to read since you do not have to save the current length
of the field in another variable for %SUBST, or use %TRIM to ignore the extra
blanks.

If a subprocedure is meant to handle string data of different lengths, using
variable-length fields for parameters and return values of prototyped procedures
can enhance both the performance and readability of your calls and your
procedures. You will not need to pass any length parameters or use CEEDOD
within your subrocedure to get the actual length of the parameter.

CVTOPT(*VARCHAR) and CVTOPT(*VARGRAPHIC)
The ILE RPG compiler can internally define variable-length character, graphic, or
UCS-2 fields from an externally described file or data structure as fixed-length
character fields. Although converting variable-length character, graphic, and UCS-2
fields to fixed-length format is not necessary, CVTOPT remains in the language to
support programs written before variable-length fields were supported.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D fld 10A VARYING
* For the following EVAL operation
* Value of 'fld' Length of 'fld' 'result'
* -------------- --------------- -----------
* 'ABC' 3 'ABCxxx '
* 'A' 1 'Axxx '
* '' 0 'xxx '
* 'ABCDEFGHIJ' 10 'ABCDEFG'
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
C EVAL result = fld + 'xxx'
* For the following MOVE operation, assume 'result'
* has the value '.......' before the MOVE.
* Value of 'fld' Length of 'fld' 'result'
* -------------- --------------- -----------
* 'ABC' 3 '....ABC'
* 'A' 1 '......A'
* '' 0 '.......'
* 'ABCDEFGHIJ' 10 'DEFGHIJ'
C MOVE fld result

Character, Graphic and UCS-2 Data

190 ILE RPG Reference

You can convert variable-length fields by specifying *VARCHAR (for
variable-length character fields) or *VARGRAPHIC (for variable-length graphic or
UCS-2 fields) on the CVTOPT control specification keyword or command
parameter. When *VARCHAR or *VARGRAPHIC is not specified, or
*NOVARCHAR or *NOVARGRAPHIC is specified, variable-length fields are not
converted to fixed-length character and can be used in your ILE RPG program as
variable-length.

The following conditions apply when *VARCHAR or *VARGRAPHIC is specified:
v If a variable-length field is extracted from an externally described file or an

externally described data structure, it is declared in an ILE RPG program as a
fixed-length character field.

v For single-byte character fields, the length of the declared ILE RPG field is the
length of the DDS field plus 2 bytes.

v For DBCS-graphic data fields, the length of the declared ILE RPG field is twice
the length of the DDS field plus 2 bytes.

v The two extra bytes in the ILE RPG field contain a unsigned integer number
which represents the current length of the variable-length field. Figure 89 shows
the ILE RPG field length of variable-length fields.

v For variable-length graphic fields defined as fixed-length character fields, the
length is double the number of graphic characters.

v Your ILE RPG program can perform any valid character calculation operations
on the declared fixed-length field. However, because of the structure of the field,
the first two bytes of the field must contain valid unsigned integer data when
the field is written to a file. An I/O exception error will occur for an output
operation if the first two bytes of the field contain invalid field-length data.

v Control-level indicators, match field entries, and field indicators are not allowed
on an input specification if the input field is a variable-length field from an
externally described input file.

Single-byte character fields:

Graphic data type fields:

length

length

character-data

graphic-data

N = declared length in DDS

N = declared length in DDS = number of double bytes

2 + N = field length

2 + 2(N) = field length

UNS(5)

UNS(5)

CHAR(N)

CHAR(2(N))

Figure 89. ILE RPG Field Length of Converted Variable-Length Fields

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 191

v Sequential-within-limits processing is not allowed when a file contains
variable-length key fields.

v Keyed operations are not allowed when factor 1 of a keyed operation
corresponds to a variable-length key field in an externally described file.

v If you choose to selectively output certain fields in a record and the
variable-length field is either not specified on the output specification or is
ignored in the ILE RPG program, the ILE RPG compiler will place a default
value in the output buffer of the newly added record. The default is 0 in the first
two bytes and blanks in all of the remaining bytes.

v If you want to change converted variable-length fields, ensure that the current
field length is correct. One way to do this is:
1. Define a data structure with the variable-length field name as a subfield

name.
2. Define a 5-digit unsigned integer subfield overlaying the beginning of the

field, and define an N-byte character subfield overlaying the field starting at
position 3.

3. Update the field.

Alternatively, you can move another variable-length field left-aligned into the
field. An example of how to change a converted variable-length field in an ILE
RPG program follows.

Character, Graphic and UCS-2 Data

192 ILE RPG Reference

If you would like to use a converted variable-length graphic field, you can code a
2-byte unsigned integer field to hold the length, and a graphic subfield of length N
to hold the data portion of the field.

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+..
A*
A* File MASTER contains a variable-length field
A*
AAN01N02N03T.Name++++++Rlen++TDpBLinPosFunctions+++++++++++++++++++++
A*
A R REC
A FLDVAR 100 VARLEN

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+.. *
*
* Specify the CVTOPT(*VARCHAR) keyword on a control
* specification or compile the ILE RPG program with
* CVTOPT(*VARCHAR) on the command.
*
HKeywords++
*
H CVTOPT(*VARCHAR)
*
* Externally described file name is MASTER.
*
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
*
FMASTER UF E DISK

*
* FLDVAR is a variable-length field defined in DDS with
* a DDS length of 100. Notice that the RPG field length
* is 102.
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
*
D DS
D FLDVAR 1 102
D FLDLEN 5U 0 OVERLAY(FLDVAR:1)
D FLDCHR 100 OVERLAY(FLDVAR:3)

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* A character value is moved to the field FLDCHR.
* After the CHECKR operation, FLDLEN has a value of 5.
C READ MASTER LR
C MOVEL 'SALES' FLDCHR
C ' ' CHECKR FLDCHR FLDLEN
C NLR UPDATE REC

Figure 90. Converting a Variable-Length Character Field

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 193

Conversion between Character, Graphic and UCS-2 Data

Note: If graphic CCSIDs are ignored (CCSID(*GRAPH:*IGNORE) was specified on
the control specification or CCSID(*GRAPH) was not specified at all),
graphic data is not considered to have a CCSID and conversions are not
supported between graphic data and UCS-2 data.

Character, graphic, and UCS-2 data can have different CCSIDs (Coded Character
Set IDs). Conversion between these data types depends on the CCSID of the data.

CCSIDs of Data
The CCSID of character data is only considered when converting between
character and UCS-2 data or between character and graphic data (unless graphic
CCSIDs are being ignored).

When converting between character and graphic data, the CCSID of the character
data is assumed to be the graphic CCSID related to the job CCSID.

When converting between character and UCS-2 data, if CCSID(*CHAR:*JOBRUN)
is specified on the control specification, the CCSID of the character data is assumed
to be job CCSID. Otherwise, it is assumed to be the mixed-byte CCSID related to
the job CCSID.

The CCSID of UCS-2 data defaults to 13488. This default can be changed using the
CCSID(*UCS2) keyword on the Control specification. The CCSID for
program-described UCS-2 fields can be specified using the CCSID keyword on the
Definition specification. The CCSID for externally-described UCS-2 fields comes
from the external file.

*
* Specify the CVTOPT(*VARGRAPHIC) keyword on a control
* specification or compile the ILE RPG program with
* CVTOPT(*VARGRAPHIC) on the command.
*
* The variable-length graphic field VGRAPH is declared in the
* DDS as length 3. This means the maximum length of the field
* is 3 double bytes, or 6 bytes. The total length of the field,
* counting the length portion, is 8 bytes.
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
*
D DS
DVGRAPH 8
D VLEN 4U 0 OVERLAY(VGRAPH:1)
D VDATA 3G OVERLAY(VGRAPH:3)

*
* Assume GRPH is a fixed-length graphic field of length 2
* double bytes. Copy GRPH into VGRAPH and set the length of
* VGRAPH to 2.
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C*
C MOVEL GRPH VDATA
C Z-ADD 2 VLEN

Figure 91. Converting a Variable-Length Graphic Field

Character, Graphic and UCS-2 Data

194 ILE RPG Reference

|
|
|
|

Note: UCS-2 fields are defined in DDS by specifying a data type of G and a
CCSID of 13488 or 1200.

The CCSID of graphic data defaults to the value specified in the CCSID(*GRAPH)
keyword on the Control specification. The CCSID for program-described graphic
fields can be specified using the CCSID keyword on the Definition specification.
The CCSID for externally-described graphic fields comes from the external file.

Conversions
Conversion between character and double-byte graphic fields consists of adding or
removing shift-out and shift-in bracketing and possibly performing CCSID
conversion on the graphic data.

When you use character, graphic, and UCS-2 values with different types or CCSIDs
in the same operation, conversions must be done to ensure that all the values have
the same type and CCSID. The conversions can be done explicitly, using the
conversion built-in functions %CHAR, %UCS2 or %GRAPH. However, in the
following scenarios, the conversion built-in functions do not have to be specified;
the compiler will do the conversions implicitly when necessary:

Comparison
Both operands are converted to UCS-2 before comparison.

Assignment
The source value is converted to the type and CCSID of the target value.

Parameters passed by value and by read-only reference
The passed parameter is converted to the type and CCSID of the
prototyped parameter.

Note: While implicit conversion is supported for the result of a concatenation
expression, all the operands of the concatenation expression must have the
same type and CCSID.

Alternate Collating Sequence
The alternate collating sequence applies only to single-byte character data.

Each character is represented internally by a hexadecimal value, which governs the
order (ascending or descending sequence) of the characters and is known as the
normal collating sequence. The alternate collating sequence function can be used to
alter the normal collating sequence. This function also can be used to allow two or
more characters to be considered equal.

Changing the Collating Sequence
Using an alternate collating sequence means modifying the collating sequence for
character match fields (file selection) and character comparisons. You specify that
an alternate collating sequence will be used by specifying the ALTSEQ keyword on
the control specification. The calculation operations affected by the alternate
collating sequence are ANDxx, COMP, CABxx, CASxx, DOU, DOUxx, DOW,
DOWxx, IF, IFxx, ORxx, WHEN, and WHENxx. This does not apply to graphic or
UCS-2 compare operations. LOOKUP and SORTA are affected only if you specify
ALTSEQ(*EXT). The characters are not permanently changed by the alternate
collating sequence, but are temporarily altered until the matching field or character
compare operation is completed.

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 195

#
#

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

Use the ALTSEQ(*NONE) keyword on the definition specification for a variable to
indicate that when the variable is being compared with other character data, the
normal collating sequence should always be used even if an alternate collating
sequence was defined.

Changing the collating sequence does not affect the LOOKUP and SORTA
operations (unless you specify ALTSEQ(*EXT)) or the hexadecimal values assigned
to the figurative constants *HIVAL and *LOVAL. However, changing the collating
sequence can affect the order of the values of *HIVAL and *LOVAL in the collating
sequence. Therefore, if you specify an alternate collating sequence in your program
and thereby cause a change in the order of the values of *HIVAL and *LOVAL,
undesirable results may occur.

Using an External Collating Sequence
To specify that the values in the SRTSEQ and LANGID command parameters or
control specification keywords should be used to determine the alternate collating
sequence, specify ALTSEQ(*EXT) on the control specification. For example, if
ALTSEQ(*EXT) is used, and SRTSEQ(*LANGIDSHR) and LANGID(*JOBRUN) are
specified, then when the program is run, the shared-weight table for the user
running the program will be used as the alternate collating sequence.

Since the LOOKUP and SORTA operations are affected by the alternate collating
sequence when ALTSEQ(*EXT) is specified, character compile-time arrays and
tables are sequence-checked using the alternate collating sequence. If the actual
collating sequence is not known until runtime, the array and table sequence cannot
be checked until runtime. This means that you could get a runtime error saying
that a compile-time array or table is out of sequence.

Pre-run arrays and tables are also sequence-checked using the alternate collating
sequence when ALTSEQ(*EXT) is specified.

Note: The preceding discussion does not apply for any arrays and tables defined
with ALTSEQ(*NONE) on the definition specification.

Specifying an Alternate Collating Sequence in Your Source
To specify that an alternate collating sequence is to be used, use the ALTSEQ(*SRC)
keyword on the control specification. If you use the **ALTSEQ, **CTDATA, and
**FTRANS keywords in the compile-time data section, the alternate-collating
sequence data may be entered anywhere following the source records. If you do
not use those keywords, the sequence data must follow the source records, and the
file translation records but precede any compile-time array data.

If a character is to be inserted between two consecutive characters, you must
specify every character that is altered by this insertion. For example, if the dollar
sign ($) is to be inserted between A and B, specify the changes for character B
onward.

See Appendix B, “EBCDIC Collating Sequence,” on page 909 for the EBCDIC
character set.

Formatting the Alternate Collating Sequence Records
The changes to the collating sequence must be transcribed into the correct record
format so that they can be entered into the system. The alternate collating sequence
must be formatted as follows:

Character, Graphic and UCS-2 Data

196 ILE RPG Reference

Record
Position Entry

1-6 ALTSEQ (This indicates to the system that the normal sequence is being
altered.)

7-10 Leave these positions blank.

11-12 Enter the hexadecimal value for the character whose normal sequence is
being changed.

13-14 Enter the hexadecimal value of the character replacing the character whose
normal sequence is being changed.

15-18
19-22
23-26
...
77-80

All groups of four beginning with position 15 are used in the same manner
as positions 11 through 14. In the first two positions of a group enter the
hexadecimal value of the character to be replaced. In the last two positions
enter the hexadecimal value of the character that replaces it.

The records that describe the alternate collating sequence must be preceded by a
record with **� (� = blank) in positions 1 through 3. The remaining positions in
this record can be used for comments.

Numeric Data Type
The numeric data type represents numeric values. Numeric data has one of the
following formats:

B Binary Format

F Float Format

I Integer Format

P Packed-Decimal Format

U Unsigned Format

Z Zoned-Decimal Format

The default initialization value for numeric fields is zero.

Binary Format
Binary format means that the sign (positive or negative) is in the leftmost bit of the
field and the numeric value is in the remaining bits of the field. Positive numbers
have a zero in the sign bit; negative numbers have a one in the sign bit and are in
twos complement form. A binary field can be from one to nine digits in length and
can be defined with decimal positions. If the length of the field is from one to four
digits, the compiler assumes a binary field length of 2 bytes. If the length of the
field is from five to nine digits, the compiler assumes a binary field length of 4
bytes.

HKeywords++
H ALTSEQ(*SRC)
DFLD1 s 4A INZ('abcd')
DFLD2 s 4A INZ('ABCD')

**
ALTSEQ 81C182C283C384C4

Character, Graphic and UCS-2 Data

Chapter 9. Data Types and Data Formats 197

Processing of a Program-Described Binary Input Field
Every input field read in binary format is assigned a field length (number of
digits) by the compiler. A length of 4 is assigned to a 2-byte binary field; a length
of 9 is assigned to a 4-byte binary field, if the field is not defined elsewhere in the
program. Because of these length restrictions, the highest decimal value that can be
assigned to a 2-byte binary field is 9999 and the highest decimal value that can be
assigned to a 4-byte binary field is 999 999 999. In general, a binary field of n digits
can have a maximum value of n 9s. This discussion assumes zero decimal
positions.

Because a 2-byte field in binary format is converted by the compiler to a decimal
field with 1 to 4 digits, the input value may be too large. If it is, the leftmost digit
of the number is dropped. For example, if a four digit binary input field has a
binary value of hexadecimal 6000, the compiler converts this to 24 576 in decimal.
The 2 is dropped and the result is 4576. Similarly, the input value may be too large
for a 4-byte field in binary format. If the binary fields have zero (0) decimal
positions, then you can avoid this conversion problem by defining integer fields
instead of binary fields.

Note: Binary input fields cannot be defined as match or control fields.

Processing of an Externally Described Binary Input Field
The number of digits of a binary field is exactly the same as the length in the DDS
description. For example, if you define a binary field in your DDS specification as
having 7 digits and 0 decimal positions, the RPG IVcompiler handles the data like
this:
1. The field is defined as a 4-byte binary field in the input specification
2. A Packed(7,0) field is generated for the field in the RPG IV program.

If you want to retain the complete binary field information, redefine the field as a
binary subfield in a data structure or as a binary stand-alone field.

Note that an externally described binary field may have a value outside of the
range allowed by RPG IV binary fields. If the externally described binary field has
zero (0) decimal positions then you can avoid this problem. To do so, you define
the externally described binary field on a definition specification and specify the
EXTBININT keyword on the control specification. This will change the external
format of the externally described field to that of a signed integer.

Float Format
The float format consists of two parts:
v the mantissa and
v the exponent.

The value of a floating-point field is the result of multiplying the mantissa by 10
raised to the power of the exponent. For example, if 1.2345 is the mantissa and 5 is
the exponent then the value of the floating-point field is:

1.2345 * (10 ** 5) = 123450

You define a floating-point field by specifying F in the data type entry of the
appropriate specification.

Numeric Data Type

198 ILE RPG Reference

The decimal positions must be left blank. However, floating-point fields are
considered to have decimal positions. As a result, float variables may not be used
in any place where a numeric value without decimal places is required, such as an
array index, do loop index, etc.

The default initialization and CLEAR value for a floating point field is 0E0.

The length of a floating point field is defined in terms of the number of bytes. It
must be specified as either 4 or 8 bytes. The range of values allowed for a
floating-point field are:

4-byte float (8 digits) -3.4028235E+38 to -1.1754944E-38, 0.0E+0,
+1.1754944E-38 to +3.4028235E+38

8-byte float (16 digits) -1.797693134862315E+308 to -2.225073858507201E-
308, 0.0E+0, +2.225073858507201E-308 to
+1.797693134862315E+308

Note: Float variables conform to the IEEE standard as supported by the i5/OS
operating system. Since float variables are intended to represent ″scientific″
values, a numeric value stored in a float variable may not represent the
exact same value as it would in a packed variable. Float should not be used
when you need to represent numbers exactly to a specific number of
decimal places, such as monetary amounts.

External Display Representation of a Floating-Point Field
See “Specifying an External Format for a Numeric Field” on page 180 for a general
description of external display representation.

The external display representation of float values applies for the following:
v Output of float data with Data-Format entry blank.
v Input of float data with Data-Format entry blank.
v External format of compile-time and prerun-time arrays and tables (when

keyword EXTFMT is omitted).
v Display and input of float values using operation code DSPLY.
v Output of float values on a dump listing.
v Result of built-in function %EDITFLT.

Output: When outputting float values, the external representation uses a format
similar to float literals, except that:
v Values are always written with the character E and the signs for both mantissa

and exponent.
v Values are either 14 or 23 characters long (for 4F and 8F respectively).
v Values are normalized. That is, the decimal point immediately follows the most

significant digit.
v The decimal separator character is either period or comma depending on the

parameter for Control Specification keyword DECEDIT.

Here are some examples of how float values are presented:

+1.2345678E-23
-8.2745739E+03
-5.722748027467392E-123
+1,2857638E+14 if DECEDIT(',') is specified

Numeric Data Type

Chapter 9. Data Types and Data Formats 199

Input: When inputting float values, the value is specified just like a float literal.
The value does not have to be normalized or adjusted in the field. When float
values are defined as array/table initialization data, they are specified in fields
either 14 or 23 characters long (for 4F and 8F respectively).

Note the following about float fields:
v Alignment of float fields may be desired to improve the performance of

accessing float subfields. You can use the ALIGN keyword to align float
subfields defined on a definition specification. 4-byte float subfields are aligned
on a 4-byte boundary and 8-byte float subfields are aligned along a 8-byte
boundary. For more information on aligning float subfields, see “ALIGN” on
page 323.

v Length adjustment is not allowed when the LIKE keyword is used to define a
field like a float field.

v Float input fields cannot be defined as match or control fields.

Integer Format
The integer format is similar to the binary format with two exceptions:
v The integer format allows the full range of binary values
v The number of decimal positions for an integer field is always zero.

You define an integer field by specifying I in the Data-Type entry of the
appropriate specification. You can also define an integer field using the LIKE
keyword on a definition specification where the parameter is an integer field.

The length of an integer field is defined in terms of number of digits; it can be 3, 5,
10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field takes
up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes up 8
bytes. The range of values allowed for an integer field depends on its length.

Field length Range of Allowed Values

3-digit integer -128 to 127

5-digit integer -32768 to 32767

10-digit integer -2147483648 to 2147483647

20-digit integer -9223372036854775808 to 9223372036854775807

Note the following about integer fields:
v Alignment of integer fields may be desired to improve the performance of

accessing integer subfields. You can use the ALIGN keyword to align integer
subfields defined on a definition specification.
2-byte integer subfields are aligned on a 2-byte boundary; 4-byte integer
subfields are aligned along a 4-byte boundary; 8-byte integer subfields are
aligned along an 8-byte boundary. For more information on aligning integer
subfields, see “ALIGN” on page 323.

v If the LIKE keyword is used to define a field like an integer field, the Length
entry may contain a length adjustment in terms of number of digits. The
adjustment value must be such that the resulting number of digits for the field is
3, 5, 10, or 20.

v Integer input fields cannot be defined as match or control fields.

Numeric Data Type

200 ILE RPG Reference

Packed-Decimal Format
Packed-decimal format means that each byte of storage (except for the low order
byte) can contain two decimal numbers. The low-order byte contains one digit in
the leftmost portion and the sign (positive or negative) in the rightmost portion.
The standard signs are used: hexadecimal F for positive numbers and hexadecimal
D for negative numbers. The packed-decimal format looks like this:

The sign portion of the low-order byte indicates whether the numeric value
represented in the digit portions is positive or negative. Figure 94 on page 205
shows what the decimal number 21544 looks like in packed-decimal format.

Determining the Digit Length of a Packed-Decimal Field
Use the following formula to find the length in digits of a packed-decimal field:

Number of digits = 2n − 1,
...where n = number of packed input record positions used.

This formula gives you the maximum number of digits you can represent in
packed-decimal format; the upper limit is 63.

Packed fields can be up to 32 bytes long. Table 32 shows the packed equivalents
for zoned-decimal fields up to 63 digits long:

Table 32. Packed Equivalents for Zoned-Decimal Fields up to 63 Digits Long

Zoned-Decimal
Length in Digits

Number of Bytes
Used in Packed-Decimal Field

1 1

2, 3 2

4, 5 3
...

...

28, 29 15

30, 31 16
...

...

60, 61 31

62, 63 32

For example, an input field read in packed-decimal format has a length of five
bytes (as specified on the input or definition specifications). The number of digits
in this field equals 2(5) − 1 or 9. Therefore, when the field is used in the calculation
specifications, the result field must be nine positions long. The “PACKEVEN” on
page 361 keyword on the definition specification can be used to indicate which of
the two possible sizes you want when you specify a packed subfield using from
and to positions rather than number of digits.

Figure 92. Packed-Decimal Format

Numeric Data Type

Chapter 9. Data Types and Data Formats 201

Unsigned Format
The unsigned integer format is like the integer format except that the range of
values does not include negative numbers. You should use the unsigned format
only when non-negative integer data is expected.

You define an unsigned field by specifying U in the Data-Type entry of the
appropriate specification. You can also define an unsigned field using the LIKE
keyword on the definition specification where the parameter is an unsigned field.

The length of an unsigned field is defined in terms of number of digits; it can be 3,
5, 10, or 20 digits long. A 3-digit field takes up 1 byte of storage; a 5-digit field
takes up 2 bytes of storage; a 10-digit field takes up 4 bytes; a 20-digit field takes
up 8 bytes. The range of values allowed for an unsigned field depends on its
length.

Field length Range of Allowed Values

3-digit unsigned 0 to 255

5-digit unsigned 0 to 65535

10-digit unsigned 0 to 4294967295

20-digit unsigned 0 to 18446744073709551615

For other considerations regarding the use of unsigned fields, including
information on alignment, see “Integer Format” on page 200.

Zoned-Decimal Format
Zoned-decimal format means that each byte of storage can contain one digit or one
character. In the zoned-decimal format, each byte of storage is divided into two
portions: a 4-bit zone portion and a 4-bit digit portion. The zoned-decimal format
looks like this:

The zone portion of the low-order byte indicates the sign (positive or negative) of
the decimal number. The standard signs are used: hexadecimal F for positive
numbers and hexadecimal D for negative numbers. In zoned-decimal format, each
digit in a decimal number includes a zone portion; however, only the low-order
zone portion serves as the sign. Figure 94 on page 205 shows what the number
21544 looks like in zoned-decimal format.

You must consider the change in field length when coding the end position in
positions 40 through 43 of the Output specifications and the field is to be output in
packed format. To find the length of the field after it has been packed, use the
following formula:

Figure 93. Zoned-Decimal Format

Numeric Data Type

202 ILE RPG Reference

You can specify an alternative sign format for zoned-decimal format. In the
alternative sign format, the numeric field is immediately preceded or followed by a
+ or − sign. A plus sign is a hexadecimal 4E, and a minus sign is a hexadecimal 60.

When an alternative sign format is specified, the field length (specified on the
input specification) must include an additional position for the sign. For example,
if a field is 5 digits long and the alternative sign format is specified, a field length
of 6 positions must be specified.

Considerations for Using Numeric Formats
Keep in mind the following when defining numeric fields:
v When coding the end position in positions 47 through 51 of the output

specifications, be sure to use the external format when calculating the number of
bytes to be occupied by the output field. For example, a packed field with 5
digits is stored in 3 bytes, but when output in zoned format, it requires 5 bytes.
When output in integer format, it only requires 2 bytes.

v If you move a character field to a zoned numeric, the sign of the character field
is fixed to zoned positive or zoned negative. The zoned portion of the other
bytes will be forced to ’F’. However, if the digit portion of one of the bytes in
the character field does not contain a valid digit a decimal data error will occur.

v When numeric fields are written out with no editing, the sign is not printed as a
separate character; the last digit of the number will include the sign. This can
produce surprising results; for example, when -625 is written out, the zoned
decimal value is X'F6F2D5' which appears as 62N.

Guidelines for Choosing the Numeric Format for a Field
You should specify the integer or unsigned format for fields when:
v Performance of arithmetic is important

With certain arithmetic operations, it may be important that the value used be
an integer. Some examples where performance may be improved include array
index computations and arguments for the built-in function %SUBST.

v Interacting with routines written in other languages that support an integer data
type, such as ILE C.

v Using fields in file feedback areas that are defined as integer and that may
contain values above 9999 or 999999999.

Packed, zoned, and binary formats should be specified for fields when:
v Using values that have implied decimal positions, such currency values
v Manipulating values having more than 19 digits
v Ensuring a specific number of digits for a field is important

Float format should be specified for fields when:
v The same variable is needed to hold very small and/or very large values that

cannot be represented in packed or zoned values.

n
Field length = + 1

2

. . . where n = number of digits in the zoned decimal field.

(Any remainder from the division is ignored.)

Numeric Data Type

Chapter 9. Data Types and Data Formats 203

However, float format should not be used when more than 16 digits of precision
are needed.

Note: Overflow is more likely to occur with arithmetic operations performed using
the integer or unsigned format, especially when integer arithmetic occurs in
free-form expressions. This is because the intermediate results are kept in
integer or unsigned format rather than a temporary decimal field of
sufficient size.

Representation of Numeric Formats
Figure 94 on page 205 shows what the decimal number 21544 looks like in various
formats.

Numeric Data Type

204 ILE RPG Reference

Note the following about the representations in the figure.
v To obtain the numeric value of a positive binary or integer number, unsigned

number, add the values of the bits that are on (1), but do not include the sign bit
(if present). For an unsigned number, add the values of the bits that are on,
including the leftmost bit.

v The value 21544 cannot be represented in a 2-byte binary field even though it
only uses bits in the low-order two bytes. A 2-byte binary field can only hold up
to 4 digits, and 21544 has 5 digits.

Figure 95 on page 206 shows the number -21544 in integer format.

Figure 94. Representation of the Number 21544 in each of the Numeric Formats

Numeric Data Type

Chapter 9. Data Types and Data Formats 205

Date Data Type
Date fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all date data.

Date constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also, dates used for I/O operations
such as input fields, output fields or key fields are also converted (if required) to
the necessary format for the operation.

The default internal format for date variables is *ISO. This default internal format
can be overridden globally by the control specification keyword DATFMT and
individually by the definition specification keyword DATFMT.

The hierarchy used when determining the internal date format and separator for a
date field is
1. From the DATFMT keyword specified on the definition specification
2. From the DATFMT keyword specified on the control specification
3. *ISO

There are three kinds of date data formats, depending on the range of years that
can be represented. This leads to the possibility of a date overflow or underflow
condition occurring when the result of an operation is a date outside the valid
range for the target field. The formats and ranges are as follows:

Number of Digits in Year Range of Years

2 (*YMD, *DMY, *MDY, *JUL) 1940 to 2039

3 (*CYMD, *CDMY, *CMDY) 1900 to 2899

4 (*ISO, *USA, *EUR, *JIS, *LONGJUL) 0001 to 9999

Table 33 on page 207 lists the RPG-defined formats for date data and their
separators.

For examples on how to code date fields, see the examples in:
v “Date Operations” on page 449
v “Moving Date-Time Data” on page 462
v “ADDDUR (Add Duration)” on page 610
v “MOVE (Move)” on page 720
v “EXTRCT (Extract Date/Time/Timestamp)” on page 689
v “SUBDUR (Subtract Duration)” on page 822
v “TEST (Test Date/Time/Timestamp)” on page 829

Figure 95. Integer Representation of the Number -21544

Date Data Type

206 ILE RPG Reference

Table 33. RPG-defined date formats and separators for Date data type

Format
Name

Description Format (Default
Separator)

Valid Separators Length Example

2-Digit Year Formats

*MDY Month/Day/Year mm/dd/yy / - . , ’&’ 8 01/15/96

*DMY Day/Month/Year dd/mm/yy / - . , ’&’ 8 15/01/96

*YMD Year/Month/Day yy/mm/dd / - . , ’&’ 8 96/01/15

*JUL Julian yy/ddd / - . , ’&’ 6 96/015

4-Digit Year Formats

*ISO International Standards
Organization

yyyy-mm-dd - 10 1996-01-15

*USA IBM USA Standard mm/dd/yyyy / 10 01/15/1996

*EUR IBM European Standard dd.mm.yyyy . 10 15.01.1996

*JIS Japanese Industrial
Standard Christian Era

yyyy-mm-dd - 10 1996-01-15

Table 34 lists the *LOVAL, *HIVAL, and default values for all the RPG-defined date
formats.

Table 34. Date Values

Format name Description *LOVAL *HIVAL Default Value

2-Digit Year Formats

*MDY Month/Day/Year 01/01/40 12/31/39 01/01/40

*DMY Day/Month/Year 01/01/40 31/12/39 01/01/40

*YMD Year/Month/Day 40/01/01 39/12/31 40/01/01

*JUL Julian 40/001 39/365 40/001

4-Digit Year Formats

*ISO International Standards Organization 0001-01-01 9999-12-31 0001-01-01

*USA IBM USA Standard 01/01/0001 12/31/9999 01/01/0001

*EUR IBM European Standard 01.01.0001 31.12.9999 01.01.0001

*JIS Japanese Industrial Standard
Christian Era

0001-01-01 9999-12-31 0001-01-01

Several formats are also supported for fields used by the MOVE, MOVEL, and
TEST operations only. This support is provided for compatibility with externally
defined values that are already in a 3-digit year format and the 4-digit year
*LONGJUL format. It also applies to the 2-digit year formats when *JOBRUN is
specified.

*JOBRUN should be used when the field which it is describing is known to have
the attributes from the job. For instance, a 12-digit numeric result of a TIME
operation will be in the job date format.

Table 35 on page 208 lists the valid externally defined date formats that can be
used in Factor 1 of a MOVE, MOVEL, and TEST operation.

Date Data Type

Chapter 9. Data Types and Data Formats 207

Table 35. Externally defined date formats and separators

Format Name Description Format (Default
Separator)

Valid
Separators

Length Example

2-Digit Year Formats

*JOBRUN1 Determined at runtime from the DATFMT, or DATSEP job values.

3-Digit Year Formats2

*CYMD Century
Year/Month/Day

cyy/mm/dd / - . , ’&’ 9 101/04/25

*CMDY Century
Month/Day/Year

cmm/dd/yy / - . , ’&’ 9 104/25/01

*CDMY Century
Day/Month/Year

cdd/mm/yy / - . , ’&’ 9 125/04/01

4-Digit Year Formats

*LONGJUL Long Julian yyyy/ddd / - . , ’&’ 8 2001/115

Notes:

1. *JOBRUN is valid only for character or numeric dates with a 2-digit year since the run-time job attribute for
DATFMT can only be *MDY, *YMD, *DMY or *JUL.

2. Valid values for the century character ’c’ are:

'c' Years

0 1900-1999
1 2000-2099
. .
. .
. .
9 2800-2899

Separators
When coding a date format on a MOVE, MOVEL or TEST operation, separators are
optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code date formats
without separators see “MOVE (Move)” on page 720, “MOVEL (Move Left)” on
page 741 and “TEST (Test Date/Time/Timestamp)” on page 829.

Initialization
To initialize the Date field to the system date at runtime, specify INZ(*SYS) on the
definition specification. To initialize the Date field to the job date at runtime,
specify INZ(*JOB) on the definition specification. *SYS or *JOB cannot be used with
a field that is exported. The Date field can also be initialized to a literal, named
constant or figurative constant.

Note: Runtime initialization takes place after static intitialization.

Time Data Type
Time fields have a predetermined size and format. They can be defined on the
definition specification. Leading and trailing zeros are required for all time data.

Date Data Type

208 ILE RPG Reference

Time constants or variables used in comparisons or assignments do not have to be
in the same format or use the same separators. Also, times used for I/O operations
such as input fields, output fields or key fields are also converted (if required) to
the necessary format for the operation.

The default internal format for time variables is *ISO. This default internal format
can be overridden globally by the control specification keyword TIMFMT and
individually by the definition specification keyword TIMFMT.

The hierarchy used when determining the internal time format and separator for a
time field is
1. From the TIMFMT keyword specified on the definition specification
2. From the TIMFMT keyword specified on the control specification
3. *ISO

For examples on how to code time fields, see the examples in:
v “Date Operations” on page 449
v “Moving Date-Time Data” on page 462
v “ADDDUR (Add Duration)” on page 610
v “MOVE (Move)” on page 720
v “SUBDUR (Subtract Duration)” on page 822
v “TEST (Test Date/Time/Timestamp)” on page 829

Table 36 shows the time formats supported and their separators.

Table 36. Time formats and separators for Time data type

RPG
Format
Name

Description Format
(Default
Separator)

Valid
Separators

Length Example

*HMS Hours:Minutes:Seconds hh:mm:ss : . , & 8 14:00:00

*ISO International Standards Organization hh.mm.ss . 8 14.00.00

*USA IBM USA Standard. AM and PM can be
any mix of upper and lower case.

hh:mm AM or
hh:mm PM

: 8 02:00 PM

*EUR IBM European Standard hh.mm.ss . 8 14.00.00

*JIS Japanese Industrial Standard Christian Era hh:mm:ss : 8 14:00:00

Table 37 lists the *LOVAL, *HIVAL, and default values for all the time formats.

Table 37. Time Values

RPG Format
Name

Description *LOVAL *HIVAL Default Value

*HMS Hours:Minutes:Seconds 00:00:00 24:00:00 00:00:00

*ISO International Standards Organization 00.00.00 24.00.00 00.00.00

*USA IBM USA Standard. AM and PM can be any
mix of upper and lower case.

00:00 AM 12:00 AM 00:00 AM

*EUR IBM European Standard 00.00.00 24.00.00 00.00.00

*JIS Japanese Industrial Standard Christian Era 00:00:00 24:00:00 00:00:00

Time Data Type

Chapter 9. Data Types and Data Formats 209

Separators
When coding a time format on a MOVE, MOVEL or TEST operation, separators
are optional for character fields. To indicate that there are no separators, specify the
format followed by a zero. For more information on how to code time formats
without separators see “MOVE (Move)” on page 720.

Initialization
To initialize the Time field to the system time at runtime, specify INZ(*SYS) on the
definition specification. *SYS cannot be used with a field that is exported. The Time
field can also be initialized at runtime to a literal, named constant or figurative
constant.

Note: Runtime initialization takes place after static intitialization.

*JOBRUN
A special value of *JOBRUN can be used in Factor 1 of a MOVE, MOVEL or TEST
operation. This indicates that the separator of the field being described is based on
the run-time job attributes, TIMSEP.

Timestamp Data Type
Timestamp fields have a predetermined size and format. They can be defined on
the definition specification. Timestamp data must be in the format

yyyy-mm-dd-hh.mm.ss.mmmmmm (length 26).

Microseconds (.mmmmmm) are optional for timestamp literals and if not provided
will be padded on the right with zeros. Leading zeros are required for all
timestamp data.

The default initialization value for a timestamp is midnight of January 1, 0001
(0001-01-01-00.00.00.000000). The *HIVAL value for a timestamp is
9999-12-31-24.00.00.000000. The *LOVAL value for timestamp is
0001-01-01-00.00.00.000000.

For examples on how to code timestamp fields, see the examples in
v “Date Operations” on page 449
v “Moving Date-Time Data” on page 462
v “ADDDUR (Add Duration)” on page 610
v “MOVE (Move)” on page 720
v “SUBDUR (Subtract Duration)” on page 822

Separators
When coding the timestamp format on a MOVE, MOVEL or TEST operation,
separators are optional for character fields. To indicate that there are no separators,
specify *ISO0. For an example of how *ISO is used without separators see “TEST
(Test Date/Time/Timestamp)” on page 829.

Initialization
To initialize the Timestamp field to the system date at runtime, specify INZ(*SYS)
on the definition specification. *SYS cannot be used with a field that is exported.
The Timestamp field can also be initialized at runtime to a literal, named constant
or figurative constant.

Time Data Type

210 ILE RPG Reference

Note: Runtime initialization takes place after static intitialization.

Object Data Type
The object data type allows you to define a Java object. You specify the object data
type as follows:
* Variable MyString is a Java String object.
D MyString S O CLASS(*JAVA
D :'java.lang.String')

or as follows:
D bdcreate PR O EXTPROC(*JAVA
D :'java.math.BigDecimal'
D :*CONSTRUCTOR)

In position 40, you specify data type O. In the keyword section, you specify the
CLASS keyword to indicate the class of the object. Specify *JAVA for the
environment, and the class name.

If the object is the return type of a Java constructor, the class of the returned object
is the same as the class of the method so you do not specify the CLASS keyword.
Instead, you specify the EXTPROC keyword with environment *JAVA, the class
name, and procedure name *CONSTRUCTOR.

An object cannot be based. It also cannot be a subfield of a data structure.

If an object is an array or table, it must be loaded at runtime. Pre-run and
compile-time arrays and tables of type Object are not allowed.

Every object is initialized to *NULL, which means that the object is not associated
with an instance of its class.

To change the contents of an object, you must use method calls. You cannot
directly access the storage used by the object.

Classes are resolved at runtime. The compiler does not check that a class exists or
that it is compatible with other objects.

Where You Can Specify an Object Field
You can use an object field in the following situations:

Free-Form Evaluation
You can use the EVAL operation to assign one Object item (field or
prototyped procedure) to a field of type Object.

Free-Form Comparison
You can compare one object to another object. You can specify any
comparison, but only the following comparisons are meaningful:
v Equality or inequality with another object. Two objects are equal only if

they represent exactly the same object. Two different objects with the
same value are not equal.
If you want to test for equality of the value of two objects, use the Java
’equals’ method as follows:

Timestamp Data Type

Chapter 9. Data Types and Data Formats 211

D objectEquals PR N EXTPROC(*JAVA
D : 'java.lang.Object'
D : 'equals')
C IF objectEquals (obj1 : obj2)
C ...
C ENDIF

v Equality or inequality with *NULL. An object is equal to *NULL if it is
not associated with a particular instance of its class.

Free-Form Call Parameter
You can code an object as a parameter in a call operation if the parameter
in the prototype is an object.

Notes:

1. Objects are not valid as input or output fields.
2. Assignment validity is not checked. For example, RPG would allow you to

assign an object of class Number to an object variable defined with class String.
If this was not correct, a Java error would occur when you tried to use the
String variable.

Basing Pointer Data Type
Basing pointers are used to locate the storage for based variables. The storage is
accessed by defining a field, array, or data structure as based on a particular basing
pointer variable and setting the basing pointer variable to point to the required
storage location.

For example, consider the based variable MY_FIELD, a character field of length 5,
which is based on the pointer PTR1. The based variable does not have a fixed
location in storage. You must use a pointer to indicate the current location of the
storage for the variable.

Suppose that the following is the layout of some area of storage:
If we set pointer PTR1 to point to the G,

D Obj S O CLASS(*JAVA
D :'java.lang.Object')
D Str S O CLASS(*JAVA
D :'java.lang.String')
D Num S O CLASS(*JAVA
D :'java.math.BigDecimal')

* Since all Java classes are subclasses of class 'java.lang.Object',
* any object can be assigned to a variable of this class.
* The following two assignments are valid.
C EVAL Obj = Str
C EVAL Obj = Num
* However, it would probably not be valid to assign Str to Num.

Figure 96. Object Data Type Example

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

Object Data Type

212 ILE RPG Reference

MY_FIELD is now located in storage starting at the ’G’, so its value is ’GHIJK’. If
the pointer is moved to point to the ’J’, the value of MY_FIELD becomes ’JKLMN’:
If MY_FIELD is now changed by an EVAL statement to ’HELLO’, the storage

starting at the ’J’ would change:

Use the BASED keyword on the definition specification (see
“BASED(basing_pointer_name)” on page 325) to define a basing pointer for a field.
Basing pointers have the same scope as the based field.

The length of the basing pointer field must be 16 bytes long and must be aligned
on a 16 byte boundary. This requirement for boundary alignment can cause a
pointer subfield of a data structure not to follow the preceding field directly, and
can cause multiple occurrence data structures to have non-contiguous occurrences.
For more information on the alignment of subfields, see “Aligning Data Structure
Subfields” on page 140.

The default initialization value for basing pointers is *NULL.

Note: When coding basing pointers, you must be sure that you set the pointer to
storage that is large enough and of the correct type for the based field.
Figure 101 on page 218 shows some examples of how not to code basing
pointers.

Note: You can add or subtract an offset from a pointer in an expression, for
example EVAL ptr = ptr + offset. When doing pointer arithmetic be aware
that it is your responsibility to ensure that you are still pointing within the
storage of the item you are pointing to. In most cases no exception will be
issued if you point before or after the item.

When subtracting two pointers to determine the offset between them, the
pointers must be pointing to the same space, or the same type of storage.
For example, you can subtract two pointers in static storage, or two pointers
in automatic storage, or two pointers within the same user space.

Note: When a data structure contains a pointer, and the data structure is copied to
a character field, or to another data structure that does not have a pointer
subfield defined, the pointer information may be lost in the copied value.
The actual 16-byte value of the pointer will be copied, but there is extra

PTR1-------------------.
|
V

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

PTR1-------------------.
|
V

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O |

PTR1-------------------.
|
V

| A | B | C | D | E | F | G | H | I | H | E | L | L | O | O |

Basing Pointer Data Type

Chapter 9. Data Types and Data Formats 213

information in the system that indicates that the 16-byte area contains a
pointer; that extra information may not be set in the copied value.

If the copied value is copied back to the original value, the pointer may be
lost in the original value.

Passing a data structure containing pointers as a prototyped parameter by
read-only reference (CONST keyword) or by value (VALUE keyword) may
lose pointer information in the received parameter, if the parameter is
prototyped as a character value rather than using the LIKEDS keyword. A
similar problem can occur when returning a data structure containing a
pointer.

Setting a Basing Pointer
You set or change the location of the based variable by setting or changing the
basing pointer in one of the following ways:
v Initializing with INZ(%ADDR(FLD)) where FLD is a non-based variable
v Assigning the pointer to the result of %ADDR(X) where X is any variable
v Assigning the pointer to the value of another pointer
v Using ALLOC or REALLOC (see “ALLOC (Allocate Storage)” on page 612,

“REALLOC (Reallocate Storage with New Length)” on page 785, and the IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide for examples)

v Moving the pointer forward or backward in storage using pointer arithmetic:
EVAL PTR = PTR + offset

(″offset″ is the distance in bytes that the pointer is moved)

Examples

The following shows how you can add and subtract offsets from pointers and also
determine the difference in offsets between two pointers.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
*
* Define a based data structure, array and field.
* If PTR1 is not defined, it will be implicitly defined
* by the compiler.
*
* Note that before these based fields or structures can be used,
* the basing pointer must be set to point to the correct storage
* location.
*
D DSbased DS BASED(PTR1)
D Field1 1 16A
D Field2 2
D
D ARRAY S 20A DIM(12) BASED(PRT2)
D
D Temp_fld S * BASED(PRT3)
D
D PTR2 S * INZ
D PTR3 S * INZ(*NULL)

Figure 97. Defining based structures and fields

Basing Pointer Data Type

214 ILE RPG Reference

Figure 99 shows how to obtain the number of days in Julian format, if the Julian
date is required.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
D P1 s *
D P2 s *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++
*
* Allocate 20 bytes of storage for pointer P1.
C ALLOC 20 P1
* Initialize the storage to 'abcdefghij'
C EVAL %STR(P1:20) = 'abcdefghij'
* Set P2 to point to the 9th byte of this storage.
C EVAL P2 = P1 + 8
* Show that P2 is pointing at 'i'. %STR returns the data that
* the pointer is pointing to up to but not incuding the first
* null-terminator x'00' that it finds, but it only searches for
* the given length, which is 1 in this case.
C EVAL Result = %STR(P2:1)
C DSPLY Result 1
* Set P2 to point to the previous byte
C EVAL P2 = P2 - 1
* Show that P2 is pointing at 'h'
C EVAL Result = %STR(P2:1)
C DSPLY Result
* Find out how far P1 and P2 are apart. (7 bytes)
C EVAL Diff = P2 - P1
C DSPLY Diff 5 0
* Free P1's storage
C DEALLOC P1
C RETURN

Figure 98. Pointer Arithmetic

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+....
HKeywords++
H DATFMT(*JUL)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
D JulDate S D INZ(D'95/177')
D DATFMT(*JUL)
D JulDS DS BASED(JulPTR)
D Jul_yy 2 0
D Jul_sep 1
D Jul_ddd 3 0
D JulDay S 3 0
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++
*
* Set the basing pointer for the structure overlaying the
* Julian date.
C EVAL JulPTR = %ADDR(JulDate)
* Extract the day portion of the Julian date
C EVAL JulDay = Jul_ddd

Figure 99. Obtaining a Julian Date

Basing Pointer Data Type

Chapter 9. Data Types and Data Formats 215

Figure 100 illustrates the use of pointers, based structures and system APIs. This
program does the following:
1. Receives the Library and File name you wish to process
2. Creates a User space using the QUSCRTUS API
3. Calls an API (QUSLMBR) to list the members in the requested file
4. Gets a pointer to the User space using the QUSPTRUS API
5. Displays a message with the number of members and the name of the first and

last member in the file

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
D SPACENAME DS
D 10 INZ('LISTSPACE')
D 10 INZ('QTEMP')
D ATTRIBUTE S 10 INZ('LSTMBR')
D INIT_SIZE S 9B 0 INZ(9999999)
D AUTHORITY S 10 INZ('*CHANGE')
D TEXT S 50 INZ('File member space')
D SPACE DS BASED(PTR)
D SP1 32767
*
* ARR is used with OFFSET to access the beginning of the
* member information in SP1
*
D ARR 1 OVERLAY(SP1) DIM(32767)
*
* OFFSET is pointing to start of the member information in SP1
*
D OFFSET 9B 0 OVERLAY(SP1:125)
*
* Size has number of member names retrieved
*
D SIZE 9B 0 OVERLAY(SP1:133)
D MBRPTR S *
D MBRARR S 10 BASED(MBRPTR) DIM(32767)
D PTR S *
D FILE_LIB S 20
D FILE S 10
D LIB S 10
D WHICHMBR S 10 INZ('*ALL ')
D OVERRIDE S 1 INZ('1')
D FIRST_LAST S 50 INZ(' MEMBERS, +
D FIRST = , +
D LAST = ')
D IGNERR DS
D 9B 0 INZ(15)
D 9B 0
D 7A

Figure 100. Example of using pointers and based structures with an API (Part 1 of 2)

Basing Pointer Data Type

216 ILE RPG Reference

When coding basing pointers, make sure that the pointer is set to storage that is
large enough and of the correct type for the based field. Figure 101 on page 218
shows some examples of how not to code basing pointers.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++
*
* Receive file and library you want to process
*
C *ENTRY PLIST
C FILE PARM FILEPARM 10
C LIB PARM LIBPARM 10
*
* Delete the user space if it exists
*
C CALL 'QUSDLTUS' 10
C PARM SPACENAME
C PARM IGNERR
*
* Create the user space
*
C CALL 'QUSCRTUS'
C PARM SPACENAME
C PARM ATTRIBUTE
C PARM INIT_SIZE
C PARM ' ' INIT_VALUE 1
C PARM AUTHORITY
C PARM TEXT
*
* Call the API to list the members in the requested file
*
C CALL 'QUSLMBR'
C PARM SPACENAME
C PARM 'MBRL0100' MBR_LIST 8
C PARM FILE_LIB
C PARM WHICHMBR
C PARM OVERRIDE
*
* Get a pointer to the user-space
*
C CALL 'QUSPTRUS'
C PARM SPACENAME
C PARM PTR
*
* Set the basing pointer for the member array
* MBRARR now overlays ARR starting at the beginning of
* the member information.
*
C EVAL MBRPTR = %ADDR(ARR(OFFSET))
C MOVE SIZE CHARSIZE 3
C EVAL %SUBST(FIRST_LAST:1:3) = CHARSIZE
C EVAL %SUBST(FIRST_LAST:23:10) = MBRARR(1)
C EVAL %SUBST(FIRST_LAST:41:10) = MBRARR(SIZE)
C FIRST_LAST DSPLY
C EVAL *INLR = '1'

Figure 100. Example of using pointers and based structures with an API (Part 2 of 2)

Basing Pointer Data Type

Chapter 9. Data Types and Data Formats 217

Procedure Pointer Data Type
Procedure pointers are used to point to procedures or functions. A procedure
pointer points to an entry point that is bound into the program. Procedure pointers
are defined on the definition specification.

The length of the procedure pointer field must be 16 bytes long and must be
aligned on a 16 byte boundary. This requirement for boundary alignment can cause
a pointer subfield of a data structure not to follow the preceding field directly, and
can cause multiple occurrence data structures to have non-contiguous occurrences.
For more information on the alignment of subfields, see “Aligning Data Structure
Subfields” on page 140.

The default initialization value for procedure pointers is *NULL.

Examples

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++

*
D chr10 S 10a based(ptr1)
D char100 S 100a based(ptr1)
D p1 S 5p 0 based(ptr1)
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01++++++++++++++Opcode(E)+Extended Factor 2++++++++++++++++++++++++++++

*
*
* Set ptr1 to the address of p1, a numeric field
* Set chr10 (which is based on ptr1) to 'abc'
* The data written to p1 will be unreliable because of the data
* type incompatibility.
*

C EVAL ptr1 = %addr(p1)
C EVAL chr10 = 'abc'

*
* Set ptr1 to the address of chr10, a 10-byte field.
* Set chr100, a 100-byte field, all to 'x'
* 10 bytes are written to chr10, and 90 bytes are written in other
* storage, the location being unknown.
*

C EVAL ptr1 = %addr(chr10)
C EVAL chr100 = *all'x'

Figure 101. How Not to Code Basing Pointers

Procedure Pointer Data Type

218 ILE RPG Reference

Database Null Value Support
In an ILE RPG program, you can select one of three different ways of handling
null-capable fields from an externally described database file. This depends on
how the ALWNULL keyword on a control specification is used (ALWNULL can
also be specified as a command parameter):

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++

*
* Define a basing pointer field and initialize to the address of the
* data structure My_Struct.
*
D My_Struct DS
D My_array 10 DIM(50)
D
D Ptr1 S 16* INZ(%ADDR(My_Struct))
*
* Or equivalently, defaults to length 16 if length not defined
*
D Ptr1 S * INZ(%ADDR(My_Struct))
*
* Define a procedure pointer field and initialize to NULL
*
D Ptr1 S 16* PROCPTR INZ(*NULL)
*
* Define a procedure pointer field and initialize to the address
* of the procedure My_Proc.
*
D Ptr1 S 16* PROCPTR INZ(%PADDR(My_Proc))
*
* Define pointers in a multiple occurrence data structure and map out
* the storage.
*
DDataS DS OCCURS(2)
D ptr1 *
D ptr2 *
D Switch 1A

Storage map would be:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ptr1

DataS

16 bytes

ptr2 16 bytes

Switch 1 byte

Pad 15 bytes

ptr1

16 bytesptr2

16 bytes

Switch 1 byte

Figure 102. Defining pointers

Database Null Value Support

Chapter 9. Data Types and Data Formats 219

1. ALWNULL(*USRCTL) - read, write, update, and delete records with null values
and retrieve and position-to records with null keys.

2. ALWNULL(*INPUTONLY) - read records with null values to access the data in
the null fields

3. ALWNULL(*NO) - do not process records with null values

Note: For a program-described file, a null value in the record always causes a data
mapping error, regardless of the value specified on the ALWNULL keyword.

User Controlled Support for Null-Capable Fields and Key
Fields

When an externally described file contains null-capable fields and the
ALWNULL(*USRCTL) keyword is specified on a control specification, you can do
the following:
v Read, write, update, and delete records with null values from externally

described database files.
v Retrieve and position-to records with null keys using keyed operations, by

specifying an indicator in factor 2 of the KFLD associated with the field.
v Determine whether a null-capable field is actually null using the %NULLIND

built-in function on the right-hand-side of an expression.
v Set a null-capable field to be null for output or update using the %NULLIND

built-in function on the left-hand-side of an expression.

You are responsible for ensuring that fields containing null values are used
correctly within the program. For example, if you use a null-capable field as factor
2 of a MOVE operation, you should first check if it is null before you do the
MOVE, otherwise you may corrupt your result field value. You should also be
careful when outputting a null-capable field to a file that does not have the field
defined as null-capable, for example a WORKSTN or PRINTER file, or a
program-described file.

Note: The value of the null indicator for a null-capable field is only considered for
these operations: input, output and file-positioning. Here are some examples
of operations where the the null indicator is not taken into consideration:
v DSPLY of a null-capable field shows the contents of the field even if the

null indicator is on.
v If you move a null-capable field to another null-capable field, and the

factor 2 field has the null indicator on, the the result field will get the data
from the factor 2 field. The corresponding null indicator for the result
field will not be set on.

v Comparison operations, including SORTA and LOOKUP, with null
capable fields do not consider the null indicators.

A field is considered null-capable if it is null-capable in any externally described
database record and is not defined as a constant in the program.

When a field is considered null-capable in an RPG program, a null indicator is
associated with the field. Note the following:
v If the field is a multiple-occurrence data structure or a table, an array of null

indicators will be associated with the field. Each null indicator corresponds to an
occurrence of the data structure or element of the table.

Database Null Value Support

220 ILE RPG Reference

v If the field is an array element, the entire array will be considered null-capable.
An array of null indicators will be associated with the array, each null indicator
corresponds to an array element.

v If the field is an element of an array subfield of a multiple-occurrence data
structure, an array of null indicators will be associated with the array for each
occurrence of the data structure.

Null indicators are initialized to zeros during program initialization and thus
null-capable fields do not contain null values when the program starts execution.

Null-capable fields in externally-described data structures
If the file used for an externally described data structure has null-capable fields
defined, the matching RPG subfields are defined to be null-capable. Similarly, if a
record format has null-capable fields, a data structure defined with LIKEREC will
have null-capable subfields. When a data structure has null-capable subfields,
another data structure defined like that data structure using LIKEDS will also have
null-capable subfields. However, using the LIKE keyword to define one field like
another null-capable field does not cause the new field to be null-capable.

Input of Null-Capable Fields
For a field that is null-capable in the RPG program, the following will apply on
input, for DISK, SEQ, WORKSTN and SPECIAL files:
v When a null-capable field is read from an externally described file, the null

indicator for the field is set on if the field is null in the record. Otherwise, the
null indicator is set off.

v If field indicators are specified and the null-capable field is null, all the field
indicators will be set off.

v If a field is defined as null-capable in one file, and not null-capable in another,
then the field will be considered null-capable in the RPG program. However,
when you read the second file, the null indicator associated with the field will
always be set off.

v An input operation from a program-described file using a data structure in the
result field does not affect the null indicator associated with the data structure or
any of its subfields.

v Reading null-capable fields using input specifications for program-described files
always sets off the associated null indicators.

v If null-capable fields are not selected to be read due to a field-record-relation
indicator, the associated null indicator will not be changed.

v When a record format or file with null-capable fields is used on an input
operation (READ, READP, READE, READPE, CHAIN) and a data structure is
coded in the result field, the values of %NULLIND for null-capable data
structure subfields will be changed by the operation. The values of %NULLIND
will not be set for the input fields for the file, unless the input fields happen to
be the subfields used in the input operation.

Null-capable fields cannot be used as match fields or control-level fields.

Output of Null-Capable Fields
When a null-capable field is written (output or update) to an externally described
file, a null value is written out if the null indicator for the field is on at the time of
the operation.

Database Null Value Support

Chapter 9. Data Types and Data Formats 221

When a null-capable field is output to or updated in an externally described
database file, then if the field is null, the value placed in the buffer will be ignored
by data management.

Note: Fields that have the null indicator on at the time of output have the data
moved to the buffer. This means that errors such as decimal-data error, or
basing pointer not set, will occur even if the null indicator for the field is on.

During an output operation to an externally described database file, if the file
contains fields that are considered null-capable in the program but not null-capable
in the file, the null indicators associated with those null-capable fields will not be
used.

When a record format with null-capable fields is used on a WRITE or UPDATE
operation, and a data structure is coded in the result field, the null attributes of the
data structure subfields will be used to set the null-byte-map for the output or
update record.

When a record format with null-capable fields is used on an UPDATE operation
with %FIELDS, then the null-byte-map information will be taken from the null
attributes of the specified fields.

Figure 103 on page 223 shows how to read, write and update records with null
values when the ALWNULL(*USRCTL) option is used.

Database Null Value Support

222 ILE RPG Reference

Keyed Operations
If you have a null-capable key field, you can search for records containing null
values by specifying an indicator in factor 2 of the KFLD operation and setting that
indicator on before the keyed input operation. If you do not want a null key to be
selected, you set the indicator off.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a %KDS data structure is used to specify the
keys, then the null-key-byte-map information will be taken from the null attributes
of the subfields in the data structure specified as the argument of %KDS.

When a record format with null-capable key fields is used on a CHAIN, SETLL,
READE, or READPE operation, and a list of keyfields is used, then the
null-key-byte-map information will be taken from the null attributes of the
specified keys.

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+....
*
*
* Specify the ALWNULL(*USRCTL) keyword on a control
* specification or compile the ILE RPG program with ALWNULL(*USRCTL)
* on the command.
*
HKeywords++
*H ALWNULL(*USRCTL)
*
* DISKFILE contains a record REC which has 2 fields: FLD1 and FLD2
* Both FLD1 and FLD2 are null-capable.
*
FDISKFILE UF A E DISK
*
* Read the first record.
* Update the record with new values for any fields which are not
* null.
C READ REC 10
C IF NOT %NULLIND(Fld1)
C MOVE 'FLD1' Fld1
C ENDIF
C IF NOT %NULLIND(Fld2)
C MOVE 'FLD2' Fld2
C ENDIF
C UPDATE REC
*
* Read another record.
* Update the record so that all fields are null.
* There is no need to set the values of the fields because they
* would be ignored.
C READ REC 10
C EVAL %NULLIND(Fld1) = *ON
C EVAL %NULLIND(Fld2) = *ON
C UPDATE REC
*
* Write a new record where Fld 1 is null and Fld 2 is not null.
*
C EVAL %NULLIND(Fld1) = *ON
C EVAL %NULLIND(Fld2) = *OFF
C EVAL Fld2 = 'New value'
C WRITE REC

Figure 103. Input and output of null-capable fields

Database Null Value Support

Chapter 9. Data Types and Data Formats 223

Figure 104 and Figure 105 on page 225 illustrate how keyed operations are used to
position and retrieve records with null keys.

// Assume File1 below contains a record Rec1 with a composite key
// made up of three key fields: Key1, Key2, and Key3. Key2 and Key3
// are null-capable. Key1 is not null-capable.
// Each key field is two characters long.

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+..
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++
FFile1 IF E DISK

// Define two data structures with the keys for the file
// Subfields Key2 and Key3 of both data structures will be
// null-capable.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D Keys DS LIKEREC(Rec1 : *KEY)
D OtherKeys DS LIKEDS(keys)

// Define a data structure with the input fields of the file
// Subfields Key2 and Key3 of the data structures will be
// null-capable.

D File1Flds DS LIKEREC(Rec1 : *INPUT)
/free

// The null indicator for Keys.Key2 is ON and the
// null indicator for Keys.Key3 is OFF, for the
// SETLL operation below. File1 will be positioned
// at the next record that has a key that is equal
// to or greater than 'AA??CC' (where ?? is used
// in this example to indicate NULL)

// Because %NULLIND(Keys.Key2) is ON, the actual content
// in the search argument Keys.Key2 will be ignored.

// If a record exists in File1 with 'AA' in Key1, a null
// Key2, and 'CC' in Key3, %EQUAL(File1) will be true.

Keys.Key1 = 'AA';
Keys.Key3 = 'CC';
%NULLIND(Keys.Key2) = *ON;
%NULLIND(Keys.Key3) = *OFF;
SETLL %KDS(Keys) Rec1;
// The CHAIN operation below will retrieve a record
// with 'JJ' in Key1, 'KK' in Key2, and a null Key3.
// Since %NULLIND(OtherKeys.Key3) is ON, the value of
// 'XX' in OtherKeys.Key3 will not be used. This means
// that if File1 actually has a record with a key
// 'JJKKXX', that record will not be retrieved.

OtherKeys.Key3 = 'XX';
%NULLIND(Keys.Key3) = *ON;
CHAIN ('JJ' : 'KK' : OtherKeys.Key3) Rec1;
// The CHAIN operation below uses a partial key as the
// search argument. It will retrieve a record with 'NN'
// in Key1, a null key2, and any value including a null
// value in Key3. The record is retrieved into the
// File1Flds data structure, which will cause the
// null flags for File1Flds.Key2 and File1Flds.Key3
// to be changed by the operation (if the CHAIN
// finds a record).

Keys.Key1 = 'NN';
%NULLIND(Keys.Key2) = *ON;
CHAIN %KDS(Keys : 2) Rec1 File1Flds;

Figure 104. Example of handling null-capable key fields

Database Null Value Support

224 ILE RPG Reference

* Using the same file as the previous example, define two
* key lists, one containing three keys and one containing
* two keys.
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.
C Full_Kl KLIST
C KFLD Key1
C KFLD *IN02 Key2
C KFLD *IN03 Key3
C Partial_Kl KLIST
C KFLD Key1
C KFLD *IN05 Key2
*
* *IN02 is ON and *IN03 is OFF for the SETLL operation below.
* File1 will be positioned at the next record that has a key
* that is equal to or greater than 'AA??CC' (where ?? is used
* in this example to indicate NULL)
*
* Because *IN02 is ON, the actual content in the search argument
* for Key2 will be ignored.
*
* If a record exists in File1 with 'AA' in Key1, a null Key2, and
* 'CC' in Key3, indicator 90 (the Eq indicator) will be set ON.
*
C MOVE 'AA' Key1
C MOVE 'CC' Key3
C EVAL *IN02 = '1'
C EVAL *IN03 = '0'
C Full_Kl SETLL Rec1 90

Figure 105. Example of handling null key fields with KLIST (Part 1 of 2)

Database Null Value Support

Chapter 9. Data Types and Data Formats 225

Input-Only Support for Null-Capable Fields
When an externally described input-only file contains null-capable fields and the
ALWNULL(*INPUTONLY) keyword is specified on a control specification, the
following conditions apply:
v When a record is retrieved from a database file and there are some fields

containing null values in the record, database default values for the null-capable
fields will be placed into those fields containing null values. The default value
will be the user defined DDS defaults or system defaults.

v You will not be able to determine whether any given field in the record has a
null value.

v Control-level indicators, match-field entries and field indicators are not allowed
on an input specification if the input field is a null-capable field from an
externally described input-only file.

v Keyed operations are not allowed when factor 1 of a keyed input calculation
operation corresponds to a null-capable key field in an externally described
input-only file.

Note: The same conditions apply for *INPUTONLY or *YES when specified on the
ALWNULL command parameter.

*
* The CHAIN operation below will retrieve a record with 'JJ' in Key1,
* 'KK' in Key2, and a null Key3. Again, because *IN03 is ON, even
* if the programmer had moved some value (say 'XX') into the search
* argument for Key3, 'XX' will not be used. This means if File1
* actually has a record with a key 'JJKKXX', that record will not
* be retrieved.
*
C MOVE 'JJ' Key1
C MOVE 'KK' Key2
C EVAL *IN02 = '0'
C EVAL *IN03 = '1'
C Full_Kl CHAIN Rec1 80
*
* The CHAIN operation below uses a partial key as the search argument.
* It will retrieve a record with 'NN' in Key1, a null key2, and any
* value including a null value in Key3.
*
* In the database, the NULL value occupies the highest position in
* the collating sequence. Assume the keys in File1 are in ascending
* sequence. If File1 has a record with 'NN??xx' as key (where ??
* means NULL and xx means any value other than NULL), that record
* will be retrieved. If such a record does not exist in File1, but
* File1 has a record with 'NN????' as key, the 'NN????' record will
* be retrieved. The null flags for Key2 and Key3 will be set ON
* as a result.
*
C MOVE 'NN' Key1
C SETON 05
C Partial_Kl CHAIN Rec1 70

Figure 105. Example of handling null key fields with KLIST (Part 2 of 2)

Database Null Value Support

226 ILE RPG Reference

ALWNULL(*NO)
When an externally described file contains null-capable fields and the
ALWNULL(*NO) keyword is specified on a control specification, the following
conditions apply:
v A record containing null values retrieved from a file will cause a data mapping

error and an error message will be issued.
v Data in the record is not accessible and none of the fields in the record can be

updated with the values from the input record containing null values.
v With this option, you cannot place null values in null-capable fields for updating

or adding a record. If you want to place null values in null-capable fields, use
the ALWNULL(*USRCTL) option.

Error Handling for Database Data Mapping Errors
For any input or output operation, a data mapping error will cause a severe error
message to be issued. For blocked output, if one or more of the records in the
block contains data mapping errors and the file is closed before reaching the end
of the block, a severe error message is issued and a system dump is created.

Database Null Value Support

Chapter 9. Data Types and Data Formats 227

Error Handling for Database Data Mapping Errors

228 ILE RPG Reference

Chapter 10. Editing Numeric Fields

Editing provides a means of:
v Punctuating numeric fields, including the printing of currency symbols, commas,

periods, minus sign, and floating minus
v Moving a field sign from the rightmost digit to the end of the field
v Blanking zero fields
v Managing spacing in arrays
v Editing numeric values containing dates
v Floating a currency symbol
v Filling a print field with asterisks

This chapter applies only to non-float numeric fields. To output float fields in the
external display representation, specify blank in position 52 of the output
specification. To obtain the external display representation of a float value in
calculations, use the %EDITFLT built-in function.

A field can be edited by edit codes, or edit words. You can print fields in edited
format using output specifications or you can obtain the edited value of the field
in calulation specifications using the built-in functions %EDITC (edit code) and
%EDITW (edit word).

When you print fields that are not edited, the fields are printed as follows:
v Float fields are printed in the external display representation.
v Other numeric fields are printed in zoned numeric representation.

The following examples show why you may want to edit numeric output fields.

Type of Field Field in the Computer Printing of Unedited
Field

Printing of Edited
Field

Alphanumeric

Numeric
(positive)

Numeric
(negative)

JOHN T SMITH

0047652

004765K

JOHN T SMITH

0047652

004765K

JOHN T SMITH

47652

47652-

The unedited alphanumeric field and the unedited positive numeric field are easy
to read when printed, but the unedited negative numeric field is confusing because
it contains a K, which is not numeric. The K is a combination of the digit 2 and the
negative sign for the field. They are combined so that one of the positions of the
field does not have to be set aside for the sign. The combination is convenient for
storing the field in the computer, but it makes the output hard to read. Therefore,
to improve the readability of the printed output, numeric fields should be edited
before they are printed.

© Copyright IBM Corp. 1994, 2010 229

Edit Codes
Edit codes provide a means of editing numeric fields according to a predefined
pattern. They are divided into three categories: simple (X, Y, Z), combination (1
through 4, A through D, J through Q), and user-defined (5 through 9). In output
specifications, you enter the edit code in position 44 of the field to be edited. In
calculation specifications, you specify the edit code as the second parameter of the
%EDITC built-in function.

Simple Edit Codes
You can use simple edit codes to edit numeric fields without having to specify any
punctuation. These codes and their functions are:
v The X edit code ensures a hexadecimal F sign for positive fields and a

hexadecimal D sign for negative fields. However, because the system does this,
you normally do not have to specify this code. Leading zeros are not
suppressed. You can use %EDITC with the X edit code to convert a number to
character with leading zeros. However, be aware that negative numbers can
produce unexpected results; for example, %EDITC(-00123:’X’) will give the result
’0012L’.

v The Y edit code is normally used to edit a 3- to 9-digit date field. It suppresses
the leftmost zeros of date fields, up to but not including the digit preceding the
first separator. Slashes are inserted to separate the day, month, and year. The
“DATEDIT(fmt{separator})” on page 262 and “DECEDIT(*JOBRUN | ’value’)”
on page 264 keywords on the control specification can be used to alter edit
formats.

Note: The Y edit code is not valid for *YEAR, *MONTH, and *DAY.
v The Z edit code removes the sign (plus or minus) from and suppresses the

leading zeros of a numeric field. The decimal point is not placed in the field.

Combination Edit Codes
The combination edit codes (1 through 4, A through D, J through Q) punctuate a
numeric field.

The DECEDIT keyword on the control specification determines what character is
used for the decimal separator and whether leading zeros are suppressed. The
decimal position of the source field determines whether and where a decimal point
is placed. If decimal positions are specified for the source field and the zero
balance is to be suppressed, the decimal separator is included only if the field is
not zero. If a zero balance is to be suppressed, a zero field is output as blanks.

When a zero balance is not to be suppressed and the field is equal to zero, either
of the following is output:
v A decimal separator followed by n zeros, where n is the number of decimal

places in the field
v A zero in the units position of a field if no decimal places are specified.

You can use a floating currency symbol or asterisk protection with any of the 12
combination edit codes. The floating currency symbol appears to the left of the first
significant digit. The floating currency symbol does not print on a zero balance
when an edit code is used that suppresses the zero balance. The currency symbol
does not appear on a zero balance when an edit code is used that suppresses the
zero balance.

Edit Codes

230 ILE RPG Reference

The currency symbol for the program is a dollar sign ($) unless a currency symbol
is specified with the CURSYM keyword on the control specification.

To specify a floating currency symbol in output specifications, code the currency
symbol in positions 53-55 as well as an edit code in position 44 for the field to be
edited.

For built-in function %EDITC, you specify a floating currency symbol in the third
parameter. To use the currency symbol for the program, specify *CURSYM. To use
another currency symbol, specify a character constant of length 1.

Asterisk protection causes an asterisk to replace each zero suppressed. A complete
field of asterisks replaces the fiield on a zero balance source field. To specify
asterisk protection in output specifications, code an asterisk constant in positions
53 through 55 of the output specifications, along with an edit code. To specify
asterisk protection using the built-in function %EDITC, specify *ASTFILL as the
third parameter.

Asterisk fill and the floating currency symbol cannot be used with the simple (X, Y,
Z) or with the user-defined (5 through 9) edit codes.

A currency symbol can appear before the asterisk fill (fixed currency symbol). You
can do this in output specifications with the following coding:
1. Place a currency symbol constant in position 53 of the first output specification.

The end position specified in positions 47-51 should be one space before the
beginning of the edited field.

2. In the second output specification, place the edit field in positions 30-43, an edit
code in position 44, end position of the edit field in positions 47-51, and ’*’ in
positions 53-55.

You can do this using the %EDITC built-in function by concatenating the currency
symbol to the %EDITC result.

C EVAL X = '$' + %EDITC(N: 'A' : *ASTFILL)

In output specifications, when an edit code is used to print an entire array, two
blanks precede each element of the array (except the first element).

Note: You cannot edit an array using the %EDITC built-in function.

Table 38 summarizes the functions of the combination edit codes. The codes edit
the field in the format listed on the left. A negative field can be punctuated with
no sign, CR, a minus sign (-), or a floating minus sign as shown on the top of the
figure.

Table 38. Combination Edit Codes

Negative Balance Indicator

Prints with
Grouping
Separator

Prints Zero
Balance

No Sign CR - Floating
Minus

Yes Yes 1 A J N

Yes No 2 B K 0

No Yes 3 C L P

No No 4 D M Q

Edit Codes

Chapter 10. Editing Numeric Fields 231

User-Defined Edit Codes
IBM has predefined edit codes 5 through 9. You can use them as they are, or you
can delete them and create your own. For a description of the IBM-supplied edit
codes, see the iSeries Information Center programming category.

The user-defined edit codes allow you to handle common editing problems that
would otherwise require the use of an edit word. Instead of the repetitive coding
of the same edit word, a user-defined edit code can be used. These codes are
system defined by the CL command CRTEDTD (Create Edit Description).

When you edit a field defined to have decimal places, be sure to use an edit word
that has an editing mask for both the fractional and integer portions of the field.
Remember that when a user-defined edit code is specified in a program, any
system changes made to that user-defined edit code are not reflected until the
program is recompiled. For further information on CRTEDTD, see the iSeries
Information Center programming category.

Editing Considerations
Remember the following when you specify any of the edit codes:
v Edit fields of a non-printer file with caution. If you do edit fields of a

non-printer file, be aware of the contents of the edited fields and the effects of
any operations you do on them. For example, if you use the file as input, the
fields written out with editing must be considered character fields, not numeric
fields.

v Consideration should be given to data added by the edit operation. The amount
of punctuation added increases the overall length of the edited value. If these
added characters are not considered when editing in output specifications, the
output fields may overlap.

v The end position specified for output is the end position of the edited field. For
example, if any of the edit codes J through M are specified, the end position is
the position of the minus sign (or blank if the field is positive).

v The compiler assigns a character position for the sign even for unsigned numeric
fields.

Summary of Edit Codes
Table 39 summarizes the edit codes and the options they provide. A simplified
version of this table is printed above positions 45 through 70 on the output
specifications. Table 40 on page 234 shows how fields look after they are edited.

Table 41 on page 235 shows the effect that the different edit codes have on the
same field with a specified end position for output.

Table 39. Edit Codes

DECEDIT Keyword Parameter

Edit
Code

Commas Decimal
Point

Sign for
Negative
Balance

’.’ ’,’ ’0,’ ’0.’ Zero
Suppress

1 Yes Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

2 Yes Yes No Sign Blanks Blanks Blanks Blanks Yes

3 Yes No Sign .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

4 Yes No Sign Blanks Blanks Blanks Blanks Yes

Edit Codes

232 ILE RPG Reference

Table 39. Edit Codes (continued)

DECEDIT Keyword Parameter

Edit
Code

Commas Decimal
Point

Sign for
Negative
Balance

’.’ ’,’ ’0,’ ’0.’ Zero
Suppress

5-91

A Yes Yes CR .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

B Yes Yes CR Blanks Blanks Blanks Blanks Yes

C Yes CR .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

D Yes CR Blanks Blanks Blanks Blanks Yes

J Yes Yes - (minus) .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

K Yes Yes - (minus) Blanks Blanks Blanks Blanks Yes

L Yes - (minus) .00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

M Yes - (minus) Blanks Blanks Blanks Blanks Yes

N Yes Yes - (floating
minus)

.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

O Yes Yes - (floating
minus)

Blanks Blanks Blanks Blanks Yes

P Yes - (floating
minus)

.00 or 0 ,00 or 0 0,00 or 0 0.00 or 0 Yes

Q Yes - (floating
minus)

Blanks Blanks Blanks Blanks Yes

X2

Y3 Yes

Z4 Yes

Notes:

1. These are the user-defined edit codes.

2. The X edit code ensures a hexadecimal F sign for positive values. Because the system does this for you, normally
you do not have to specify this code.

3. The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn
nnn/nn/nnnn
nnnn/nn/nn
nnnnn/nn/nn

4. The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros.

Edit Codes

Chapter 10. Editing Numeric Fields 233

Table 40. Examples of Edit Code Usage

Edit
Codes

Positive
Number-
Two
Decimal
Positions

Positive
Number-
No
Decimal
Positions

Negative
Number-
Three
Decimal
Positions

Negative
Number-
No
Decimal
Positions

Zero
Balance-
Two
Decimal
Positions

Zero
Balance-
No
Decimal
Positions

Unedited 1234567 1234567 00012�5 00012�5 000000 000000

1 12,345.67 1,234,567 .120 120 .00 0

2 12,345.67 1,234,567 .120 120

3 12345.67 1234567 .120 120 .00 0

4 12345.67 1234567 .120 120

5-91

A 12,345.67 1,234,567 .120CR 120CR .00 0

B 12.345.67 1,234,567 .120CR 120CR

C 12345.67 1234567 .120CR 120CR .00 0

D 12345.67 1234567 .120CR 120CR

J 12,345.67 1,234,567 .120- 120- .00 0

K 12,345,67 1,234,567 .120- 120-

L 12345.67 1234567 .120- 120- .00 0

M 12345.67 1234567 .120- 120-

N 12,345.67 1,234,567 -.120 -120 .00 0

O 12,345,67 1,234,567 -.120 -120

P 12345.67 1234567 -.120 -120 .00 0

Q 12345.67 1234567 -.120 -120

X2 1234567 1234567 00012�5 00012�5 000000 000000

Y3 0/01/20 0/01/20 0/00/00 0/00/00

Z4 1234567 1234567 120 120

Notes:

1. These edit codes are user-defined.

2. The X edit code ensures a hex F sign for positive values. Because the system does this for you, normally you do
not have to specify this code.

3. The Y edit code suppresses the leftmost zeros of date fields, up to but not including the digit preceding the first
separator. The Y edit code also inserts slashes (/) between the month, day, and year according to the following
pattern:

nn/n
nn/nn
nn/nn/n
nn/nn/nn
nnn/nn/nn
nn/nn/nnnn Format used with M, D or blank in position 19
nnn/nn/nnnn Format used with M, D or blank in position 19
nnnn/nn/nn Format used with Y in position 19
nnnnn/nn/nn Format used with Y in position 19

4. The Z edit code removes the sign (plus or minus) from a numeric field and suppresses leading zeros of a
numeric field.

5. The � represents a blank. This may occur if a negative zero does not correspond to a printable character.

Edit Codes

234 ILE RPG Reference

Table 41. Effects of Edit Codes on End Position

Negative Number, 2 Decimal Positions. End Position Specified
as 10.

Output Print Positions

Edit Code 3 4 5 6 7 8 9 10 11

Unedited 0 0 4 1 K1

1 4 . 1 2

2 4 . 1 2

3 4 . 1 2

4 4 . 1 2

5-92

A 4 . 1 2 C R

B 4 . 1 2 C R

C 4 . 1 2 C R

D 4 . 1 2 C R

J 4 . 1 2 -

K 4 . 1 2 -

L 4 . 1 2 -

M 4 . 1 2 -

N - 4 . 1 2

O - 4 . 1 2

P - 4 . 1 2

Q - 4 . 1 2

X 0 0 4 1 K1

Y 0 / 4 1 / 2

Z 4 1 2

Notes:

1. K represents a negative 2.

2. These are user-defined edit codes.

Edit Words
If you have editing requirements that cannot be met by using the edit codes
described above, you can use an edit word. An edit word is a character literal or a
named constant specified in positions 53 - 80 of the output specification. It
describes the editing pattern for an numeric and allows you to directly specify:
v Blank spaces
v Commas and decimal points, and their position
v Suppression of unwanted zeros
v Leading asterisks
v The currency symbol, and its position
v Addition of constant characters
v Output of the negative sign, or CR, as a negative indicator.

Edit Codes

Chapter 10. Editing Numeric Fields 235

The edit word is used as a template, which the system applies to the source data
to produce the output.

The edit word may be specified directly on an output specification or may be
specified as a named constant with a named constant name appearing in the edit
word field of the output specification. You can obtain the edited value of the field
in calulation specifications using the built-in function %EDITW (edit word).

Edit words are limited to 115 characters.

How to Code an Edit Word
To output using an edit word, code the output specifications as shown below:

Position
Entry

21-29 Can contain conditioning indicators.

30-43 Contains the name of the numeric field from which the data that is to be
edited is taken.

44 Edit code. Must be blank, if you are using an edit word to edit the source
data.

45 A “B” in this position indicates that the source data is to be set to zero or
blanks after it has been edited and output. Otherwise the source data
remains unchanged.

47-51 Identifies the end (rightmost) position of the field in the output record.

53-80 Edit word. Can be up to 26 characters long and must be enclosed by
apostrophes, unless it is a named constant. Enter the leading apostrophe,
or begin the named constant name in column 53. The edit word, unless a
named constant, must begin in column 54.

To edit using an edit word in calculation specifications, use built-in function
%EDITW, specifying the value to be edited as the first parameter, and the edit
word as the second parameter.

Parts of an Edit Word
An edit word consists of three parts: the body, the status, and the expansion. The
following shows the three parts of an edit word:

The body is the space for the digits transferred from the source data field to the
edited result. The body begins at the leftmost position of the edit word. The
number of blanks (plus one zero or an asterisk) in the edit word body must be
equal to or greater than the number of digits of the source data field to be edited.
The body ends with the rightmost character that can be replaced by a digit.

Figure 106. Parts of an Edit Word

Edit Words

236 ILE RPG Reference

The status defines a space to allow for a negative indicator, either the two letters
CR or a minus sign (-). The negative indicator specified is output only if the source
data is negative. All characters in the edit word between the last replaceable
character (blank, zero suppression character) and the negative indicator are also
output with the negative indicator only if the source data is negative; if the source
data is positive, these status positions are replaced by blanks. Edit words without
the CR or - indicators have no status positions.

The status must be entered after the last blank in the edit word. If more than one
CR follows the last blank, only the first CR is treated as a status; the remaining
CRs are treated as constants. For the minus sign to be considered as a status, it
must be the last character in the edit word.

The expansion is a series of ampersands and constant characters entered after the
status. Ampersands are replaced by blank spaces in the output; constants are
output as is. If status is not specified, the expansion follows the body.

Forming the Body of an Edit Word
The following characters have special meanings when used in the body of an edit
word:

Blank: Blank is replaced with the character from the corresponding position of
the value to be edited. A blank position is referred to as a digit position.

Decimals and Commas: Decimals and commas are in the same relative position
in the edited output field as they are in the edit word unless they appear to the left
of the first significant digit in the edit word. In that case, they are blanked out or
replaced by an asterisk.

In the following examples below, all the leading zeros will be suppressed (default)
and the decimal point will not appear unless there is a significant digit to its left.

Edit Word Source Data Appears in Edited Result as:

'�������' 0000072 �����72

'�������.��' 000000012 ��������12

'�������.��' 000000123 ������1.23

Zeros: The first zero in the body of the edit word is interpreted as an
end-zero-suppression character. This zero is placed where zero suppression is to
end. Subsequent zeros put into the edit word are treated as constants (see
“Constants” below).

Any leading zeros in the source data are suppressed up to and including the
position of the end-zero-suppression character. Significant digits that would appear
in the end-zero-suppression character position, or to the left of it, are output.

Edit Word Source Data Appears in Edited Result as:

'���0������' 00000004 ����000004

'���0������' 012345 ����012345

'���0������' 012345678 ��12345678

If the leading zeros include, or extend to the right of, the end-zero-suppression
character position, that position is replaced with a blank. This means that if you

Edit Words

Chapter 10. Editing Numeric Fields 237

wish the same number of leading zeros to appear in the output as exist in the
source data, the edit word body must be wider than the source data.

Edit Word Source Data Appears in Edited Result as:

'0���' 0156 �156

'0����' 0156 �0156

Constants (including commas and decimal point) that are placed to the right of the
end-zero-suppression character are output, even if there is no source data.
Constants to the left of the end-zero-suppression character are only output if the
source data has significant digits that would be placed to the left of these
constants.

Edit Word Source Data Appears in Edited Result as:

'������0.��' 000000001 �������.01

'������0.��' 000000000 �������.00

'���,�0�.��' 00000012 ������0.12

'���,�0�.��' 00000123 ������1.23

'�0�,���.��' 00000123 ��0,001.23

Asterisk: The first asterisk in the body of an edit word also ends zero
suppression. Subsequent asterisks put into the edit word are treated as constants
(see “Constants” below). Any zeros in the edit word following this asterisk are also
treated as constants. There can be only one end-zero-suppression character in an
edit word, and that character is the first asterisk or the first zero in the edit word.

If an asterisk is used as an end-zero-suppression character, all leading zeros that
are suppressed are replaced with asterisks in the output. Otherwise, the asterisk
suppresses leading zeros in the same way as described above for “Zeros”.

Edit Word Source Data Appears in Edited Result as:

'*������.��' 000000123 *�����1.23

'�����*�.��' 000000000 ******0.00

'�����*�.��**' 000056342 ****563.42**

Note that leading zeros appearing after the asterisk position are output as leading
zeros. Only the suppressed leading zeros, including the one in the asterisk
position, are replaced by asterisks.

Currency Symbol: A currency symbol followed directly by a first zero in the edit
word (end-zero-suppression character) is said to float. All leading zeros are
suppressed in the output and the currency symbol appears in the output
immediately to the left of the most significant digit.

Edit Word Source Data Appears in Edited Result as:

'��,���,�$0.��' 000000012 ���������$.12

'��,���,�$0.��' 000123456 ����$1,234.56

Edit Words

238 ILE RPG Reference

If the currency symbol is put into the first position of the edit word, then it will
always appear in that position in the output. This is called a fixed currency
symbol.

Edit Word Source Data Appears in Edited Result as:

'$�,���,��0.��' 000123456 $����1,234.56

'$��,���,0�0.��' 000000000 $��������00.00

'$�,���,*��.��' 000123456 $****1,234.56

A currency symbol anywhere else in the edit word and not immediately followed
by a zero end-suppression-character is treated as a constant (see “Constants”
below).

Ampersand: Causes a blank in the edited field. The example below might be used
to edit a telephone number. Note that the zero in the first position is required to
print the constant AREA.

Edit Word Source Data Appears in Edited Result as:

'0AREA&���&NO.&���-����' 4165551212 �AREA�416�NO.�555-1212

Constants: All other characters entered into the body of the edit word are treated
as constants. If the source data is such that the output places significant digits or
leading zeros to the left of any constant, then that constant appears in the output.
Otherwise, the constant is suppressed in the output. Commas and the decimal
point follow the same rules as for constants. Notice in the examples below, that the
presence of the end-zero-suppression character as well as the number of significant
digits in the source data, influence the output of constants.

The following edit words could be used to print cheques. Note that the second
asterisk is treated as a constant, and that, in the third example, the constants
preceding the first significant digit are not output.

Edit Word Source Data Appears in Edited Result as:

'$������**DOLLARS&��&CTS' 000012345 $****123*DOLLARS�45�CTS

'$������**DOLLARS&��&CTS' 000000006 $********DOLLARS�06�CTS

'$�������&DOLLARS&��&CTS' 000000006 $�����������������6�CTS

A date could be edited by using either edit word:

Edit Word Source Data Appears in Edited Result as:

'��/��/��' 010388 �1/03/88

'0��/��/��' 010389 �01/03/89

Note that any zeros or asterisks following the first occurrence of an edit word are
treated as constants. The same is true for - and CR:

Edit Word Source Data Appears in Edited Result as:

'��0.��000' 01234 �12.34000

'��*.��000' 01234 *12.34000

Edit Words

Chapter 10. Editing Numeric Fields 239

Forming the Status of an Edit Word
The following characters have special meanings when used in the status of an edit
word:

Ampersand: Causes a blank in the edited output field. An ampersand cannot be
placed in the edited output field.

CR or minus symbol: If the sign in the edited output is plus (+), these positions
are blanked out. If the sign in the edited output field is minus (−), these positions
remain undisturbed.

The following example adds a negative value indication. The minus sign will print
only when the value in the field is negative. A CR symbol fills the same function
as a minus sign.

Edit Word Source Data Appears in Edited Result as:

'�������.��-' 000000123- ������1.23-

'�������.��-' 000000123 ������1.23�

Constants between the last replaceable character and the - or CR symbol will print
only if the field is negative; otherwise, blanks will appear in these positions. Note
the use of ampersands to represent blanks:

Edit Word Source Data Appears in Edited Result as:

'�,���,��0.��&30&DAY&CR' 000000123- ���������1.23�30�DAY�CR

'�,���,��0.��&30&DAY&CR' 000000123 ���������1.23����������

Formatting the Expansion of an Edit Word
The characters in the expansion portion of an edit word are always used. The
expansion cannot contain blanks. If a blank is required in the edited result, specify
an ampersand in the body of the edit word.

Constants may be added to appear with any value of the number:

Edit Word Source Data Appears in Edited Result as:

'�,��0.��&CR&NET' 000123- ����1.23�CR�NET

'�,��0.��&CR&NET' 000123 ����1.23����NET

Note that the CR in the middle of a word may be detected as a negative field
value indication. If a word such as SECRET is required, use the coding in the
example below.

Edit Word Source Data Appears in Edited Result as:

'��0.��&SECRET' 12345- 123.45�SECRET

'��0.��&SECRET' 12345 123.45�����ET

'��0.��&CR&&SECRET' 12345 123.45�����SECRET

Summary of Coding Rules for Edit Words
The following rules apply to edit words in output specifications:
v Position 44 (edit codes) must be blank.

Edit Words

240 ILE RPG Reference

v Positions 30 through 43 (field name) must contain the name of a numeric field.
v An edit word must be enclosed in apostrophes, unless it is a named constant.

Enter the leading apostrophe or begin a named constant name in position 53.
The edit word itself must begin in position 54.

The following rules apply to edit words in general:
v The edit word can contain more digit positions (blanks plus the initial zero or

asterisk) than the field to be edited, but must not contain less. If there are more
digit positions in the edit word than there are digits in the field to be edited,
leading zeros are added to the field before editing.

v If leading zeros from the source data are desired, the edit word must contain
one more position than the field to be edited, and a zero must be placed in the
high-order position of the edit word.

v In the body of the edit word only blanks and the zero-suppression stop
characters (zero and asterisk) are counted as digit positions. The floating
currency symbol is not counted as a digit position.

v When the floating currency symbol is used, the sum of the number of blanks
and the zero-suppression stop character (digit positions) contained in the edit
word must be equal to or greater than the number of positions in the field to be
edited.

v Any zeros or asterisks following the leftmost zero or asterisk are treated as
constants; they are not replaceable characters.

v When editing an unsigned integer field, DB and CR are allowed and will always
print as blanks.

Editing Externally Described Files
To edit output for externally described files, place the edit codes in data
description specifications (DDS), instead of in RPG IV specifications. See the iSeries
Information Center database and file systems category for information on how to
specify edit codes in the data description specifications. However, if an externally
described file, which has an edit code specified, is to be written out as a program
described output file, you must specify editing in the output specifications. In this
case, any edit codes in the data description specifications are ignored.

Edit Words

Chapter 10. Editing Numeric Fields 241

Editing Externally Described Files

242 ILE RPG Reference

Part 3. Specifications

This section describes the RPG IV specifications. First, information common to
several specifications, such as keyword syntax and continuation rules is described.
Next, the specifications are described in the order in which they must be entered in
your program. Each specification description lists all the fields on the specification
and explains all the possible entries.

© Copyright IBM Corp. 1994, 2010 243

244 ILE RPG Reference

Chapter 11. About Specifications

RPG IV source is coded on a variety of specifications. Each specification has a
specific set of functions.

This reference contains a detailed description of the individual RPG IV
specifications. Each field and its possible entries are described. Chapter 19,
“Operations,” on page 423 describes the operation codes that are coded on the
calculation specification, which is described in Chapter 16, “Calculation
Specifications,” on page 391.

RPG IV Specification Types
There are three groups of source records that may be coded in an RPG IV program:
the main source section, the subprocedure section, and the program data section.
The main source section consists of the first set of H, F, D, I, C, and O
specifications in a module. If MAIN or NOMAIN is specified on a Control
specification, this section does not contain a cycle-main procedure, and so it cannot
contain any executable calculations. If the keyword MAIN or NOMAIN is not
specified, this corresponds to a standalone program or a cycle-main procedure.
Every module requires a main source section independently of whether
subprocedures are coded.

The subprocedure section contains specifications that define any subprocedures
coded within a module. The program data section contains source records with
data that is supplied at compile time.

The RPG IV language consists of a mixture of position-dependent code and free
form code. Those specifications which support keywords (control, file description,
definition, and procedure) allow free format in the keyword fields. The calculation
specification allows free format with those operation codes which support an
extended-factor 2. Otherwise, RPG IV entries are position specific. To represent
this, each illustration of RPG IV code will be in listing format with a scale drawn
across the top.

The following illustration shows the types of source records that may be entered
into each group and their order.

© Copyright IBM Corp. 1994, 2010 245

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#

Note
The RPG IV source must be entered into the system in the order shown in
Table 42. Any of the specification types can be absent, but at least one from
the main source section must be present.

Table 42. Source Records and Their Order in an RPG IV Source Program

Main Source Section
H Control
F File Description
D Definition
I Input
C Calculation
O Output

Subprocedure Section
(Repeated for each procedure)

P Procedure
F File Description
D Definition
C Calculation
P Procedure

Program Data when the ** form is used
**

File Translation Records
**

Alternate Collating Sequence Records
**

Compile-Time Array and Table Data

Program Data when the **TYPE form is used
(Specified in any order)

**CTDATA ARRAY1
Compile-Time Array Data

**FTRANS
File Translation Records

**CTDATA TABLE2
Compile-Time Table Data

**ALTSEQ
Alternate Collating Sequence Records

**CTDATA ARRAY3
Compile-Time Array Data

Main Source Section Specifications
�H� Control (Header) specifications provide information about program

generation and running of the compiled program. Refer to Chapter 12,
“Control Specifications,” on page 255 for a description of the entries on
this specification.

�F� File description specifications define the global files for the program. Refer
to Chapter 13, “File Description Specifications,” on page 279 for a
description of the entries on this specification.

�D� Definition specifications define items used in your program. Arrays, tables,
data structures, subfields, constants, standalone fields, prototypes and their
parameters, and procedure interfaces and their parameters are defined on

RPG IV Specification Types

246 ILE RPG Reference

#

##

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#

this specification. Refer to Chapter 14, “Definition Specifications,” on page
315 for a description of the entries on this specification.

�I� Input specifications describe records, and fields in the input files and
indicate how the records and fields are used by the program. Refer to
Chapter 15, “Input Specifications,” on page 375 for a description of the
entries on this specification.

�C� Calculation specifications describe calculations to be done by the program
and indicate the order in which they are done. Calculation specifications
can control certain input and output operations. Refer to Chapter 16,
“Calculation Specifications,” on page 391 for a description of the entries on
this specification.

�O� Output specifications describe the records and fields and indicate when
they are to be written by the program. Refer to Chapter 17, “Output
Specifications,” on page 401 for a description of the entries on this
specification.

Subprocedure Specifications
�P� Procedure specifications describe the procedure-interface definition of a

prototyped program or procedure. Refer to Chapter 18, “Procedure
Specifications,” on page 417 for a description of the entries on this
specification.

�F� File description specifications define the files used locally in the
subprocedure. Refer to Chapter 13, “File Description Specifications,” on
page 279for a description of the entries on this specification.

�D� Definition specifications define items used in the prototyped procedure.
Procedure-interface definitions, entry parameters, and other local items are
defined on this specification. Refer to Chapter 14, “Definition
Specifications,” on page 315 for a description of the entries on this
specification.

�C� Calculation specifications perform the logic of the prototyped procedure.
Refer to Chapter 16, “Calculation Specifications,” on page 391 for a
description of the entries on this specification.

Program Data
Source records with program data follow all source specifications. The first line of
the data section must start with **.

If desired, you can indicate the type of program data that follows the **, by
specifying any of these keywords as required: “CTDATA” on page 326,
“FTRANS{(*NONE | *SRC)}” on page 268, or “ALTSEQ{(*NONE | *SRC | *EXT)}”
on page 258. By associating the program data with the appropriate keyword, you
can place the groups of program data in any order after the source records.

The first entry for each input record must begin in position 1. The entire record
need not be filled with entries. Array elements associated with unused entries will
be initialized with the default value.

For more information on entering compile-time array records, see “Rules for Array
Source Records” on page 164. For more information on file translation, see “File
Translation” on page 118. For more information on alternate collating sequences,
see “Alternate Collating Sequence” on page 195.

RPG IV Specification Types

Chapter 11. About Specifications 247

##
#
#

Common Entries
The following entries are common to all RPG specifications preceding program
data:
v Positions 1-5 can be used for comments.
v Specification type (position 6). The following letter codes can be used:

Entry Specification Type

H Control

F File description

D Definition

I Input

C Calculation

O Output

P Procedure
v Comment Statements

– Position 7 contains an asterisk (*). This will denote the line as a comment line
regardless of any other entry on the specification. In a free-form calculation
specification, you can use // for a comment. Any line on any fixed-form
specification that begins with // is considered a comment by the compiler.
The // can start in any position provided that positions 6 to the // characters
contain blanks.

– Positions 6 to 80 are blank.
v Positions 7 to 80 are blank and position 6 contains a valid specification. This is a

valid line, not a comment, and sequence rules are enforced.

Syntax of Keywords
Keywords may have no parameters, optional parameters, or required parameters.
The syntax for keywords is as follows:

Keyword(parameter1 : parameter2)

where:
v Parameter(s) are enclosed in parentheses ().

Note: Parentheses should not be specified if there are no parameters.
v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:
v Braces { } indicate optional parameters or optional elements of parameters.
v An ellipsis (...) indicates that the parameter can be repeated.
v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are
enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

v A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Common Entries

248 ILE RPG Reference

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

Table 43. Examples of Keyword Notation

Notation Example of Notation Used Description Example of Source
Entered

braces {} PRTCTL (data_struct
{:*COMPAT})

Parameter data_struct is required and
parameter *COMPAT is optional.

PRTCTL (data_struct1)

braces {} TIME(format {separator}) Parameter format{separator} is required, but
the {separator} part of the parameter is
optional.

TIME(*HMS&)

colon (:) RENAME(Ext_format
:Int_format)

Parameters Ext_format and Int_format are
required.

RENAME (nameE:
nameI)

ellipsis (...) IGNORE(recformat
{:recformat...})

Parameter recformat is required and can be
specified more than once.

IGNORE (recformat1:
recformat2:
recformat3)

vertical bar (|) FLTDIV{(*NO | *YES)} Specify *NO or *YES or no parameters. FLTDIV

blank OPTIONS(*OMIT *NOPASS
*VARSIZE *STRING *TRIM
*RIGHTADJ)

One of *OMIT, *NOPASS, *VARSIZE,
*STRING, *TRIM, or *RIGHTADJ is required
and more than one parameter can be
optionally specified.

OPTIONS(*OMIT :
*NOPASS : *VARSIZE
: *TRIM : *RIGHTADJ)

Continuation Rules
The fields that may be continued are:
v The keywords field on the control specification
v The keywords field on the file description specification
v The keywords field on the definition specification
v The Extended factor-2 field on the calculation specification
v The constant/editword field on the output specification
v The Name field on the definition or the procedure specification

General rules for continuation are as follows:
v The continuation line must be a valid line for the specification being continued

(H, F, D, C, or O in position 6)
v No special characters should be used when continuing specifications across

multiple lines, except when a literal or name must be split. For example, the
following pairs are equivalent. In the first pair, the plus sign (+) is an operator,
even when it appears at the end of a line. In the second pair, the plus sign is a
continuation character.
C eval x = a + b
C eval x = a +
C b

C eval x = 'abc'
C eval x = 'ab+
C c'

v Only blank lines, empty specification lines or comment lines are allowed
between continued lines

v The continuation can occur after a complete token. Tokens are
– Names (for example, keywords, file names, field names)
– Parentheses

Common Entries

Chapter 11. About Specifications 249

– The separator character (:)
– Expression operators
– Built-in functions
– Special words
– Literals

v A continuation can also occur within a literal
– For character, date, time, and timestamp literals

- A hyphen (-) indicates continuation is in the first available position in the
continued field

- A plus (+) indicates continuation with the first non-blank character in or
past the first position in the continued field

– For graphic literals
- Either the hyphen (-) or plus (+) can be used to indicate a continuation.
- Each segment of the literal must be enclosed by shift-out and shift-in

characters.
- When the a graphic literal is assembled, only the first shift-out and the last

shift-in character will be included.
- Regardless of which continuation character is used for a graphic literal, the

literal continues with the first character after the shift-out character on the
continuation line. Spaces preceding the shift-out character are ignored.

– For numeric literals
- No continuation character is used
- A numeric literal continues with a numeric character or decimal point on

the continuation line in the continued field
– For hexadecimal and UCS-2 literals

- Either a hyphen (-) or a plus (+) can be used to indicate a continuation
- The literal will be continued with the first non-blank character on the next

line
v A continuation can also occur within a name in free-format entries

– In the name entry for Definition and Procedure specifications. For more
information on continuing names in the name entry, see “Definition and
Procedure Specification Name Field” on page 253.

– In the keywords entry for File and Definition specifications.
– In the extended factor 2 entry of Calculation specifications.
You can split a qualified name at a period, as shown below:
C EVAL dataStructureWithALongName.
C subfieldWithAnotherLongName = 5

If a name is not split at a period, code an ellipsis (...) at the end of the partial
name, with no intervening blanks.
Example

Common Entries

250 ILE RPG Reference

Control Specification Keyword Field
The rule for continuation on the control specification is:
v The specification continues on or past position 7 of the next control specification

Example

File Description Specification Keyword Field
The rules for continuation on the file description specification are:
v The specification continues on or past position 44 of the next file description

specification
v Positions 7-43 of the continuation line must be blank

Example

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName++
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D Keywords-cont++++++++++++++++++++++++
* Define a 10 character field with a long name.
* The second definition is a pointer initialized to the address
* of the variable with the long name.
D QuiteLongFieldNameThatCannotAlwaysFitInOneLine...
D S 10A
D Ptr S * inz(%addr(QuiteLongFieldName...
D ThatCannotAlways...
D FitInOneLine))
D ShorterName S 5A

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++
C Extended-factor2-++++++++++++++++++++++++++++
* Use the long name in an expression
* Note that you can split the name wherever it is convenient.
C EVAL QuiteLongFieldName...
C ThatCannotAlwaysFitInOneLine = 'abc'

* You can split any name this way
C EVAL P...
C tr = %addr(Shorter...
C Name)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H DATFMT(
H *MDY&
H)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
F.....................................Keywords+++++++++++++++++++++++++++++
F EXTIND
F (
F *INU1
F)

Common Entries

Chapter 11. About Specifications 251

Definition Specification Keyword Field
The rules for continuation of keywords on the definition specification are:
v The specification continues on or past position 44 of the next Definition

specification dependent on the continuation character specified
v Positions 7-43 of the continuation line must be blank

Example

Calculation Specification Extended Factor-2
The rules for continuation on the Calculation specification are:
v The specification continues on or past position 36 of the next calculation

specification
v Positions 7-35 of the continuation line must be blank

Example

Free-Form Calculation Specification
The rules for continuation on a free-form calculation specification are:
v The free-form line can be continued on the next line. The statement continues

until a semicolon is encountered.
Example

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D Keywords-cont++++++++++++++++++++++++
DMARY C CONST(
D 'Mary had a little lamb, its -
* Only a comment or a completely blank line is allowed in here
D fleece was white as snow.'
D)
* Numeric literal, continues with the first non blank in/past position 44
*
DNUMERIC C 12345
D 67
* Graphic named constant, must have shift-out in/past position 44
DGRAF C G'oAABBCCDDi+
D oEEFFGGi'

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++
C Extended-factor2-++++++++++++++++++++++++++++
C EVAL MARY='Mary had a little lamb, its +
* Only a comment or a completely blank line is allowed in here
C fleece was white as snow.'
*
* Arithmetic expressions do not have continuation characters.
* The '+' sign below is the addition operator, not a continuation
* character.
C
C EVAL A = (B*D)/ C +
C 24
* The first use of '+' in this example is the concatenation
* operator. The second use is the character literal continuation.
C EVAL ERRMSG = NAME +
C ' was not found +
C in the file.'

Common Entries

252 ILE RPG Reference

Output Specification Constant/Editword Field
The rules for continuation on the output specification are:
v The specification continues on or past position 53 of the next output

specification
v Positions 7-52 of the continuation line must be blank

Example

Definition and Procedure Specification Name Field
The rules for continuation of the name on the definition and procedure
specifications are:
v Continuation rules apply for names longer than 15 characters. Any name (even

one with 15 characters or fewer) can be continued on multiple lines by coding
an ellipsis (...) at the end of the partial name.

v A name definition consists of the following parts:
1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank characters in the entry. The name
must begin within positions 7 - 21 and may end anywhere up to position 77
(with an ellipsis ending in position 80). There cannot be blanks between the
start of the name and the ellipsis (...) characters. If any of these conditions is
not true, the line is considered to be a main definition line.

2. One main definition line containing name, definition attributes, and
keywords. If a continued name line is coded, the name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.
Example

/FREE
time = hours * num_employees

+ overtime_saved;
/END-FREE

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
O.............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat+++
O Continue Constant/editword+++
O 80 'Mary had a little lamb, its-

*
* Only a comment or a completely blank line is allowed in here
O fleece was white as snow.'

Common Entries

Chapter 11. About Specifications 253

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName++
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D Keywords-cont++++++++++++++++++++++++
* Long name without continued name lines:
D RatherLongName S 10A
* Long name using 1 continued name line:
D NameThatIsEvenLonger...
D C 'This is the constant -
D that the name represents.'
* Long name using 1 continued name line:
D NameThatIsSoLongItMustBe...
D Continued S 10A
* Compile-time arrays may have long names:
D CompileTimeArrayContainingDataRepresentingTheNamesOfTheMonthsOf...
D TheYearInGermanLanguage...
D S 20A DIM(12) CTDATA PERRCD(1)
* Long name using 3 continued name lines:
D ThisNameIsSoMuchLongerThanThe...
D PreviousNamesThatItMustBe...
D ContinuedOnSeveralSpecs...
D PR 10A
D parm_1 10A VALUE
*
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++
C Extended-factor2-++++++++++++++++++++++++++++
* Long names defined on calc spec:
C LongTagName TAG
C *LIKE DEFINE RatherLongNameQuiteLongName +5
*
PName+++++++++++..B...................Keywords+++++++++++++++++++++++++++++
PContinuedName+++
* Long name specified on Procedure spec:
P ThisNameIsSoMuchLongerThanThe...
P PreviousNamesThatItMustBe...
P ContinuedOnSeveralSpecs...
P B
D ThisNameIsSoMuchLongerThanThe...
D PreviousNamesThatItMustBe...
D ContinuedOnSeveralSpecs...
D PI 10A
D parm_1 10A VALUE

Common Entries

254 ILE RPG Reference

Chapter 12. Control Specifications

The control-specification statements, identified by an H in position 6, provide
information about generating and running programs. However, there are three
different ways in which this information can be provided to the compiler and the
compiler searches for this information in the following order:
1. A control specification included in your source
2. A data area named RPGLEHSPEC in *LIBL
3. A data area named DFTLEHSPEC in QRPGLE

Once one of these sources is found, the values are assigned and keywords that are
not specified are assigned their default values.

See the description of the individual entries for their default values.

Note: Compile-option keywords do not have default values. The keyword value is
initialized with the value you specify for the CRTBNDRPG or CRTRPGMOD
command.

TIP
The control specification keywords apply at the module level. This means
that if there is more than one procedure coded in a module, the values
specified in the control specification apply to all procedures.

Using a Data Area as a Control Specification
Use the CL command CRTDTAARA (Create Data Area) to create a data area
defined as type *CHAR. (See the iSeries Information Center programming category
for a description of the Create Data Area command.) Enter the keywords and their
possible parameters that are to be used in the Initial Value field of the command.

For example, to create an RPGLEHSPEC data area that will specify a default date
format of *YMD, and a default date separator /, you would enter:
CRTDTAARA DTAARA(MYLIB/RPGLEHSPEC)

TYPE(*CHAR)
LEN(80)
VALUE('datfmt(*ymd) datedit(*ymd/)')

The data area can be whatever size is required to accommodate the keywords
specified. The entire length of the data area can only contain keywords.

Control-Specification Statement
The control specification consists solely of keywords. The keywords can be placed
anywhere between positions 7 and 80. Positions 81-100 can be used for comments.

© Copyright IBM Corp. 1994, 2010 255

The following is an example of a control specification.

Position 6 (Form Type)
An H must appear in position 6 to identify this line as the control specification.

Positions 7-80 (Keywords)
The control-specification keywords are used to determine how the program will
deal with devices and how certain types of information will be represented.

The control-specification keywords also include compile-option keywords that
override the default or specified options on the CRTBNDRPG and CRTRPGMOD
commands. These keywords determine the compile options to be used on every
compile of the program.

Control-Specification Keywords
Control-specification keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameter1 : parameter2)

where:
v Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:
v Braces { } indicate optional parameters or optional elements of parameters.
v An ellipsis (...) indicates that the parameter can be repeated.
v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are
enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

v A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
HKeywords++Comments++++++++++++

Figure 107. Control-Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H ALTSEQ(*EXT) CURSYM('$') DATEDIT(*MDY) DATFMT(*MDY/) DEBUG(*YES)
H DECEDIT('.') FORMSALIGN(*YES) FTRANS(*SRC) DFTNAME(name)
H TIMFMT(*ISO)
H COPYRIGHT('(C) Copyright ABC Programming - 1995')

Control-Specification Statement

256 ILE RPG Reference

If additional space is required for control-specification keywords, the keyword field
can be continued on subsequent lines. See “Control-Specification Statement” on
page 255 and “Control Specification Keyword Field” on page 251.

ALLOC(*STGMDL | *TERASPACE | *SNGLVL)
The ALLOC keyword specifies the storage model for storage management
operations in the module.

If the ALLOC keyword is not specified, ALLOC(*STGMDL) is assumed.
v *STGMDL is used to specify that the storage model for memory management

operations will be the same as the storage model of the module. You use the
STGMDL keyword on the Control specification to control the storage model of
the module. If the storage model of the module is *INHERIT, the storage model
used for memory management operations is determined at runtime.

v *SNGLVL is used to specify that the single-level storage model will be used for
memory management operations.

v *TERASPACE is used to specify that the teraspace storage model will be used
for memory management operations.

See “Memory Management Operations” on page 458 for more information on
teraspace and single-level memory management operations.

ACTGRP(*STGMDL | *NEW | *CALLER | ’activation-group-
name’)

The ACTGRP keyword allows you to specify the activation group the program is
associated with when it is called. If ACTGRP(*STGMDL) is specified and
STGMDL(*SNGLVL) or STGMDL(*INHERIT) is in effect, the program will be
activated into the QILE activation group when it is called. If ACTGRP(*STGMDL)
is specified and STGMDL(*TERASPACE) is in effect, the program will be activated
into the QILETS activation group when it is called. If ACTGRP(*NEW) is specified,
then the program is activated into a new activation group. If ACTGRP(*CALLER)
is specified, then the program is activated into the caller’s activation group. If an
activation-group-name is specified, then that name is used when this program is
called.

If the ACTGRP keyword is not specified, then the value specified on the command
is used.

The ACTGRP keyword is valid only if the CRTBNDRPG command is used.

You cannot use the ACTGRP, BNDDIR, or STGMDL keywords when creating a
program with DFTACTGRP(*YES).

Note: The name of the activation group created when the program is called will
have exactly the same case as the text entered for the activation-group-name.
The RCLACTGRP command does not allow lower-case text to be specified
for its ACTGRP parameter. If it is required to reclaim an activation group
individually using the RCLACTGRP command then do not enter lower-case
case text for the activation-group-name.

Control-Specification Keywords

Chapter 12. Control Specifications 257

|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|

ALTSEQ{(*NONE | *SRC | *EXT)}
The ALTSEQ keyword indicates whether an alternate collating sequence is used, if
so, whether it is internal or external to the source. The following list shows what
happens for the different possible keyword and parameter combinations.

Keyword/Parameter
Collating Sequence Used

ALTSEQ not specified
Normal collating sequence

ALTSEQ(*NONE)
Normal collating sequence

ALTSEQ, no parameters
Alternate collating sequence specified in source

ALTSEQ(*SRC)
Alternate collating sequence specified in source

ALTSEQ(*EXT)
Alternate collating sequence specified by the SRTSEQ and LANGID
command parameters or keywords.

If ALTSEQ is not specified or specified with *NONE or *EXT, an alternate collating
sequence table must not be specified in the program.

ALWNULL(*NO | *INPUTONLY | *USRCTL)
The ALWNULL keyword specifies how you will use records containing
null-capable fields from externally described database files.

If ALWNULL(*NO) is specified, then you cannot process records with null-value
fields from externally described files. If you attempt to retrieve a record containing
null values, no data in the record will be accessible and a data-mapping error will
occur.

If ALWNULL(*INPUTONLY) is specified, then you can successfully read records
with null-capable fields containing null values from externally described input-only
database files. When a record containing null values is retrieved, no data-mapping
errors will occur and the database default values are placed into any fields that
contain null values. However, you cannot do any of the following:
v Use null-capable key fields
v Create or update records containing null-capable fields
v Determine whether a null-capable field is actually null while the program is

running
v Set a null-capable field to be null.

If ALWNULL(*USRCTL) is specified, then you can read, write, and update records
with null values from externally described database files. Records with null keys
can be retrieved using keyed operations. You can determine whether a null-capable
field is actually null, and you can set a null-capable field to be null for output or
update. You are responsible for ensuring that fields containing null values are used
correctly.

If the ALWNULL keyword is not specified, then the value specified on the
command is used.

Control-Specification Keywords

258 ILE RPG Reference

For more information, see “Database Null Value Support” on page 219

AUT(*LIBRCRTAUT | *ALL | *CHANGE | *USE | *EXCLUDE |
’authorization-list-name’)

The AUT keyword specifies the authority given to users who do not have specific
authority to the object, who are not on the authorization list, and whose user
group has no specific authority to the object. The authority can be altered for all
users or for specified users after the object is created with the CL commands Grant
Object Authority (GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT).

If AUT(*LIBRCRTAUT) is specified, then the public authority for the object is taken
from the CRTAUT keyword of the target library (the library that contains the
object). The value is determined when the object is created. If the CRTAUT value
for the library changes after the create, the new value will not affect any existing
objects.

If AUT(*ALL) is specified, then authority is provided for all operations on the
object, except those limited to the owner or controlled by authorization list
management authority. The user can control the object’s existence, specify this
security for it, change it, and perform basic functions on it, but cannot transfer its
ownership.

If AUT(*CHANGE) is specified, then it provides all data authority and the
authority to perform all operations on the object except those limited to the owner
or controlled by object authority and object management authority. The user can
change the object and perform basic functions on it.

If AUT(*USE) is specified, then it provides object operational authority and read
authority; that is, authority for basic operations on the object. The user is
prevented from changing the object.

If AUT(*EXCLUDE) is specified, then it prevents the user from accessing the object.

The authorization-list-name is the name of an authorization list of users and
authorities to which the object is added. The object will be secured by this
authorization list, and the public authority for the object will be set to *AUTL. The
authorization list must exist on the system at compilation time.

If the AUT keyword is not specified, then the value specified on the command is
used.

BNDDIR(’binding-directory-name’ {:’binding-directory-
name’...})

The BNDDIR keyword specifies the list of binding directories that are used in
symbol resolution.

A binding directory name can be qualified by a library name followed by a slash
delimiter (’library-name/binding-directory-name’). The library name is the name of
the library to be searched. If the library name is not specified, *LIBL is used to find
the binding directory name. When creating a program using CRTBNDRPG, the
library list is searched at the time of the compile. When creating a module using
CRTRPGMOD, the library list is searched when the module is used to create a
program or service program.

Control-Specification Keywords

Chapter 12. Control Specifications 259

If BNDDIR is specified on both the control specification and on the command, all
binding directories are used for symbol resolution. The BNDDIR on the control
specification does not override the BNDDIR on the command.

If the BNDDIR keyword is not specified, then the value specified on the command
is used.

You cannot use the BNDDIR, ACTGRP, or STGMDL command parameters or
keywords when creating a program with DFTACTGRP(*YES).

CCSID(*GRAPH : parameter | *UCS2 : number | *CHAR :
*JOBRUN)

CCSID(*GRAPH) and CCSID(*UCS2) set the default graphic (*GRAPH) and UCS-2
(*UCS2) CCSIDs for the module. These defaults are used for literals, compile-time
data, program-described input and output fields, and data definitions that do not
have the CCSID keyword coded.

CCSID(*CHAR) sets the CCSID used for the module’s character data at runtime.

CCSID(*GRAPH : *IGNORE | *SRC | number)
Sets the default graphic CCSID for the module. The possible values are:

*IGNORE
This is the default. No conversions are allowed between graphic and
UCS-2 fields in the module. The %GRAPH built-in function cannot be
used.

*SRC
The graphic CCSID associated with the CCSID of the source file will be
used.

number
A graphic CCSID. A valid graphic CCSID is 65535 or a CCSID with the
EBCDIC double-byte encoding scheme (X’1200’).

CCSID(*UCS2 : number)
Sets the default UCS-2 CCSID for the module. If this keyword is not
specified, the default UCS-2 CCSID is 13488.

number must be a UCS-2 CCSID. A valid UCS-2 CCSID has the UCS-2
encoding scheme (x’7200’). For example, the UTF-16 CCSID 1200 has
encoding scheme x’7200’.

If CCSID(*GRAPH : *SRC) or CCSID(*GRAPH : number) is specified:
v Graphic and UCS-2 fields in externally-described data structures will use the

CCSID in the external file.
v Program-described graphic or UCS-2 fields will default to the graphic or UCS-2

CCSID of the module, respectively. This specification can be overridden by using
the CCSID(number) keyword on the definition of the field. (See “CCSID(number
| *DFT)” on page 325.)

v Program-described graphic or UCS-2 input and output fields and keys are
assumed to have the module’s default CCSID.

CCSID(*CHAR : *JOBRUN)
When CCSID(*CHAR:*JOBRUN) is specified, character data will be
assumed to be in the job CCSID at runtime. The character X’0E’ will be
assumed to be a shift-out character only if the runtime job CCSID is a
mixed-byte CCSID.

Control-Specification Keywords

260 ILE RPG Reference

|
|

#
#
#

When CCSID(*CHAR : *JOBRUN) is not specified, character data will be
assumed to be in the mixed-byte CCSID related to the job CCSID. If the
character X’0E’ appears in character data, it will be interpreted as a
shift-out character. This may cause incorrect results when character data is
converted to UCS-2 data.

Note: Specifying CCSID(*CHAR:*JOBRUN) does not change the behaviour
of the compiler with respect to character literals containing X’0E’.
When a character literal contains X’0E’, the compiler will always
treat it as a shift-out character, independent of the CCSID(*CHAR)
keyword.

COPYNEST(number)
The COPYNEST keyword specifies the maximum depth to which nesting can occur
for /COPY directives. The depth must be greater than or equal to 1 and less than
or equal to 2048. The default depth is 32.

COPYRIGHT(’copyright string’)
The COPYRIGHT keyword provides copyright information that can be seen using
the DSPMOD, DSPPGM, or DSPSRVPGM commands. The copyright string is a
character literal with a maximum length of 256. The literal may be continued on a
continuation specification. (See “Continuation Rules” on page 249 for rules on
using continuation lines.) If the COPYRIGHT keyword is not specified, copyright
information is not added to the created module or program.

TIP
To see the copyright information for a module, use the command:

DSPMOD mylib/mymod DETAIL(*COPYRIGHT)

For a program, use the DSPPGM command with DETAIL(*COPYRIGHT).
This information includes the copyright information from all modules bound
into the program.

Similarly, DSPSRVPGM DETAIL(*COPYRIGHT) gives the copyright
information for all modules in a service program.

CURSYM(’sym’)
The CURSYM keyword specifies a character used as a currency symbol in editing.
The symbol must be a single character enclosed in quotes. Any character in the
RPG character set (see Chapter 1, “Symbolic Names and Reserved Words,” on page
3) may be used except:
v 0 (zero)
v * (asterisk)
v , (comma)
v & (ampersand)
v . (period)
v − (minus sign)
v C (letter C)
v R (letter R)
v Blank

Control-Specification Keywords

Chapter 12. Control Specifications 261

If the keyword is not specified, $ (dollar sign) will be used as the currency symbol.

CVTOPT(*{NO}DATETIME *{NO}GRAPHIC *{NO}VARCHAR
*{NO}VARGRAPHIC)

The CVTOPT keyword is used to determine how the ILE RPG compiler handles
date, time, timestamp, graphic data types, and variable-length data types that are
retrieved from externally described database files.

You can specify any or all of the data types in any order. However, if a data type is
specified, the *NOxxxx parameter for the same data type cannot also be used, and
vice versa. For example, if you specify *GRAPHIC you cannot also specify
*NOGRAPHIC, and vice versa. Separate the parameters with a colon. A parameter
cannot be specified more than once.

Note: If the keyword CVTOPT does not contain a member from a pair, then the
value specified on the command for this particular data type will be used.
For example, if the keyword CVTOPT(*DATETIME : *NOVARCHAR :
*NOVARGRAPHIC) is specified on the Control specification, then for the
pair (*GRAPHIC, *NOGRAPHIC), whatever was specified implicitly or
explicitly on the command will be used.

If *DATETIME is specified, then date, time, and timestamp data types are declared
as fixed-length character fields.

If *NODATETIME is specified, then date, time, and timestamp data types are not
converted.

If *GRAPHIC is specified, then double-byte character set (DBCS) graphic data
types are declared as fixed-length character fields.

If *NOGRAPHIC is specified, then double-byte character set (DBCS) graphic types
are not converted.

If *VARCHAR is specified, then variable-length character data types are declared
as fixed-length character fields.

If *NOVARCHAR is specified, then variable-length character data types are not
converted.

If *VARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are declared as fixed-length character fields.

If *NOVARGRAPHIC is specified, then variable-length double-byte character set
(DBCS) graphic data types are not converted.

If the CVTOPT keyword is not specified, then the values specified on the
command are used.

DATEDIT(fmt{separator})
The DATEDIT keyword specifies the format of numeric fields when using the Y
edit code. The separator character is optional. The value (fmt) can be *DMY, *MDY,
or *YMD. The default separator is /. A separator character of & (ampersand) may
be used to specify a blank separator.

Control-Specification Keywords

262 ILE RPG Reference

DATFMT(fmt{separator})
The DATFMT keyword specifies the internal date format for date literals and the
default internal format for date fields within the program. You can specify a
different internal date format for a particular field by specifying the format with
the DATFMT keyword on the definition specification for that field.

If the DATFMT keyword is not specified, the *ISO format is assumed. For more
information on internal formats, see “Internal and External Formats” on page 179.
Table 33 on page 207 describes the various date formats and their separators.

DEBUG{(*INPUT | *DUMP | *XMLSAX | *NO | *YES)}
The DEBUG keyword controls what debugging aids are generated into the module.

When the DEBUG keyword is specified with one or more of the *INPUT, DUMP or
*XMLSAX parameters, you can choose exactly which debugging aids are to be
generated into the module. When the DEBUG keyword is specified with *YES or
*NO, no other parameters can be specified.

*INPUT
All externally described input fields will be read during input operations even
if they are not used in the program. Normally, externally described input fields
are only read during input operations if the field is otherwise used within the
program.

*DUMP
DUMP operations are performed.

Note: You can force a DUMP operation to be performned by specifying
operation extender A on the DEBUG operation code. This operation extender
means that a dump is always performed, regardless of the value of the DEBUG
keyword.

*XMLSAX
An array with the name _QRNU_XMLSAX will be generated into the module
if it has a debug view (if it is compiled with a value for the DBGVIEW
parameter other than *NONE). The values of the array will be the names of the
*XML special words, without the ″*XML_″ prefix. For example, if
*XML_START_DOCUMENT has the value 1, _QRNU_XMLSAX(1) will have
the value ″START_DOCUMENT″.

Sample debug session:
> EVAL event

EVENT = 2
> EVAL _QRNU_XMLSAX(event)

_QRNU_XMLSAX(EVENT) = 'END_DOCUMENT '

Specifying the DEBUG keyword with *NO indicates that no debugging aids should
be generated into the module. This is the same as omitting the DEBUG keyword
entirely. No other parameters can be specified when *NO is specified.

Specifying the DEBUG keyword with *YES or with no parameters is the same as
specifying DEBUG(*INPUT : *DUMP). No other parameters can be specified when
*YES is specified. The value *YES is retained for compatibility; it is preferable to
specify the more granular values *INPUT, *DUMP and *XMLSAX.

Examples:

Control-Specification Keywords

Chapter 12. Control Specifications 263

* 1. All of the debugging aids are available
H DEBUG(*INPUT : *DUMP : *XMLSAX)
* 2. None of the debugging aids are available
H DEBUG(*NO)
* 3. Only the debugging aid related to input fields is available
H DEBUG(*INPUT)
* 4. The debugging aids related to the DUMP operation and
* to XML-SAX parsing are available
H DEBUG(*XMLSAX : *DUMP)

Note: The DEBUG keyword does not control whether the module is created to be
debuggable. That is controlled by the DBGVIEW parameter for the
CRTBNDRPG or CRTRPGMOD command. The DEBUG keyword controls
additional debugging aids.

DECEDIT(*JOBRUN | ’value’)
The DECEDIT keyword specifies the character used as the decimal point for edited
decimal numbers and whether or not leading zeros are printed.

If *JOBRUN is specified, the DECFMT value associated with the job at runtime is
used. The possible job decimal formats are listed in the following table:

Table 44. DECEDIT with *JOBRUN

Job Decimal Format Decimal Point Print Leading Zeros Edited Decimal
Number

blank period (.) No .123

I comma (,) No ,123

J comma (,) Yes 0,123

If a value is specified, then the edited decimal numbers are printed according to
the following possible values:

Table 45. DECEDIT with ’value’

’Value’ Decimal Point Print Leading Zeros Edited Decimal
Number

’.’ period (.) No .123

’,’ comma (,) No ,123

’0.’ period (.) Yes 0.123

’0,’ comma (,) Yes 0,123

If DECEDIT is not specified, a period (.) is used for editing numeric values.

Note: Zeros to the right of a decimal point are always printed.

DECPREC(30|31|63)
Keyword DECPREC is used to specify the decimal precision of decimal (packed,
zoned, or binary) intermediate values in arithmetic operations in expressions.
Decimal intermediate values are always maintained in the proper precision, but
this keyword affects how decimal expressions are presented when used in
%EDITC, %EDITW, %CHAR, %LEN, and %DECPOS.

DECPREC(30)
The default decimal precision. It indicates that the maximum precision of

Control-Specification Keywords

264 ILE RPG Reference

decimal values when used in the affected operations is 30 digits. However,
if at least one operand in the expression is a decimal variable with 31
digits, DECPREC(31) is assumed for that expression. If at least one
operand in the expression is a decimal variable with 32 or more digits,
DECPREC(63) is assumed for that expression.

DECPREC(31)
The maximum precision of decimal values when used in the affected
operations is 31 digits. However, if at least one operand in the expression
is a decimal variable with 32 digits or more, DECPREC(63) is assumed for
that expression.

DECPREC(63)
The number of digits used in the affected operations is always computed
following the normal rules for decimal precision, which can be up to the
maximum of 63 digits.

DFTACTGRP(*YES | *NO)
The DFTACTGRP keyword specifies the activation group in which the created
program will run when it is called.

If *YES is specified, then this program will always run in the default activation
group, which is the activation group where all original program model (OPM)
programs are run. This allows ILE RPG programs to behave like OPM RPG
programs in the areas of file sharing, file scoping, RCLRSC, and handling of
unmonitored exceptions. ILE static binding is not available when a program is
created with DFTACTGRP(*YES). This means that you cannot use the BNDDIR,
ACTGRP, or STGMDL command parameters or keywords when creating this
program. In addition, any call operation in your source must call a program and
not a procedure. DFTACTGRP(*YES) is useful when attempting to move an
application on a program-by-program basis to ILE RPG.

If *NO is specified, then the program is associated with the activation group
specified by the ACTGRP command parameter or keyword and static binding is
allowed. DFTACTGRP(*NO) is useful when you intend to take advantage of ILE
concepts; for example, running in a named activation group or binding to a service
program.

If the DFTACTGRP keyword is not specified, then the value specified on the
command is used.

The DFTACTGRP keyword is valid only if the CRTBNDRPG command is used.

DFTNAME(rpg_name)
The DFTNAME keyword specifies a default program or module name. When
*CTLSPEC is specified on the create command, the rpg_name is used as the
program or module name. If rpg_name is not specified, then the default name is
RPGPGM or RPGMOD for a program or module respectively. The RPG rules for
names (see “Symbolic Names” on page 3) apply.

ENBPFRCOL(*PEP | *ENTRYEXIT | *FULL)
The ENBPFRCOL keyword specifies whether performance collection is enabled.

Control-Specification Keywords

Chapter 12. Control Specifications 265

|
|
|
|
|
|
|
|
|
|

If *PEP is specified, then performance statistics are gathered on the entry and exit
of the program-entry procedure only. This applies to the actual program-entry
procedure for an object, not to the main procedure of the object within the object.

If *ENTRYEXIT is specified, then performance statistics are gathered on the entry
and exit of all procedures of the object.

If *FULL is specified, then performance statistics are gathered on entry and exit of
all procedures. Also, statistics are gathered before and after each call to an external
procedure.

If the ENBPFRCOL keyword is not specified, then the value specified on the
command is used.

EXPROPTS(*MAXDIGITS | *RESDECPOS)
The EXPROPTS (expression options) keyword specifies the type of precision rules
to be used for an entire program. If not specified or specified with *MAXDIGITS,
the default precision rules apply. If EXPROPTS is specified, with *RESDECPOS, the
″Result Decimal Position″ precision rules apply and force intermediate results in
expressions to have no fewer decimal positions than the result.

Note: Operation code extenders R and M are the same as
EXPROPTS(*RESDECPOS) and EXPROPTS(*MAXDIGITS) respectively, but
for single free-form expressions.

EXTBININT{(*NO | *YES)}
The EXTBININT keyword is used to process externally described fields with binary
external format and zero decimal positions as if they had an external integer
format. If not specified or specified with *NO, then an externally described binary
field is processed with an external binary format. If EXTBININT is specified,
optionally with *YES, then an externally described field is processed as follows:

DDS Definition RPG external format

B(n,0) where 1 ≤ n ≤ 4 I(5)

B(n,0) where 5 ≤ n ≤ 9 I(10)

By specifying the EXTBININT keyword, your program can make use of the full
range of DDS binary values available. (The range of DDS binary values is the same
as for signed integers: -32768 to 32767 for a 5-digit field or -2147483648 to
2147483647 for a 10-digit field.)

Note: When the keyword EXTBININT is specified, any externally described
subfields that are binary with zero decimal positions will be defined with an
internal integer format.

FIXNBR(*{NO}ZONED *{NO}INPUTPACKED)
The FIXNBR keyword specifies whether decimal data that is not valid is fixed by
the compiler.

You can specify any or all of the data types in any order. However, if a decimal
data type is specified, the *NOxxxx parameter for the same data type cannot also
be used, and vice versa. For example, if you specify *ZONED you cannot also
specify *NOZONED, and vice versa. Separate the parameters with a colon. A
parameter cannot be specified more than once.

Control-Specification Keywords

266 ILE RPG Reference

Note: If the keyword FIXNBR does not contain a member from a pair, then the
value specified on the command for this particular data type will be used.
For example, if the keyword FIXNBR(*NOINPUTPACKED) is specified on
the Control specification, then for the pair (*ZONED, *NOZONED),
whatever was specified implicitly or explicitly on the command will be
used.

If *ZONED is specified, then zoned decimal data that is not valid will be fixed by
the compiler on the conversion to packed data. Blanks in numeric fields will be
treated as zeros. Each decimal digit will be checked for validity. If a decimal digit
is not valid, it is replaced with zero. If a sign is not valid, the sign will be forced to
a positive sign code of hex ’F’. If the sign is valid, it will be changed to either a
positive sign hex ’F’ or a negative sign hex ’D’, as appropriate. If the resulting
packed data is not valid, it will not be fixed.

If *NOZONED is specified, then zoned decimal data is not fixed by the compiler
on the conversion to packed data and will result in decimal errors during runtime
if used.

If *INPUTPACKED is specified, then the internal variable will be set to zero if
packed decimal data that is not valid is encountered while processing input
specifications.

If *NOINPUTPACKED is specified, then decimal errors will occur if packed
decimal data that is not valid is encountered while processing input specifications.

If the FIXNBR keyword is not specified, then the values specified on the command
are used.

FLTDIV{(*NO | *YES)}
The FLTDIV keyword indicates that all divide operations within expressions are
computed in floating point and return a value of type float. If not specified or
specified with *NO, then divide operations are performed in packed-decimal
format (unless one of the two operands is already in float format).

If FLTDIV is specified, optionally with *YES, then all divide operations are
performed in float format (guaranteeing that the result always has 15 digits of
precision).

FORMSALIGN{(*NO | *YES)}
The FORMSALIGN keyword indicates that the first line of an output file
conditioned with the 1P indicator can be printed repeatedly, allowing you to align
the printer. If not specified or specified with *NO, no alignment will be performed.
If specified, optionally with *YES, first page forms alignment will occur.

Rules for Forms Alignment

v The records specified on Output Specifications for a file with a device entry for a
printer type device conditioned by the first page indicator (1P) may be written
as many times as desired. The line will print once. The operator will then have
the option to print the line again or continue with the rest of the program.

v All spacing and skipping specified will be performed each time the line is
printed.

v When the option to continue with the rest of the program is selected, the line
will not be reprinted.

Control-Specification Keywords

Chapter 12. Control Specifications 267

v The function may be performed for all printer files.
v If a page field is specified, it will be incremented only the first time the line is

printed.
v When the continue option is selected, the line count will be the same as if the

function were performed only once when line counter is specified.

FTRANS{(*NONE | *SRC)}
The FTRANS keyword specifies whether file translation will occur. If specified,
optionally with *SRC, file translation will take place and the translate table must be
specified in the program. If not specified or specified with *NONE, no file
translation will take place and the translate table must not be present.

GENLVL(number)
The GENLVL keyword controls the creation of the object. The object is created if all
errors encountered during compilation have a severity level less than or equal to
the generation severity level specified. The value must be between 0 and 20
inclusive. For errors greater than severity 20, the object will not be created.

If the GENLVL keyword is not specified, then the value specified on the command
is used.

INDENT(*NONE | ’character-value’)
The INDENT keyword specifies whether structured operations should be indented
in the source listing for enhanced readability. It also specifies the characters that
are used to mark the structured operation clauses.

Note: Any indentation that you request here will not be reflected in the listing
debug view that is created when you specify DBGVIEW(*LIST).

If *NONE is specified, structured operations will not be indented in the source
listing.

If character-value is specified, the source listing is indented for structured
operation clauses. Alignment of statements and clauses are marked using the
characters you choose. You can choose any character literal up to 2 characters in
length.

Note: The indentation may not appear as expected if there are errors in the source.

If the INDENT keyword is not specified, then the value specified on the command
is used.

INTPREC(10 | 20)
The INTPREC keyword is used to specify the decimal precision of integer and
unsigned intermediate values in binary arithmetic operations in expressions.
Integer and unsigned intermediate values are always maintained in 8-byte format.
This keyword affects only the way integer and unsigned intermediate values are
converted to decimal format when used in binary arithmetic operations (+, -, *, /).

INTPREC(10), the default, indicates a decimal precision of 10 digits for integer and
unsigned operations. However, if at least one operand in the expression is an
8-byte integer or unsigned field, the result of the expression has a decimal
precision of 20 digits regardless of the INTPREC value.

Control-Specification Keywords

268 ILE RPG Reference

INTPREC(20) indicates that the decimal precision of integer and unsigned
operations is 20 digits.

LANGID(*JOBRUN | *JOB | ’language-identifier’)
The LANGID keyword indicates which language identifier is to be used when the
sort sequence is *LANGIDUNQ or *LANGIDSHR. The LANGID keyword is used
in conjunction with the SRTSEQ command parameter or keyword to select the sort
sequence table.

If *JOBRUN is specified, then the LANGID value associated with the job when the
RPG object is executed is used.

If *JOB is specified, then the LANGID value associated with the job when the RPG
object is created is used.

A language identifier can be specified, for example, ’FRA’ for French and ’DEU’ for
German.

If the LANGID keyword is not specified, then the value specified on the command
is used.

MAIN(main_procedure_name)
The MAIN keyword indicates that this source program is for a linear-main module
and contains a linear-main procedure, identified by the main_procedure_name
parameter, which will be the program entry procedure for the module.

The main_procedure_name must be the name of a procedure defined in the source
program. The linear-main procedure is intended to be called only through the
program call interface and not as a bound procedure call; if you make a recursive
call to the linear-main procedure, the call will be a dynamic program call.

Therefore, the following rules apply:
v If a prototype is specified for the linear-main procedure, it must specify the

EXTPGM keyword.
v If a prototype is not specified for the linear-main procedure, and a procedure

interface is specified, the procedure interface must specify the EXTPGM
keyword.

v If the program has no parameters, and the program is not called from an RPG
program, neither a prototype nor a procedure interface is required.

v The procedure cannot be exported; the EXPORT keyword may not be specified
on the procedure-begin specification for main_procedure_name.

A linear-main module will not include logic for the RPG program cycle; thus
language features dependent on the cycle may not be specified.

Note: The NOMAIN keyword also allows you to create a module that does not
contain the RPG program cycle.

See “Linear Module” on page 29 for more information.

The following two examples show a linear-main program and its /COPY file.

Control-Specification Keywords

Chapter 12. Control Specifications 269

#

#
#
#

|
|
|
|

#

|
|

|
|
|

|
|

#
#

#
#

#
#
#

|
#

The following example shows a linear main program that does not require a
prototype. The program is named PRTCUSTRPT, and the module has a linear-main
procedure called PrintCustomerReport. The program is intended to be the
command processing program for a *CMD object, so there is no need for an RPG
prototype. The Control specification MAIN keyword signifies that this is a
linear-main module, and identifies which procedure is the special subprocedure
which serves as the linear-main procedure, which will act as the program-entry
procedure.

* The prototype for the linear-main procedure must have
* the EXTPGM keyword with the name of the actual program.
D DisplayCurTime PR EXTPGM('DSPCURTIME')

Figure 108. /COPY file DSPCURTIME used in the following sample linear-main program

* The program is named DSPCURTIME, and the module has
* a linear-main procedure called DisplayCurTime.

* The Control specification MAIN keyword signifies that this is
* a linear-main module, and identifies which procedure is the
* special subprocedure which serves as the linear-main procedure,
* which will act as the program-entry procedure.

H MAIN(DisplayCurTime)
* Copy in the prototype for the program
/COPY DSPCURTIME
*--
* Procedure name: DisplayCurTime
*--
P DisplayCurTime B
D DisplayCurTime PI
/FREE
dsply ('It is now ' + %char(%time()));
/END-FREE
P DisplayCurTime E

Figure 109. A sample linear-main procedure used in a program

H MAIN(PrintCustomerReport)

*--
* Program name: PrintCustomerReport (PRTCUSTRPT)
*--

P PrintCustomerReport...
P B
F ... file specifications
D PI EXTPGM('PRTCUSTRPT')
D custName 25A CONST

... calculations, using the custName parameter

P PrintCustomerReport...
P E

Figure 110. A linear main program that is not intended to be called from within any RPG
program or procedure

Control-Specification Keywords

270 ILE RPG Reference

#
#
#
##
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

#

#
#
#
#
#
#
#
#
#

NOMAIN
The NOMAIN keyword indicates that there is no main procedure in this module.
It also means that the module in which it is coded cannot be a program-entry
module. Consequently, if NOMAIN is specified, then you cannot use the
CRTBNDRPG command to create a program. Instead you must either use the
CRTPGM command to bind the module with NOMAIN specified to another
module that has a program entry procedure or you must use the CRTSRVPGM
command.

A no-main module will not include logic for the RPG program cycle; thus language
features dependent on the cycle must not be specified.

Note: In addition to the NOMAIN keyword, the MAIN keyword also allows you
to create a module that does not contain the RPG program cycle.

See “Linear Module” on page 29 for more information.

OPENOPT (*NOINZOFL | *INZOFL)
For a program that has one or more printer files defined with an overflow
indicator (OA-OG or OV), the OPENOPT keyword specifies whether the overflow
indicator should be reset to *OFF when the file is opened. If the OPENOPT
keyword is specified, with *NOINZOFL, the overflow indicator will remain
unchanged when the associated printer file is opened. If not specified or specified
with *INZOFL, the overflow indicator will be set to *OFF when the associated
printer file is opened.

OPTIMIZE(*NONE | *BASIC | *FULL)
The OPTIMIZE keyword specifies the level of optimization, if any, of the object.

If *NONE is specified, then the generated code is not optimized. This is the fastest
in terms of translation time. It allows you to display and modify variables while in
debug mode.

If *BASIC is specified, it performs some optimization on the generated code. This
allows user variables to be displayed but not modified while the program is in
debug mode.

If *FULL is specified, then the most efficient code is generated. Translation time is
the longest. In debug mode, user variables may not be modified but may be
displayed, although the presented values may not be the current values.

If the OPTIMIZE keyword is not specified, then the value specified on the
command is used.

OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY
*{NO}EXPDDS *{NO}EXT *{NO}SHOWSKP) *{NO}SRCSTMT)
*{NO}DEBUGIO) *{NO}UNREF

The OPTION keyword specifies the options to use when the source member is
compiled.

You can specify any or all of the options in any order. However, if a compile
option is specified, the *NOxxxx parameter for the same compile option cannot

Control-Specification Keywords

Chapter 12. Control Specifications 271

#
#
#
#
#
#
#

#
#

|
|

#

#

#

also be used, and vice versa. For example, if you specify *XREF you cannot also
specify *NOXREF, and vice versa. Separate the options with a colon. You cannot
specify an option more than once.

Note: If the keyword OPTION does not contain a member from a pair, then the
value specified on the command for this particular option will be used. For
example, if the keyword OPTION(*XREF : *NOGEN : *NOSECLVL :
*SHOWCPY) is specified on the Control specification, then for the pairs,
(*EXT, *NOEXT), (*EXPDDS, *NOEXPDDS) and (*SHOWSKP,
*NOSHOWSKP), whatever was specified implicitly or explicitly on the
command will be used.

If *XREF is specified, a cross-reference listing is produced (when appropriate) for
the source member. *NOXREF indicates that a cross-reference listing is not
produced.

If *GEN is specified, a program object is created if the highest severity level
returned by the compiler does not exceed the severity specified in the GENLVL
option. *NOGEN does not create an object.

If *SECLVL is specified, second-level message text is printed on the line following
the first-level message text in the Message Summary section. *NOSECLVL does not
print second-level message text on the line following the first-level message text.

If *SHOWCPY is specified, the compiler listing shows source records of members
included by the /COPY compiler directive. *NOSHOWCPY does not show source
records of members included by the /COPY compiler directive.

If *EXPDDS is specified, the expansion of externally described files in the listing
and key field information is displayed. *NOEXPDDS does not show the expansion
of externally described files in the listing or key field information.

If *EXT is specified, the external procedures and fields referenced during the
compile are included on the listing. *NOEXT does not show the list of external
procedures and fields referenced during compile on the listing.

If *SHOWSKP is specified, then all statements in the source part of the listing are
displayed, regardless of whether or not the compiler has skipped them.
*NOSHOWSKP does not show skipped statements in the source part of the listing.
The compiler skips statements as a result of /IF, /ELSEIF, or /ELSE directives.

If *SRCSTMT is specified, statement numbers for the listing are generated from the
source ID and SEU sequence numbers as follows:
stmt_num = source_ID * 1000000 + source_SEU_sequence_number

For example, the main source member has a source ID of 0. If the first line in the
source file has sequence number 000100, then the statement number for this
specification would be 100. A line from a /COPY file member with source ID 27
and source sequence number 000100 would have statement number 27000100.
*NOSRCSTMT indicates that line numbers are assigned sequentially.

If *DEBUGIO is specified, breakpoints are generated for all input and output
specifications. *NODEBUGIO indicates that no breakpoints are to be generated for
these specifications.

Control-Specification Keywords

272 ILE RPG Reference

If *UNREF is specified, all variables are generated into the module. If *NOUNREF
is specified, unreferenced variables are not generated unless they are needed by
some other module. The following rules apply to OPTION(*NOUNREF):
v Variables defined with EXPORT are always generated into the module whether

or not they are referenced.
v Unreferenced variables defined with IMPORT are generated into the module if

they appear on Input specifications.
v The *IN indicator array and the *INxx indicators are not generated into the

module if no *IN indicator is used in the program, either explicitly by a *INxx
reference, or implicitly by conditioning or result indicator entries.

v For variables not defined with EXPORT or IMPORT:
– Variables associated with Files, or used in Calculations or on Output

specifications are always generated.
– Variables that appear only on Definition specifications are not generated into

the module if they are not referenced.
– Variables that are referenced only by Input specifications are generated into

the module only if DEBUG, DEBUG(*YES) or DEBUG(*INPUT) is specified on
the Control specification.

If the OPTION keyword is not specified, then the values specified on the
command are used.

PGMINFO(*PCML | *NO { : *MODULE })
The PGMINFO keyword specifies how program-interface information is to be
generated for the module or program.

The first parameter specifies whether program-interface information is to be
generated. Specifying *PCML indicates that program-interface information is to be
generated. Specifying *NO indicates that no program-interface information is to be
generated.

The second parameter is not allowed if the first parameter is *NO. Otherwise, the
second parameter is required; it must be *MODULE, indicating that
program-interface information is to be generated directly into the module. If the
module is later used to create a program or service program, the program-interface
information will also be place in the program or service program. The information
can then be retrieved using API QBNRPII.

The PGMINFO setting defaults to the values specified on the PGMINFO and
INFOSTMF parameters of the CRTRPGMOD or CRTBNDRPG command. If the
PGMINFO keyword conflicts with the PGMINFO and INFOSTMF command
parameters, the value of the Control specification keyword overrides the values
specified on the command. However, if the requests from the command parameters
and the PGMINFO keyword are different but not in conflict, the compiler will
merge the values of the command parameters and the PGMINFO keyword.

Examples
v If the command parameters, for example PGMINFO(*PCML) and

INFOSTMF(’mypgm.pcml’), specify that the information should be placed in a
stream file, and the PGMINFO(*PCML:*MODULE) keyword specifies that the
information should be placed in the module, then both requests will be merged,
and the final PGMINFO values will be PGMINFO(*PCML:*ALL)
INFOSTMF(’mypgm.pcml’).

Control-Specification Keywords

Chapter 12. Control Specifications 273

#
#
#

#
#

#
#

#
#
#

#

#
#

#
#

#
#
#

#

#
#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

v If the command parameters PGMINFO(*PCML *ALL) INFOSTMF(’/home/
mypcml/mypgm.pcml’)specify that the information should be placed both in the
module and in a stream file, and the PGMINFO(*NO) keyword specifies that no
information should be saved, then the PGMINFO keyword will override the
command values, and the final PGMINFO value will be PGMINFO(*NO).

PRFDTA(*NOCOL | *COL)
The PRFDTA keyword specifies whether the collection of profiling data is enabled.

If *NOCOL is specified, the collection of profiling data is not enabled for this
object.

If *COL is specified, the collection of profiling is enabled for this object. *COL can
be specified only when the optimization level of the object is *FULL.

If the PRFDTA keyword is not specified, then the value specified on the command
is used.

SRTSEQ(*HEX | *JOB | *JOBRUN | *LANGIDUNQ |
*LANGIDSHR | ’sort-table-name’)

The SRTSEQ keyword specifies the sort sequence table that is to be used in the ILE
RPG source program.

If *HEX is specified, no sort sequence table is used.

If *JOB is specified, the SRTSEQ value for the job when the *PGM is created is
used.

If *JOBRUN is specified, the SRTSEQ value for the job when the *PGM is run is
used.

If *LANGIDUNQ is specified, a unique-weight table is used. This special value is
used in conjunction with the LANGID command parameter or keyword to
determine the proper sort sequence table.

If *LANGIDSHR is specified, a shared-weight table is used. This special value is
used in conjunction with the LANGID command parameter or keyword to
determine the proper sort sequence table.

A sort table name can be specified to indicate the name of the sort sequence table
to be used with the object. It can also be qualified by a library name followed by a
slash delimiter (’library-name/sort-table-name’). The library-name is the name of
the library to be searched. If a library name is not specified, *LIBL is used to find
the sort table name.

If you want to use the SRTSEQ and LANGID parameters to determine the
alternate collating sequence, you must also specify ALTSEQ(*EXT) on the control
specification.

If the SRTSEQ keyword is not specified, then the value specified on the command
is used.

Control-Specification Keywords

274 ILE RPG Reference

#
#
#
#
#

STGMDL(*INHERIT | *SNGLVL | *TERASPACE)
The STGMDL keyword specifies the storage model for the program or module.
v *SNGLVL is used to specify the single-level storage model.
v *INHERIT is used to specify the inherit storage model.
v *TERASPACE is used to specify the teraspace storage model.

When a single-level storage model program or service program is activated and
run, it is supplied single-level storage for automatic and static storage. A
single-level storage program or service program runs only in a single-level storage
activation group. A program compiled with DFTACTGRP(*YES) must be a
single-level storage model program.

When a teraspace storage model program or service program is activated and run,
it is supplied teraspace storage for automatic and static storage. A teraspace
storage program or service program runs only in a teraspace storage activation
group.

When an inherit storage model program or service program is activated, it adopts
the storage model of the activation group into which it is activated. An equivalent
view is that it inherits the storage model of its caller. When the *INHERIT storage
model is selected, *CALLER must be specified for the activation group through the
ACTGRP parameter or keyword.

An inherit storage model module can be bound into programs and service
programs with a storage model of single-level, teraspace or inherit.

A single-level storage model module can only be bound into programs and service
programs that use single-level storage.

A teraspace storage model module can only be bound into programs and service
programs that use teraspace storage.

If the STGMDL keyword is not specified, then the value specified on the command
is used.

TEXT(*SRCMBRTXT | *BLANK | ’description’)
The TEXT keyword allows you to enter text that briefly describes the object and its
function. The text is used when creating the object and appears when object
information is displayed.

If *SRCMBRTXT is specified, the text of the source member is used.

If *BLANK is specified, no text will appear.

If a literal is specified, it can be a maximum of 50 characters and must be enclosed
in apostrophes. (The apostrophes are not part of the 50-character string.)

If the TEXT keyword is not specified, then the value specified on the command is
used.

THREAD(*CONCURRENT | *SERIALIZE)
The THREAD keyword indicates that the ILE RPG module being created is
intended to run safely in a multithreaded environment. One of the major

Control-Specification Keywords

Chapter 12. Control Specifications 275

|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|

|
|

#

#
#

thread-safety issues is the handling of static storage. When multiple threads access
the same storage location at the same time, unpredictable results can occur.

Specifying the THREAD keyword helps you make your module thread-safe with
regards to the static storage in the module. You can choose between having
separate static storage for each thread, or limiting access to the module to only one
thread at a time. You can mix the two types of modules in the same program, or
service program. However, you should not omit the THREAD keyword in any
module that may run in a multithreaded environment.

You do not have to be concerned about automatic variables. Automatic variables
are naturally thread-safe because they are created for each invocation of a
procedure. Automatic storage for a procedure is allocated in storage which is
unique for each thread.

THREAD(*CONCURRENT)
If THREAD(*CONCURRENT) is specified, then multiple threads can run in the
module at the same time. By default, all the static storage in the module will be in
thread-local storage, meaning that each thread will have its own copy of the static
variables in the module, including compiler-internal variables. This allows multiple
threads to run the procedures within the module at the same time and be
completely independent of each other. For example, one thread could be in the
middle of a loop that is reading a file in procedure PROCA, at the same time as
another thread is running in an earlier part of PROCA, preparing to open the file
for its own use. If the module has a global variable NAME, the value of NAME
could be ’Jack’ in one thread and ’Jill’ in another. The thread-local static variables
allow the threads to operate independently.

You can choose to have some of your static variables shared among all threads by
using the STATIC(*ALLTHREAD) keyword. If you use this keyword, you are
responsible for ensuring that your procedures use that storage in a thread-safe
way. See “THREAD(*CONCURRENT | *SERIALIZE)” on page 275.

You can choose to serialize access to individual procedures by specifying the
SERIALIZE keyword on the Procedure-Begin specification. If you want to ensure
that only one thread is active at one time in a particular part of section of the code,
you can move that code to a serialized procedure.

THREAD(*SERIALIZE)
If THREAD(*SERIALIZE) is specified, access to the procedures in the module is
serialized. When called in a multithreaded environment, any code within the
module can be used by at most one thread at a time.

General thread considerations
To see the advantages and disadvantages of the two types of thread-safety for
RPG, see the section on multithreaded applications in Rational Development Studio
for i: ILE RPG Programmer’s Guide. For a list of system functions that are not
allowed or supported in a multithreaded environment, see the Multithreaded
Applications document under the Programming topic at the following URL:
http://www.ibm.com/systems/i/infocenter/

You cannot use the following in a thread-safe program:
v *INUx indicators
v External indicators (*INU1 - *INU8)
v The LR indicator for the CALL or CALLB operation

Control-Specification Keywords

276 ILE RPG Reference

#
#

#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#

#
#
#
#

When using the THREAD keyword, remember the following:
v It is up to the programmer to ensure that storage that is shared across modules

or threads is used in a thread-safe manner. This includes:
– Storage explicitly shared by being exported and imported.
– Storage shared because a procedure saves the address of a parameter or a

pointer parameter, or allocated storage, and uses it on a subsequent call.
– Storage shared because STATIC(*ALLTHREAD) was specified on the

definition of the variable.
v If shared files are used by more than one language (RPG and C, or RPG and

COBOL), ensure that only one language is accessing the file at one time.

TIMFMT(fmt{separator})
The TIMFMT keyword specifies the internal time format for time literals and the
default internal format for time fields within the program. You can specify a
different internal time format for a particular field by specifying the format with
the TIMFMT keyword on the definition specification for that field.

If the TIMFMT keyword is not specified the *ISO format is assumed. For more
information on internal formats, see “Internal and External Formats” on page 179.

Table 36 on page 209 shows the time formats supported and their separators.

TRUNCNBR(*YES | *NO)
The TRUNCNBR keyword specifies if the truncated value is moved to the result
field or if an error is generated when numeric overflow occurs while running the
object.

Note: The TRUNCNBR option does not apply to calculations performed within
expressions. (Expressions are found in the Extended-Factor 2 field.) If
overflow occurs for these calculations, an error will always occur.

If *YES is specified, numeric overflow is ignored and the truncated value is moved
to the result field.

If *NO is specified, a run-time error is generated when numeric overflow is
detected.

If the TRUNCNBR keyword is not specified, then the value specified on the
command is used.

USRPRF(*USER | *OWNER)
The USRPRF keyword specifies the user profile that will run the created program
object. The profile of the program owner or the program user is used to run the
program and to control which objects can be used by the program (including the
authority the program has for each object). This keyword is not updated if the
program already exists.

If *USER is specified, the user profile of the program’s user will run the created
program object.

If *OWNER is specified, the user profiles of both the program’s user and owner
will run the created program object. The collective set of object authority in both

Control-Specification Keywords

Chapter 12. Control Specifications 277

#

#
#

#

#
#

#
#

user profiles is used to find and access objects while the program is running. Any
objects created during the program are owned by the program’s user.

If the USRPRF keyword is not specified, then the value specified on the command
is used.

The USRPRF keyword is valid only if the CRTBNDRPG command is used.

Control-Specification Keywords

278 ILE RPG Reference

Chapter 13. File Description Specifications

File description specifications identify each file used by a module or procedure.
Each file in a program must have a corresponding file description specification
statement.

A file can be either program-described or externally described. In
program-described files, record and field descriptions are included within the RPG
program (using input and output specifications). Externally described files have
their record and field descriptions defined externally using DDS, DSU, IDDU, or
SQL commands. (DSU is part of the CODE/400 product.)

The following limitations apply:
v Only one primary file can be specified. It must be specified as a global file. The

presence of a primary file is not required.
v Only one record-address file is a allowed in a module; it must be defined as a

global file.
v A maximum of eight PRINTER files is allowed for global files defined in the

main source section, and a maximum of eight local PRINTER files is allowed in
each procedure.

v There is no limit for the maximum number of files allowed.
v Local files defined in subprocedures must be full-procedural files.
v Files defined in subprocedures do not have Input and Output specifications, so

all input and output must be done using data structures.

File Description Specification Statement
The general layout for the file description specification is as follows:
v the file description specification type (F) is entered in position 6
v the non-commentary part of the specification extends from position 7 to position

80
– the fixed-format entries extend from positions 7 to 42. For files defined with

the LIKEFILE keyword, the entries from position 17 to position 43 must be
blank. The values for those fixed-form entries are taken from the parent file
specified by the LIKEFILE keyword.

– the keyword entries extend from positions 44 to 80
v the comments section of the specification extends from position 81 to position

100

File-Description Keyword Continuation Line
If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:
v position 6 of the continuation line must contain an F

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 111. File Description Specification Layout

© Copyright IBM Corp. 1994, 2010 279

#
#
#

#

#
#

#
#

#
#
#

#

#

#
#

#

#
#
#
#

v positions 7 to 43 of the continuation line must be blank
v the specification continues on or past position 44

Position 6 (Form Type)
An F must be entered in this position for file description specifications.

Positions 7-16 (File Name)
Entry Explanation

A valid file name
Every file used in a program must have a unique name. The file
name can be from 1 to 10 characters long, and must begin in
position 7.

At compile time:
v If the file is program-described, the file named in position 7 does not need to

exist.
v If the file is externally-described, the file named in position 7 must exist but you

can use an i5/OS system override command to associate the name to a file
defined to the i5/OS system, or you can use the EXTDESC keyword to indicate
the file defined to the system.

At run time:
v If you use the EXTFILE keyword, the EXTMBR keyword, or both, RPG will open

the file named in these keywords.
v Otherwise, RPG will open the file named in position 7. This file (or an

overridden file) must exist when the file is opened.
v If an i5/OS system override command has been used for the file that RPG

opens, that override will take effect and the actual file opened will depend on
the override. See the “EXTFILE(filename | *EXTDESC)” on page 295 keyword
for more information about how overrides interact with this keyword.

When files that are not defined by the USROPN keyword are opened at run time,
they are opened in the reverse order to that specified in the file description
specifications. The RPG IV device name defines the operations that can be
processed on the associated file.

Program-Described File
For program-described files, the file name entered in positions 7 through 16 must
also be entered on:
v Input specifications if the file is a global primary, secondary, or full procedural

file
v Output specifications or an output calculation operation line if the file is an

output, update, or combined file, or if file addition is specified for the file
v Definition specifications if the file is a table or array file.
v Calculation specifications if the file name is required for the operation code

specified

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
F.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 112. File-Description Keyword Continuation Line Layout

File Description Specification Statement

280 ILE RPG Reference

#
#
#
#

#
#

Externally-Described File
For externally described files, if the EXTDESC keyword is not specified, the file
name entered in positions 7 through 16 is the name used to locate the record
descriptions for the file. The following rules apply to externally described files:
v Input and output specifications for externally described files are optional. They

are required only if you are adding RPG IV functions, such as control fields or
record identifying indicators, to the external description retrieved.

v When an external description is retrieved, the record definition can be referred
to by its record format name on the input, output, or calculation specifications. If
the file is qualified, due to the QUALIFIED or LIKEFILE keywords, the qualified
record format is referred to by both the file and record format, for example
MYFILE.MYFMT.

v A record format name must be a unique symbolic name. If the file is qualified,
due to the QUALIFIED or LIKEFILE keyword, the name of record format must
be unique to the other formats of the file. If the file is not qualified, the name of
the record format must be unique to the other names within the module.

v RPG IV does not support an externally described logical file with two record
formats of the same name. However, such a file can be accessed if it is program
described.

Position 17 (File Type)
This entry must be blank if the LIKEFILE keyword is specified. The File Type of
the parent file is used.

Entry Explanation

I Input file

O Output file

U Update file

C Combined (input/output) file.

Input Files
An input file is one from which a program reads information. It can contain data
records, arrays, or tables, or it can be a record-address file.

Output Files
An output file is a file to which information is written.

Update Files
An update file is an input file whose records can be read and updated. Updating
alters the data in one or more fields of any record contained in the file and writes
that record back to the same file from which it was read. If records are to be
deleted, the file must be specified as an update file.

Combined Files
A combined file is both an input file and an output file. When a combined file is
processed, the output record contains only the data represented by the fields in the
output record. This differs from an update file, where the output record contains
the input record modified by the fields in the output record.

A combined file is valid for a SPECIAL or WORKSTN file. A combined file is also
valid for a DISK or SEQ file if position 18 contains T (an array or table
replacement file).

File Description Specification Statement

Chapter 13. File Description Specifications 281

#
#
#

#
#
#

#
#
#
#
#

#
#
#
#

#
#
#

#
#

Position 18 (File Designation)
This entry must be blank if the LIKEFILE keyword is specified. The File
Designation of the parent file is used.

Entry Explanation

Blank Output file

P Primary file

S Secondary file

R Record address file

T Array or table file

F Full procedural file

You cannot specify P, S, or R if the keyword MAIN or NOMAIN is specified on a
control specification.

Primary File
When several files are processed by cycle processing, one must be designated as
the primary file. In multi-file processing, processing of the primary file takes
precedence. Only one primary file is allowed per program.

Secondary File
When more than one file is processed by the RPG cycle, the additional files are
specified as secondary files. Secondary files must be input capable (input, update,
or combined file type). The processing of secondary files is determined by the
order in which they are specified in the file description specifications and by the
rules of multi-file logic.

Record Address File (RAF)
A record-address file is a sequentially organized file used to select records from
another file. Only one file in a program can be specified as a record-address file.
This file is described on the file description specification and not on the input
specifications. A record-address file must be program-described; however, a
record-address file can be used to process a program described file or an externally
described file.

The file processed by the record-address file must be a primary, secondary, or
full-procedural file, and must also be specified as the parameter to the RAFDATA
keyword on the file description specification of the record-address file.

You cannot specify a record-address file for the device SPECIAL.

UCS-2 fields are not allowed as the record address type for record address files.

A record-address file that contains relative-record numbers must also have a T
specified in position 35 and an F in position 22.

Array or Table File
Array and table files specified by a T in position 18 are loaded at program
initialization time. The array or table file can be input or combined. Leave this
entry blank for array or table output files. You cannot specify SPECIAL as the
device for array and table input files. You cannot specify an externally described
file as an array or table file.

File Description Specification Statement

282 ILE RPG Reference

#
#

If T is specified in position 18, you can specify a file type of combined (C in
position 17) for a DISK or SEQ file. A file type of combined allows an array or
table file to be read from or written to the same file (an array or table replacement
file). In addition to a C in position 17, the filename in positions 7-16 must also be
specified as the parameter to the TOFILE keyword on the definition specification.

Full Procedural File
A full procedural file is not processed by the RPG cycle: input is controlled by
calculation operations. File operation codes such as CHAIN or READ are used to
do input functions.

Position 19 (End of File)
Entry Explanation

E All records from the file must be processed before the program can end.
This entry is not valid for files processed by a record-address file.

All records from all files which use this option must be processed before
the LR indicator is set on by the RPG cycle to end the program.

Blank If position 19 is blank for all files, all records from all files must be
processed before end of program (LR) can occur. If position 19 is not blank
for all files, all records from this file may or may not be processed before
end of program occurs in multi-file processing.

Use position 19 to indicate whether the program can end before all records from
the file are processed. An E in position 19 applies only to input, update, or
combined files specified as primary, secondary, or record-address files.

If the records from all primary and secondary files must be processed, position 19
must be blank for all files or must contain E’s for all files. For multiple input files,
the end-of-program (LR) condition occurs when all input files for which an E is
specified in position 19 have been processed. If position 19 is blank for all files, the
end-of-program condition occurs when all input files have been processed.

When match fields are specified for two or more files and an E is specified in
position 19 for one or more files, the LR indicator is set on after:
v The end-of-file condition occurs for the last file with an E specified in position

19.
v The program has processed all the records in other files that match the last

record processed from the primary file.
v The program has processed the records in those files without match fields up to

the next record with non-matching match fields.

When no file or only one file contains match field specifications, no records of
other files are processed after end of file occurs on all files for which an E is
specified in position 19.

Position 20 (File Addition)
Position 20 indicates whether records are to be added to an input or update file.
For output files, this entry is ignored. This entry must be blank if the LIKEFILE
keyword is specified.

Entry Explanation

Blank No records can be added to an input or update file (I or U in position 17).

File Description Specification Statement

Chapter 13. File Description Specifications 283

#
#
#

##

##

A Records are added to an input or update file when positions 18 through 20
of the output record specifications for the file contain ″ADD″, or when the
WRITE operation code is used in the calculation specification.

See Table 46 for the relationship between position 17 and position 20 of the file
description specifications and positions 18 through 20 of the output specifications.

Table 46. Processing Functions for Files

Function

Specification

File Description Output

Position 17 Position 20 Positions 18-20

Create new file1

or
Add records to existing file

O
O

Blank
A

Blank
ADD

Process file I Blank Blank

Process file and add records to the existing
file

I A ADD

Process file and update the records (update
or delete)

U Blank Blank

Process file and add new records to an
existing file

U A ADD

Process file and delete an existing record
from the file

U Blank DEL

Note: Within RPG, the term create a new file means to add records to a newly created file. Thus, the first two entries
in this table perform the identical function. Both are listed to show that there are two ways to specify that function.

Position 21 (Sequence)
Entry Explanation

A or blank Match fields are in ascending sequence.

D Match fields are in descending sequence.

Position 21 specifies the sequence of input fields used with the match fields
specification (positions 65 and 66 of the input specifications). Position 21 applies
only to input, update, or combined files used as primary or secondary files. Use
positions 65 and 66 of the input specifications to identify the fields containing the
sequence information.

If more than one input file with match fields is specified in the program, a
sequence entry in position 21 can be used to check the sequence of the match fields
and to process the file using the matching record technique. The sequence need
only be specified for the first file with match fields specified. If sequence is
specified for other files, the sequence specified must be the same; otherwise, the
sequence specified for the first file is assumed.

If only one input file with match fields is specified in the program, a sequence
entry in position 21 can be used to check fields of that file to ensure that the file is
in sequence. By entering one of the codes M1 through M9 in positions 65 and 66 of
the input specifications, and by entering an A, blank, or D in position 21, you
specify sequence checking of these fields.

File Description Specification Statement

284 ILE RPG Reference

##
#
#

#

Sequence checking is required when match fields are used in the records from the
file. When a record from a matching input file is found to be out of sequence, the
RPG IV exception/error handling routine is given control.

Position 22 (File Format)
This entry must be blank if the LIKEFILE keyword is specified. The File Format of
the parent file is used.

Entry Explanation

F Program-described file

E Externally described file

An F in position 22 indicates that the records for the file are described within the
program on input/output specifications (except for array/table files and
record-address files).

An E in position 22 indicates that the record descriptions for the file are external to
the RPG IV source program. The compiler obtains these descriptions at compilation
time and includes them in the source program.

Positions 23-27 (Record Length)
This entry must be blank if the LIKEFILE keyword is specified. The Record Length
of the parent file is used.

Use positions 23 through 27 to indicate the length of the logical records contained
in a program-described file. The maximum record size that can be specified is
32766; however, record-size constraints of any device may override this value. This
entry must be blank for externally described files.

If the file being defined is a record-address file and the record length specified is 3,
it is assumed that each record in the file consists of a 3-byte binary field for the
relative-record numbers starting at offset 0. If the record length is 4 or greater, each
relative-record number in the record-address file is assumed to be a 4-byte field
starting at offset 1. If the record length is left blank, the actual record length is
retrieved at run time to determine how to handle the record-address file.

If the file opened at run time has a primary record length of 3, then 3-byte
relative-record numbers (one per record) are assumed; otherwise, 4-byte
relative-record numbers are assumed. This support can be used to allow ILE RPG
programs to use System/36™ environment SORT files as record-address files.

Table 47. Valid Combinations for a Record Address File containing Relative Record
Numbers (RAFRRN)

Record Length
Positions 23-27

RAF Length
Positions 29-33

Type of Support

Blank Blank Support determined at run time.

3 3 System/36 support.

> = 4 4 Native support.

Position 28 (Limits Processing)
Entry Explanation

File Description Specification Statement

Chapter 13. File Description Specifications 285

#
#

#
#

L Sequential-within-limits processing by a record-address file

Blank Sequential or random processing

Use position 28 to indicate whether the file is processed by a record-address file
that contains limits records.

A record-address file used for limits processing contains records that consist of
upper and lower limits. Each record contains a set of limits that consists of the
lowest record key and the highest record key from the segment of the file to be
processed. Limits processing can be used for keyed files specified as primary,
secondary, or full procedural files.

The L entry in position 28 is valid only if the file is processed by a record-address
file containing limits records. Random and sequential processing of files is implied
by a combination of positions 18 and 34 of the file description specifications, and
by the calculation operation specified.

The operation codes “SETLL (Set Lower Limit)” on page 808 and “SETGT (Set
Greater Than)” on page 804 can be used to position a file; however, the use of
these operation codes does not require an L in this position.

For more information on limits processing, refer to the IBM Rational Development
Studio for i: ILE RPG Programmer’s Guide.

Positions 29-33 (Length of Key or Record Address)
This entry must be blank if the LIKEFILE keyword is specified. The Length of Key
of the parent file is used.

Entry Explanation

1-2000 The number of positions required for the key field in a program
described file or the length of the entries in the record-address file
(which must be a program-described file).

If the program-described file being defined uses keys for record
identification, enter the number of positions occupied by each
record key. This entry is required for indexed files.

If the keys are packed, the key field length should be the packed
length; this is the number of digits in DDS divided by 2 plus 1 and
ignoring any fractions.

If the file being defined is a record-address file, enter the number
of positions that each entry in the record-address file occupies.

If the keys are graphic, the key field length should be specified in
bytes (for example, 3 graphic characters requires 6 bytes).

Blank These positions must be blank for externally described files. (The
key length is specified in the external description.) For a
program-described file, a blank entry indicates that keys are not
used. Positions 29-33 can also be blank for a record-address file
with a blank in positions 23-27 (record length).

Position 34 (Record Address Type)
This entry must be blank if the LIKEFILE keyword is specified. The Record
Address Type of the parent file is used.

File Description Specification Statement

286 ILE RPG Reference

#
#

#
#

Entry Explanation

Blank Relative record numbers are used to process the file.

Records are read consecutively.

Record address file contains relative-record numbers.

For limits processing, the record-address type (position 34) is the same as
the type of the file being processed.

A Character keys (valid only for program-described files specified as indexed
files or as a record-address-limits file).

P Packed keys (valid only for program-described files specified as indexed
files or as a record-address-limits file).

G Graphic keys (valid only for program-described files specified as indexed
files or as a record-address-limits file).

K Key values are used to process the file. This entry is valid only for
externally described files.

D Date keys are used to process the file. This entry is valid only for
program-described files specified as indexed files or as a
record-address-limits file.

T Time keys are used to process the file. This entry is valid only for
program-described files specified as indexed files or as a
record-address-limits file.

Z Timestamp Keys are used to process the file. This entry is valid only for
program-described files specified as indexed files or as a
record-address-limits file.

F Float Key (valid only for program-described files specified as indexed files
or as a record-address-limits file).

UCS-2 fields are not allowed as the record address type for program described
indexed files or record address files.

Blank=Non-keyed Processing
A blank indicates that the file is processed without the use of keys, that the
record-address file contains relative-record numbers (a T in position 35), or that the
keys in a record-address-limits file are in the same format as the keys in the file
being processed.

A file processed without keys can be processed consecutively or randomly by
relative-record number.

Input processing by relative-record number is determined by a blank in position 34
and by the use of the CHAIN, SETLL, or SETGT operation code. Output
processing by relative-record number is determined by a blank in position 34 and
by the use of the RECNO keyword on the file description specifications.

A=Character Keys
The indexed file (I in position 35) defined on this line is processed by
character-record keys. (A numeric field used as the search argument is converted to
zoned decimal before chaining.) The A entry must agree with the data format of
the field identified as the key field (length in positions 29 to 33 and starting
position specified as the parameter to the KEYLOC keyword).

File Description Specification Statement

Chapter 13. File Description Specifications 287

The record-address-limits file (R in position 18) defined on this line contains
character keys. The file being processed by this record address file can have an A,
P, or K in position 34.

P=Packed Keys
The indexed file (I in position 35) defined on this line is processed by
packed-decimal-numeric keys. The P entry must agree with the data format of the
field identified as the key field (length in positions 29 to 33 and starting position
specified as the parameter to the KEYLOC keyword).

The record-address-limits file defined on this line contains record keys in packed
decimal format. The file being processed by this record address file can have an A,
P, or K in position 34.

G=Graphic Keys
The indexed file (I in position 35) defined on this line is processed by graphic keys.
Since each graphic character requires two bytes, the key length must be an even
number. The record-address file which is used to process this indexed file must
also have a ’G’ specified in position 34 of its file description specification, and its
key length must also be the same as the indexed file’s key length (positions 29-33).

K=Key
A K entry indicates that the externally described file is processed on the
assumption that the access path is built on key values. If the processing is random,
key values are used to identify the records.

If this position is blank for a keyed file, the records are retrieved in arrival
sequence.

D=Date Keys
The indexed file (I in position 35) defined on this line is processed by date keys.
The D entry must agree with the data format of the field identified as the key field
(length in positions 29 to 33 and starting position specified as the parameter to the
KEYLOC keyword).

The hierarchy used when determining the format and separator for the date key is:
1. From the DATFMT keyword specified on the file description specification
2. From the DATFMT keyword specified in the control specification
3. *ISO

T=Time Keys
The indexed file (I in position 35) defined on this line is processed by time keys.
The T entry must agree with the data format of the field identified as the key field
(length in positions 29 to 33 and starting position specified as the parameter to the
KEYLOC keyword).

The hierarchy used when determining the format and separator for the time key is:
1. From the TIMFMT keyword specified on the file description specification
2. From the TIMFMT keyword specified in the control specification
3. *ISO

File Description Specification Statement

288 ILE RPG Reference

Z=Timestamp Keys
The indexed file (I in position 35) defined on this line is processed by timestamp
keys. The Z entry must agree with the data format of the field identified as the key
field (length in positions 29 to 33 and starting position specified as the parameter
to the KEYLOC keyword).

F=Float Keys
The indexed file (I in position 35) defined on this line is processed by float keys.
The Length-of-Key entry (positions 29-33) must contain a value of either 4 or 8 for
a float key. When a file contains a float key, any type of numeric variable or literal
may be specified as a key on keyed input/output operations. For a non-float
record address type, you cannot have a float search argument.

For more information on record address type, refer to the IBM Rational Development
Studio for i: ILE RPG Programmer’s Guide.

Position 35 (File Organization)
This entry must be blank if the LIKEFILE keyword is specified. The File
Organization of the parent file is used.

Entry Explanation

Blank The program-described file is processed without keys, or the file is
externally described.

I Indexed file (valid only for program-described files).

T Record address file that contains relative-record numbers (valid only for
program-described files).

Use position 35 to identify the organization of program described files.

Blank=Non-keyed Program-Described File
A program-described file that is processed without keys can be processed:
v Randomly by relative-record numbers, positions 28 and 34 must be blank.
v Entry Sequence, positions 28 and 34 must be blank.
v As a record-address file, position 28 must be blank.

I=Indexed File
An indexed file can be processed:
v Randomly or sequentially by key
v By a record-address file (sequentially within limits). Position 28 must contain an

L.

T=Record Address File
A record-address file (indicated by an R in position 18) that contains relative-record
numbers must be identified by a T in position 35. (A record-address file must be
program described.) Each record retrieved from the file being processed is based
on the relative record number in the record-address file. (Relative record numbers
cannot be used for a record-address-limits file.)

Each relative-record number in the record-address file is a 4-byte binary field;
therefore, each 4-byte unit of a record-address file contains a relative-record
number. A minus one (-1 or hexadecimal FFFFFFFF) relative-record number value
causes the record to be skipped. End of file occurs when all record-address file
records have been processed.

File Description Specification Statement

Chapter 13. File Description Specifications 289

#
#

For more information on how to handle record-address files, see the IBM Rational
Development Studio for i: ILE RPG Programmer’s Guide.

Positions 36-42 (Device)
This entry must be blank if the LIKEFILE keyword is specified. The Device entry
of the parent file is used.

Entry Explanation

PRINTER File is a printer file, a file with control characters that can be sent
to a printer.

DISK File is a disk file. This device supports sequential and random
read/write functions. These files can be accessed on a remote
system by Distributed Data Management (DDM).

WORKSTN File is a workstation file. Input/output is through a display or ICF
file.

SPECIAL This is a special file. Input or output is on a device that is accessed
by a user-supplied program. The name of the program must be
specified as the parameter for the PGMNAME keyword. A
parameter list is created for use with this program, including an
option code parameter and a status code parameter. The file must
be a fixed unblocked format. See “PLIST(Plist_name)” on page 304
and “PGMNAME(program_name)” on page 304 for more
information.

SEQ File is a sequentially organized file. The actual device is specified
in a CL command or in the file description, which is accessed by
the file name.

Use positions 36 through 42 to specify the RPG IV device name to be associated
with the file. The RPG IV device name defines the ILE RPG functions that can be
done on the associated file. Certain functions are valid only for a specific ILE RPG
device name (such as the EXFMT operation for WORKSTN). The file name
specified in positions 7 through 16 can be overridden at run time, allowing you to
change the input/output device used in the program.

Note that the RPG IV device names are not the same as the system device names.

Position 43 (Reserved)
Position 43 must be blank.

Positions 44-80 (Keywords)
Positions 44 to 80 are provided for file-description-specification keywords.
Keywords are used to provide additional information about the file being defined.

File-Description Keywords
File-Description keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameter1 : parameter2)

where:
v Parameter(s) are enclosed in parentheses ().

File Description Specification Statement

290 ILE RPG Reference

#
#

Note: Do not specify parentheses if there are no parameters.
v Colons (:) are used to separate multiple parameters.

The following notational conventions are used to show which parameters are
optional and which are required:
v Braces { } indicate optional parameters or optional elements of parameters.
v An ellipsis (...) indicates that the parameter can be repeated.
v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are
enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

v A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for file-description keywords, the keyword field can
be continued on subsequent lines. See “File-Description Keyword Continuation
Line” on page 279 and “File Description Specification Keyword Field” on page 251.

ALIAS
When the ALIAS keyword is specified for an externally-described file, the RPG
compiler will use the alias (alternate) names, if present, when determining the
subfield names for data structures defined with the LIKEREC keyword. When the
ALIAS keyword is not specified for the RPG file, or an external field does not have
an alias name defined, the RPG compiler will use the standard external field name.

Note: If the alternate name for a particular external field is enclosed in quotes, the
standard external field name is used for that field.

The ALIAS keyword is allowed for an externally-described file for which the RPG
compiler will not generate Input or Output specifications. This includes files
defined with the TEMPLATE or QUALIFIED keyword, and local files defined in
subprocedures.

When the PREFIX keyword is specified with the ALIAS keyword, the second
parameter of PREFIX, indicating the number of characters to be replaced, does not
apply to the alias names. In the following discussion, assume that the file MYFILE
has fields XYCUSTNM and XYID_NUM, and the XYCUSTNM field has the alias
name CUSTOMER_NAME.
v If keyword PREFIX(NEW_) is specified, there is no second parameter, so no

characters are replaced for any names. The names used for LIKEREC subfields
will be NEW_CUSTOMER_NAME and NEW_XYID_NUM.

v If keyword PREFIX(NEW_:2) is specified, two characters will be replaced in the
names of fields that do not have an alias name. The names used for LIKEREC
subfields will be NEW_CUSTOMER_NAME and NEW_ID_NUM. The first two
characters, ″XY″, are replaced in XYID_NUM, but no characters are replaced in
CUSTOMER_NAME.

v If keyword PREFIX(’’:2) is specified, two characters will be repaced in the names
of fields that do not have an alias name. The names used for LIKEREC subfields

File-Description Keywords

Chapter 13. File Description Specifications 291

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

will be CUSTOMER_NAME and ID_NUM. The first two characters, ″XY″, are
replaced in XYID_NUM, but no characters are replaced in CUSTOMER_NAME.

v If the first parameter for PREFIX contains a data structure name, for example
PREFIX(’MYDS.’), the part of the prefix before the dot will be ignored.

BLOCK(*YES |*NO)
The BLOCK keyword controls the blocking of records associated with the file. The
keyword is valid only for DISK or SEQ files.

If this keyword is not specified, the RPG compiler unblocks input records and
blocks output records to improve run-time performance in SEQ or DISK files when
the following conditions are met:
1. The file is program-described or, if externally described, it has only one record

format.
2. Keyword RECNO is not used in the file description specification.

Note: If RECNO is used, the ILE RPG compiler will not allow record blocking.
However, if the file is an input file and RECNO is used, Data
Management may still block records if fast sequential access is set. This
means that updated records might not be seen right away.

3. One of the following is true:
a. The file is an output file.
b. If the file is a combined file, then it is an array or table file.
c. The file is an input-only file; it is not a record-address file or processed by a

record-address file; and none of the following operations are used on the
file: READE, READPE, SETGT, SETLL, and CHAIN. (If any READE or
READPE operations are used, no record blocking will occur for the input
file. If any SETGT, SETLL, or CHAIN operations are used, no record
blocking will occur unless the BLOCK(*YES) keyword is specified for the
input file.)

If BLOCK(*YES) is specified, record blocking occurs as described above except that
the operations SETLL, SETGT, and CHAIN can be used with an input file and

* The DDS specifications for file MYFILE, using the ALIAS keyword
* for the first field to associate the alias name CUSTOMER_NAME
* with the CUSTNM field
A R CUSTREC
A CUSTNM 25A ALIAS(CUSTOMER_NAME)
A ID_NUM 12P 0

* The RPG source, using the ALIAS keyword:
Fmyfile if e disk ALIAS QUALIFIED
* The subfields of the LIKEREC data structure are
* CUSTOMER_NAME (using the ALIAS name)
* ID_NUM (using the standard name)
D myDs ds LIKEREC(myfile.custRec)
/free

read myfile myDs;
if myDs.customer_name <> *blanks
and myDs.id_num > 0;

...

Figure 113. Using the ALIAS keyword for an externally-described file

File-Description Keywords

292 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|

|
|

|

blocking will still occur (see condition 3c above). To prevent the blocking of
records, BLOCK(*NO) can be specified. Then no record blocking is done by the
compiler.

COMMIT{(rpg_name)}
The COMMIT keyword allows the processing of files under commitment control.
An optional parameter, rpg_name, may be specified. The parameter is implicitly
defined as a field of type indicator (that is, a character field of length one), and is
initialized by RPG to ’0’.

By specifying the optional parameter, you can control at run time whether to
enable commitment control. If the parameter contains a ’1’, the file will be opened
with the COMMIT indication on, otherwise the file will be opened without
COMMIT. The parameter must be set prior to opening the file. If the file is opened
at program initialization, the COMMIT parameter can be passed as a call
parameter or defined as an external indicator. If the file is opened explicitly, using
the OPEN operation in the calculation specifications, the parameter can be set prior
to the OPEN operation.

Use the COMMIT and ROLBK operation codes to group changes to this file and
other files currently under commitment control so that changes all happen
together, or do not happen at all.

Note: If the file is already open with a shared open data path, the value for
commitment control must match the value for the previous OPEN operation.

DATFMT(format{separator})
The DATFMT keyword allows the specification of a default external date format
and a default separator (which is optional) for all date fields in the
program-described file. If the file on which this keyword is specified is indexed
and the key field is a date, then this also provides the default external format for
the key field.

For a Record-Address file this specifies the external date format of date limits keys
read from the record-address file.

You can specify a different external format for individual input or output date
fields in the file by specifying a date format/separator for the field on the
corresponding input specification (positions 31-35) or output specification
(positions 53-57).

See Table 33 on page 207 for valid formats and separators. For more information
on external formats, see “Internal and External Formats” on page 179.

DEVID(fieldname)
The DEVID keyword specifies the name of the program device that supplied the
record processed in the file. The field is updated each time a record is read from a
file. Also, you may move a program device name into this field to direct an output
or device-specific input operation (other than a READ-by-file-name or an implicit
cycle read) to a different device.

The fieldname is implicitly defined as a 10-character alphanumeric field. The
device name specified in the field must be left-justified and padded with blanks.

File-Description Keywords

Chapter 13. File Description Specifications 293

Initially, the field is blank. A blank field indicates the requester device. If the
requester device is not acquired for your file, you must not use a blank field.

The DEVID field is maintained for each call to a program. If you call program B
from within program A, the DEVID field for program A is not affected. Program B
uses a separate DEVID field. When you return to program A, its DEVID field has
the same value as it had before you called program B. If program B needs to know
which devices are acquired to program A, program A must pass this information
(as a parameter list) when it calls program B.

If the DEVID keyword is specified but not the MAXDEV keyword, the program
assumes a multiple device file (MAXDEV with a parameter of *FILE).

To determine the name of the requester device, you may look in the appropriate
area of the file information data structure (see “File Information Data Structure” on
page 79). Or, you may process an input or output operation where the fieldname
contains blanks. After the operation, the fieldname has the name of the requester
device.

EXTDESC(external-filename)
The EXTDESC keyword can be specified to indicate which file the compiler should
use at compile time to obtain the external descriptions for the file.

The file specified by the EXTDESC keyword is used only at compile time. At
runtime, the file is found using the same rules as would be applied if the
EXTDESC keyword was not specified. You can use additional keyword
EXTFILE(*EXTDESC) if you also want the file specified by the EXTDESC keyword
to be used at runtime.

The EXTDESC keyword must be specified before any keywords that have record
format names as parameters such as IGNORE, INCLUDE, RENAME, and SFILE,
and before any keywords whose validity depends on the actual file, such as
INDDS and SLN.

The parameter for EXTDESC must be a literal specifying a valid file name. You can
specify the value in any of the following forms:
filename
libname/filename
*LIBL/filename

Notes:

1. You cannot specify *CURLIB as the library name.
2. If you specify a file name without a library name, *LIBL is used.
3. The name must be in the correct case. For example, if you specify

EXTDESC(’qtemp/myfile’), the file will not be found. Instead, you should
specify EXTDESC(’QTEMP/MYFILE’).

4. If you have specified an override for the file that RPG will use for the external
descriptions, that override will be in effect. If the EXTDESC(’MYLIB/MYFILE’)
is specified, RPG will use the file MYLIB/MYFILE for the external descriptions.
If the command OVRDBF MYFILE OTHERLIB/OTHERFILE has been used
before compiling, the actual file used will be OTHERLIB/OTHERFILE. Note
that any overrides for the name specified in positions 7-15 will be ignored,
since that name is only used internally within the RPG source member.

File-Description Keywords

294 ILE RPG Reference

#

#
#

#
#
#
#
#

#
#
#
#

#
#

#
#
#

#

#

#

#
#
#

#
#
#
#
#
#
#

#

EXTFILE(filename | *EXTDESC)
The EXTFILE keyword specifies which file, in which library, is opened.

filename can be a literal or a variable. You can specify the value in any of the
following forms:
filename
libname/filename
*LIBL/filename

Special value *EXTDESC can be used to indicate that the parameter for the
EXTDESC keyword should also be used for the EXTFILE keyword.

Notes:

1. You cannot specify *CURLIB as the library name.
2. If you specify a file name without a library name, *LIBL is used.
3. The name must be in the correct case. For example, if you specify

EXTFILE(filename) and variable filename has the value 'qtemp/myfile', the file
will not be found. Instead, it should have the value 'QTEMP/MYFILE'.

4. This keyword is not used to find an externally-described file at compile time.
Use the EXTDESC keyword to locate the file at compile-time.

5. When EXTFILE(*EXTDESC) is specified, the EXTDESC keyword must also be
specified for the file, or for the parent file if the file is defined with the
LIKEFILE keyword.

6. If a variable name is used, it must be set before the file is opened. For files that
are opened automatically during the initialization part of the cycle, the variable
must be set in one of the following ways:
v Using the INZ keyword on the D specification
v Passing the value in as an entry parameter
v Using a program-global variable that is set by another module.

If you have specified an override for the file that RPG will open, that override will
be in effect. In the following code, for the file named INPUT within the RPG
program, the file that is opened at runtime depends on the value of the filename
field.
Finput if f 10 disk extfile(filename)

* At compile time, file MYLIB/MYFILE1 will be used to
* get the definition for file "FILE1", as specified by
* the EXTDESC keyword.
* At runtime, file *LIBL/FILE1 will be opened. Since
* the EXTFILE keyword is not specified, the file name
* defaults to the RPG name for the file.
Ffile1 if e disk
F extdesc('MYLIB/MYFILE1')
* At compile time, file MYLIB/MYFILE2 will be used to
* get the definition for file "FILE2", as specified by
* the EXTDESC keyword.
* At runtime, file MYLIB/MYFILE2 will be opened, as
* specified by the EXTFILE(*EXTDESC) keyword.
Ffile2 if e disk
F extdesc('MYLIB/MYFILE2')
F extfile(*extdesc)

Figure 114. Example of the EXTDESC keyword.

File-Description Keywords

Chapter 13. File Description Specifications 295

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

#

#
#

#
#
#

#
#

#
#

|
|
|

If the filename field has the value MYLIB/MYFILE at runtime, RPG will open the
file MYLIB/MYFILE. If the command OVRDBF MYFILE OTHERLIB/OTHERFILE
has been used, the actual file opened will be OTHERLIB/OTHERFILE. Note that
any overrides for the name INPUT will be ignored, since INPUT is only the name
used within the RPG source member.

EXTIND(*INUx)
The EXTIND keyword indicates whether the file is used in the program depending
on the value of the external indicator.

EXTIND lets the programmer control the operation of input, output, update, and
combined files at run time. If the specified indicator is on at program initialization,
the file is opened. If the indicator is not on, the file is not opened and is ignored
during processing. The *INU1 through *INU8 indicators can be set as follows:
v By the i5/OS control language.
v When used as a resulting indicator for a calculation operation or as field

indicators on the input specifications. Setting the *INU1 through *INU8
indicators in this manner has no effect on file conditioning.
See also “USROPN” on page 312.

EXTMBR(membername)
The EXTMBR keyword specifies which member of the file is opened. You can
specify a member name, '*ALL', or '*FIRST'. Note that ’*ALL’ and ’*FIRST’ must

* The name of the file is known at compile time
Ffile1 IF F 10 DISK EXTFILE('MYLIB/FILE1')
Ffile2 IF F 10 DISK EXTFILE('FILE2')

* The name of the file is in a variable which is
* in the correct form when the program starts.
* Variable "filename3" must have a value such as
* 'MYLIB/MYFILE' or 'MYFILE' when the file is
* opened during the initialization phase of the
* RPG program.
Ffile3 IF F 10 DISK EXTFILE(filename3)

* The library and file names are in two separate variables
* The USROPN keyword must be used, so that the "filename4"
* variable can be set correctly before the file is opened.
Ffile4 IF F 10 DISK EXTFILE(filename4)
F USROPN
D filename4 S 21A
* EXTFILE variable "filename4" is set to the concatenated
* values of the "libnam" and "filnam" variables, to form
* a value in the form "LIBRARY/FILE".
C EVAL filename4 = %trim(libnam) + '/' + filnam
C OPEN file4

* At compile time, file MYLIB/MYFILE5 will be used to
* get the external definition for the file "file5",
* due to the EXTDESC keyword.
* At runtime, the file MYLIB/MYFILE5 will be opened,
* due to the EXTFILE(*EXTDESC) keyword.
Ffile5 if e DISK
F EXTFILE(*EXTDESC)
F EXTDESC('MYLIB/MYFILE5')

Figure 115. Examples of the EXTFILE keyword

File-Description Keywords

296 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

be specified in quotes, since they are member ″names″, not RPG special words. The
value can be a literal or a variable. The default is '*FIRST'.

The name must be in the correct case. For example, if you specify EXTMBR(mbrname)
and variable mbrname has the value 'mbr1', the member will not be found. Instead,
it should have the value 'MBR1'.

If a variable name is used, it must be set before the file is opened. For files that are
opened automatically during the initialization part of the cycle, the variable must
be set in one of the following ways:
v Using the INZ keyword on the D specification
v Passing the value in as an entry parameter
v Using a program-global variable that is set by another module.

FORMLEN(number)
The FORMLEN keyword specifies the form length of a PRINTER file. The form
length must be greater than or equal to 1 and less than or equal to 255. The
parameter specifies the exact number of lines available on the form or page to be
used.

Changing the form length does not require recompiling the program. You can
override the number parameter of FORMLEN by specifying a new value for the
PAGSIZE parameter of the Override With Printer File (OVRPRTF) command.

When the FORMLEN keyword is specified, the FORMOFL keyword must also be
specified.

FORMOFL(number)
The FORMOFL keyword specifies the overflow line number that will set on the
overflow indicator. The overflow line number must be less than or equal to the
form length. When the line that is specified as the overflow line is printed, the
overflow indicator is set on.

Changing the overflow line does not require recompiling the program. You can
override the number parameter of FORMOFL by specifying a new value for the
OVRFLW parameter of the Override With Printer File (OVRPRTF) command.

When the FORMOFL keyword is specified, the FORMLEN keyword must also be
specified.

IGNORE(recformat{:recformat...})
The IGNORE keyword allows a record format from an externally described file to
be ignored. The external name of the record format to be ignored is specified as
the parameter recformat. One or more record formats can be specified, separated
by colons (:). The program runs as if the specified record format(s) did not exist.
All other record formats contained in the file will be included.

When the IGNORE keyword is specified for a file, the INCLUDE keyword cannot
be specified.

Remember that for a qualified file, the unqualified form of the record format name
is used for the IGNORE keyword.

File-Description Keywords

Chapter 13. File Description Specifications 297

#
#

INCLUDE(recformat{:recformat...})
The INCLUDE keyword specifies those record format names that are to be
included; all other record formats contained in the file will be ignored. For
WORKSTN files, the record formats specified using the SFILE keyword are also
included in the program, they need not be specified twice. Multiple record formats
can be specified, separated by colons (:).

When the INCLUDE keyword is specified for a file, the IGNORE keyword cannot
be specified.

Remember that for a qualified file, the unqualified form of the record format name
is used for the INCLUDE keyword.

INDDS(data_structure_name)
The INDDS keyword lets you associate a data structure name with the INDARA
indicators for a workstation or printer file. This data structure contains the
conditioning and response indicators passed to and from data management for the
file, and is called an indicator data structure.

Rules:
v This keyword is allowed only for externally described PRINTER files and

externally and program-described WORKSTN files.
v For a program-described file, the PASS(*NOIND) keyword must not be specified

with the INDDS keyword.
v The same data structure name may be associated with more than one file.
v The data structure name must be defined as a data structure on the definition

specifications and can be a multiple-occurrence data structure.
v The length of the indicator data structure is always 99.
v The indicator data structure is initialized by default to all zeros (’0’s).
v The SAVEIND keyword cannot be specified with this keyword.

If this keyword is not specified, the *IN array is used to communicate indicator
values for all files defined with the DDS keyword INDARA.

For additional information on indicator data structures, see “Special Data
Structures” on page 141.

INFDS(DSname)
The INFDS keyword lets you define and name a data structure to contain the
feedback information associated with the file. The data structure name is specified
as the parameter for INFDS. If INFDS is specified for more than one file, each
associated data structure must have a unique name.

An INFDS must be coded in the same scope as the file; for a global file, it must be
coded in the main source section, and for a local file, it must be coded in the same
subprocedure as the file. Furthermore, it must have the same storage type, static or
automatic, as the file.

For additional information on file information data structures, see “File
Information Data Structure” on page 79.

File-Description Keywords

298 ILE RPG Reference

#
#

#
#
#
#

#
#
#
#

INFSR(SUBRname)
The INFSR keyword identifies the file exception/error subroutine that may receive
control following file exception/errors. The subroutine name may be *PSSR, which
indicates the user-defined program exception/error subroutine is to be given
control for errors on this file.

The INFSR keyword cannot be specified for a global file that is accessed by a
subprocedure. The INFSR subroutine must be coded in the same scope as the file;
for a local file, it must be coded in the same subprocedure as the file, and for a
global file in a cycle module, it must be coded in the main source section.

KEYLOC(number)
The KEYLOC keyword specifies the record position in which the key field for a
program-described indexed-file begins. The parameter must be between 1 and
32766.

The key field of a record contains the information that identifies the record. The
key field must be in the same location in all records in the file.

LIKEFILE(parent-filename)
The LIKEFILE keyword is used to define one file like another file.

Note: In the following discussion, the term new file is used for the file defined
using the LIKEFILE keyword, and the term parent file is used for the
parameter of the LIKEFILE keyword whose definition is used to derive the
definition of the new file.

Rules for the LIKEFILE keyword:
v When a file is defined with the LIKEFILE keyword, the QUALIFIED keyword is

assumed. Record formats are automatically qualified for a file defined with the
LIKEFILE keyword. If the record formats of the parent file FILE1 are RECA and
RECB, then the record formats of the new file FILE2 must be referred to in the
RPG program by FILE2.RECA and FILE2.RECB.

v The QUALIFIED keyword cannot be specified with the LIKEFILE keyword.
v All non-ignored record formats from the parent file are available for the new

file.
v If the LIKEFILE keyword is specified, the file specified as a parameter must

have already been defined in the source file.
v If the LIKEFILE keyword is specified in a subprocedure, and the file specified as

the parameter is defined in the global definitions, the compiler will locate the
global definition at the time of scanning the LIKEFILE definition.

v Input and output specifications are not generated or allowed for files defined
with LIKEFILE. All input and output operations must be done with result data
structures.

v When a file is defined with LIKEFILE, the File specifications for the parent file
must make it clear whether or not the file is blocked. It may be necessary to
specify the BLOCK keyword for the parent file. For example, for an input DISK
file, the BLOCK keyword is required if the file is used in a LIKEFILE keyword
since the file is blocked depending on which calculation operations are used for
the file. For an Input-Add DISK file, the file can never be blocked, so the
BLOCK keyword is not required.

v If BLOCK(*YES) is specified for a file, and the file is used as a parent file for
files defined with the LIKEFILE keyword, the READE, READPE and READP

File-Description Keywords

Chapter 13. File Description Specifications 299

#
#
#
#

#

#

#
#
#
#

#
#
#
#
#
#

#

#
#

#
#

#
#
#

#
#
#

#
#
#
#
#
#
#

#
#

operations are not allowed for the parent file, or for any files related to the
parent file through the LIKEFILE keyword.

v Some properties of the parent file are inherited by the new file, and some are
not. Of the properties which are inherited, some can be overridden by File
specification keywords. The properties which are not inherited can be specified
for the new file by File specification keywords, see Table 48.

Table 48. File properties which are inherited and which can be overridden

Property or keyword Inherited from parent file
Can be specified for new
file

File type (Input, update,
output, combined)

Yes No

File addition Yes No

Record address type (RRN,
keyed)

Yes No

Record length
(Program-described files)

Yes No

Key length
(Program-described files)

Yes No

File organization
(Program-described files)

Yes No

Device Yes No

BLOCK Yes No

COMMIT No Yes

DATFMT N/A, see Note 1

DEVID No Yes

EXTDESC Yes No

EXTFILE Yes, see Note 2 Yes

EXTIND No Yes

EXTMBR Yes, see Note 2 Yes

FORMLEN Yes Yes

FORMOFL Yes Yes

IGNORE Yes No

INCLUDE Yes No

INDDS No Yes

INFDS No Yes

INFSR No Yes

KEYLOC Yes No

LIKEFILE Yes N/A

MAXDEV Yes Yes

OFLIND No Yes

PASS Yes No

PGMNAME Yes Yes

PLIST No Yes

PREFIX Yes No

PRTCTL No Yes

File-Description Keywords

300 ILE RPG Reference

#
#

#
#
#
#

##

##
#
#

#
#
##

###

#
#
##

#
#
##

#
#
##

#
#
##

###

###

###

##

###

###

###

###

###

###

###

###

###

###

###

###

###

|||

###

###

###

###

###

###

###

Table 48. File properties which are inherited and which can be overridden (continued)

Property or keyword Inherited from parent file
Can be specified for new
file

QUALIFIED N/A, QUALIFIED is always implied for new file

RAFDATA N/A, see Note 3

RECNO No Yes

RENAME Yes No

SAVEDS No Yes

SAVEIND No Yes

SFILE Yes, see Note 4 Yes, see Note 4

SLN No Yes

STATIC No Yes

TEMPLATE No Yes

TIMFMT N/A, see Note 1

USROPN No Yes

Notes:

1. The DATFMT and TIMFMT keywords relate to Date and Time fields coded on
program-described Input specifications for the file, but Input specifications are
not relevant for files defined with the LIKEFILE keyword.

2. The external file associated with the RPG file depends on the EXTFILE and
EXTMBR keywords specified for both the parent file and the new file. By
default, the external file associated with each file is the name specified in the
Name entry for the file. The new file inherits the EXTFILE or EXTMBR
keywords from the parent file if the parameters are constants, but these
keywords may also be specified for the new file. If the parameter for EXTFILE
or EXTMBR is not a constant, the EXTFILE or EXTMBR keyword is not
inherited. The following table shows the external files that would be used at
runtime for some examples of EXTFILE and EXTMBR values for a parent file
and a new file that is defined LIKEFILE the parent file.

Table 49. File specification examples: EXTFILE and EXTMBR

File Specifications
External files used at runtime
(Inherited values appear in bold)

Examples where the EXTFILE and EXTMBR values are both constants

FFILE1 IF E DISK
FFILE2 LIKEFILE(FILE1)

*LIBL/FILE1(*FIRST)
*LIBL/FILE2(*FIRST)

FFILE1 IF E DISK EXTFILE('MYLIB/MYFILE')
FFILE2 LIKEFILE(FILE1)

MYLIB/MYFILE(*FIRST)
MYLIB/MYFILE(*FIRST)

FFILE1 IF E DISK
FFILE2 LIKEFILE(FILE1) EXTFILE('MYLIB/MYFILE')

*LIBL/FILE1(*FIRST)
MYLIB/MYFILE(*FIRST)

FFILE1 IF E DISK EXTFILE('MYLIB/MYFILE1')
FFILE2 LIKEFILE(FILE1) EXTFILE('MYLIB/MYFILE2')

MYLIB/MYFILE1(*FIRST)
MYLIB/MYFILE2(*FIRST)

FFILE1 IF E DISK EXTMBR('MBR1')
FFILE2 LIKEFILE(FILE1)

*LIBL/FILE1(MBR1)
*LIBL/FILE2(MBR1)

FFILE1 IF E DISK
FFILE2 LIKEFILE(FILE1) EXTMBR('MBR1')

*LIBL/FILE1(*FIRST)
*LIBL/FILE2(MBR1)

FFILE1 IF E DISK EXTMBR('MBR1')
FFILE2 LIKEFILE(FILE1) EXTFILE('MYLIB/MYFILE2')

*LIBL/FILE1(MBR1)
MYLIB/MYFILE2(MBR1)

File-Description Keywords

Chapter 13. File Description Specifications 301

#

##
#
#

##

||

|||

|||

###

###

|||

###

|||

|||

##

###
#

#

#
#
#

#
#
#
#
#
#
#
#
#
#

##

#
#
#

#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

#
#
#
#

Table 49. File specification examples: EXTFILE and EXTMBR (continued)

File Specifications
External files used at runtime
(Inherited values appear in bold)

Examples where the EXTFILE and EXTMBR values are both variable

FFILE1 IF E DISK EXTFILE(extfileVariable)
FFILE2 LIKEFILE(FILE1)
Value of extfileVariable: 'MYLIB/MYFILE'

MYLIB/MYFILE(*FIRST)
*LIBL/FILE2(*FIRST)

FFILE1 IF E DISK
FFILE2 LIKEFILE(FILE1) EXTFILE(extfileVariable)
Value of extfileVariable: 'MYLIB/MYFILE'

*LIBL/FILE1(*FIRST)
MYLIB/MYFILE(*FIRST)

FFILE1 IF E DISK EXTFILE(extfileVariable1)
FFILE2 LIKEFILE(FILE1) EXTFILE(extfileVariable2)
Value of extfileVariable1: 'MYLIB/MYFILE1'
Value of extfileVariable2: 'MYLIB/MYFILE2'

MYLIB/MYFILE1(*FIRST)
MYLIB/MYFILE2(*FIRST)

FFILE1 IF E DISK EXTMBR(extmbrVariable)
FFILE2 LIKEFILE(FILE1)
Value of extmbrVariable: 'MBR1'

*LIBL/FILE1(MBR1)
*LIBL/FILE2(*FIRST)

FFILE1 IF E DISK
FFILE2 LIKEFILE(FILE1) EXTMBR(extmbrVariable)
Value of extmbrVariable: 'MBR1'

*LIBL/FILE1(*FIRST)
*LIBL/FILE2(MBR1)

FFILE1 IF E DISK EXTMBR(extmbrVariable)
FFILE2 LIKEFILE(FILE1) EXTFILE(extfileVariable)
Value of extmbrVariable: 'MBR1'
Value of extfileVariable: 'MYLIB/MYFILE2'

*LIBL/FILE1(MBR1)
MYLIB/MYFILE2(*FIRST)

Examples where the EXTFILE and EXTMBR values are mixed variables and constants

FFILE1 IF E DISK EXTFILE(extfileVariable1) EXTMBR('MBR1')
FFILE2 LIKEFILE(FILE1)
Value of extfileVariable1: 'MYLIB/MYFILE1'

MYLIB/MYFILE1(MBR1)
*LIBL/FILE2(MBR1)

FFILE1 IF E DISK EXTMBR(extmbrVariable)
FFILE2 LIKEFILE(FILE1)
Value of extmbrVariable: 'MBR1'

*LIBL/FILE1(MBR1)
*LIBL/FILE2(*FIRST)

FFILE1 IF E DISK EXTFILE('MYLIB/MYFILE1') EXTMBR(extmbrVariable)
FFILE2 LIKEFILE(FILE1)
Value of extmbrVariable: 'MBR1'

MYLIB/MYFILE1(MBR1)
MYLIB/MYFILE1(*FIRST)

3. The RAFDATA keyword is relevant only for Primary and Secondary files, but
the parent file must be a Full Procedural file.

4. The SFILE keyword indicates that the record format is a subfile record format,
and it also indicates the name of the variable used to specify the relative record
number for the subfile. The new file automatically inherits the fact that a
particular record format is a subfile record format; however, it does not inherit
the name of the variable used to specify the RRN. The SFILE keyword must be
specified for the new file to indicate which variable is to be used to specify the
relative record number for the subfile.

MAXDEV(*ONLY | *FILE)
The MAXDEV keyword specifies the maximum number of devices defined for the
WORKSTN file. The default, *ONLY, indicates a single device file. If *FILE is
specified, the maximum number of devices (defined for the WORKSTN file on the
create-file command) is retrieved at file open, and SAVEIND and SAVEDS space
allocation will be done at run time.

With a shared file, the MAXDEV value is not used to restrict the number of
acquired devices.

File-Description Keywords

302 ILE RPG Reference

#

#
#
#

#

#
#
#

#
#

#
#
#

#
#

#
#
#
#

#
#

#
#
#

#
#

#
#
#

#
#

#
#
#
#

#
#

#

#
#
#

#
#

#
#
#

#
#

#
#
#

#
#

#

#
#

#
#
#
#
#
#
#

When you specify DEVID, SAVEIND, or SAVEDS but not MAXDEV, the program
assumes the default of a multiple device file (MAXDEV with a parameter of
*FILE).

OFLIND(indicator)
The OFLIND keyword specifies an overflow indicator to condition which lines in
the PRINTER file will be printed when overflow occurs. This entry is valid only
for a PRINTER device. Default overflow processing (that is, automatic page eject at
overflow) is done if the OFLIND keyword is not specified.

Valid Parameters:

*INOA-*INOG, *INOV:
Specified overflow indicator conditions the lines to be printed when
overflow occurs on a program described printer file.

*IN01-*IN99:
Set on when a line is printed on the overflow line, or the overflow line is
reached or passed during a space or skip operation.

name: The name of a variable that is defined with type indicator and is not an
array. This indicator is set on when the overflow line is reached and the
program must handle the overflow condition.

The behavior is the same as for indicators *IN01 to *IN99.

Note: Indicators *INOA through *INOG, and *INOV are not valid for externally
described files.

Only one overflow indicator can be assigned to a file. If more than one PRINTER
file in a module is assigned an overflow indicator, that indicator must be unique
for each file. A global indicator cannot be used on more than one file even if one of
the files is defined in a different procedure.

PASS(*NOIND)
The PASS keyword determines whether indicators are passed under programmer
control or based on the DDS keyword INDARA. This keyword can only be
specified for program-described files. To indicate that you are taking responsibility
for passing indicators on input and output, specify PASS(*NOIND) on the file
description specification of the corresponding program-described WORKSTN file.

When PASS(*NOIND) is specified, the ILE RPG compiler does not pass indicators
to data management on output, nor does it receive them on input. Instead you
pass indicators by describing them as fields (in the form *INxx, *IN(xx), or *IN) in
the input or output record. They must be specified in the sequence required by the
data description specifications (DDS). You can use the DDS listing to determine
this sequence.

If this keyword is not specified, the compiler assumes that INDARA was specified
in the DDS.

Note: If the file has the INDARA keyword specified in the DDS, you must not
specify PASS(*NOIND). If it does not, you must specify PASS(*NOIND).

File-Description Keywords

Chapter 13. File Description Specifications 303

|
|
|
|

PGMNAME(program_name)
The PGMNAME keyword identifies the program that is to handle the support for
the special I/O device (indicated by a Device-Entry of SPECIAL).

Note: The parameter must be a valid program name and not a bound procedure
name.

See “Positions 36-42 (Device)” on page 290 and “PLIST(Plist_name)” for more
information.

PLIST(Plist_name)
The PLIST keyword identifies the name of the parameter list to be passed to the
program for the SPECIAL file. The parameters identified by this entry are added to
the end of the parameter list passed by the program. (The program is specified
using the PGMNAME keyword, see “PGMNAME(program_name).”) This keyword
can only be specified when the Device-Entry (positions 36 to 42) in the file
description line is SPECIAL.

PREFIX(prefix{:nbr_of_char_replaced})
The PREFIX keyword is used to partially rename the fields in an externally
described file.The characters specified in the first parameter are prefixed to the
names of all fields defined in all records of the file specified in positions 7-16. The
characters can be specified as a name, for example PREFIX(F1_), or as a character
literal, for example PREFIX(’F1_’). A character literal must be used if the prefix
contains a period, for example PREFIX(’F1DS.’) or PREFIX(’F1DS.A’). To remove
characters from the beginning of every name, specify an empty string as the first
parameter: PREFIX(’’:number_to_remove). In addition, you can optionally specify a
numeric value to indicate the number of characters, if any, in the existing name to
be replaced. If the ’nbr_of_char_replaced’ is not specified, then the string is
attached to the beginning of the name.

If the ’nbr_of_char_replaced’ is specified, it must be a numeric constant containing
a value between 0 and 9 with no decimal places. For example, the specification
PREFIX(YE:3) would change the field name ’YTDTOTAL’ to ’YETOTAL’.
Specifying a value of zero is the same as not specifying ’nbr_of_char_replaced’ at
all.

The ’nbr_of_char_replaced’ parameter is not used when applying the prefix to an
alias name. See the ALIAS keyword for information on how the PREFIX keyword
interacts with the ALIAS keyword.

Rules:
v To explicitly rename a field on an Input specification when the PREFIX

keyword has been specified for a file you must choose the correct field name to
specify for the External Field Name (positions 21 - 30) of the Input specification.
The name specified depends on whether the prefixed name has been used prior
to the rename specification.
– If there has been a prior reference made to the prefixed name, the prefixed

name must be specified.
– If there has not been a prior reference made to the prefixed name, the external

name of the input field must be specified.

File-Description Keywords

304 ILE RPG Reference

|
|
|

Once the rename operation has been coded then the new name must be used to
reference the input field. For more information, see External Field Name of the
Input specification.

v The total length of the name after applying the prefix must not exceed the
maximum length of an RPG field name.

v The number of characters in the name to be prefixed must not be less than or
equal to the value represented by the ’nbr_of_char_replaced’ parameter. That is,
after applying the prefix, the resulting name must not be the same as the prefix
string.

v If the prefix is a character literal, it can contain a period or end in a period. In
this case, the field names must all be subfields of the same qualified data
structure. The data structure must be defined as a qualified data structure. For
example, for PREFIX(’F1DS.’), data structure F1DS must be define as a qualified
data structure; if the file has fields FLD1 and FLD2, the data structure must have
subfields F1DS.FLD1 and F1DS.FLD2. Similarly, for PREFIX(’F2DS.A’), data
structure F2DS must be a qualified data structure; if the file has fields FLD1 and
FLD2, the data structure must have subfields F2DS.AFLD1 and F2DS.AFLD2.

v If the prefix is a character literal, it must be uppercase.
v If an externally-described data structure is used to define the fields in the file,

care must be taken to ensure that the field names in the file are the same as the
subfield names in the data structure. The following table shows the prefix
required for an externally-described file and externally-described data structure
for several prefixed versions of the name ″XYNAME″. When the ″Internal name″
column contains a dot, for example D1.NAME, the externally-described data
structure is defined as QUALIFIED, and the PREFIX for the File specification
must contain a dot.

PREFIX for file

PREFIX for
externally-described data
structure Internal name

PREFIX(A) PREFIX(A) AXYNAME

PREFIX(A:2) PREFIX(A:2) ANAME

PREFIX(’D.’) None D.XYNAME

PREFIX(’D.’ : 2) PREFIX(’’ : 2) D.NAME

PREFIX(’D.A’) PREFIX(A) D.AXYNAME

PREFIX(’D.A’ : 2) PREFIX(A : 2) D.ANAME

PREFIX(’’:2) PREFIX(’’ : 2) NAME

Examples:

The following example adds the prefix ″NEW_″ to the beginning of the field names
for file NEWFILE, and the prefix ″OLD_″ to the beginning of the field names for
file OLDFILE.
Fnewfile o e disk prefix(NEW_)
Foldfile if e disk prefix(OLD_)
C READ OLDREC
C EVAL NEWIDNO = OLD_IDNO
C EVAL NEWABAL = OLD_ABAL
C WRITE NEWREC

The following example uses PREFIX(N:2) on both file FILE1 and the
externally-described data structure DS1. The File-specification prefix will cause the
FILE1 fields XYIDNUM and XYCUSTNAME to be known as NIDNUM and

File-Description Keywords

Chapter 13. File Description Specifications 305

NCUSTNAME in the program; the Data-specification prefix will cause the data
structure to have subfields NIDNUM and NCUSTNAME. During the READ
operation, data from the record will be moved to the subfields of DS1, which can
then be passed to the subprocedure processRec to process the data in the record.
Ffile1 if e disk prefix(N:2)
D ds1 e ds extname(file1) prefix(N:2)
C READ file1
C CALLP processRec (ds1)

The following example uses prefix ’MYDS.’ to associate the fields in MYFILE with
the subfields of qualified data structure MYDS.
Fmyfile if e disk prefix('MYDS.')
D myds e ds qualified extname(myfile)

The next example uses prefix ’MYDS.F2’:3 to associate the fields in MYFILE with
the subfields of qualified data structure MYDS2. The subfields themselves are
further prefixed by replacing the first three characters with ’F2’. The fields used by
this file will be MYDS2.F2FLD1 and MYDS2.F2FLD2. (Data structure MYDS2 must
be defined with a similar prefix. However, it is not exactly the same, since it does
not include the data structure name.)
A R REC
A ACRFLD1 10A
A ACRFLD2 5S 0
Fmyfile2 if e disk prefix('MYDS2.F2':3)
D myds2 e ds qualified extname(myfile)
D prefix('F2':3)

PRTCTL(data_struct{:*COMPAT})
The PRTCTL keyword specifies the use of dynamic printer control. The data
structure specified as the parameter data_struct refers to the forms control
information and line count value. The PRTCTL keyword is valid only for a
program described file.

The optional parameter *COMPAT indicates that the data structure layout is
compatible with RPG III. The default, *COMPAT not specified, will require the use
of the extended length data structure.

Extended Length PRTCTL Data Structure
A minimum of 15 bytes is required for this data structure. Layout of the PRTCTL
data structure is as follows:

Data Structure Positions
Subfield Contents

1-3 A three-position character field that contains the space-before value (valid
entries: blank or 0-255)

4-6 A three-position character field that contains the space-after value (valid
entries: blank or 0-255)

7-9 A three-position character field that contains the skip-before value (valid
entries: blank or 1-255)

10-12 A three-position character field that contains the skip-after value (valid
entries: blank or 1-255)

13-15 A three-digit numeric (zoned decimal) field with zero decimal positions
that contains the current line count value.

File-Description Keywords

306 ILE RPG Reference

*COMPAT PRTCTL Data Structure
Data Structure Positions

Subfield Contents

1 A one-position character field that contains the space-before value (valid
entries: blank or 0-3)

2 A one-position character field that contains the space-after value (valid
entries: blank or 0-3)

3-4 A two-position character field that contains the skip-before value (valid
entries: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

5-6 A two-position character field that contains the skip-after value (valid
entries: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

7-9 A three-digit numeric (zoned decimal) field with zero decimal positions
that contains the current line count value.

The values contained in the first four subfields of the extended length data
structure are the same as those allowed in positions 40 through 51 (space and skip
entries) of the output specifications. If the space and skip entries (positions 40
through 51) of the output specifications are blank, and if subfields 1 through 4 are
also blank, the default is to space 1 after. If the PRTCTL option is specified, it is
used only for the output records that have blanks in positions 40 through 51. You
can control the space and skip value (subfields 1 through 4) for the PRINTER file
by changing the values in these subfields while the program is running.

Subfield 5 contains the current line count value. The ILE RPG compiler does not
initialize subfield 5 until after the first output line is printed. The compiler then
changes subfield 5 after each output operation to the file.

QUALIFIED
The QUALIFIED keyword controls how the record formats for the file are specified
in your RPG source.

If this keyword is specified, the record formats must be qualified with the file
name when they are specified in the RPG source; for example format FMT1 in
qualified file FILE1 must be specified as FILE1.FMT1. The record format names can
be the same as other names used within the RPG source.

If this keyword is not specified, the record formats must not be qualified with the
file name; format FMT1 is specified as FMT1. The record format names must be
unique names within the RPG source.

Rules for the QUALIFIED keyword:
v When a file is qualified, its record names must be qualified everywhere in the

source except when specified as parameters of the File specification keywords
RENAME, INCLUDE, IGNORE, and SFILE. The name must not be qualified
when specified as the parameter of those keywords.

v When a file is qualified, Input and Output specifications are not allowed or
generated for the file. This means that external fields from the file are not
automatically defined as fields in the program. All I/O must be done with result
data structures.

v The QUALIFIED keyword is valid only for externally-described files.
v The QUALIFIED keyword cannot be specified with the LIKEFILE keyword; files

defined with LIKEFILE always have qualified record formats.

File-Description Keywords

Chapter 13. File Description Specifications 307

#

#
#

#
#
#
#

#
#
#

#
#
#
#
#

#
#
#
#

#

#
#

RAFDATA(filename)
The RAFDATA keyword identifies the name of the input or update file that
contains the data records to be processed for a Record Address File (RAF) (an R in
position 18). See “Record Address File (RAF)” on page 282 for further information.

RECNO(fieldname)
The RECNO keyword specifies that a DISK file is to be processed by
relative-record number. The RECNO keyword must be specified for output files
processed by relative-record number, output files that are referenced by a random
WRITE calculation operation, or output files that are used with ADD on the output
specifications.

The RECNO keyword can be specified for input/update files. The relative-record
number of the record retrieved is placed in the ’fieldname’, for all operations that
reposition the file (such as READ, SETLL, or OPEN). It must be defined as numeric
with zero decimal positions. The field length must be sufficient to contain the
longest record number for the file.

The compiler will not open a SEQ or DISK file for blocking or unblocking records
if the RECNO keyword is specified for the file. Note that the keywords RECNO
and BLOCK(*YES) cannot be specified for the same file.

Note: When the RECNO keyword is specified for input or update files with
file-addition (’A’ in position 20), the value of the fieldname parameter must
refer to a relative-record number of a deleted record, for the output
operation to be successful.

RENAME(Ext_format:Int_format)
The RENAME keyword allows you to rename record formats in an externally
described file. The external name of the record format that is to be renamed is
entered as the Ext_format parameter. The Int_format parameter is the name of the
record as it is used in the program. The external name is replaced by this name in
the program.

* file1 has formats HDR, INFO, ERR.
* file2 has format INFO.
* The QUALIFIED keyword is used for both files, making it
* unnecessary to rename one of the "INFO" formats.

* Note that the record format names are not qualified when
* specified in keywords of the File specification.
Ffile1 if e disk qualified
F ignore(hdr)
F rename(err:errorRec)
Ffile2 o e disk qualified
* The record formats must be qualified on all specifications other
* than the File specification for the file.
D ds1 ds likerec(file1.info : *input)
D errDs ds likerec(file1.errorRec : *input)
D ds2 ds likerec(file2.info : *output)
/free

read file1.info ds1;
eval-corr ds2 = ds1;
write file2.info ds2;
read file1.errorRec errDs;

Figure 116. Example of the QUALIFIED keyword

File-Description Keywords

308 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

To rename all fields by adding a prefix, use the PREFIX keyword.

Remember that for a qualified file, the unqualified form of the record format name
is used for both parameters of the RENAME keyword.

SAVEDS(DSname)
The SAVEDS keyword allows the specification of the data structure saved and
restored for each device. Before an input operation, the data structure for the
device operation is saved. After the input operation, the data structure for the
device associated with this current input operation is restored. This data structure
cannot be a data area data structure, file information data structure, or program
status data structure, and it cannot contain a compile-time array or prerun-time
array.

If the SAVEDS keyword is not specified, no saving and restoring is done. SAVEDS
must not be specified for shared files.

When you specify SAVEDS but not MAXDEV, the ILE RPG program assumes a
multiple device file (MAXDEV with a parameter of *FILE).

SAVEIND(number)
The SAVEIND keyword specifies the number of indicators that are to be saved and
restored for each device attached to a mixed or multiple device file. Before an
input operation, the indicators for the device associated with the previous input or
output operation are saved. After the input operation, the indicators for the device
associated with this current input operation are restored.

Specify a number from 1 through 99, as the parameter to the SAVEIND keyword.
No indicators are saved and restored if the SAVEIND keyword is not specified, or
if the MAXDEV keyword is not specified or specified with the parameter *ONLY.

If you specified the DDS keyword INDARA, the number you specify for the
SAVEIND keyword must be less than any response indicator you use in your DDS.
For example, if you specify INDARA and CF01(55) in your DDS, the maximum
value for the SAVEIND keyword is 54. The SAVEIND keyword must not be used
with shared files.

The INDDS keyword cannot be specified with this keyword.

When you specify the SAVEIND keyword but not the MAXDEV keyword, the ILE
RPG program assumes a multiple device file.

SFILE(recformat:rrnfield)
The SFILE keyword is used to define internally the subfiles that are specified in an
externally described WORKSTN file. The recformat parameter identifies the RPG
IV name of the record format to be processed as a subfile. The rrnfield parameter
identifies the name of the relative-record number field for this subfile. You must
specify an SFILE keyword for each subfile in the DDS.

If you define a display file like another file using the LIKEFILE keyword, and the
parent file has subfiles, then you must specify the SFILE keyword for each subfile
in the new file, so that you can provide the names of the relative record number
fields for the subfiles.

File-Description Keywords

Chapter 13. File Description Specifications 309

#
#

#
#
#
#

If a file is defined with the TEMPLATE keyword, the rrnfield parameter of the
SFILE keyword is not specified.

The relative-record number of any record retrieved by a READC or CHAIN
operation is placed into the field identified by the rrnfield parameter. This field is
also used to specify the record number that RPG IV uses for a WRITE operation to
the subfile or for output operations that use ADD. The field name specified as the
rrnfield parameter must be defined as numeric with zero decimal positions. The
field must have enough positions to contain the largest record number for the file.
(See the SFLSIZ keyword in the iSeries Information Center database and file
systems category.)

Relative record number processing is implicitly defined as part of the SFILE
definition. If multiple subfiles are defined, each subfile requires the specification of
the SFILE keyword.

Do not use the SFILE keyword with the SLN keyword.

Remember that for a qualified file, the unqualified form of the record format name
is used for the first parameter of the SFILE keyword.

SLN(number)
The SLN (Start Line Number) keyword determines where a record format is
written to a display file. The main file description line must contain WORKSTN in
positions 36 through 42 and a C or O in positions 17. The DDS for the file must
specify the keyword SLNO(*VAR) for one or more record formats. When you
specify the SLN keyword, the parameter will automatically be defined in the
program as a numeric field with length of 2 and with 0 decimal positions.

Do not use the SLN keyword with the SFILE keyword.

STATIC
The STATIC keyword indicates that the RPG file control information is kept in
static storage; all calls to the subprocedure use the same RPG file control
information. The RPG file control information holds its state across calls to the
subprocedure. If the file is open when the subprocedure ends, then the file will still
be open on the next call to the subprocedure.

When the STATIC keyword is not specified, the RPG file control information is
kept in automatic storage; each call to the subprocedure uses its own version of the
RPG file control information. The RPG file control information is initialized on
every call to the subprocedure. If the file is open when the subprocedure ends,
then the file will be closed when the subprocedure ends.

Rules for the STATIC keyword:
v The STATIC keyword can only be specified for file definitions in subprocedures.

The STATIC keyword is implied for files defined in global definitions.
v A file defined with the STATIC keyword will remain open until it is explicitly

closed by a CLOSE operation, or until the activation group ends.
v If a File Information Data Structure (INFDS) is defined for the file, the

specification of the STATIC keyword for the data structure must match the
specification of the STATIC keyword for the file.

File-Description Keywords

310 ILE RPG Reference

|
|

#

#
#
#
#
#

#
#
#
#
#

#
#
#

#
#

#
#
#

#

TEMPLATE
The TEMPLATE keyword indicates that this file definition is to be used only at
compile time. Files defined with the TEMPLATE keyword are not included in the
program. The template file can only be used as a basis for defining other files later
in the program using the LIKEFILE keyword.

Rules for the TEMPLATE keyword:
v The RPG symbol name for the template file can be used only as the parameter

of a LIKEFILE keyword on a file specification, or a LIKEFILE keyword on a
Definition specification.

v The RPG symbol name of a record format of a template file can be used only as
the parameter of a LIKEREC Definition keyword.

v Keywords that are not inherited by LIKEFILE definitions are not allowed for a
template file.
See Table 49 on page 301 for more information.

TIMFMT(format{separator})
The TIMFMT keyword allows the specification of a default external time format
and a default separator (which is optional) for all time fields in the

P numInStock b export
* File "partInfo" is defined as STATIC. The file will be
* opened the first time the procedure is called, because
* the USROPN keyword is not specified.
* Since there is no CLOSE operation for the file, it
* will remain open until the activation group ends.
FpartInfo if e k disk static
* File "partErrs" is not defined as STATIC, and the USROPN
* keyword is used. The file will be opened by the OPEN
* operation, and it will be closed automatically when the
* procedure ends.
FpartErrs o e disk usropn

D numInStock pi 10i 0
D id_no 10i 0 value
D partInfoDs ds likerec(partRec:*input)
D partErrDs ds likerec(errRec:*output)

/free
// Search for the input value in the file
chain id_no partRrec partInfoDs;
if not %found(partInfo);

// write a record to the partErrs file indicating
// that the id_no record was not found. The
// file must be opened before the record can
// be written, since the USROPN keyword was
// specified.
partErrDs.id_no = id_no;
open partErrs;
write errRec partErrDs;
return -1; // unknown id

endif;
return partInfoDs.qty;

/end-free
P numInStock e

Figure 117. Example of the STATIC keyword for a File specification

File-Description Keywords

Chapter 13. File Description Specifications 311

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#

#
#
#
#

#
#

#
#

#

program-described file. If the file on which this keyword is specified is indexed
and the key field is a time, then the time format specified also provides the default
external format for the key field.

For a Record-Address file this specifies the external time format of time limits keys
read from the record-address file.

You can specify a different external format for individual input or output time
fields in the file by specifying a time format/separator for the field on the
corresponding input specification (positions 31-35) or output specification
(positions 53-57).

See Table 36 on page 209 for valid format and separators. For more information on
external formats, see “Internal and External Formats” on page 179.

USROPN
The USROPN keyword causes the file not to be opened at program initialization.
This gives the programmer control of the file’s first open. The file must be
explicitly opened using the OPEN operation in the calculation specifications. This
keyword is not valid for input files designated as primary, secondary, table, or
record-address files, or for output files conditioned by the 1P (first page) indicator.

The USROPN keyword is required for programmer control of only the first file
opening. For example, if a file is opened and later closed by the CLOSE operation,
the programmer can reopen the file (using the OPEN operation) without having
specified the USROPN keyword on the file description specification.

See also “EXTIND(*INUx)” on page 296.

File Types and Processing Methods
Table 50 shows the valid entries for positions 28, 34, and 35 of the file description
specifications for the various file types and processing methods. The methods of
disk file processing include:
v Relative-record-number processing
v Consecutive processing
v Sequential-by-key processing
v Random-by-key processing
v Sequential-within-limits processing.

Table 50. Processing Methods for DISK Files

Access Method Opcode Position 28 Position 34 Position 35 Explanation

Random RRN CHAIN Blank Blank Blank Access by physical
order of records

Sequential Key READ
READE
READP
READPE
cycle

Blank Blank I Access by key
sequentially

Sequential Within Limits READ
READE
READP
READPE
cycle

L A, P, G, D, T,
Z, or F

I Access by key
sequentially
controlled by record-
address-limits file

File-Description Keywords

312 ILE RPG Reference

Table 50. Processing Methods for DISK Files (continued)

Access Method Opcode Position 28 Position 34 Position 35 Explanation

Sequential RRN READ cycle Blank Blank T Access sequentially
restricted to RRN
numbers in
record-address file

For further information on the various file processing methods, see the section
entitled ″Methods for Processing Disk Files″, in the chapter ″Accessing Database
Files″ in the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide.

File Types and Processing Methods

Chapter 13. File Description Specifications 313

File Types and Processing Methods

314 ILE RPG Reference

Chapter 14. Definition Specifications

Definition specifications can be used to define:
v Standalone fields
v Named constants
v Data structures and their subfields
v Prototypes
v Procedure interface
v Prototyped parameters

For more information on data structures, constants, prototypes, and procedure
interfaces, see also Chapter 7, “Defining Data and Prototypes,” on page 125 For
more information on data types and data formats, see also Chapter 9, “Data Types
and Data Formats,” on page 179.

Arrays and tables can be defined as either a data-structure subfield or a standalone
field. For additional information on defining and using arrays and tables, see also
Chapter 8, “Using Arrays and Tables,” on page 159.

Definition specifications can appear in two places within a module or program: in
the main source section and in a subprocedure. Within the main source section,
you define all global definitions. Within a subprocedure, you define the procedure
interface and its parameters as required by the prototype. You also define any local
data items that are needed by the prototyped procedure when it is processed. Any
definitions within a prototyped procedure are local. They are not known to any
other procedures (including the cycle-main procedure). For more information on
scope, see “Scope of Definitions” on page 24.

A built-in function (BIF) can be used in the keyword field as a parameter to a
keyword. It is allowed on the definition specification only if the values of all
arguments are known at compile time. When specified as parameters for the
definition specification keywords DIM, OCCURS, OVERLAY, and PERRCD, all
arguments for a BIF must be defined earlier in the program. For further
information on using built-in functions, see “Built-in Functions” on page 430.

Definition Specification Statement
The general layout for the definition specification is as follows:
v The definition specification type (D) is entered in position 6
v The non-commentary part of the specification extends from position 7 to

position 80
– The fixed-format entries extend from positions 7 to 42
– The keyword entries extend from positions 44 to 80

v The comments section of the specification extends from position 81 to position
100.

© Copyright IBM Corp. 1994, 2010 315

#
#
#
#
#
#
#
#

Definition Specification Keyword Continuation Line
If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:
v Position 6 of the continuation line must contain a D
v Positions 7 to 43 of the continuation line must be blank
v The specification continues on or past position 44

Definition Specification Continued Name Line
A name that is up to 15 characters long can be specified in the Name entry of the
definition specification without requiring continuation. Any name (even one with
15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)
at the end of the partial name. A name definition consists of the following parts:
1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank character in the entry. The name must
begin within positions 7 to 21 and may end anywhere up to position 77 (with
an ellipsis ending in position 80). There cannot be blanks between the start of
the name and the ellipsis character. If any of these conditions is not true, the
line is parsed as a main definition line.

2. One main definition line, containing a name, definition attributes, and
keywords. If a continued name line is coded, the Name entry of the main
definition line may be left blank.

3. Zero or more keyword continuation lines.

Position 6 (Form Type)
Enter a D in this position for definition specifications.

Positions 7-21 (Name)
Entry Explanation

Name The name of the item being defined.

Blank Specifies filler fields in data-structure subfield definitions, or an unnamed
data structure in data-structure definitions.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 118. Definition Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
D.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 119. Definition Specification Keyword Continuation Line Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
DContinuedName+++Comments++++++++++++

Figure 120. Definition Specification Continued Name Line Layout

Definition Specification Statement

316 ILE RPG Reference

The normal rules for RPG IV symbolic names apply; reserved words cannot be
used (see “Symbolic Names” on page 3). The name can begin in any position in
the space provided. Thus, indenting can be used to indicate the shape of data in
data structures.

For continued name lines, a name is specified in positions 7 through 80 of the
continued name lines and positions 7 through 21 of the main definition line. As
with the traditional definition of names, case of the characters is not significant.

For an externally described subfield, a name specified here replaces the
external-subfield name specified on the EXTFLD keyword.

For a prototype parameter definition, the name entry is optional. If a name is
specified, the name is ignored. (A prototype parameter is a definition specification
with blanks in positions 24-25 that follows a PR specification or another prototype
parameter definition.)

TIP
If you are defining a prototype and the name specified in positions 7-21
cannot serve as the external name of the procedure, use the EXTPROC
keyword to specify the valid external name. For example, the external name
may be required to be in lower case, because you are defining a prototype for
a procedure written in ILE C.

Position 22 (External Description)
This position is used to identify a data structure or data-structure subfield as
externally described. If a data structure or subfield is not being defined on this
specification, then this field must be left blank.

Entry Explanation for Data Structures

E Identifies a data structure as externally described: subfield definitions are
defined externally. If the EXTNAME keyword is not specified, positions
7-21 must contain the name of the externally described file containing the
data structure definition.

Blank Program described: subfield definitions for this data structure follow this
specification.

Entry Explanation for Subfields

E Identifies a data-structure subfield as externally described. The
specification of an externally described subfield is necessary only when
keywords such as EXTFLD and INZ are used.

Blank Program described: the data-structure subfield is defined on this
specification line.

Position 23 (Type of Data Structure)
This entry is used to identify the type of data structure being defined. If a data
structure is not being defined, this entry must be left blank.

Entry Explanation

Definition Specification Statement

Chapter 14. Definition Specifications 317

Blank The data structure being defined is not a program status or data-area data
structure; or a data structure is not being defined on this specification

S Program status data structure. Only one data structure may be designated
as the program status data structure.

U Data-area data structure.

RPG IV retrieves the data area at initialization and rewrites it at end of
program.
v If the DTAARA keyword is specified, the parameter to the DTAARA

keyword is used as the name of the external data area. If the name is a
variable, the value must be set before the program begins. This can be
done by:
– Passing the variable as a parameter.
– Explicitly initializing the variable with the INZ keyword.
– Sharing the variable with another module using the IMPORT and

EXPORT |keywords, and ensuring the value is set prior to the call.
v If the DTAARA keyword is not specified, the name in positions 7-21 is

used as the name of the external data area.
v If a name is not specified either by the DTAARA keyword, or by

positions 7-21, *LDA (the local data area) is used as the name of the
external data area.

Positions 24-25 (Definition Type)
Entry Explanation

Blank The specification defines either a data structure subfield or a parameter
within a prototype or procedure interface definition.

C The specification defines a constant. Position 25 must be blank.

DS The specification defines a data structure.

PR The specification defines a prototype and the return value, if any.

PI The specification defines a procedure interface, and the return value if any.

S The specification defines a standalone field, array or table. Position 25
must be blank.

Definitions of data structures, prototypes, and procedure interfaces end with the
first definition specification with non-blanks in positions 24-25, or with the first
specification that is not a definition specification.

For a list of valid keywords, grouped according to type of definition, please refer
to Table 52 on page 371.

Positions 26-32 (From Position)
Positions 26-32 may only contain an entry if the location of a subfield within a
data structure is being defined.

Entry Explanation

Blank A blank FROM position indicates that the value in the
TO/LENGTH field specifies the length of the subfield, or that a
subfield is not being defined on this specification line.

Definition Specification Statement

318 ILE RPG Reference

nnnnnnn Absolute starting position of the subfield within a data structure.
The value specified must be from 1 to 9999999, and right-justified
in these positions.

Reserved Words
Reserved words for the program status data structure or for a file
information data structure are allowed (left-justified) in the
FROM-TO/LENGTH fields (positions 26-39). These special
reserved words define the location of the subfields in the data
structures. Reserved words for the program status data structure
are *STATUS, *PROC, *PARM, and *ROUTINE. Reserved words for
the file information data structure (INFDS) are *FILE, *RECORD,
*OPCODE, *STATUS, and *ROUTINE.

Positions 33-39 (To Position / Length)
Entry Explanation

Blank If positions 33-39 are blank:
v a named constant is being defined on this specification line, or
v the standalone field, parameter, or subfield is being defined LIKE

another field, or
v the standalone field, parameter, or subfield is of a type where a length is

implied, or
v the subfield’s attributes are defined elsewhere, or
v a data structure is being defined. The length of the data structure is the

maximum value of the subfield To-Positions. The data structure may be
defined using the LIKEDS or LIKEREC keyword.

nnnnnnn
Positions 33-39 may contain a (right-justified) numeric value, from 1 to
9999999, as follows:
v If the From field (position 26-32) contains a numeric value, then a

numeric value in this field specifies the absolute end position of the
subfield within a data structure.

v If the From field is blank, a numeric value in this field specifies :
– the length of the entire data structure, or
– the length of the standalone field, or
– the length of the parameter, or
– the length of the subfield. Within the data structure, this subfield is

positioned such that its starting position is greater than the maximum
to-position of all previously defined subfields in the data structure.
Padding is inserted if the subfield is defined with type basing pointer
or procedure pointer to ensure that the subfield is aligned properly.

Notes:

1. For graphic or UCS-2 fields, the number specified here is the number
of graphic or UCS-2 characters, NOT the number of bytes (1 graphic
or UCS-2 character = 2 bytes). For numeric fields, the number
specified here is the number of digits (for packed and zoned numeric
fields: 1-63; for binary numeric fields: 1-9; for integer and unsigned
numeric fields: 3, 5, 10, or 20;).

2. For float numeric fields the number specified is the number of bytes,
NOT the number of digits (4 or 8 bytes).

Definition Specification Statement

Chapter 14. Definition Specifications 319

#
#
#

#
#

#
#
#

#

#

#

#

#
#
#
#
#

#

#
#
#
#
#
#

#
#

3. If you want to define a character, UCS-2 or graphic definition with a
length greater than 9999999, use the LEN keyword instead of
specifying the Length entry. If you want to explicitly position a
subfield whose length is defined with the LEN keyword, use the
OVERLAY keyword. You code the data structure name in the first
parameter of the OVERLAY keyword, and the desired start position
of the subfield in the second parameter of the OVERLAY keyword.

+|-nnnnn
This entry is valid for standalone fields or subfields defined using the
LIKE keyword. The length of the standalone field or subfield being defined
on this specification line is determined by adding or subtracting the value
entered in these positions to the length of the field specified as the
parameter to the LIKE keyword.

Notes:

1. For graphic or UCS-2 fields, the number specified here is the number of
graphic or UCS-2 characters, NOT the number of bytes (1 graphic or
UCS-2 character = 2 bytes). For numeric fields, the number specified
here is the number of digits.

2. For float fields, the entry must be blank or +0. The size of a float field
cannot be changed as with other numerics.

Reserved Words
If positions 26-32 are used to enter special reserved words, this field
becomes an extension of the previous one, creating one large field
(positions 26-39). This allows for reserved words, with names longer than 7
characters in length, to extend into this field. See “Positions 26-32 (From
Position)” on page 318, ’Reserved Words’.

Position 40 (Internal Data Type)
This entry allows you to specify how a standalone field, parameter, or
data-structure subfield is stored internally. This entry pertains strictly to the
internal representation of the data item being defined, regardless of how the data
item is stored externally (that is, if it is stored externally). To define variable-length
character, graphic, and UCS-2 formats, you must specify the keyword VARYING;
otherwise, the format will be fixed length.

Entry Explanation

Blank When the LIKE keyword is not specified:
v If the decimal positions entry is blank, then the item is defined as

character
v If the decimal positions entry is not blank, then the item is defined as

packed numeric if it is a standalone field or parameter; or as zoned
numeric if it is a subfield.

Note: The entry must be blank whenever the LIKE, LIKEDS and LIKEREC
keywords are specified.

A Character (Fixed or Variable-length format)

B Numeric (Binary format)

C UCS-2 (Fixed or Variable-length format)

D Date

F Numeric (Float format)

Definition Specification Statement

320 ILE RPG Reference

#
#
#
#
#
#
#

#
#
#
#
#
#

#

#
#
#
#

#
#

#
#
#
#
#
#

#

#
#
#
#
#
#

##

##

#
#

#
#
#

#
#

##

##

##

##

##

G Graphic (Fixed or Variable-length format)

I Numeric (Integer format)

N Character (Indicator format)

O Object

P Numeric (Packed decimal format)

S Numeric (Zoned format)

T Time

U Numeric (Unsigned format)

Z Timestamp

* Basing pointer or procedure pointer

Positions 41-42 (Decimal Positions)
Positions 41-42 are used to indicate the number of decimal positions in a numeric
subfield or standalone field. If the field is non-float numeric, there must always be
an entry in these positions. If there are no decimal positions enter a zero (0) in
position 42. For example, an integer or unsigned field (type I or U in position 40)
requires a zero for this entry.

Entry Explanation

Blank The value is not numeric (unless it is a float field) or has been defined
with the LIKE keyword.

0-63 Decimal positions: the number of positions to the right of the decimal in a
numeric field.

This entry can only be supplied in combination with the TO/Length field. If the
TO/Length field is blank, the value of this entry is defined somewhere else in the
program (for example, through an externally described data base file).

Position 43 (Reserved)
Position 43 must be blank.

Positions 44-80 (Keywords)
Positions 44 to 80 are provided for definition specification keywords. Keywords are
used to describe and define data and its attributes. Use this area to specify any
keywords necessary to fully define the field.

Definition-Specification Keywords
Definition-specification keywords may have no parameters, optional parameters, or
required parameters. The syntax for keywords is as follows:

Keyword(parameter1 : parameter2)

where:
v Parameter(s) are enclosed in parentheses ().

Note: Do not specify parentheses if there are no parameters.
v Colons (:) are used to separate multiple parameters.

Definition Specification Statement

Chapter 14. Definition Specifications 321

##

##

##

##

##

##

##

##

##

##

#

#
#
#
#
#

##

##
#

##
#

#
#
#

#

#

#

#
#
#

#
#

#
#

#

#

#

#

#

The following notational conventions are used to show which parameters are
optional and which are required:
v Braces { } indicate optional parameters or optional elements of parameters.
v An ellipsis (...) indicates that the parameter can be repeated.
v A colon (:) separates parameters and indicates that more than one may be

specified. All parameters separated by a colon are required unless they are
enclosed in braces.

v A vertical bar (|) indicates that only one parameter may be specified for the
keyword.

v A blank separating keyword parameters indicates that one or more of the
parameters may be specified.

Note: Braces, ellipses, and vertical bars are not a part of the keyword syntax and
should not be entered into your source.

If additional space is required for definition-specification keywords, the keyword
field can be continued on subsequent lines. See “Definition Specification Keyword
Continuation Line” on page 316 and “Definition Specification Keyword Field” on
page 252.

ALIAS
When the ALIAS keyword is specified for an externally-described data structure,
the RPG compiler will use the alias (alternate) names for the subfields, if present. If
the ALIAS keyword is not specified for the data structure, or an external field does
not have an alias name defined, the RPG compiler will use the standard external
field name.

When alias names are being used and you want to rename a subfield, you specify
the alias name as the parameter to the EXTFLD keyword. The EXTFLD keyword
does not support continuation, so you must specify the entire name on one source
specification. Figure 121 on page 323 shows an example with two data structures,
defined for the same file. The data structure that has the ALIAS keyword coded
uses the alias name, CUSTOMER_ADDRESS, as the parameter for the EXTFLD
keyword. The data structure that does not have the ALIAS keyword coded uses
the standard name, CUSTAD, as the parameter for the EXTFLD keyword.

Note: If the alternate name for a particular external field is enclosed in quotes, the
standard external field name is used for that field.

When the PREFIX keyword is specified with the ALIAS keyword, the second
parameter of PREFIX, indicating the number of characters to be replaced, does not
apply to the alias names. In the following discussion, assume that the external file
MYFILE has fields XYCUSTNM and XYID_NUM, and the XYCUSTNM field has
the alias name CUSTOMER_NAME.
v If keyword PREFIX(NEW_) is specified, there is no second parameter, so no

characters will be replaced for any names. The names used for the RPG
subfields will be NEW_CUSTOMER_NAME and NEW_XYID_NUM.

v If keyword PREFIX(NEW_:2) is specified, two characters will be removed from
the names of fields that do not have an alias name. The names used for the RPG
subfields will be NEW_CUSTOMER_NAME and NEW_ID_NUM. The first two
characters, ″XY″, are replaced in XYID_NUM, but no characters are replaced in
CUSTOMER_NAME.

Definition-Specification Keywords

322 ILE RPG Reference

#
#

#

#

#
#
#

#
#

#
#

#
#

#
#
#
#

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

v If keyword PREFIX(’’:2) is specified, two characters will be removed the names
of fields that do not have an alias name. The names used for the RPG subfields
will be CUSTOMER_NAME and ID_NUM. The first two characters, ″XY″, are
replaced in XYID_NUM, but no characters are replaced in CUSTOMER_NAME.

ALIGN
The ALIGN keyword is used to align float, integer, and unsigned subfields. When
ALIGN is specified, 2-byte subfields are aligned on a 2-byte boundary, 4-byte
subfields are aligned on a 4-byte boundary and 8-byte subfields are aligned on an
8-byte boundary. Alignment may be desired to improve performance when
accessing float, integer, or unsigned subfields.

Specify ALIGN on the data structure definition. However, you cannot specify
ALIGN for either the file information data structure (INFDS) or the program status
data structure (PSDS).

Alignment occurs only to data structure subfields defined with length notation and
without the keyword OVERLAY. A diagnostic message is issued if subfields that
are defined either with absolute notation or using the OVERLAY keyword are not
properly aligned.

Pointer subfields are always aligned on a 16-byte boundary whether or not ALIGN
is specified.

See “Aligning Data Structure Subfields” on page 140 for more information.

* The DDS specifications for file MYFILE, using the ALIAS keyword
* for the first two fields, to associate alias name CUSTOMER_NAME
* with the CUSTNM field and alias name CUSTOMER_ADDRESS
* with the CUSTAD field.
A R CUSTREC
A CUSTNM 25A ALIAS(CUSTOMER_NAME)
A CUSTAD 25A ALIAS(CUSTOMER_ADDRESS)
A ID_NUM 12P 0

* The RPG source, using the ALIAS keyword.
* The customer-address field is renamed to CUST_ADDR
* for both data structures.
D aliasDs e ds ALIAS
D QUALIFIED EXTNAME(myfile)
D cust_addr e EXTFLD(CUSTOMER_ADDRESS)
D noAliasDs e ds
D QUALIFIED EXTNAME(myfile)
D cust_addr e EXTFLD(CUSTAD)
/free

// The ALIAS keyword is specified for data structure "aliasDs"
// so the subfield corresponding to the "CUSTNM" field has
// the alias name "CUSTOMER_NAME"
aliasDs.customer_name = 'John Smith';
aliasDs.cust_addr = '123 Mockingbird Lane';
aliasDs.id_num = 12345;

// The ALIAS keyword is not specified for data structure
// "noAliasDs", so the subfield corresponding to the "CUSTNM"
// field does not use the alias name
noAliasDs.custnm = 'John Smith';
aliasDs.cust_addr = '123 Mockingbird Lane';
noAliasDs.id_num = 12345;

Figure 121. Using the ALIAS keyword for an externally-described data structure

Definition-Specification Keywords

Chapter 14. Definition Specifications 323

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|

|

ALT(array_name)
The ALT keyword is used to indicate that the compile-time or pre-runtime array or
table is in alternating format.

The array defined with the ALT keyword is the alternating array and the array
name specified as the parameter is the main array. The alternate array definition
may precede or follow the main array definition.

The keywords on the main array define the loading for both arrays. The
initialization data is in alternating order, beginning with the main array, as follows:
main/alt/main/alt/...

In the alternate array definition, the PERRCD, FROMFILE, TOFILE, and CTDATA
keywords are not valid.

ALTSEQ(*NONE)
When the ALTSEQ(*NONE) keyword is specified, the alternate collating sequence
will not be used for comparisons involving this field, even when the ALTSEQ
keyword is specified on the control specification. ALTSEQ(*NONE) on Data
Definition specifications will be meaningful only if one of ALTSEQ, ALTSEQ(*SRC)
or ALTSEQ(*EXT) is coded in the control specifications. It is ignored if this is not
true.

ALTSEQ(*NONE) is a valid keyword for:
v Character standalone fields
v Character arrays
v Character tables
v Character subfields
v Data structures
v Character return values on Procedure Interface or Prototype definitions
v Character Prototyped Parameters

ASCEND
The ASCEND keyword is used to describe the sequence of the data in any of the
following:
v An array
v A table loaded at prerun-time or compile time
v A prototyped parameter

See also “DESCEND” on page 327.

Ascending sequence means that the array or table entries must start with the
lowest data entry (according to the collating sequence) and go to the highest. Items
with equal value are allowed.

A prerun-time array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the RPG IV exception/error handling routine. A run-time array (loaded
by input and/or calculation specifications) is not sequence checked.

When ALTSEQ(*EXT) is specified, the alternate collating sequence is used when
checking the sequence of compile-time arrays or tables. If the alternate sequence is

Definition-Specification Keywords

324 ILE RPG Reference

not known until run-time, the sequence is checked at run-time; if the array or table
is out of sequence, control passes to the RPG IV exception/error handling routine.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

BASED(basing_pointer_name)
When the BASED keyword is specified for a data structure or standalone field, a
basing pointer is created using the name specified as the keyword parameter. This
basing pointer holds the address (storage location) of the based data structure or
standalone field being defined. In other words, the name specified in positions 7-21
is used to refer to the data stored at the location contained in the basing pointer.

Note: Before the based data structure or standalone field can be used, the basing
pointer must be assigned a valid address.

If an array is defined as a based standalone field it must be a run-time array.

If a based field is defined within a subprocedure, then both the field and the
basing pointer are local.

CCSID(number | *DFT)
This keyword sets the CCSID for graphic and UCS-2 definitions.

number must be an integer between 0 and 65535. It must be a valid graphic or
UCS-2 CCSID value. A valid graphic CCSID is 65535 or a CCSID with the EBCDIC
double-byte encoding scheme (X’1200’). A valid UCS-2 CCSID has the UCS-2
encoding scheme (x’7200’).

For program-described fields, CCSID(number) overrides the defaults set on the
control specification with the CCSID(*GRAPH: *SRC), CCSID(*GRAPH: number),
or CCSID(*UCS2: number) keyword.

CCSID(*DFT) indicates that the default CCSID for the module is to be used. This is
useful when the LIKE keyword is used since the new field would otherwise inherit
the CCSID of the source field.

If the keyword is not specified, the default graphic or UCS-2 CCSID of the module
is assumed. (This keyword is not allowed for graphic fields when CCSID(*GRAPH
: *IGNORE) is specified or assumed).

If this keyword is not specified and the LIKE keyword is specified, the new field
will have the same CCSID as the LIKE field.

CLASS(*JAVA:class-name)
This keyword indicates the class for an object definition.

class-name must be a constant character value.

Definition-Specification Keywords

Chapter 14. Definition Specifications 325

CONST{(constant)}
The CONST keyword is used
v To specify the value of a named constant
v To indicate that a parameter passed by reference is read-only.

When specifying the value of a named constant, the CONST keyword itself is
optional. That is, the constant value can be specified with or without the CONST
keyword.

The parameter must be a literal, figurative constant, or built-in-function. The
constant may be continued on subsequent lines by adhering to the appropriate
continuation rules (see “Continuation Rules” on page 249 for further details).

If a named constant is used as a parameter for the keywords DIM, OCCURS,
PERRCD, or OVERLAY, the named constant must be defined prior to its use.

When specifying a read-only reference parameter, you specify the keyword CONST
on the definition specification of the parameter definition on both the prototype
and procedure interface. No parameter to the keyword is allowed.

When the keyword CONST is specified, the compiler may copy the parameter to a
temporary and pass the address of the temporary. Some conditions that would
cause this are: the passed parameter is an expression or the passed parameter has a
different format.

Attention!
Do not use this keyword on a prototype definition unless you are sure that
the parameter will not be changed by the called program or procedure.

If the called program or procedure is compiled using a procedure interface
with the same prototype, you do not have to worry about this, since the
compiler will check this for you.

Although a CONST parameter cannot be changed by statements within the
procedure, the value may be changed as a result of statements outside of the
procedure, or by directly referencing a global variable.

Passing a parameter by constant value has the same advantages as passing by
value. In particular, it allows you to pass literals and expressions.

CTDATA
The CTDATA keyword indicates that the array or table is loaded using
compile-time data. The data is specified at the end of the program following the **
or **CTDATA(array/table name) specification.

When an array or table is loaded at compilation time, it is compiled along with the
source program and included in the program. Such an array or table does not need
to be loaded separately every time the program is run.

DATFMT(format{separator})
The DATFMT keyword specifies the internal date format, and optionally the
separator character, for any of these items of type Date: standalone field;

Definition-Specification Keywords

326 ILE RPG Reference

data-structure subfield; prototyped parameter; or return value on a prototype or
procedure-interface definition. This keyword will be automatically generated for an
externally described data structure subfield of type Date and determined at
compile time.

If DATFMT is not specified, the Date field will have the date format and separator
as specified by the DATFMT keyword on the control specification, if present. If
none is specified on the control specification, then it will have *ISO format.

See Table 33 on page 207 for valid formats and separators. For more information
on internal formats, see “Internal and External Formats” on page 179.

DESCEND
The DESCEND keyword describes the sequence of the data in any of the
following:
v An array
v A table loaded at prerun-time or compile time
v A prototyped parameter

See also “ASCEND” on page 324.

Descending sequence means that the array or table entries must start with the
highest data entry (according to the collating sequence) and go to the lowest. Items
with equal value are allowed.

A prerun-time array or table is checked for the specified sequence at the time the
array or table is loaded with data. If the array or table is out of sequence, control
passes to the RPG IV exception/error handling routine. A run-time array (loaded
by input and/or calculation specifications) is not sequence checked.

When ALTSEQ(*EXT) is specified, the alternate collating sequence is used when
checking the sequence of compile-time arrays or tables. If the alternate sequence is
not known until run-time, the sequence is checked at run-time; if the array or table
is out of sequence, control passes to the RPG IV exception/error handling routine.

A sequence (ascending or descending) must be specified if the LOOKUP operation,
%LOOKUPxx built-in, or %TLOOKUPxx built-in is used to search an array or table
for an entry to determine whether the entry is high or low compared to the search
argument.

If the SORTA operation code is used with an array, and no sequence is specified,
an ascending sequence is assumed.

DIM(numeric_constant)
The DIM keyword defines the number of elements in an array, table, a prototyped
parameter, array data structure, or a return value on a prototype or
procedure-interface definition.

The numeric constant must have zero (0) decimal positions. It can be a literal, a
named constant or a built-in function.

The constant value does not need to be known at the time the keyword is
processed, but the value must be known at compile-time.

Definition-Specification Keywords

Chapter 14. Definition Specifications 327

When DIM is specified on a data structure definition, the data structure must be a
qualified data structure, and subfields must be referenced as fully qualified names,
i.e. "dsname(x).subf″. Other array keywords, such as CTDATA, FROMFILE,
TOFILE, and PERRCD are not allowed with an array data structure definition.

DTAARA{({*VAR:} data_area_name)}
The DTAARA keyword is used to associate a standalone field, data structure,
data-structure subfield or data-area data structure with an external data area. The
DTAARA keyword has the same function as the *DTAARA DEFINE operation code
(see “*DTAARA DEFINE” on page 653).

The DTAARA keyword can only be used in the main source section. It cannot be
used in a subprocedure.

You can create three kinds of data areas:
v *CHAR Character
v *DEC Numeric
v *LGL Logical

You can also create a DDM data area (type *DDM) that points to a data area on a
remote system of one of the three types above.

Only character and numeric types (excluding float numeric) are allowed to be
associated with data areas. The actual data area on the system must be of the same
type as the field in the program, with the same length and decimal positions.
Indicator fields can be associated with either a logical data area or a character data
area. If you want to store other types in a data area, you can use a data structure
for the data area, and code the subfields of any type, except pointers. Pointers
cannot be stored in data areas.

If data_area_name is not specified, then the name specified in positions 7-21 is also
the name of the external data area. If neither the parameter nor the data-structure
name is specified, then the default is *LDA.

If *VAR is not specified, the data_area_name parameter can be either a name or a
literal. If a name is specified, the name of the parameter of DTAARA is used as the
name of the data area. For example, DTAARA(MYDTA) means that the data area
*LIBL/MYDTA will be used at runtime. It must be a valid data area name,
including *LDA (for the local data area) and *PDA (for the program initialization
parameters data area). If a literal is specified, the value of the literal is used as the
name of the data area. For example, DTAARA(’LIB/DTA’) will use data area DTA
in library LIB, at runtime.

If *VAR is specified, the value of data_area_name is used as the data area name.
This value can be:
v A named constant whose value is the name of the data area.
v A character variable that will hold the name of the data area at runtime.

You can specify the value in any of the following forms:
dtaaraname
libname/dtaaraname
*LIBL/dtaaraname

Definition-Specification Keywords

328 ILE RPG Reference

Notes:

1. You cannot specify *CURLIB as the library name.
2. If you specify a data area name without a library name, *LIBL is used.
3. The name must be in the correct case. For example, if you specify

DTAARA(*VAR:dtaname) and variable dtaname has the value ’qtemp/mydta’,
the data area will not be found. Instead, it should have the value
’QTEMP/MYDTA’.

Attention!
If DTAARA(*VAR) keyword is used with a UDS data area, and the name is a
variable, then this variable must have the value set before the program starts.
This can be done by initializing the variable, passing the variable as an entry
parameter, or sharing the variable with another program through the
IMPORT and EXPORT keywords.

When the DTAARA keyword is specified, the IN, OUT, and UNLOCK operation
codes can be used on the data area.

EXPORT{(external_name)}
The specification of the EXPORT keyword allows a globally defined data structure
or standalone field defined within a module to be used by another module in the
program. The storage for the data item is allocated in the module containing the
EXPORT definition. The external_name parameter, if specified, must be a character
literal or constant.

The EXPORT keyword on the definition specification is used to export data items
and cannot be used to export procedure names. To export a procedure name, use
the EXPORT keyword on the procedure specification.

Note: The initialization for the storage occurs when the program entry procedure
(of the program containing the module) is first called. RPG IV will not do
any further initialization on this storage, even if the procedure ended with
LR on, or ended abnormally on the previous call.

The following restrictions apply when EXPORT is specified:
v Only one module may define the data item as exported
v You cannot export a field that is specified in the Result-Field entry of a PARM in

the *ENTRY PLIST
v Unnamed data structures cannot be exported
v BASED data items cannot be exported
v The same external field name cannot be specified more than once per module

and also cannot be used as an external procedure name
v IMPORT and EXPORT cannot both be specified for the same data item.

For a multiple-occurrence data structure or table, each module will contain its own
copy of the occurrence number or table index. An OCCUR or LOOKUP operation
in any module will have only a local impact since the occurrence number or index
is local to each module.

See also “IMPORT{(external_name)}” on page 337.

Definition-Specification Keywords

Chapter 14. Definition Specifications 329

TIP
The keywords IMPORT and EXPORT allow you to define a ″hidden″ interface
between modules. As a result, use of these keywords should be limited only
to those data items which are global throughout the application. It is also
suggested that this global data be limited to things like global attributes
which are set once and never modified elsewhere.

EXTFLD(field_name)
The EXTFLD keyword is used to rename a subfield in an externally described data
structure. Enter the external name of the subfield as the parameter to the EXTFLD
keyword, and specify the name to be used in the program in the Name field
(positions 7-21).

The external name can be either a simple name or a character literals. If a character
literal is specified, the external name name name must be specified in the correct
case. For example, if the external name is MYFIELD, the file-name parameter could
be specified as a name in mixed case such as myField or myfield, but if specified
as a literal it must be ’MYFIELD’.

If the name is not a valid simple RPG name, it must be specified as a literal. For
example, to rename external field A.B, specify EXTFLD(’A.B’).

The keyword is optional. If not specified, the name extracted from the external
definition is used as the data-structure subfield name.

If the PREFIX keyword is specified for the data structure, the prefix will not be
applied to fields renamed with EXTFLD. Figure 121 on page 323 shows an example
of the EXTFLD keyword with the ALIAS keyword.

EXTFMT(code)
The EXTFMT keyword is used to specify the external data type for compile-time
and prerun-time numeric arrays and tables. The external data type is the format of
the data in the records in the file. This entry has no effect on the format used for
internal processing (internal data type) of the array or table in the program.

Note: The values specified for EXTFMT will apply to the files identified in both
the TOFILE and FROMFILE keywords, even if the specified names are
different.

The possible values for the parameter are:

B The data for the array or table is in binary format.

C The data for the array or table is in UCS-2 format.

I The data for the array or table is in integer format.

L The data for a numeric array or table element has a preceding (left) plus or
minus sign.

R The data for a numeric array or table element has a following (right) plus
or minus sign.

P The data for the array or table is in packed decimal format.

S The data for the array or table is in zoned decimal format.

Definition-Specification Keywords

330 ILE RPG Reference

|
|
|
|
|

|
|

U The data for the array or table is in unsigned format.

F The data for the array or table is in float numeric format.

Notes:

1. If the EXTFMT keyword is not specified, the external format defaults to ’S’ for
non-float arrays and tables, and to the external display float representation for
float pre-runtime arrays and tables.

2. For compile-time arrays and tables, the only values allowed are S, L, and R,
unless the data type is float, in which case the EXTFMT keyword is not
allowed.

3. When EXTFMT(I) or EXTFMT(U) is used, arrays defined as having 1 to 5 digits
will occupy 2 bytes per element. Arrays defined as having 6 to 10 digits will
occupy 4 bytes per element. Arrays defined as having 11 to 20 digits will
occupy 8 bytes per element.

4. The default external format for UCS-2 arrays is character. The number of
characters allowed for UCS-2 compile-time data is the number of double-byte
characters in the UCS-2 array. If graphic data is included in the data, the
presence of double-byte data and the shift-out and shift-in characters in the
data will reduce the actual amount of data that can be placed in the array
element; the rest of the element will be padded with blanks. For example, for a
4-character UCS-2 array, only one double-byte character can be specified in the
compile-time data; if the compile-time data were ’oXXi’, where ’XX’ is
converted to the UCS-2 character U’yyyy’, the UCS-2 element would contain
the value U’yyyy002000200020’.

EXTNAME(file-name{:format-name}{:*ALL|
*INPUT|*OUTPUT|*KEY})

The EXTNAME keyword is used to specify the name of the file which contains the
field descriptions used as the subfield description for the data structure being
defined.

The file_name parameter is required. Optionally a format name may be specified to
direct the compiler to a specific format within a file. If format_name parameter is
not specified the first record format is used.

The file-name and format-name parameters can be either names or character
literals. If a character literal is specified, the file or format name name must be
specified in the correct case. For example, if the external file is MYFILE, the
file-name parameter could be specified as a name in mixed case such as myFile or
myfile, but if specified as a literal it must be ’MYFILE’. If the file-name is a
character literal, it can be in any of the following forms
'LIBRARY/FILE'
'FILE'
'*LIBL/FILE'

The last parameter specifies which fields in the external record to extract:
v *ALL extracts all fields.
v *INPUT extracts just input capable fields.
v *OUTPUT extracts just output capable fields.
v *KEY extracts just key fields.

If this parameter is not specified, the compiler extracts the fields of the input
buffer.

Definition-Specification Keywords

Chapter 14. Definition Specifications 331

#
#
#
#
#
#

#
#
#

Notes:

1. If the format-name is not specified, the record defaults to the first record in the
file.

2. For *INPUT and *OUTPUT, subfields included in the data structure occupy the
same start positions as in the external record description.

If the data structure definition contains an E in position 22, and the EXTNAME
keyword is not specified, the name specified in positions 7-21 is used.

The compiler will generate the following definition specification entries for all
fields of the externally described data structure:
v Subfield name (Name will be the same as the external name, unless the ALIAS

keyword is specified for the data structure, or the is field renamed by the
EXTFLD keyword, or the PREFIX keyword on a definition specification is used
to apply a prefix).

v Subfield length
v Subfield internal data type (will be the same as the external type, unless the

CVTOPT control specification keyword or command parameter is specified for
the type. In that case the data type will be character).

All data structure keywords except LIKEDS and LIKEREC are allowed with the
EXTNAME keyword.

EXTPGM(name)
The EXTPGM keyword indicates the external name of the program whose
prototype is being defined. The name can be a character constant or a character
variable. When EXTPGM is specified, then a dynamic call will be done.

If neither EXTPGM or EXTPROC is specified for a prototype, then the compiler
assumes that you are defining a prototype for a procedure, and assigns it the
external name found in positions 7-21.

Any parameters defined by a prototype or procedure interface with EXTPGM must
be passed by reference. In addition, you cannot define a return value.

EXTPROC({*CL|*CWIDEN|*CNOWIDEN| {*JAVA:class-
name:}}name)

The EXTPROC keyword can have one of the following formats:

EXTPROC(*CL:name)
Specifies an external procedure that is written in ILE CL, or an RPG
procedure to be called by ILE CL. Use *CL if your program uses return
values with data types that CL handles differently from RPG. For example,
use *CL when prototyping an RPG procedure that is to be called by a CL
procedure when the return value is 1A.

EXTPROC(*CWIDEN:name|*CNOWIDEN:name)
Specifies an external procedure that is written in ILE C, or an RPG
procedure to be called by ILE C.

Use *CNOWIDEN or *CWIDEN if your program uses return values or
parameters passed by value with data types that C handles differently
from RPG. Use *CWIDEN or *CNOWIDEN when defining an RPG

Definition-Specification Keywords

332 ILE RPG Reference

|
|
|
|

|
|
|

|
|

|
|
|

procedure that is to be called by C, or when defining the prototype for a C
procedure, where the returned value or a parameter passed by value is 1A,
1G or 1C, 5U, 5I, or 4F.

Use *CNOWIDEN if the ILE C source contains #pragma
argument(procedure-name,nowiden) for the procedure; otherwise, use
*CWIDEN.

EXTPROC(*JAVA:class-name:name)
Specifies a method that is written in Java, or an RPG native method to be
called by Java. The first parameter is *JAVA. The second parameter is a
character constant containing the class of the method. The third parameter
is a character constant containing the method name. The special method
name *CONSTRUCTOR means that the method is a constructor; this
method can be used to instantiate a class (create a new class instance).

For more information about invoking Java procedures, see IBM Rational
Development Studio for i: ILE RPG Programmer’s Guide.

EXTPROC(name)
Specifies an external procedure that is written in or to be called by RPG or
COBOL. This format should also be used for a procedure that can be called
by any of RPG, COBOL, C, or CL; in this case, you must ensure that the
return value and the parameters do not have any of the problems listed
above for *CL, *CWIDEN, and *CNOWIDEN.

The EXTPROC keyword indicates the external name of the procedure whose
prototype is being defined. The name can be a character constant or a procedure
pointer. When EXTPROC is specified, a bound call will be done.

If neither EXTPGM or EXTPROC is specified, then the compiler assumes that you
are defining a procedure, and assigns it the external name found in positions 7-21.

If the name specified for EXTPROC (or the prototype or procedure name, if neither
EXTPGM or EXTPROC is specified) starts with ″CEE″ or an underscore (’_’), the
compiler will treat this as a system built-in. To avoid confusion with system
provided APIs, you should not name your procedures starting with ″CEE″.

For example, to define the prototype for the procedure SQLAllocEnv, that is in the
service program QSQCLI, the following definition specification could be coded:

D SQLEnv PR EXTPROC('SQLAllocEnv')

If a procedure pointer is specified, it must be assigned a valid address before it is
used in a call. It should point to a procedure whose return value and parameters
are consistent with the prototype definition.

When a prototype is specified for a procedure, the EXTPROC keyword is specified
for the prototype. Otherwise, the EXTPROC keyword is specified for the procedure
interface. It is only necessary to explicitly specify a prototype when the procedure
will be called from another RPG module. When the procedure is only called from
within the same module, or when it is only called by non-RPG callers, the
prototype can be implicitly derived from the procedure interface.

Figure 122 on page 334 shows an example of the EXTPROC keyword with a
procedure pointer as its parameter.

Definition-Specification Keywords

Chapter 14. Definition Specifications 333

|
|
|

|
|
|
|

|
|
|
|
|
|

* Assume you are calling a procedure that has a procedure
* pointer as the EXTPROC. Here is how the prototype would
* be defined:
D DspMsg PR 10A EXTPROC(DspMsgPPtr)
D Msg 32767A
D Length 4B 0 VALUE
* Here is how you would define the prototype for a procedure
* that DspMsgPPtr could be assigned to.

D MyDspMsg PR LIKE(DspMsg)
D Msg 32767A
D Length 4B 0 VALUE
* Before calling DSPMSG, you would assign DSPMSGPPTR
* to the actual procedure name of MyDspMsg, that is
* MYDSPMSG.

C EVAL DspMsgPPtr = %paddr('MYDSPMSG')
C EVAL Reply = DspMsg(Msg, %size(Msg))
...
P MyDspMsg B

Figure 122. Using EXTPROC with a Procedure Pointer

char RPG_PROC (short s, float f);
char C_PROC (short s, float f);
#pragma argument(RPG_PROC, nowiden)
#pragma argument(C_PROC, nowiden)

/* "fn" calls the RPG procedure with unwidened parameters, */
/* and expects the return value to be passed according to C */
/* conventions. */
void fn(void)
{

char c;

c = RPG_PROC(5, 15.3);
}

/* Function C_PROC expects its parameters to be passed unwidened.*/
/* It will return its return value using C conventions. */
char C_PROC (short s, float f);
{

char c = 'x';

if (s == 5 || f < 0)
{

return 'S';
}
else
{

return 'F';
}

}

Figure 123. Using EXTPROC with *CNOWIDEN - C Code

Definition-Specification Keywords

334 ILE RPG Reference

D RPG_PROC PR 1A EXTPROC(*CNOWIDEN : 'RPG_PROC')
D short 5I 0 VALUE
D float 4F VALUE

D C_RPOC PR 1A EXTPROC(*CNOWIDEN : 'C_PROC')
D short 5I 0 VALUE
D float 4F VALUE

P RPG_PROC B EXPORT
D PI 1A
D short 5I 0 VALUE
D float 4F VALUE

D char S 1A

* Call the C procedure
C EVAL c = C_PROC(4 : 14.7)

* Return the value depending on the values of the parameters
C IF short < float
C RETURN 'L'
C ELSE
C RETURN 'G'
C ENDIF

P E

Figure 124. Using EXTPROC with *CNOWIDEN - RPG Code

char RPG_PROC (short s, float f);
char C_PROC (short s, float f);

/* Function "fn" calls the RPG procedure with widened parameters,*/
/* and expects the return value to be passed according to C */
/* conventions. */
void fn(void)
{

char c;

c = RPG_PROC(5, 15.3);
}

/* Function C_PROC expects its parameters to be passed widened. */
/* It will return its return value using C conventions. */
char C_PROC (short s, float f);
{

char c = 'x';

if (s == 5 || f < 0)
{

return 'S';
}
else
{

return 'F';
}

}

Figure 125. Using EXTPROC with *CWIDEN - C Code

Definition-Specification Keywords

Chapter 14. Definition Specifications 335

D RPG_PROC PR 1A EXTPROC(*CWIDEN : 'RPG_PROC')
D short 5I 0 VALUE
D float 4F VALUE

D C_PROC PR 1A EXTPROC(*CWIDEN : 'C_PROC')
D short 5I 0 VALUE
D float 4F VALUE

P RPG_PROC B EXPORT
D PI 1A
D short 5I 0 VALUE
D float 4F VALUE

D char S 1A

* Call the C procedure
C EVAL c = C_PROC(4 : 14.7)

* Return the value depending on the values of the parameters
C IF short < float
C RETURN 'L'
C ELSE
C RETURN 'G'
C ENDIF

P E

Figure 126. Using EXTPROC with *CWIDEN - RPG Code

/* CL procedure CL_PROC */
DCL &CHAR1 TYPE(*CHAR) LEN(1)

/* Call the RPG procedure */
CALLPRC RPG_PROC RTNVAR(&CHAR1)

Figure 127. Using EXTPROC with *CL - CL Code

D RPG_PROC PR 1A EXTPROC(*CL : 'RPG_PROC')

P RPG_PROC B EXPORT
D PI 1A

C RETURN 'X'

P E

Figure 128. Using EXTPROC with *CL - RPG Code

Definition-Specification Keywords

336 ILE RPG Reference

FROMFILE(file_name)
The FROMFILE keyword is used to specify the file with input data for the
prerun-time array or table being defined. The FROMFILE keyword must be
specified for every prerun-time array or table used in the program.

See also “TOFILE(file_name)” on page 369.

IMPORT{(external_name)}
The IMPORT keyword specifies that storage for the data item being defined is
allocated in another module, but may be accessed in this module. The
external_name parameter, if specified, must be a character literal or constant.

If a name is defined as imported but no module in the program contains an
exported definition of the name, an error will occur at link time. See
“EXPORT{(external_name)}” on page 329.

The IMPORT keyword on the definition specification is used to import data items
and cannot be used to import procedure names. Procedure names are imported
implicitly, to all modules in the program, when the EXPORT keyword is specified
on a procedure specification.

The following restrictions apply when IMPORT is specified:
v The data item may not be initialized (the INZ keyword is not allowed). The

exporting module manages all initialization for the data.
v An imported field cannot be defined as a compile-time or prerun-time array or

table, or as a data area. (Keywords CTDATA, FROMFILE, TOFILE, EXTFMT,
PERRCD, and DTAARA are not allowed.)

v An imported field may not be specified as an argument to the RESET operation
code since the initial value is defined in the exporting module.

v You cannot specify an imported field in the Result-Field entry of a PARM in the
*ENTRY PLIST.

v You cannot define an imported field as based (the keyword BASED is not
allowed).

v This keyword is not allowed for unnamed data structures.
v The only other keywords allowed are DIM, EXTNAME, LIKE, OCCURS, and

PREFIX.
v The same external field name cannot be specified more than once per module

and also cannot be used as an external procedure name.

P isValidCust B EXPORT
D PI N EXTPROC(*CL : 'isValidCust')
D custId 10A CONST
D isValid S N INZ(*OFF)
/free

... calculations using the "custId" parameter
return isValid;

/end-free
P E

Figure 129. Using EXTPROC on a procedure interface for a procedure intended to be called
only by CL callers

Definition-Specification Keywords

Chapter 14. Definition Specifications 337

For a multiple-occurrence data structure or table, each module will contain its own
copy of the occurrence number or table index. An OCCUR or LOOKUP operation
in any module will have only a local impact since the occurrence number or index
is local to each module.

INZ{(initial value)}
The INZ keyword initializes the standalone field, data structure, data-structure
subfield, or object to the default value for its data type or, optionally, to the
constant specified in parentheses.
v For a program described data structure, no parameter is allowed for the INZ

keyword.
v For an externally described data structure, only the *EXTDFT parameter is

allowed.
v For a data structure that is defined with the LIKEDS keyword, the value

*LIKEDS specifies that subfields are initialized in the same way as the parent
data structure. This applies only to initialization specified by the INZ keyword
on the parent subfield. It does not apply to initialization specified by the
CTDATA or FROMFILE keywords. If the parent data structure has some
subfields initialized by CTDATA or FROMFILE, the data structure initialized
with INZ(*LIKEDS) will not have the CTDATA or FROMFILE data.

v For an object, only the *NULL parameter is allowed. Every object is initialized to
*NULL, whether or not you specify INZ(*NULL).

The initial value specified must be consistent with the type being initialized. The
initial value can be a literal, named constant, figurative constant, built-in function,
or one of the special values *SYS, *JOB, *EXTDFT, *USER, *LIKEDS, or *NULL.
When initializing Date or Time data type fields or named constants with Date or
Time values, the format of the literal must be consistent with the default format as
derived from the Control specification, regardless of the actual format of the date
or time field.

A UCS-2 field may be initialized with a character, UCS-2 or graphic constant. If the
constant is not UCS-2, the compiler will implicitly convert it to UCS-2 at compile
time.

A numeric field may be initialized with any type of numeric literal. However, a
float literal can only be used with a float field. Any numeric field can be initialized
with a hexadecimal literal of 16 digits or fewer. In this case, the hexadecimal literal
is considered an unsigned numeric value.

Specifying INZ(*EXTDFT) initializes externally described data-structure subfields
with the default values from the DFT keyword in the DDS. If no DFT or constant
value is specified, the DDS default value for the field type is used. You can
override the value specified in the DDS by coding INZ with or without a
parameter on the subfield specification.

Specifying INZ(*EXTDFT) on the external data structure definition, initializes all
externally described subfields to their DDS default values. If the externally
described data structure has additional program described subfields, these are
initialized to the RPG default values.

When using INZ(*EXTDFT), take note of the following:
v If the DDS value for a date or time field is not in the RPG internal format, the

value will be converted to the internal format in effect for the program.

Definition-Specification Keywords

338 ILE RPG Reference

#
#
#

v External descriptions must be in physical files.
v If *NULL is specified for a null-capable field in the DDS, the compiler will use

the DDS default value for that field as the initial value.
v If DFT(’’) is specified for a varying length field, the field will be initialized with

a string of length 0.
v INZ(*EXTDFT) is not allowed if the CVTOPT option is in effect.

Specifying INZ(*USER) intializes any character field or subfield to the name of the
current user profile. Character fields must be at least 10 characters long. If the field
is longer than 10 characters, the user name is left-justified in the field with blanks
in the remainder.

Date fields can be initialized to *SYS or *JOB. Time and Timestamp fields can be
initialized to *SYS.

Please see “Initialization of Nested Data Structures” on page 141 for a complete
description of the use of the INZ keyword in the inititlization of nested data
structures.

A data structure, data-structure subfield, or standalone field defined with the INZ
keyword cannot be specified as a parameter on an *ENTRY PLIST.

Note: When the INZ parameter is not specified:
v Static standalone fields and subfields of initialized data structures are

initialized to their RPG default initial values (for example, blanks for
character, 0 for numeric).

v Subfields of uninitialized data structures (INZ not specified on the
definition specification for the data structure) are initialized to blanks
(regardless of their data type).

This keyword is not valid in combination with BASED or IMPORT.

LEN(length)
The LEN keyword is used to define the length in characters of a Data Structure or
character, UCS-2 or graphic definition. It is valid for Data Structure definitions, and
for Prototype, Prototyped Parameter, Standalone Field and Subfield definitions
where the type entry is A (Alphanumeric), C (UCS-2), or G (Graphic).

Rules for the LEN keyword:
v The data type A, C or G must be specified in the Data-Type entry.
v The LEN keyword cannot be specified if the Length entry is specified, or if the

From and To entries are specified for subfields. The LEN keyword must be used
to specify a length greater than 9,999,999.

v Length adjustment for LIKE definitions cannot be done using the LEN keyword.
v The length is specified in characters; for UCS-2 and Graphic definitions, each

character represents two bytes.

Definition-Specification Keywords

Chapter 14. Definition Specifications 339

LIKE(name)
The LIKE keyword is used to define an item like an existing one. For information
about using LIKE with an object, see “LIKE(object-name)” on page 341.

When the LIKE keyword is specified, the item being defined takes on the length
and the data format of the item specified as the parameter. Standalone fields,
prototypes, parameters, and data-structure subfields may be defined using this
keyword. The parameter of LIKE can be a standalone field, a data structure, a data
structure subfield, a parameter in a procedure interface definition, or a prototype
name. The data type entry (position 40) must be blank.

This keyword is similar to the *LIKE DEFINE operation code (see “*LIKE DEFINE”
on page 651). However, it differs from *LIKE DEFINE in that the defined data
takes on the data format and CCSID as well as the length.

Note: Attributes such as ALTSEQ(*NONE), NOOPT, ASCEND, CONST and null
capability are not inherited from the parameter of LIKE by the item defined.
Only the data type, length, decimal positions, and CCSID are inherited.

If the parameter of LIKE is a prototype, then the item being defined will have the
same data type as the return value of the prototype. If there is no return value,
then an error message is issued.

Here are some considerations for using the LIKE keyword with different data
types:
v For character fields, the number specified in the To/Length entry is the number

of additional (or fewer) characters.
v For numeric fields, the number specified in the To/Length entry is the number

of additional (or fewer) digits. For integer or unsigned fields, adjustment values
must be such that the resulting number of digits for the field are 3, 5, 10, or 20.
For float fields, length adjustment is not allowed.

* Use the LEN keyword to define a standalone field of one million
* characters and a standalone array of 100 characters.
D paragraph S A LEN(1000000) VARYING(4)
D splitPara S A LEN(100) DIM(10000)

* Use the LEN keyword to define a data structure of length 16000000,
* and to define three subfields. Since the lengths of the parameters
* are less than 9999999, they can be defined using from-and-to, or length
* notation, or the LEN keyword.
D info DS LEN(16000000)
D name G LEN(100) OVERLAY(info : 14000001)
D address 5000G OVERLAY(info : 14000301)
D country 1 40G

* Use the LEN keyword to define a prototype that returns a varying
* UCS-2 value that is up to 5000 UCS-2 characters long, and to define
* two alphanumeric parameters. Since the lengths of the parameters
* are less than 9999999, they can be defined either using length notation
* or the LEN keyword.
D getDftDir PR C VARYING LEN(5000)
D usrprf A LEN(10) CONST
D type 5A CONST

Figure 130. Examples of the LEN keyword

Definition-Specification Keywords

340 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

v For graphic or UCS-2 fields, the number specified in the To/Length entry is the
number of additional (or fewer) graphic or UCS-2 characters (1 graphic or UCS-2
character = 2 bytes).

v For date, time, timestamp, basing pointer, or procedure pointer fields, the
To/Length entry (positions 33-39) must be blank.

When LIKE is used to define an array, the DIM keyword is still required to define
the array dimensions. However, DIM(%elem(array)) can be used to define an array
exactly like another array.

Use LIKEDS to define a data structure like another data structure, with the same
subfields.

The following are examples of defining data using the LIKE keyword.

LIKE(object-name)
You can use the LIKE keyword to specify that one object has the same class as a
previously defined object. Only the values on the CLASS keyword are inherited.

Note: You cannot use the *LIKE DEFINE operation to define an object. You must
use the LIKE keyword.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D.....................................Keywords+++++++++++++++++++++++++++++
*
* Define a field like another with a length increase of 5 characters.
*
D Name S 20
D Long_name S +5 LIKE(Name)
*
* Define a data structure subfield array with DIM(20) like another
* field and initialize each array element with the value *ALL'X'.
* Also, declare another subfield of type pointer immediately
* following the first subfield. Pointer is implicitly defined
* with a length of 16 bytes
*
D Struct DS
D Dim20 LIKE(Name) DIM(20) INZ(*ALL'X')
D Pointer *
*
* Define a field which is based on the *LDA. Take the length and type
* of the field from the field 'Name'.
*
D Lda_fld S LIKE(Name) DTAARA(*LDA)

Figure 131. Defining fields LIKE other fields

* Variables MyString and OtherString are both Java String objects.
D MyString S O CLASS(*JAVA
D :'java.lang.String')
D OtherString S LIKE(MyString)
* Proc is a Java method returning a Java String object
D Proc PR EXTPROC(*JAVA:'MyClass':'meth')
D LIKE(MyString)

Figure 132. Defining objects LIKE other objects

Definition-Specification Keywords

Chapter 14. Definition Specifications 341

LIKEDS(data_structure_name)
The LIKEDS keyword is used to define a data structure, data structure subfield,
prototyped return value, or prototyped parameter like another data structure. The
subfields of the new item will be identical to the subfields of the parent data
structure specified as the parameter to the LIKEDS keyword.

A data structure defined using LIKEDS is automatically qualified even if the parent
data structure is not qualified. The subfields must be referred to using the qualified
notation DSNAME.SUBFIELDNAME. If the parent data structure has any
unnamed subfields, the child data structure will have the same unnamed subfields.

LIKEDS can be coded for subfields of a qualified data structure. When LIKEDS is
coded on a data structure subfield definition, the subfield data structure is
automatically defined as QUALIFIED. Subfields in a LIKEDS subfield data
structure are referenced in fully qualified form: "ds.subf.subfa". Subfields defined
with LIKEDS are themselves data structures, and can be used wherever a data
structure is required.

The values of the ALIGN and ALTSEQ keywords are inherited by the new data
structure. The values of the OCCURS, DIM, NOOPT, and INZ keywords are not
inherited. To initialize the subfields in the same way as the parent data structure,
specify INZ(*LIKEDS).

* Data structure qualDs is a qualified data structure
* with two named subfields and one unnamed subfield
D qualDs DS QUALIFIED
D a1 10A
D 2A
D a2 5P 0 DIM(3)
* Data structure unqualDs is a non-qualified data structure
* with one named subfield and one unnamed subfield
D unqualDs DS
D b1 5A
D 5A
* Data structure likeQual is defined LIKEDS(qualDs)
D likeQual DS LIKEDS(qualDs)
* Data structure likeUnqual is defined LIKEDS(unqualDs)
D likeUnqual DS LIKEDS(unqualDs)
/FREE

// Set values in the subfields of the
// parent data structures.
qualDs.a1 = 'abc';
qualDs.a2(1) = 25;
b1 = 'xyz';

// Set values in the subfields of the
// child data structures.
likeQual.a1 = 'def';
likeQual.a2(2) = -250;
likeUnqual.b1 = 'rst';

// Display some of the subfields
dsply likeQual.a1; // displays 'def'
dsply b1; // displays 'xyz'

Figure 133. Defining data structures using LIKEDS

Definition-Specification Keywords

342 ILE RPG Reference

LIKEFILE(filename)
The LIKEFILE keyword is used to define a prototyped parameter as a file with the
same characteristics as the filename parameter.

Note: In the following discussion, the term file parameter is used for the
parameter within the procedure that was defined using the LIKEFILE
keyword, the term parent file is used for the parameter of the LIKEFILE
keyword whose definition is used to derive the definition of the parameter,
and the term passed file is used for the file that is passed to the procedure
by the caller.

Rules for the LIKEFILE keyword for prototyped parameters:
v The filename parameter of the LIKEFILE keyword must be a file that has been

previously defined on a File specification.
v File specification keywords cannot be specified with the LIKEFILE keyword on a

Definition specification. The file parameter uses all the settings specified by the
File specification of the file specifed as the parameter of the LIKEFILE keyword.

v No other Definition keywords can be specified other than OPTIONS(*NOPASS)
or OPTIONS(*OMIT).

v File parameters can be passed only between RPG programs and procedures.
They are not compatible with file parameters from other programming
languages, such as COBOL files, or files returned by the C fopen() or open()
functions.

v A file is always passed by reference. The called procedure works directly on the
same file as the calling procedure. For example, if the caller reads a record, and
the called procedure updates the record and returns, the caller cannot update the
record again.

v If the blocking attribute for the file cannot be determined from the File
specification, the BLOCK keyword must be specified for the filename parameter.

Rules for passing and using file parameters:

D sysName DS qualified
D lib 10A inz('*LIBL')
D obj 10A
D userSpace DS LIKEDS(sysName) INZ(*LIKEDS)
// The variable "userSpace" was initialized with *LIKEDS, so the
// first 'lib' subfield was initialized to '*LIBL'. The second
// 'obj' subfield must be set using a calculation.
C eval userSpace.obj = 'TEMPSPACE'

Figure 134. Using INZ(*LIKEDS)

P createSpace B
D createSpace PI
D name LIKEDS(sysName)
/free

if name.lib = *blanks;
name.lib = '*LIBL';

endif;
QUSCRTUS (name : *blanks : 4096 : ' ' : '*USE' : *blanks);

/end-free
P createSpace E

Figure 135. Using a data structure parameter in a subprocedure

Definition-Specification Keywords

Chapter 14. Definition Specifications 343

#

#
#

#
#
#
#
#
#

#
#
#

#
#
#

#
#

#
#
#
#

#
#
#
#

#
#

#

v The passed file must be defined with the same parent file as the prototyped
parameter.

v The file parameter is qualified. If the record formats of the parent file FILE1 are
REC1 and REC2, then the record formats of the file parameter PARM must be
referred to in the called procedure by PARM.REC1 and PARM.REC2.

v Any settings for the passed file that are defined using File specification
keywords are in effect for all procedures that access the file, either directly or
through parameter passing. For example, if the EXTFILE keyword is specified
with a variable holding the external file name, and a called procedure opens the
file, then the value of the caller’s variable will be used to set the name of the file
to be opened. If the called procedure needs to change or access those variables
associated with the file through keywords, the calling procedure must pass the
variables as separate parameters.

v The file-feedback built-in functions %EOF(filename), %EQUAL(filename),
%FOUND(filename), %OPEN(filename), and %STATUS(filename) can be used in
the called procedure to determine the current state of the file parameter by
specifying the name of the file parameter as the operand to the built-in function.
For more information on passing a file parameter between modules, see
“Variables Associated with Files” on page 107 and “Example of passing a file
and passing a data structure with the associated variables.” on page 109.

Definition-Specification Keywords

344 ILE RPG Reference

#
#

#
#
#

#
#
#
#
#
#
#
#

|
|
|
|

|
|
|

#

LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT |*KEY})
Keyword LIKEREC is used to define a data structure, data structure subfield,
prototyped return value, or prototyped parameter like a record. The subfields of
the data structure will be identical to the fields in the record. LIKEREC can take an
optional second parameter which indicates which fields of the record to include in
the data structure. These include:
v *ALL All fields in the external record are extracted.

* Define a file template to be used for defining actual files
* and the file parameter
Finfile_t IF E DISK TEMPLATE BLOCK(*YES)
F EXTDESC('MYLIB/MYFILE')
F RENAME(R01M2:inRec)
* Define two actual files that can be passed to the file parameter
Ffile1 LIKEFILE(infile_t)
F EXTFILE('MYLIB/FILE1')
Ffile2 LIKEFILE(infile_t)
F EXTFILE('MYLIB/FILE2')
* Define a data structure type for the file data
D inData_t DS LIKEREC(infile_t.inRec:*INPUT)
D TEMPLATE

* Define the prototype for a procedure to handle the files
D nextValidRec PR N
D infile LIKEFILE(infile_t)
D data LIKEDS(inData_t)
* Define variables to hold the record data
D f1Data DS LIKEDS(inData_t)
D f2Data DS LIKEDS(inData_t)

/FREE
// Process valid records from each file until one
// of the files has no more valid records
DOW nextValidRec(file1 : f1Data)
AND nextValidRec(file2 : f2Data);

// ... process the data from the files
ENDDO;
*INLR = '1';

/END-FREE

* The procedure that will process the file parameter
P nextValidRec B
D nextValidRec PI N
D infile LIKEFILE(infile_t)
D data LIKEDS(inData_t)
/FREE

// Search for a valid record in the file parameter
READ infile data;
DOW NOT %EOF(infile);

IF data.active = 'Y';
RETURN *ON; // This is a valid record

ENDIF;
READ infile data;

ENDDO;
RETURN *OFF; // No valid record was found

/END-FREE
P nextValidRec E

Figure 136. Passing a file as a parameter to a procedure

Definition-Specification Keywords

Chapter 14. Definition Specifications 345

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

v *INPUT All input-capable fields are extracted. (This is the default.)
v *OUTPUT All output-capable fields are extracted.
v *KEY The key fields are extracted in the order that the keys are defined on the

K specification in the DDS.

The following should be taken into account when using the LIKEREC keyword:
v The first parameter for keyword LIKEREC is a record name in the program. If

the record name has been renamed, it is the internal name for the record.
v The second parameter for LIKEREC must match the definition of the associated

record of the file on the system. *INPUT is only allowed for input and update
capable records; *OUTPUT is only allowed for output capable records; *ALL is
allowed for any type of record; and *KEY is only allowed for keyed files. If not
specified, the parameter defaults to *INPUT.

v For *INPUT and *OUTPUT, subfields included in the data structure occupy the
same start positions as in the external record description.

v If a prefix was specified for the file, the specified prefix is applied to the names
of the subfields.

v Even if a field in the record is explicitly renamed on an input specification the
external name (possibly prefixed) is used, not the internal name.

v If the file is defined with the ALIAS keyword, the alias names will be used for
the subfields of the data structure. Figure 113 on page 292 shows an example
defining a data structure with the LIKEREC keyword where the file is defined
with the ALIAS keyword.

v A data structure defined with LIKEREC is a QUALIFIED data structure. The
names of the subfields will be qualified with the new data structure name,
DS1.SUBF1.

v LIKEREC can be coded for subfields of a qualified data structure. When
LIKEREC is coded on a data structure subfield definition, the subfield data
structure is automatically defined as QUALIFIED. Subfields in a LIKEREC
subfield data structure are referenced in fully qualified form: "ds.subf.subfa".
Subfields defined with LIKEREC are themselves data structures, and can be used
wherever a data structure is required.

NOOPT
The NOOPT keyword indicates that no optimization is to be performed on the
standalone field, parameter or data structure for which this keyword is specified.
Specifying NOOPT ensures that the content of the data item is the latest assigned
value. This may be necessary for those fields whose values are used in exception
handling.

Note: The optimizer may keep some values in registers and restore them only to
storage at predefined points during normal program execution. Exception
handling may break this normal execution sequence, and consequently
program variables contained in registers may not be returned to their
assigned storage locations. As a result, when those variables are used in
exception handling, they may not contain the latest assigned value. The
NOOPT keyword will ensure their currency.

If a data item which is to be passed by reference is defined with the NOOPT
keyword, then any prototype or procedure interface parameter definition must also
have the NOOPT keyword specified. This requirement does not apply to
parameters passed by value.

Definition-Specification Keywords

346 ILE RPG Reference

|
|
|
|
|

|
|
|
|

TIP
Any data item defined in an OPM RPG/400 program is implicitly defined
with NOOPT. So if you are creating a prototype for an OPM program, you
should specify NOOPT for all parameters defined within the prototype. This
will avoid errors for any users of the prototype.

All keywords allowed for standalone field definitions, parameters, or data
structure definitions are allowed with NOOPT.

OCCURS(numeric_constant)
The OCCURS keyword allows the specification of the number of occurrences of a
multiple-occurrence data structure.

The numeric_constant parameter must be a value greater than 0 with no decimal
positions. It can be a numeric literal, a built-in function returning a numeric value,
or a numeric constant.

The constant value does not need to be known at the time the keyword is
processed, but the value must be known at compile-time.

This keyword is not valid for a program status data structure, a file information
data structure, or a data area data structure.

If a multiple occurrence data structure contains pointer subfields, the distance
between occurrences must be an exact multiple of 16 because of system storage
restrictions for pointers. This means that the distance between occurrences may be
greater than the length of each occurrence.

The following is an example showing the storage allocation of a multiple
occurrence data structure with pointer subfields.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D DS1 DS OCCURS(2)
D POINTER 16*
D FLD5 5
D DS2 DS OCCURS(2)
D CHAR16 16
D CHR5 5

Allocation of fields in storage. The occurrences of DS1 are 32 bytes apart, while the
occurrences of DS2 are 21 bytes apart.

Figure 137. Storage Allocation of Multiple Occurrence Data Structure with Pointer Subfields

Definition-Specification Keywords

Chapter 14. Definition Specifications 347

OPDESC
The OPDESC keyword specifies that operational descriptors are to be passed with
the parameters that are defined within a prototype.

When OPDESC is specified, operational descriptors are passed with all character or
graphic parameters that are passed by reference. If you attempt to retrieve an
operational descriptor for a parameter passed by value, an error will result.

Note: Operational descriptors are not passed for UCS-2 fields.

Using CALLP with a prototyped procedure whose prototype contains OPDESC is
the same as calling a procedure using CALLB (D). Operational descriptors are also
passed for procedures called within expressions.

The keyword applies both to a prototype definition and to a procedure-interface
definition. It cannot be used with the EXTPGM keyword.

Note: If you use the OPDESC keyword for your own procedures, the RTNPARM
keyword can affect the way you call APIs such as CEEDOD to get
information about your parameters. See “RTNPARM” on page 363 and
“%PARMNUM (Return Parameter Number)” on page 565 for more
information.

For an example of the OPDESC keyword, see the service program example in the
IBM Rational Development Studio for i: ILE RPG Programmer’s Guide.

OPTIONS(*NOPASS *OMIT *VARSIZE *STRING *TRIM
*RIGHTADJ *NULLIND)

The OPTIONS keyword is used to specify one or more parameter passing options:
v Whether a parameter must be passed
v Whether the special value *OMIT can be passed for the parameter passed by

reference.
v Whether a parameter that is passed by reference can be shorter in length than is

specified in the prototype.
v Whether the called program or procedure is expecting a pointer to a

null-terminated string, allowing you to specify a character expression as the
passed parameter.

v Whether the parameter should be trimmed of blanks before being passed.
v Whether the parameter value should be right-adjusted in the passed parameter.
v Whether the null-byte-map should be passed with the parameter.

When OPTIONS(*NOPASS) is specified on a definition specification, the parameter
does not have to be passed on the call. Any parameters following that specification
must also have *NOPASS specified. When the parameter is not passed to a
program or procedure, the called program or procedure will simply function as if
the parameter list did not include that parameter. If the unpassed parameter is
accessed in the called program or procedure, unpredictable results will occur.

When OPTIONS(*OMIT) is specified, then the value *OMIT is allowed for that
parameter. *OMIT is only allowed for CONST parameters and parameters which
are passed by reference. For more information on omitted parameters, see the
chapter on calling programs and procedures in IBM Rational Development Studio for
i: ILE RPG Programmer’s Guide.

Definition-Specification Keywords

348 ILE RPG Reference

|
|
|
|
|

OPTIONS(*VARSIZE) is valid only for parameters passed by reference that have a
character, graphic, or UCS-2 data type, or that represent an array of any type.

When OPTIONS(*VARSIZE) is specified, the passed parameter may be shorter or
longer in length than is defined in the prototype. It is then up to the called
program or subprocedure to ensure that it accesses only as much data as was
passed. To communicate the amount of data passed, you can either pass an extra
parameter containing the length, or use operational descriptors for the
subprocedure. For variable-length fields, you can use the %LEN built-in function to
determine the current length of the passed parameter.

When OPTIONS(*VARSIZE) is omitted for fixed-length fields, you must pass at
least as much data as is required by the prototype; for variable-length fields, the
parameter must have the same declared maximum length as indicated on the
definition.

Note: For the parameter passing options *NOPASS, *OMIT, and *VARSIZE, it is up
to the programmer of the procedure to ensure that these options are
handled. For example, if OPTIONS(*NOPASS) is coded and you choose to
pass the parameter, the procedure must check that the parameter was
passed before it accesses it. The compiler will not do any checking for this.
If you call APIs such as CEEDOD or CEETSTA to get information about a
parameter that uses these options, the RTNPARM keyword can affect the
way you call the APIs. See “RTNPARM” on page 363 and “%PARMNUM
(Return Parameter Number)” on page 565 for more information.

When OPTIONS(*STRING) is specified for a basing pointer parameter passed by
value or by constant-reference, you may either pass a pointer or a character
expression. If you pass a character expression, a temporary value will be created
containing the value of the character expression followed by a null-terminator
(x’00’). The address of this temporary value will be passed to the called program
or procedure.

When OPTIONS(*RIGHTADJ) is specified for a CONST or VALUE parameter in a
prototype, the character, graphic, or UCS-2 parameter value is right adjusted. This
keyword is not allowed for a varying length parameter within a procedure
prototype. Varying length values may be passed as parameters on a procedure call
where the corresponding parameter is defined with OPTIONS(*RIGHTADJ).

When OPTIONS(*TRIM) is specified for a CONST or VALUE parameter of type
character, UCS-2 or graphic, the passed parameter is copied without leading and
trailing blanks to a temporary. If the parameter is not a varying length parameter,
the trimmed value is padded with blanks (on the left if OPTIONS(*RIGHTADJ) is
specified, otherwise on the right). Then the temporary is passed instead of the
original parameter. Specifying OPTIONS(*TRIM) causes the parameter to be passed
exactly as though %TRIM were coded on every call to the procedure.

When OPTIONS(*STRING : *TRIM) is specified for a CONST or VALUE parameter
of type pointer, the character parameter or %STR of the pointer parameter is
copied without leading or trailing blanks to a temporary, a null-terminator is
added to the temporary and the address of the temporary is passed.

When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is
passed with the parameter, giving the called procedure direct access to the
null-byte map of the caller’s parameter. Note the following rules for
OPTIONS(*NULLIND).

Definition-Specification Keywords

Chapter 14. Definition Specifications 349

|
|
|
|
|
|
|
|
|

v ALWNULL(*USRCTL) must be in effect.
v OPTIONS(*NULLIND) is not valid for parameters passed by value.
v The only other options that can be specified with OPTIONS(*NULLIND) are

*NOPASS and *OMIT.
v Only variables may be passed as the parameter when OPTIONS(*NULLIND) is

specified, and the variable must be an exact match even when CONST is
specified.

v If the parameter is a data structure, the passed parameter must be defined with
the same parent LIKEDS or LIKEREC as the prototyped parameter. Furthermore,
the null-capability of the prototyped parameter and passed parameter must
match exactly.

v A prototyped data structure parameter can have OPTIONS(*NULLIND)
specified whether or not there are any null-capable subfields.

v If a non-data-structure prototyped parameter is defined with
OPTIONS(*NULLIND), the parameter in the procedure interface is defined as
null-capable.

v See IBM Rational Development Studio for i: ILE RPG Programmer’s Guide for
information about using OPTIONS(*NULLIND) when the calling procedure or
called procedure is not written using ILE RPG.

You can specify more than one option. For example, to specify that an optional
parameter can be shorter than the prototype indicates, you would code
OPTIONS(*VARSIZE : *NOPASS).

The following example shows how to code a prototype and procedure that use
OPTIONS(*NOPASS) to indicate that a parameter is optional.

Definition-Specification Keywords

350 ILE RPG Reference

The following example shows how to code a prototype and procedure using
OPTIONS(*OMIT) to indicate that the special value *OMIT may be passed as a
parameter.

* The following prototype describes a procedure that expects
* either one or two parameters.
D FormatAddress PR 45A
D City 20A CONST
D Province 20A CONST OPTIONS(*NOPASS)
* The first call to FormatAddress only passes one parameter. The
* second call passes both parameters.
C EVAL A = FormatAddress('North York')
C EVAL A = FormatAddress('Victoria' : 'B.C.')
C RETURN
*--
* FormatAddress:
* This procedure must check the number of parameters since the
* second was defined with OPTIONS(*NOPASS).
* It should only use the second parameter if it was passed.
*--
P FormatAddress B
D FormatAddress PI 45A
D City 20A CONST
D ProvParm 20A CONST OPTIONS(*NOPASS)
D Province S 20A INZ('Ontario')
* Set the local variable Province to the value of the second
* parameter if it was passed. Otherwise let it default to
* 'Ontario' as it was initialized.
C IF %PARMS > 1
C EVAL Province = ProvParm
C ENDIF
* Return the city and province in the form City, Province
* for example 'North York, Ontario'
C RETURN %TRIMR(City) + ',' + Province
P FormatAddress E

Figure 138. Using OPTIONS(*NOPASS) to Indicate that a Parameter is Optional

Definition-Specification Keywords

Chapter 14. Definition Specifications 351

The following example shows how to code a prototype and procedure allowing
variable-length parameters, using OPTIONS(*VARSIZE).

FQSYSPRT O F 10 PRINTER USROPN
* The following prototype describes a procedure that allows
* the special value *OMIT to be passed as a parameter.
* If the parameter is passed, it is set to '1' if an error
* occurred, and '0' otherwise.
D OpenFile PR
D Error 1A OPTIONS(*OMIT)
C SETOFF 10
* The first call to OpenFile assumes that no error will occur,
* so it does not bother with the error code and passes *OMIT.
C CALLP OpenFile(*OMIT)
* The second call to OpenFile passes an indicator so that
* it can check whether an error occurred.
C CALLP OpenFile(*IN10)
C IF *IN10
C ... an error occurred
C ENDIF
C RETURN
*--
* OpenFile
* This procedure must check the number of parameters since the
* second was defined with OPTIONS(*OMIT).
* It should only use the second parameter if it was passed.
*--
P OpenFile B
D OpenFile PI
D Error 1A OPTIONS(*OMIT)
D SaveIn01 S 1A
* Save the current value of indicator 01 in case it is being
* used elsewhere.
C EVAL SaveIn01 = *IN01
* Open the file. *IN01 will indicate if an error occurs.
C OPEN QSYSPRT 01
* If the Error parameter was passed, update it with the indicator
C IF %ADDR(Error) <> *NULL
C EVAL Error = *IN01
C ENDIF
* Restore *IN01 to its original value.
C EVAL *IN01 = SaveIn01
P OpenFile E

Figure 139. Using OPTIONS(*OMIT)

Definition-Specification Keywords

352 ILE RPG Reference

* The following prototype describes a procedure that allows
* both a variable-length array and a variable-length character
* field to be passed. Other parameters indicate the lengths.
D Search PR 5U 0
D SearchIn 50A OPTIONS(*VARSIZE)
D DIM(100) CONST
D ArrayLen 5U 0 VALUE
D ArrayDim 5U 0 VALUE
D SearchFor 50A OPTIONS(*VARSIZE) CONST
D FieldLen 5U 0 VALUE
D Arr1 S 1A DIM(7) CTDATA PERRCD(7)
D Arr2 S 10A DIM(3) CTDATA
D Elem S 5U 0
* Call Search to search an array of 7 elements of length 1 with
* a search argument of length 1. Since the '*' is in the 5th
* element of the array, Elem will have the value 5.
C EVAL Elem = Search(Arr1 :
C %SIZE(Arr1) : %ELEM(Arr1) :
C '*' : 1)
* Call Search to search an array of 3 elements of length 10 with
* a search argument of length 4. Since 'Pink' is not in the
* array, Elem will have the value 0.
C EVAL Elem = Search(Arr2 :
C %SIZE(Arr2) : %ELEM(Arr2) :
C 'Pink' : 4)
C RETURN

Figure 140. Using OPTIONS(*VARSIZE) (Part 1 of 2)

Definition-Specification Keywords

Chapter 14. Definition Specifications 353

The following example shows how to use OPTIONS(*STRING) to code a prototype
and procedure that use a null-terminated string parameter.

*--
* Search:
* Searches for SearchFor in the array SearchIn. Returns
* the element where the value is found, or 0 if not found.
* The character parameters can be of any length or
* dimension since OPTIONS(*VARSIZE) is specified for both.
*--
P Search B
D Search PI 5U 0
D SearchIn 50A OPTIONS(*VARSIZE)
D DIM(100) CONST
D ArrayLen 5U 0 VALUE
D ArrayDim 5U 0 VALUE
D SearchFor 50A OPTIONS(*VARSIZE) CONST
D FieldLen 5U 0 VALUE
D I S 5U 0
* Check each element of the array to see if it the same
* as the SearchFor. Use the dimension that was passed as
* a parameter rather than the declared dimension. Use
* %SUBST with the length parameter since the parameters may
* not have the declared length.
C 1 DO ArrayDim I 5 0
* If this element matches SearchFor, return the index.
C IF %SUBST(SearchIn(I) : 1 : ArrayLen)
C = %SUBST(SearchFor : 1 : FieldLen)
C RETURN I
C ENDIF
C ENDDO
* No matching element was found.
C RETURN 0
P Search E
Compile-time data section:

**CTDATA ARR1
A2$@*jM
**CTDATA ARR2
Red
Blue
Yellow

Figure 140. Using OPTIONS(*VARSIZE) (Part 2 of 2)

Definition-Specification Keywords

354 ILE RPG Reference

* The following prototype describes a procedure that expects
* a null-terminated string parameter. It returns the length
* of the string.
D StringLen PR 5U 0
D Pointer * VALUE OPTIONS(*STRING)
D P S *
D Len S 5U 0
* Call StringLen with a character literal. The result will be
* 4 since the literal is 4 bytes long.
C EVAL Len = StringLen('abcd')
* Call StringLen with a pointer to a string. Use ALLOC to get
* storage for the pointer, and use %STR to initialize the storage
* to 'My string¬' where '¬' represents the null-termination
* character x'00'.
* The result will be 9 which is the length of 'My string'.
C ALLOC 25 P
C EVAL %STR(P:25) = 'My string'
C EVAL Len = StringLen(P)
* Free the storage.
C DEALLOC P
C RETURN
*--
* StringLen:
* Returns the length of the string that the parameter is
* pointing to.
*--
P StringLen B
D StringLen PI 5U 0
D Pointer * VALUE OPTIONS(*STRING)
C RETURN %LEN(%STR(Pointer))
P StringLen E

Figure 141. Using OPTIONS(*STRING)

Definition-Specification Keywords

Chapter 14. Definition Specifications 355

* The following prototype describes a procedure that expects
* these parameters:
* 1. trimLeftAdj - a fixed length parameter with the
* non-blank data left-adjusted
* 2. leftAdj - a fixed length parameter with the
* value left-adjusted (possibly with
* leading blanks)
* 3. trimRightAdj - a fixed length parameter with the
* non-blank data right-adjusted
* 4. rightAdj - a fixed length parameter with the
* value right-adjusted (possibly with
* trailing blanks)
* 5. trimVar - a varying parameter with no leading
* or trailing blanks
* 6. var - a varying parameter, possibly with
* leading or trailing blanks
D trimProc PR
D trimLeftAdj 10a const options(*trim)
D leftAdj 10a const
D trimRightAdj 10a value options(*rightadj : *trim)
D rightAdj 10a value options(*rightadj)
D trimVar 10a const varying options(*trim)
D var 10a value varying
* The following prototype describes a procedure that expects
* these parameters:
* 1. trimString - a pointer to a null-terminated string
* with no leading or trailing blanks
* 2. string - a pointer to a null-terminated string,
* possibly with leading or trailing blanks

Figure 142. Using OPTIONS(*TRIM) (Part 1 of 2)

Definition-Specification Keywords

356 ILE RPG Reference

D trimStringProc PR
D trimString * value options(*string : *trim)
D string * value options(*string)
D ptr s *
/free

// trimProc is called with the same value passed
// for every parameter
//
// The called procedure receives the following parameters
// trimLeftAdj 'abc '
// leftAdj ' abc '
// trimRightAdj ' abc'
// rightAdj ' abc '
// trimVar 'abc'
// var ' abc '

callp trimProc (' abc ' : ' abc ' : ' abc ' :
' abc ' : ' abc ' : ' abc ');

// trimStringProc is called with the same value passed
// for both parameters
//
// The called procedure receives the following parameters,
// where ¬ represents x'00'
// trimstring pointer to 'abc¬'
// string pointer to ' abc ¬'

callp trimStringProc (' abc ' : ' abc ');

// trimStringProc is called with the same pointer passed
// to both parameters
//
// The called procedure receives the following parameters,
// where ¬ represents x'00'
// trimstring pointer to 'xyz¬'
// string

pointer to ' xyz ¬'
ptr = %alloc (6);
%str(ptr : 6) = ' xyz ';
callp trimStringProc (ptr : ptr);

Figure 142. Using OPTIONS(*TRIM) (Part 2 of 2)

Definition-Specification Keywords

Chapter 14. Definition Specifications 357

*-----------------------------------
* DDS for file NULLFILE
*-----------------------------------
A R TESTREC
A NULL1 10A ALWNULL
A NOTNULL2 10A
A NULL3 10A ALWNULL

*-----------------------------------
* Calling procedure
*-----------------------------------

* The externally-described data structure DS, and the
* data structure DS2 defined LIKEDS(ds) have
* null-capable fields NULL1 and NULL3.
D ds E DS EXTNAME(nullFile)
D ds2 DS LIKEDS(ds)
* Procedure PROC specifies OPTIONS(*NULLIND) for all its
* parameters. When the procedure is called, the
* null-byte maps of the calling procedure's parameters
* will be passed to the called procedure allowing the
* called procedure to use %NULLIND(parmname) to access the
* null-byte map.
D proc PR
D parm LIKEDS(ds)
D OPTIONS(*NULLIND)
D parm2 10A OPTIONS(*NULLIND)
D parm3 10A OPTIONS(*NULLIND) CONST

/free
// The calling procedure sets some values
// in the parameters and their null indicators
%nullind(ds.null1) = *on;
ds.notnull2 = 'abcde';
ds.null3 = 'fghij';
%nullind(ds.null3) = *off;
ds2.null1 = 'abcde';
%nullind(ds2.null1) = *on;
%nullind(ds3.null3) = *off;
// The procedure is called (see the code for
// the procedure below
proc (ds : ds2.null1 : ds2.null3);

// After "proc" returns, the calling procedure
// displays some results showing that the
// called procedure changed the values of
// the calling procedure's parameters and
// their null-indicators
dsply (%nullind(ds.null1)); // displays '0'
dsply ds2.null2; // displays 'newval'
dsply (%nullind(ds2.null2)); // displays '0'

/end-free

Figure 143. Using OPTIONS(*NULLIND) (Part 1 of 2)

Definition-Specification Keywords

358 ILE RPG Reference

OVERLAY(name{:pos | *NEXT})
The OVERLAY keyword overlays the storage of one subfield with that of another
subfield, or with that of the data structure itself. This keyword is allowed only for
data structure subfields.

The Name-entry subfield overlays the storage specified by the name parameter at
the position specified by the pos parameter. If pos is not specified, it defaults to 1.

Note: The pos parameter is in units of bytes, regardless of the types of the
subfields.

Specifying OVERLAY(name:*NEXT) positions the subfield at the next available
position within the overlaid field. (This will be the first byte past all other
subfields prior to this subfield that overlay the same subfield.)

The following rules apply to keyword OVERLAY:
1. The name parameter must be the name of a subfield defined previously in the

current data structure, or the name of the current data structure.
2. If the data structure is qualified, the first parameter to the OVERLAY keyword

must be specified without the qualifying data structure name. In the following
example, subfield MsgInfo.MsgPrefix overlays subfield MsgInfo.MsgId.

*-----------------------------------
* Called procedure PROC
*-----------------------------------
P B
D proc PI
D parm LIKEDS(ds)
D OPTIONS(*NULLIND)
D parm2 10A OPTIONS(*NULLIND)
D parm3 10A OPTIONS(*NULLIND) CONST
/free

if %NULLIND(parm.null1);
// This code will be executed because the
// caller set on the null indicator for
// subfield NULL1 of the parameter DS

endif;

if %NULLIND(parm3);
// PARM3 is defined as null-capable since it was
// defined with OPTIONS(*NULLIND).
// This code will not be executed, because the
// caller set off the null-indicator for the parameter

endif;

// Change some data values and null-indicator values
// The calling procedure will see the updated values.
parm2 = 'newvalue';
%NULLIND(parm2) = *OFF;
%NULLIND(parm.null1) = *OFF;
parm.null1 = 'newval';
return;

/end-free
P E

Figure 143. Using OPTIONS(*NULLIND) (Part 2 of 2)

Definition-Specification Keywords

Chapter 14. Definition Specifications 359

D MsgInfo DS QUALIFIED
D MsgId 7
D MsgPrefix 3 OVERLAY(MsgId)

3. The pos parameter (if specified) must be a value greater than 0 with no decimal
positions. It can be a numeric literal, a built-in function returning a numeric
value, or a numeric constant. If pos is a named constant, it must be defined
prior to this specification.

4. The OVERLAY keyword is not allowed when the From-Position entry is not
blank.

5. If the name parameter is a subfield, the subfield being defined must be
contained completely within the subfield specified by the name parameter.

6. Alignment of subfields defined using the OVERLAY keyword must be done
manually. If they are not correctly aligned, a warning message is issued.

7. If the subfield specified as the first parameter for the OVERLAY keyword is an
array, the OVERLAY keyword applies to each element of the array. That is, the
field being defined is defined as an array with the same number of elements.
The first element of this array overlays the first element of the overlaid array,
the second element of this array overlays the second element of the overlaid
array, and so on. No array keywords may be specified for the subfield with the
OVERLAY keyword in this situation. (Refer to Figure 144) See also “SORTA
(Sort an Array)” on page 815.
If the subfield name, specified as the first parameter for the OVERLAY
keyword, is an array and its element length is longer than the length of the
subfield being defined, the array elements of the subfield being defined are not
stored contiguously. Such an array is not allowed as the Result Field of a
PARM operation or in Factor 2 or the Result Field of a MOVEA operation.

8. If the ALIGN keyword is specified for the data structure, subfields defined with
OVERLAY(name:*NEXT) are aligned to their preferred alignment. Pointer
subfields are always aligned on a 16-byte boundary.

9. If a subfield with overlaying subfields is not otherwise defined, the subfield is
implicitly defined as follows:
v The start position is the first available position in the data structure.
v The length is the minimum length that can contain all overlaying subfields. If

the subfield is defined as an array, the length will be increased to ensure
proper alignment of all overlaying subfields.

Examples

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++++
D DataStruct DS
D A 10 DIM(5)
D B 5 OVERLAY(A)
D C 5 OVERLAY(A:6)

Allocation of fields in storage:

A(1) A(2) A(3) A(4) A(5)

B(1) C(1) B(2) C(2) B(3) C(3) B(4) C(4) B(5) C(5)

Figure 144. Storage Allocation of Subfields with Keywords DIM and OVERLAY

Definition-Specification Keywords

360 ILE RPG Reference

The following example shows two equivalent ways of defining subfield overlay
positions: explicitly with (name:pos) and implicitly with (name:*NEXT).

PACKEVEN
The PACKEVEN keyword indicates that the packed field or array has an even
number of digits. The keyword is only valid for packed program-described
data-structure subfields defined using FROM/TO positions. For a field or array
element of length N, if the PACKEVEN keyword is not specified, the number of
digits is 2N - 1; if the PACKEVEN keyword is specified, the number of digits is
2(N-1).

PERRCD(numeric_constant)
The PERRCD keyword allows you to specify the number of elements per record
for a compile-time or a prerun-time array or table. If the PERRCD keyword is not
specified, the number of elements per record defaults to one (1).

The numeric_constant parameter must be a value greater than 0 with no decimal
positions. It can be a numeric literal, a built-in function returning a numeric value,
or a numeric constant. If the parameter is a named constant, it does not need to be
defined prior to this specification.

The PERRCD keyword is valid only when the keyword FROMFILE, TOFILE, or
CTDATA is specified.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D DataStruct DS
D A 5
D B 1 OVERLAY(A) DIM(4)

Allocation of fields in storage:

A

B(1) B(2) B(3) B(4)

Figure 145. Storage Allocation of Subfields with Keywords DIM and OVERLAY

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Define subfield overlay positions explicitly
D DataStruct DS
D PartNumber 10A
D Family 3A OVERLAY(PartNumber)
D Sequence 6A OVERLAY(PartNumber:4)
D Language 1A OVERLAY(PartNumber:10)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Define subfield overlay positions with *NEXT
D DataStruct DS
D PartNumber
D Family 3A OVERLAY(PartNumber)
D Sequence 6A OVERLAY(PartNumber:*NEXT)
D Language 1A OVERLAY(PartNumber:*NEXT)

Figure 146. Defining Subfield Overlay Positions with *NEXT

Definition-Specification Keywords

Chapter 14. Definition Specifications 361

PREFIX(prefix{:nbr_of_char_replaced})
The PREFIX keyword allows the specification of a character string or character
literal which is to be prefixed to the subfield names of the externally described
data structure being defined. In addition, you can optionally specify a numeric
value to indicate the number of characters, if any, in the existing name to be
replaced. If the parameter ’nbr_of_char_replaced’ is not specified, then the string is
attached to the beginning of the name. To remove characters from the beginning of
every name, specify an empty string as the first parameter:
PREFIX(’’:number_to_remove).

If the ’nbr_of_char_replaced’ is specified, it must represent a numeric value
between 0 and 9 with no decimal places. Specifying a value of zero is the same as
not specifying ’nbr_of_char_replaced’ at all. For example, the specification
PREFIX(YE:3) would change the field name ’YTDTOTAL’ to ’YETOTAL’.

The ’nbr_of_char_replaced’ parameter can be a numeric literal, a built-in function
that returns a numeric value, or a numeric constant. If it is a named constant, then
the constant must be defined prior to the specification containing the PREFIX
keyword. In addition, if it is a built-in function, all parameters to the built-in
function must be defined prior to the specification containing the keyword PREFIX.

The following rules apply:
v Subfields that are explicitly renamed using the EXTFLD keyword are not

affected by this keyword.
v The total length of a name after applying the prefix must not exceed the

maximum length of an RPG field name.
v If the number of characters in the name to be prefixed is less than or equal to

the value represented by the ’nbr_of_char_replaced’ parameter, then the entire
name is replaced by the prefix_string.

v The prefix cannot end in a period.
v If the prefix is a character literal, it must be uppercase.

See the ALIAS keyword for information on how the PREFIX keyword interacts
with the ALIAS keyword.

The following example uses PREFIX(’’:2) on the externally-described data structures DS1
and DS2. The fields of the file FILE1 all begin with the characters X4, and the fields of
the file FILE2 all begin with the characters WR. If the two files have any fields whose
names are the same aside from the initial two characters, then by specifying PREFIX(’’:2)
for the externally-described data structures, the subfields will have identical names
within the RPG program. This will enable the subfields to be assigned using the
EVAL-CORR operation.

Ffile1 if e disk
Ffile2 o e disk
D ds1 e ds extname(file1) prefix('':2)
D qualified
D ds2 e ds extname(file2) prefix('':2)
D qualified
/free

read file1 ds1; // Read into data structure
eval-corr ds2 = ds1; // Assign fields with same name
write file2 ds2; // Write from data structure

/end-free

Figure 147. Using PREFIX to remove characters from the names

Definition-Specification Keywords

362 ILE RPG Reference

|
|

For more examples, see “PREFIX(prefix{:nbr_of_char_replaced})” on page 304.

PROCPTR
The PROCPTR keyword defines an item as a procedure pointer. The internal
Data-Type field (position 40) must contain a *.

See “EXTPROC({*CL|*CWIDEN|*CNOWIDEN| {*JAVA:class-name:}}name)” on
page 332 for information on how to use a procedure pointer to call a procedure.

QUALIFIED
The QUALIFIED keyword specifies that the subfields of a data structure will be
accessed by specifying the data structure name followed by a period and the
subfield name. The data structure must have a name.

The subfields can have any valid name, even if the name has been used elsewhere
in the program. This is illustrated in the following example:

* In this example, FILE1 and FILE2 are the names of files. FILE1 and FILE2 are
* also subfields of qualified data structure FILESTATUS. This is valid,
* because the subfields FILE1 and FILE2 must be qualified by the data structure
* name: FILESTATUS.FILE1 and FILESTATUS.FILE2.
Ffile1 if e disk
Ffile2 if e disk

D fileStatus ds qualified
D file1 N
D file2 N

C open(e) file1
C eval fileStatus.file1 = %error

RTNPARM
The RTNPARM keyword specifies that the return value of a procedure is to be
handled internally as a parameter of the same type as the defined returned value,
passed by reference.

Using RTNPARM may improve performance when returning large values.

The impact on performance due to the RTNPARM keyword will vary from having
a small negative impact to having a large positive impact. There may be a small
negative impact when the prototyped return value is relatively small, such as an
integer, or a small data structure. There will be some improvement when the
prototyped return value is a larger value such as a 32767 byte data structure. The
performance improvement is most apparent when the prototyped return value is a
large varying length string, and the actual returned value is relatively small; for
example, the prototype defines the return value as a one million byte varying
length character string, and the value ’abc’ is returned.

Using RTNPARM for a procedure prototype may also reduce the amount of
automatic storage required for other procedures that contain calls to that
procedure. For example, if procedure MYCALLER contains a call to procedure
MYPROC that returns a large value, procedure MYCALLER will require additional
automatic storage (even if MYCALLER does not actually call procedure MYPROC
at run time). In some cases, procedure MYCALLER will not compile due to
excessive automatic storage requirements; in other cases, MYCALLER is not able to

Definition-Specification Keywords

Chapter 14. Definition Specifications 363

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

be called because the total automatic storage on the call stack would exceed the
maximum. Using RTNPARM avoids this problem with additional automatic
storage.

Notes:

1. The additional parameter is passed as the first parameter.
2. The %PARMS and %PARMNUM built-in functions include the additional

parameter in the parameter count. When the RTNPARM keyword is specified,
the value returned by %PARMNUM will be one higher than the apparent
parameter number.

3. When calling APIs that require a parameter number, such as CEEDOD or
CEETSTA, you must account for the extra first parameter. For example, if your
procedure has three parameters, and you want to find the length of the third
parameter as it appears in your parameter list, you must ask for information
about the fourth parameter. If you use the %PARMNUM built-in function to
return the correct parameter number for calling these APIs, you do not need to
worry about manually determining the correct parameter number.

4. When the calling procedure is written in a language other than RPG, the caller
must code the call as though the procedure has no return value, and as though
there is an additional first parameter passed by reference with the same type as
the RPG return value.

5. Similarly, when the called procedure is written in a language other than RPG,
the procedure must be coded without a return value, and having an additional
first parameter passed by reference with the same type as the RPG return
value.

6. When RTNPARM is specified for the procedure, the maximum number of
prototyped parameters is 398.

7. The RTNPARM keyword is not allowed for a Java method call.

The RTNPARM keyword applies both to a prototype definition and to a
procedure-interface definition.

Definition-Specification Keywords

364 ILE RPG Reference

|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

1. The prototype for the procedure
D center pr 100000a varying
D rtnparm
D text 50000a const varying
D len 10i 0 value

2. Calling the procedure
D title s 100a varying
/free

title = center ('Chapter 1' : 20);
// title = ' Chapter 1 '

3.The procedure
P center b export
D center pi 100000a varying
D rtnparm
D text 50000a const varying
D len 10i 0 value
D blanks s 50000a inz(*blanks)
D numBlanks s 10i 0
D startBlanks s 10i 0
D endBlanks s 10i 0
/free

if len < %len(text);
... handle invalid input

endif;
numBlanks = len - %len(text);
startBlanks = numBlanks / 2;
endBlanks = numBlanks - startBlanks;
return %subst(blanks : 1 : startBlanks)

+ text
+ %subst(blanks : 1 : endBlanks);

/end-free
P center e

Figure 148. Example of a procedure with the RTNPARM keyword

Definition-Specification Keywords

Chapter 14. Definition Specifications 365

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

D proc pi a len(16773100) varying
D rtnparm opdesc
D p1 10a
D p2 10a options(*varsize)
D p3 10a options(*omit : *nopass)

D num_parms s 10i 0
D parm_len s 10i 0
D desc_type s 10i 0
D data_type s 10i 0
D desc_info1 s 10i 0
D desc_info2 s 10i 0
D CEEDOD pr
D parm_num 10i 0 const
D desc_type 10i 0
D data_type 10i 0
D desc_info1 10i 0
D desc_info2 10i 0
D parm_len 10i 0
D feedback 12a options(*omit)
/free

// Get information about parameter p2
callp CEEDOD(%parmnum(p2) : desc_type : data_type

: desc_info1 : desc_info2
: parm_len : *omit);

if parm_len < 10;
// The parameter passed for p2 is shorter than 10

endif;

// Find out the number of parameters passed
num_parms = %parms();
// If all three parameters were passed, num_parms = 4

// test if p3 was passed
if num_parms >= %parmnum(p3);

// Parameter p3 was passed
if %addr(p3) <> *null;

// Parameter p3 was not omitted
endif;

endif;

Figure 149. Using %PARMS and calling CEEDOD with the RTNPARM keyword

1. The RPG prototype

D myproc pr 200a rtnparm
D name 10a const

2. A CL module calling this RPG procedure

dcl &retval type(*char) len(200)

callprc myproc parm(&retval 'Jack Smith')

Figure 150. Calling a procedure with the RTNPARM keyword from another language

Definition-Specification Keywords

366 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
||
|
|

||

STATIC{(*ALLTHREAD)}
The STATIC keyword is used:
v To specify that a local variable is stored in static storage
v To specify that the same copy of a static variable will be available to all threads

in a multithreaded environment
v To specify that a Java method is defined as a static method.

For a local variable of a subprocedure, the STATIC keyword specifies that the data
item is to be stored in static storage, and thereby hold its value across calls to the
procedure in which it is defined. The keyword can only be used within a
subprocedure. All global fields are static.

The data item is initialized when the program or service program it is contained in
is first activated. It is not reinitialized again, even if reinitialization occurs for
global definitions as part of normal cycle processing.

If STATIC is not specified, then any locally defined data item is stored in automatic
storage. Data stored in automatic storage is initialized at the beginning of every
call. When a procedure is called recursively, each invocation gets its own copy of
the storage.

For any variable in a module where THREAD(*CONCURRENT) is specified on the
Control specification, STATIC(*ALLTHREAD) specifies that the same instance of a
static variable will be used by all threads. If *ALLTHREAD is not specified for a
static variable in a thread-concurrent module, then the variable will be in
thread-local storage, meaning that each thread will have its own instance of the
variable.

The following rules apply to the use of the STATIC(*ALLTHREAD) keyword:
v STATIC(*ALLTHREAD) is not allowed unless THREAD(*CONCURRENT) is

specified on the Control specification.
v The STATIC keyword is implied for global variables. The STATIC keyword

cannot be specified for a global variable unless *ALLTHREAD is specified as a
parameter.

1. CL procedure GETLIBTEXT

PGM PARM(&retText &lib)

DCL &retText type(*char) len(50)
DCL &lib type(*char) len(10)

/* Set &retText to the library text */
rtvobjd obj(&lib) objtype(*lib) text(&retText)
return

2. RPG procedure calling this CL procedure using the RTNPARM keyword

D getLibText pr 50a rtnparm
D name 10a const
/free

if getLibText('MYLIB') = *blanks;
...

Figure 151. Calling a procedure with the RTNPARM keyword written in another language

Definition-Specification Keywords

Chapter 14. Definition Specifications 367

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

#

#

#

#
#

#

#
#
#
#

#
#
#

#
#
#
#

#
#
#
#
#
#

#

#
#

#
#
#

v A variable defined with STATIC(*ALLTHREAD) cannot be initialized to the
address of variables which are not also defined with STATIC(*ALLTHREAD).

Caution: It is up to you to ensure that a static variable used in all threads is
handled in a thread-safe manner. See the ″Multithreading Considerations″ section
in the Rational Development Studio for i: ILE RPG Programmer’s Guide, and .

Tip: It is a good idea to have a naming convention for your all-thread static
variables to alert maintenance programmers and code reviewers that the variables
need special handling. For example, you could add the prefix ATS_ to all your
variable names that are defined with STATIC(*ALLTHREAD).

For a Java method, the STATIC keyword specifies that the method is defined as
static. If STATIC is not specified, the method is assumed to be an instance method.
You must code the STATIC keyword for your prototype if and only if the Java
method has the ″static″ attribute. The *ALLTHREAD parameter is not allowed
when the STATIC keyword is specified for a prototype.

Additional Considerations for STATIC(*ALLTHREAD)
Null-capable fields: The internal variable used to hold the null indicator for a
STATIC(*ALLTHREAD) null-capable field will also be defined as
STATIC(*ALLTHREAD). A change to the value of the null indicator for a variable
by one thread will be visible to all threads. Access to the null indicator value will
not be synchronized.

Tables and Multiple-Occurrence Data Structures: The |internal variable used to
hold the current occurrence for a table or multiple-occurrence data structure
defined with STATIC(*ALLTHREAD) will be defined in thread-local storage. Each
thread will have its own instance of the current-occurrence variable.

TEMPLATE
The TEMPLATE keyword indicates that the definition is to be used only for further
LIKE or LIKEDS definitions. The TEMPLATE keyword is valid for Data Structure
definitions and Standalone field definitions.

Rules for the TEMPLATE keyword for Definition specifications:
1. When the TEMPLATE keyword is specified for a definition, the template name

and the subfields of the template name can be used only in the following ways
v As a parameter for the LIKE keyword
v As a parameter for the LIKEDS keyword, if the template is a data structure
v As a parameter for the %SIZE builtin function
v As a parameter for the %ELEM builtin function
v As a parameter for the %LEN builtin function in Definition specifications (for

example, as a named constant or initialization value)
v As a parameter for the %DECPOS builtin function in Definition specifications

(for example, as a named constant or initialization value)
2. The INZ keyword is allowed for template data structures. This allows you to

set an initialization value to be used with LIKEDS definitions of the template,
through the INZ(*LIKEDS) keyword.

Definition-Specification Keywords

368 ILE RPG Reference

#
#

#
#
#

#
#
#
#

#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

#

#
#
#

#
#
#

#

#

#

#

#
#

#
#

#
#
#

#

TIMFMT(format{separator})
The TIMFMT keyword allows the specification of an internal time format, and
optionally the time separator, for any of these items of type Time: standalone field;
data-structure subfield; prototyped parameter; or return value on a prototype or
procedure-interface definition. This keyword will be automatically generated for an
externally described data-structure subfield of type Time.

If TIMFMT is not specified, the Time field will have the time format and separator
as specified by the TIMFMT keyword on the control specification, if present. If
none is specified on the control specification, then it will have *ISO format.

See Table 36 on page 209 for valid formats and separators. For more information
on internal formats, see “Internal and External Formats” on page 179.

TOFILE(file_name)
The TOFILE keyword allows the specification of a target file to which a
prerun-time or compile-time array or table is to be written.

If an array or table is to be written, specify the file name of the output or
combined file as the keyword parameter. This file must also be defined in the file
description specifications. An array or table can be written to only one output
device.

If an array or table is assigned to an output file, it is automatically written if the
LR indicator is on at program termination. The array or table is written after all
other records are written to the file.

* Define a template for the type of a NAME
D standardName S 100A VARYING TEMPLATE

* Define a template for the type of an EMPLOYEE
D employee_type DS QUALIFIED TEMPLATE INZ
D name LIKE(standardName)
D INZ('** UNKNOWN **')
D idNum 10I 0 INZ(0)
D type 1A INZ('R')
D years 5I 0 INZ(-1)
* Define a variable like the employee type, initialized
* with the default value of the employee type
D employee DS LIKEDS(employee_type)
D INZ(*LIKEDS)

* Define prototypes using the template definitions
*
* The "id" parameter is defined like a subfield of a
* template data structure.
D getName PR LIKE(standardName)
D idNum
D findEmp PR N
D emp LIKEDS(employee_type)
D id LIKE(employee_type.idNum)
D CONST

Figure 152. : Examples of TEMPLATE definitions

Definition-Specification Keywords

Chapter 14. Definition Specifications 369

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

If an array or table is to be written to the same file from which it was read, the
same file name that was specified as the FROMFILE parameter must be specified
as the TOFILE parameter. This file must be defined as a combined file (C in
position 17 on the file description specification).

VALUE
The VALUE keyword indicates that the parameter is passed by value rather than
by reference. Parameters can be passed by value when the procedure they are
associated with are called using a procedure call.

The VALUE keyword cannot be specified for a parameter if its prototype was
defined using the EXTPGM keyword. Calls to programs require that parameters be
passed by reference.

The rules for what can be passed as a value parameter to a called procedure are
the same as the rules for what can be assigned using the EVAL operation. The
parameter received by the procedure corresponds to the left-hand side of the
expression; the passed parameter corresponds to the right-hand side. See “EVAL
(Evaluate expression)” on page 676 for more information.

VARYING{(2 | 4)}
The VARYING keyword indicates that a character, graphic, or UCS-2 field, defined
on the definition specifications, should have a variable-length format. If this
keyword is not specified for character, graphic, or UCS-2 fields, they are defined as
fixed length.

The parameter of the VARYING keyword indicates the number of bytes used to
store the current length of the variable-length item. If you specify VARYING
without a parameter, a size of 2 is assumed if the specified length is between 1 and
65535; otherwise, a size of 4 is assumed. You can specify any form of the
VARYING keyword for definitions whose length is between 1 and 65535. The
VARYING(2) keyword cannot be specified for definitions whose length is greater
than 65535 since 4 bytes are required to store the length.

For more information, see “Variable-Length Character, Graphic and UCS-2
Formats” on page 185.

Summary According to Definition Specification Type
Table 51 lists the required and allowed entries for each definition specification type.

Table 52 on page 371 and Table 53 on page 372 list the keywords allowed for each
definition specification type.

In each of these tables, an R indicates that an entry in these positions is required
and an A indicates that an entry in these positions is allowed.

Table 51. Required/Allowed Entries for each Definition Specification Type

Type Pos. 7-21
Name

Pos. 22
External

Pos. 23
DS Type

Pos.
24-25
Defn.
Type

Pos.
26-32
From

Pos.
33-39 To
/ Length

Pos. 40
Data-
type

Pos.
41-42

Decimal
Pos.

Pos.
44-80
Key-

words

Data
Structure

A A A R A A

Definition-Specification Keywords

370 ILE RPG Reference

#

|
|
|
|
|
|
|

Table 51. Required/Allowed Entries for each Definition Specification Type (continued)

Type Pos. 7-21
Name

Pos. 22
External

Pos. 23
DS Type

Pos.
24-25
Defn.
Type

Pos.
26-32
From

Pos.
33-39 To
/ Length

Pos. 40
Data-
type

Pos.
41-42

Decimal
Pos.

Pos.
44-80
Key-

words

Data
Structure
Subfield

A A A A A A

External
Subfield

A R A

Standalone
Field

R R A A A A

Named
Constant

R R R

Prototype R R A A A A

Prototype
Parameter

A A A A A

Procedure
Interface

A R A A A A

Procedure
Interface
Parameter

R A A A A

Table 52. Data Structure, Standalone Fields, and Named Constants Keywords

Keyword Data
Structure

Data
Structure
Subfield

External
Subfield

Standalone
Field

Named
Constant

ALIGN A

ALT A A A

ALTSEQ A A A A

ASCEND A A A

BASED A A

CCSID A A

CLASS A

CONST1 R

CTDATA2 A A A

DATFMT A A

DESCEND A A A

DIM A A A A

DTAARA2 A A A

EXPORT2 A A

EXTFLD A

EXTFMT A A A

EXTNAME4 A

FROMFILE2 A A A

IMPORT2 A A

Summary According to Definition Specification Type

Chapter 14. Definition Specifications 371

Table 52. Data Structure, Standalone Fields, and Named Constants Keywords (continued)

Keyword Data
Structure

Data
Structure
Subfield

External
Subfield

Standalone
Field

Named
Constant

INZ A A A A

LEN A A A

LIKE A A

LIKEDS5 A A

LIKEREC A A

NOOPT A A

OCCURS A

OVERLAY A

PACKEVEN A

PERRCD A A A

PREFIX4 A

PROCPTR A A

QUALIFIED A

STATIC3 A A

TEMPLATE A A

TIMFMT A A

TOFILE2 A A A

VARYING A A

Notes:

1. When defining a named constant, the keyword is optional, but the parameter to the
keyword is required. For example, to assign a named constant the value ’10’, you could
specify either CONST(’10’) or ’10’.

2. This keyword applies only to global definitions.

3. This keyword applies only to local definitions.

4. This keyword applies only to externally described data structures.

5. This keyword applies only to program-described data structures.

Table 53. Prototype, Procedure Interface, and Parameter Keywords

Keyword Prototype (PR) Procedure Interface
(PI)

PR or PI Parameter

ALTSEQ A A A

ASCEND A

CCSID A A A

CLASS A A A

CONST A

DATFMT A A A

DESCEND A

DIM A A A

EXTPGM A A

EXTPROC A A

Summary According to Definition Specification Type

372 ILE RPG Reference

######

######

||||

||||

Table 53. Prototype, Procedure Interface, and Parameter Keywords (continued)

Keyword Prototype (PR) Procedure Interface
(PI)

PR or PI Parameter

LEN A A A

LIKE A A A

LIKEFILE A

LIKEDS A A A

LIKEREC A A A

NOOPT A

OPDESC A A

OPTIONS A

PROCPTR A A A

RTNPARM A A

STATIC A A

TIMFMT A A A

VALUE A

VARYING A A A

Summary According to Definition Specification Type

Chapter 14. Definition Specifications 373

####

####

||||

Summary According to Definition Specification Type

374 ILE RPG Reference

Chapter 15. Input Specifications

For a program-described input file, input specifications describe the types of
records within the file, the sequence of the types of records, the fields within a
record, the data within the field, indicators based on the contents of the fields,
control fields, fields used for matching records, and fields used for sequence
checking. For an externally described file, input specifications are optional and can
be used to add RPG IV functions to the external description.

Input specifications are not used for all of the files in your program. For some files,
you must code data structures in the result field of your input operatons. The
following files in your program do not use Input specifications:
v Files defined in subprocedures
v Files defined with the QUALIFIED keyword
v Files defined with the TEMPLATE keyword
v Files defined with the LIKEFILE keyword

Detailed information for the input specifications is given in:
v Entries for program described files
v Entries for externally described files

Input Specification Statement
The general layout for the Input specification is as follows:
v the input specification type (I) is entered in position 6
v the non-commentary part of the specification extends from position 7 to position

80
v the comments section of the specification extends from position 81 to position

100

Program Described
For program described files, entries on input specifications are divided into the
following categories:
v Record identification entries (positions 7 through 46), which describe the input

record and its relationship to other records in the file.

v Field description entries (positions 31 through 74), which describe the fields in
the records. Each field is described on a separate line, below its corresponding
record identification entry.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................Comments++++++++++++
I.........And..RiPos1+NCCPos2+NCCPos3+NCC..................................Comments++++++++++++

Figure 153. Program Described Record Layout

© Copyright IBM Corp. 1994, 2010 375

#
#
#

#

#

#

#

Externally Described
For externally described files, entries on input specifications are divided into the
following categories:
v Record identification entries (positions 7 through 16, and 21 through 22), which

identify the record (the externally described record format) to which RPG IV
functions are to be added.

v Field description entries (positions 21 through 30, 49 through 66, and 69 through
74), which describe the RPG IV functions to be added to the fields in the record.
Field description entries are written on the lines following the corresponding
record identification entries.

Program Described Files

Position 6 (Form Type)
An I must appear in position 6 to identify this line as an input specification
statement.

Record Identification Entries
Record identification entries (positions 7 through 46) for a program described file
describe the input record and its relationship to other records in the file.

Positions 7-16 (File Name)
Entry Explanation

A valid file name
Same file name that appears on the file description specifications for the
input file.

Enter the name of the file to be described in these positions. This name must be
the same name defined for the file on the file description specifications. This file
must be an input file, an update file, or a combined file. The file name must be
entered on the first record identification line for each file and can be entered on
subsequent record identification lines for that file. All entries describing one input
file must appear together; they cannot be mixed with entries for other files.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr......Comments++++++++++++

Figure 154. Program Described Field Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
IRcdname+++....Ri..Comments++++++++++++

Figure 155. Externally Described Record Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr......Comments++++++++++++

Figure 156. Externally Described Field Layout

Input Specification Statement

376 ILE RPG Reference

Positions 16-18 (Logical Relationship)
Entry Explanation

AND More than three identification codes are used.

OR Two or more record types have common fields.

An unlimited number of AND/OR lines can be used. For more information see
“AND Relationship” on page 381 and “OR Relationship” on page 381.

Positions 17-18 (Sequence)
Entry Explanation

Any two alphabetic characters
The program does not check for special sequence.

Any two-digit number
The program checks for special sequence within the group.

The numeric sequence entry combined with the number (position 19) and option
(position 20) entries causes the program to check the sequence of input records
within a file. If the sequence is not correct, control passes to the RPG IV
exception/error handling routine. If AND or OR lines are specified, the sequence
entry is made on the main record line of the group, not on the AND or OR lines.

Alphabetic and numeric entries can be made for different records (different record
identification lines) in the same file, but records with alphabetic entries must be
specified before records with numeric entries.

Alphabetic Entries
Enter any two alphabetic characters in these positions when no sequence checking
is to be done. It is common programming practice to specify these codes in a
sequence that aids in program documentation. However, it is not necessary to use
unique alphabetic entries.

Numeric Entries
Enter a unique numeric code in positions 17 and 18 if one record type must be
read before another record type in a file. Numeric entries must be in ascending
order, starting with 01, but need not be consecutive. When a numeric entry is used,
the appropriate entries must be made in positions 19 and 20.

To specify sequence checking, each record type must have a record identification
code, and the record types must be numbered in the order in which they should
appear. This order is checked as the records are read. If a record type is out of
sequence, control passes to the RPG IV exception/error handling routine.

Sequence numbers ensure only that all records of each record type precede the
records of higher sequence-numbered record types. The sequence numbers do not
ensure that records within a record type are in any certain order. Sequence
numbers are unrelated to control levels and do not provide for checking data in
fields of a record for a special sequence. Use positions 65 and 66 (matching fields)
to indicate that data in fields of a record should be checked for a special sequence.

Position 19 (Number)
Entry Explanation

Record Identification Entries

Chapter 15. Input Specifications 377

Blank The program does not check record types for a special sequence (positions
17 and 18 have alphabetic entries).

1 Only one record of this type can be present in the sequenced group.

N One or more records of this type can be present in the sequenced group.

This entry must be used when a numeric entry is made in positions 17 and 18. If
an alphabetic entry is made in positions 17 and 18, this entry must be blank.

Position 20 (Option)
Entry Explanation

Blank The record type must be present if sequence checking is specified.

O The record type is optional (that is, it may or may not be present) if
sequence checking is specified.

This entry must be blank if positions 17 and 18 contain an alphabetic entry.

Sequence checking of record types has no meaning when all record types within a
file are specified as optional (alphabetic entry in positions 17 and 18 or O entry in
position 20).

Positions 21-22 (Record Identifying Indicator, or **)
Entry Explanation

Blank No indicator is used.

01-99 General indicator.

L1-L9 or LR
Control level indicator used for a record identifying indicator.

H1-H9 Halt indicator.

U1-U8 External indicator.

RT Return indicator.

** Lookahead record (not an indicator). Lookahead can be used only with a
primary or secondary file.

The indicators specified in these positions are used in conjunction with the record
identification codes (positions 23 through 46).

Indicators
Positions 21 and 22 associate an indicator with the record type defined on this line.
The normal entry is one of the indicators 01 to 99; however, the control level
indicators L1 through L9 and LR can be used to cause certain total steps to be
processed. If a control level indicator is specified, lower control level indicators are
not set on. The halt indicators H1 through H9 can be used to stop processing. The
return indicator (RT) is used to return to the calling program.

When a record is selected for processing and satisfies the conditions indicated by
the record identification codes, the appropriate record identifying indicator is set
on. This indicator can be used to condition calculation and output operations.
Record identifying indicators can be set on or set off by the programmer. However,
at the end of the cycle, all record identifying indicators are set off before another
record is selected.

Record Identification Entries

378 ILE RPG Reference

Lookahead Fields
The entry of ** is used for the lookahead function. This function lets you look at
information in the next record in a file. You can look not only at the file currently
selected for processing but also at other files present but not selected during this
cycle.

Field description lines must contain From and To entries in the record, a field
name, and decimal positions if the field is numeric. Note that a lookahead field
may not be specified as a field name on input specifications or as a data structure
name on definition specifications or as a Result Field on Calculation Specifications.

Positions 17 and 18 must contain an alphabetic entry. The lookahead fields are
defined in positions 49 through 62 of the lines following the line containing ** in
positions 21 and 22. Positions 63 through 80 must be blank.

Any or all of the fields in a record can be defined as lookahead fields. This
definition applies to all records in the file, regardless of their type. If a field is used
both as a lookahead field and as a normal input field, it must be defined twice
with different names.

The lookahead function can be specified only for primary and secondary files and
can be specified only once for a file. It cannot be used for full procedural files
(identified by an F in position 18 of the file description specifications), or with
AND or OR lines.

When a record is being processed from a combined file or an update file, the data
in the lookahead field is the same as the data in the record being processed, not
the data in the next record.

The lookahead function causes information in the file information data structure to
be updated with data pertaining to the lookahead record, not to the current
primary record.

If an array element is specified as a lookahead field, the entire array is classified as
a lookahead field.

So that the end of the file can be recognized, lookahead fields are filled with a
special value when all records in the file have been processed. For character fields,
this value is all ’9’s; for all other data types, this value is the same as *HIVAL.

Positions 23-46 (Record Identification Codes)
Entries in positions 23 through 46 identify each record type in the input file. One
to three identification codes can be entered on each specification line. More than
three record identification codes can be specified on additional lines with the
AND/OR relationship. If the file contains only one record type, the identification
codes can be left blank; however, a record identifying indicator entry (positions 21
and 22) and a sequence entry (positions 17 and 18) must be made.

Note: Record identification codes are not applicable for graphic or UCS-2 data
type processing: record identification is done on single byte positions only.

Three sets of entries can be made in positions 23 through 46: 23 through 30, 31
through 38, and 39 through 46. Each set is divided into four groups: position, not,
code part, and character.

Record Identification Entries

Chapter 15. Input Specifications 379

The following table shows which categories use which positions in each set.

Category 23-30 31-38 39-46

Position 23-27 31-35 39-43

Not 28 36 44

Code Part 29 37 45

Character 30 38 46

Entries in these sets need not be in sequence. For example, an entry can be made
in positions 31 through 38 without requiring an entry in positions 23 through 30.
Entries for record identification codes are not necessary if input records within a
file are of the same type. An input specification containing no record identification
code defines the last record type for the file, thus allowing the handling of any
record types that are undefined. If no record identification codes are satisfied,
control passes to the RPG IVexception/error handling routine.

Positions 23-27, 31-35, and 39-43 (Position)
Entry Explanation

Blank No record identification code is present.

1-32766
The position that contains the record identification code in the record.

In these positions enter the position that contains the record identification code in
each record. The position containing the code must be within the record length
specified for the file. This entry must be right-adjusted, but leading zeros can be
omitted.

Positions 28, 36, and 44 (Not)
Entry Explanation

Blank Record identification code must be present.

N Record identification code must not be present.

Enter an N in this position if the code described must not be present in the
specified record position.

Positions 29, 37, and 45 (Code Part)
Entry Explanation

C Entire character

Z Zone portion of character

D Digit portion of character.

This entry specifies what part of the character in the record identification code is to
be tested.

Character (C): The C entry indicates that the complete structure (zone and digit)
of the character is to be tested.

Zone (Z): The Z entry indicates that the zone portion of the character is to be
tested. The zone entry causes the four high-order bits of the character entry to be

Record Identification Entries

380 ILE RPG Reference

compared with the zone portion of the character in the record position specified in
the position entry. The following three special cases are exceptions:
v The hexadecimal representation of an & (ampersand) is 50. However, when an

ampersand is coded in the character entry, it is treated as if its hexadecimal
representation were C0, that is, as if it had the same zone as A through I. An
ampersand in the input data satisfies two zone checks: one for a hexadecimal 5
zone, the other for a hexadecimal C zone.

v The hexadecimal representation of a - (minus sign) is 60. However, when a
minus sign is coded in the character entry, it is treated as if its hexadecimal
representation were D0, that is, as if it had the same zone as J through R. A
minus sign in the input data satisfies two zone checks: one for a hexadecimal 6
zone, the other for a hexadecimal D zone.

v The hexadecimal representation of a blank is 40. However, when a blank is
coded in the character entry, it is treated as if its hexadecimal representation
were F0, that is, as if it had the same zone as 0 through 9. A blank in the input
data satisfies two zone checks: one for a hexadecimal 4 zone, the other for a
hexadecimal F zone.

Digit (D): The D entry indicates that the digit portion of the character is to be
tested. The four low-order bits of the character are compared with the character
specified by the position entry.

Positions 30, 38, and 46 (Character)
In this position enter the identifying character that is to be compared with the
character in the position specified in the input record.

The check for record type always starts with the first record type specified. If data
in a record satisfies more than one set of record identification codes, the first
record type satisfied determines the record types.

When more than one record type is specified for a file, the record identification
codes should be coded so that each input record has a unique set of identification
codes.

AND Relationship
The AND relationship is used when more than three record identification codes
identify a record.

To use the AND relationship, enter at least one record identification code on the
first line and enter the remaining record identification codes on the following lines
with AND coded in positions 16 through 18 for each additional line used. Positions
7 through 15, 19 through 20, and 46 through 80 of each line with AND in positions
16 through 18 must be blank. Sequence, and record-identifying-indicator entries are
made in the first line of the group and cannot be specified in the additional lines.

An unlimited number of AND/OR lines can be used on the input specifications.

OR Relationship
The OR relationship is used when two or more record types have common fields.

To use the OR relationship, enter OR in positions 16 and 17. Positions 7 through
15, 18 through 20, and 46 through 80 must be blank. A record identifying indicator
can be entered in positions 21 and 22. If the indicator entry is made and the record
identification codes on the OR line are satisfied, the indicator specified in positions
21 and 22 on that line is set on. If no indicator entry is made, the indicator on the
preceding line is set on.

Record Identification Entries

Chapter 15. Input Specifications 381

An unlimited number of AND/OR lines can be used on the input specifications.

Field Description Entries
The field description entries (positions 31 through 74) must follow the record
identification entries (positions 7 through 46) for each file.

Position 6 (Form Type)
An I must appear in position 6 to identify this line as an input specification
statement.

Positions 7-30 (Reserved)
Positions 7-30 must be blank.

Positions 31-34 (Data Attributes)
Positions 31-34 specify the external format for a date, time, or variable-length
character, graphic, or UCS-2 field.

If this entry is blank for a date or time field, then the format/separator specified
for the file (with either DATFMT or TIMFMT or both) is used. If there is no
external date or time format specified for the file, then an error message is issued.
See Table 33 on page 207 and Table 36 on page 209 for valid date and time formats.

For character, graphic, or UCS-2 data, the *VAR data attribute is used to specify
variable-length input fields. If this entry is blank for character, graphic, or UCS-2
data, then the external format must be fixed length. The internal and external
format must match, if the field is defined elsewhere in the program. For more
information on variable-length fields, see “Variable-Length Character, Graphic and
UCS-2 Formats” on page 185.

For more information on external formats, see “Internal and External Formats” on
page 179.

Position 35 (Date/Time Separator)
Position 35 specifies a separator character to be used for date/time fields. The &
(ampersand) can be used to specify a blank separator. See Table 33 on page 207
and Table 36 on page 209 for date and time formats and their default separators.

For an entry to be made in this field, an entry must also be made in positions
31-34 (date/time external format).

Position 36 (Data Format)
Entry Explanation

Blank The input field is in zoned decimal format or is a character field.

A Character field (fixed- or variable-length format)

C UCS-2 field (fixed- or variable-length format)

G Graphic field (fixed- or variable-length format)

B Numeric field (binary format)

F Numeric field (float format)

I Numeric field (integer format)

Field Description Entries

382 ILE RPG Reference

L Numeric field with a preceding (left) plus or minus sign (zoned decimal
format)

N Character field (Indicator format)

P Numeric field (packed decimal format)

R Numeric field with a following (right) plus or minus sign (zoned decimal
format)

S Numeric field (zoned decimal format)

U Numeric field (unsigned format)

D Date field — the date field has the external format specified in positions
31-34 or the default file date format.

T Time field — the time field has the external format specified in positions
31-34 or the default file time format.

Z Timestamp field

The entry in position 36 specifies the data type, and if numeric, the external data
format of the data in the program-described file.

Positions 37-46 (Field Location)
Entry Explanation

Two 1- to 5-digit numbers
Beginning of a field (from) and end of a field (to).

This entry describes the location and size of each field in the input record.
Positions 37 through 41 specify the location of the field’s beginning position;
positions 42 through 46 specify the location of the field’s end position. To define a
single-position field, enter the same number in positions 37 through 41 and in
positions 42 through 46. Numeric entries must be right-adjusted; leading zeros can
be omitted.

The maximum number of positions in the input record for each type of field is as
follows:

Positions Type of Field

63 Zoned decimal numeric (63 digits)

32 Packed numeric (63 digits)

4 Binary (9 digits)

8 Integer (20 digits)

8 Unsigned (20 digits)

8 Float (8 bytes)

64 Numeric with leading or trailing sign (63 digits)

10 Date

8 Time

26 Timestamp

32766 Character (32766 characters)

32766 Graphic or UCS-2 (16383 double-byte characters)

Field Description Entries

Chapter 15. Input Specifications 383

32766 Variable-Length Character (32764 characters)

32766 Variable-Length Graphic or UCS-2 (16382 double-byte characters)

32766 Data structure

The maximum size of a character or data structure field specified as a program
described input field is 32766 since that is the maximum record length for a file.

When specifying a variable-length character, graphic, or UCS-2 input field, the
length includes the 2 byte length prefix.

For arrays, enter the beginning position of the array in positions 37 through 41 and
the ending position in positions 42 through 46. The array length must be an
integral multiple of the length of an element. The From-To position does not have
to account for all the elements in the array. The placement of data into the array
starts with the first element.

Positions 47-48 (Decimal Positions)
Entry Explanation

Blank Character, graphic, UCS-2, float, date, time, or timestamp field

0-63 Number of decimal positions in numeric field.

This entry, used with the data format entry in position 36, describes the format of
the field. An entry in this field identifies the input field as numeric (except float
numeric); if the field is numeric, an entry must be made. The number of decimal
positions specified for a numeric field cannot exceed the length of the field.

Positions 49-62 (Field Name)
Entry Explanation

Symbolic name
Field name, data structure name, data structure subfield name,
array name, array element, PAGE, PAGE1-PAGE7, *IN, *INxx, or
*IN(xx).

These positions name the fields of an input record that are used in an RPG IV
program. This name must follow the rules for .

To refer to an entire array on the input specifications, enter the array name in
positions 49 through 62. If an array name is entered in positions 49 through 62,
control level (positions 63-64), matching fields (positions 65 and 66), and field
indicators (positions 67 through 68) must be blank.

To refer to an element of an array, specify the array name, followed by an index
enclosed within parentheses. The index is either a numeric field with zero decimal
positions or the actual number of the array element to be used. The value of the
index can vary from 1 to n, where n is the number of elements within the array.

Positions 63-64 (Control Level)
Entry Explanation

Blank This field is not a control field. Control level indicators cannot be used
with full procedural files.

Field Description Entries

384 ILE RPG Reference

L1-L9 This field is a control field.

Positions 63 and 64 indicate the fields that are used as control fields. A change in
the contents of a control field causes all operations conditioned by that control
level indicator and by all lower level indicators to be processed.

A split control field is a control field that is made up of more than one field, each
having the same control level indicator. The first field specified with that control
level indicator is placed in the high-order position of the split control field, and the
last field specified with the same control level indicator is placed in the low-order
position of the split control field.

Binary, float, integer, character varying, graphic varying, UCS-2 and unsigned
fields cannot be used as control fields.

Positions 65-66 (Matching Fields)
Entry Explanation

Blank This field is not a match field.

M1-M9 This field is a match field.

This entry is used to match the records of one file with those of another or to
sequence check match fields within one file. Match fields can be specified only for
fields in primary and secondary files.

Binary, float, integer, character varying, graphic varying, UCS-2, and unsigned
fields cannot be used as match fields.

Match fields within a record are designated by an M1 through M9 code entered in
positions 65 and 66 of the appropriate field description specification line. A
maximum of nine match fields can be specified.

The match field codes M1 through M9 can be assigned in any sequence. For
example, M3 can be defined on the line before M1, or M1 need not be defined at
all.

When more than one match field code is used for a record, all fields can be
considered as one large field. M1 or the lowest code used is the rightmost or
low-order position of the field. M9 or the highest code used is the leftmost or
high-order position of the field.

The ALTSEQ (alternate collating sequence) and FTRANS (file translation) keywords
on the control specification can be used to alter the collating sequence for match
fields.

If match fields are specified for only a single sequential file (input, update, or
combined), match fields within the file are sequence checked. The MR indicator is
not set on and cannot be used in the program. An out-of-sequence record causes
the RPG IV exception/error handling routine to be given control.

In addition to sequence checking, match fields are used to match records from the
primary file with those from secondary files.

Field Description Entries

Chapter 15. Input Specifications 385

Positions 67-68 (Field Record Relation)
Entry Explanation

Blank The field is common to all record types.

01-99 General indicators.

L1-L9 Control level indicators.

MR Matching record indicator.

U1-U8 External indicators.

H1-H9 Halt indicators.

RT Return indicator.

Field record relation indicators are used to associate fields within a particular
record type when that record type is one of several in an OR relationship. This
entry reduces the number of lines that must be written.

The field described on a line is extracted from the record by the RPG IV program
only when the indicator coded in positions 67 and 68 is on or when positions 67
and 68 are blank. When positions 67 and 68 are blank, the field is common to all
record types defined by the OR relationship.

Field record relation indicators can be used with control level fields (positions 63
and 64) and matching fields (positions 65 and 66).

Positions 69-74 (Field Indicators)
Entry Explanation

Blank No indicator specified

01-99 General indicators

H1-H9 Halt indicator

U1-U8 External indicators

RT Return indicator.

Entries in positions 69 through 74 test the status of a field or of an array element
as it is read into the program. Field indicators are specified on the same line as the
field to be tested. Depending on the status of the field (plus, minus, zero, or
blank), the appropriate indicator is set on and can be used to condition later
specifications. The same indicator can be specified in two positions, but it should
not be used for all three positions. Field indicators cannot be used with arrays that
are not indexed or look-ahead fields.

Positions 69 and 70 (plus) and positions 71 and 72 (minus) are valid for numeric
fields only. Positions 73 and 74 can be used to test a numeric field for zeros or a
character, graphic, or UCS-2 field for blanks.

The field indicators are set on if the field or array element meets the condition
specified when the record is read. Each field indicator is related to only one record
type; therefore, the indicators are not reset (on or off) until the related record is
read again or until the indicator is defined in some other specification.

Field Description Entries

386 ILE RPG Reference

Externally Described Files

Position 6 (Form Type)
An I must appear in position 6 to identify this line as an input specifications
statement.

Record Identification Entries
When the description of an externally described file is retrieved by the compiler,
the record definitions are also retrieved. To refer to the record definitions, specify
the record format name in the input, calculation, and output specifications of the
program. Input specifications for an externally described file are required if:
v Record identifying indicators are to be specified.
v A field within a record is to be renamed for the program.
v Control level or matching field indicators are to be used.
v Field indicators are to be used.

The field description specifications must immediately follow the record
identification specification for an externally described file.

A record line for an externally described file defines the beginning of the override
specifications for the record. All specifications following the record line are part of
the record override until another record format name or file name is found in
positions 7 through 16 of the input specifications. All record lines that pertain to an
externally described file must appear together; they cannot be mixed with entries
for other files.

Positions 7-16 (Record Name)
Enter one of the following:
v The external name of the record format. (The file name cannot be used for an

externally described file.)
v The RPG IV name specified by the RENAME keyword on the file description

specifications if the external record format was renamed. A record format name
can appear only once in positions 7 through 16 of the input specifications for a
program.

Positions 17-20 (Reserved)
Positions 17 through 20 must be blank.

Positions 21-22 (Record Identifying Indicator)
The specification of record identifying indicators in these positions is optional but,
if present, follows the rules as described under “Program Described Files” on page
376 earlier in this chapter, except for look-ahead specifications, which are not
allowed for an externally described file.

Positions 23-80 (Reserved)
Positions 23-80 must be blank.

Externally Described Files

Chapter 15. Input Specifications 387

Field Description Entries
The field description specifications for an externally described file can be used to
rename a field within a record for a program or to specify control level, field
indicator, and match field functions. The field definitions (attributes) are retrieved
from the externally described file and cannot be changed by the program. If the
attributes of a field are not valid to an RPG IV program the field cannot be used.
Diagnostic checking is done on fields contained in an external record format in the
same way as for source statements.

Normally, externally described input fields are only read during input operations if
the field is actually used elsewhere in the program. If DEBUG or DEBUG(*YES) is
specified, all externally described input fields will be read even if they are not used
in the program.

Positions 7-20 (Reserved)
Positions 7 through 20 must be blank.

Positions 21-30 (External Field Name)
If a field within a record in an externally described file is to be renamed, enter the
external name of the field in these positions. A field may have to be renamed
because the name is the same as a field name specified in the program and two
different names are required.

Note: If the input field is for a file that has the PREFIX keyword coded, and the
prefixed name has already been specified in the Field Name entry (positions
49 - 62) of a prior Input specification for the same record, then the prefixed
name must be used as the external name. For more information, see
“PREFIX(prefix{:nbr_of_char_replaced})” on page 304.

Positions 31-48 (Reserved)
Positions 31 through 48 must be blank.

Positions 49-62 (Field Name)
The field name entry is made only when it is required for the RPG IV function
(such as control levels) added to the external description. The field name entry
contains one of the following:
v The name of the field as defined in the external record description (if 10

characters or less).
v The name specified to be used in the program that replaced the external name

specified in positions 21 through 30.

The field name must follow the rules for using .

Indicators are not allowed to be null-capable.

Positions 63-64 (Control Level)
This entry indicates whether the field is to be used as a control field in the
program.

Entry Explanation

Blank This field is not a control field.

Field Description Entries

388 ILE RPG Reference

L1-L9 This field is a control field.

Null-capable and UCS-2 fields cannot be used as control fields.

Note: For externally described files, split control fields are combined in the order
in which the fields are specified on the data description specifications (DDS),
not in the order in which the fields are specified on the input specifications.

Positions 65-66 (Matching Fields)
This entry indicates whether the field is to be used as a match field.

Entry Explanation

Blank This field is not a match field.

M1-M9
This field is a match field.

Null-capable and UCS-2 fields cannot be used as matching fields.

See “Positions 65-66 (Matching Fields)” on page 385 for more information on
match fields.

Positions 67-68 (Reserved)
Positions 67 and 68 must be blank.

Positions 69-74 (Field Indicators)
Entry Explanation

Blank No indicator specified

01-99 General indicators

H1-H9 Halt indicators

U1-U8 External indicators

RT Return indicator.

Field indicators are allowed for null-capable fields only if the
ALWNULL(*USRCTL) keyword is specified on a control specification or as a
command parameter.

If a field is a null-capable field and the value is null, the indicator is set off.

See “Positions 69-74 (Field Indicators)” on page 386 for more information.

Positions 75-80 (Reserved)
Positions 75 through 80 must be blank.

Field Description Entries

Chapter 15. Input Specifications 389

Field Description Entries

390 ILE RPG Reference

Chapter 16. Calculation Specifications

Calculation specifications indicate the operations done on the data in a program.

Calculation specifications within the main source section must be grouped in the
following order:
v Detail calculations
v Total calculations
v Subroutines

Calculation specifications for subprocedures include two groups:
v Body of the subprocedure
v Subroutines

Calculations within the groups must be specified in the order in which they are to
be done.

Note: If the keyword MAIN or NOMAIN is specified on the control specification,
then only declarative calculation specifications are allowed in the main
source section.

You can specify calculation specifications in three different formats:
v “Traditional Syntax”
v “Extended Factor 2 Syntax” on page 397
v “Free-Form Syntax” on page 399.

See Chapter 22, “Operation Codes,” on page 607 for details on how the calculation
specification entries must be specified for individual operation codes.

The calculation specification can also be used to enter SQL statements into an ILE
RPG program. See IBM Rational Development Studio for i: ILE RPG Programmer’s
Guide and the iSeries Information Center database and file systems category for
more information.

Traditional Syntax
The general layout for the calculation specification is as follows:
v The calculation specification type (C) is entered in position 6
v The non-commentary part of the specification extends from position 7 to

position 80. These positions are divided into three parts that specify the
following:
– When calculations are done:

The control level indicator and the conditioning indicators specified in
positions 7 through 11 determine when and under what conditions the
calculations are to be done.

– What kind of calculations are done:

The entries specified in positions 12 through 70 (12 through 80 for operations
that use extended factor 2, see “Extended Factor 2 Syntax” on page 397 and
Chapter 20, “Expressions,” on page 477) specify the kind of calculations done,

© Copyright IBM Corp. 1994, 2010 391

#
#
#

the data (such as fields or files) upon which the operation is done, and the
field that contains the results of the calculation.

– What tests are done on the results of the operation:

Indicators specified in positions 71 through 76 are used to test the results of
the calculations and can condition subsequent calculations or output
operations. The resulting indicator positions have various uses, depending on
the operation code. For the uses of these positions, see the individual
operation codes in Chapter 22, “Operation Codes,” on page 607.

v The comments section of the specification extends from position 81 to position
100

Calculation Specification Extended Factor-2 Continuation Line
The Extended Factor-2 field can be continued on subsequent lines as follows:
v position 6 of the continuation line must contain a C
v positions 7 to 35 of the continuation line must be blank
v the specification continues on or past position 36

Position 6 (Form Type)
A C must appear in position 6 to identify this line as a calculation specification
statement.

Positions 7-8 (Control Level)
Entry Explanation

Blank The calculation operation is done at detail calculation time for each
program cycle if the indicators in positions 9 through 11 allow it;
or the calculation is part of a subroutine. Blank is also used for
declarative operation codes.

L0 The calculation operation is done at total calculation time for each
program cycle.

L1-L9 The calculation operation is done at total calculation time when the
control level indicator is on. The indicator is set on either through
a level break or as the result of an input or calculation operation.

LR The calculation operation is done after the last record has been
processed or after the LR indicator has been set on.

SR The calculation operation is part of an RPG IV subroutine. A blank
entry is also valid for calculations that are part of a subroutine.

AN, OR Indicators on more than one line condition the calculation.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments++++++++++++
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++++Comments++++++++++++

Figure 157. Calculation Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
C.............................Extended-factor2-continuation++++++++++++++++Comments++++++++++++

Figure 158. Calculation Specification Extended Factor-2 Continuation Line

Calculation Specification - Traditional Syntax

392 ILE RPG Reference

Control Level Indicators
The L0 entry is used in positions 7 and 8 to indicate that the calculation is always
done during total calculation time.

If indicators L1 through L9 are specified in positions 7 and 8, the calculation is
processed at total calculation time only when the specified indicator is on.
Remember that, if L1 through L9 are set on by a control break, all lower level
indicators are also set on. If positions 7 and 8 are blank, the calculation is done at
detail time calculation, is a statement within a subroutine, is a declarative
statement, or is a continuation line.

The following operations can be specified within total calculations with positions 7
and 8 blank: PLIST, PARM, KLIST, KFLD, TAG, DEFINE, and ELSE. (Conditioning
indicators in positions 9 through 11 are not allowed with these operations.) In
addition, all the preceding operations except TAG and ELSE can be specified
anywhere within the calculations, even between an ENDSR operation of one
subroutine and the BEGSR operation of the next subroutine or after the ENDSR
operation for the last subroutine.

Note: Control indicators cannot be specified in subprocedures.

Last Record Indicator
The LR Indicator, if specified in positions 7 and 8, causes the calculation to be done
during the last total calculation time. Note that the LR indicator cannot be
specified in subprocedures.

If there is a primary file but no secondary files in the program, the LR indicator is
set on after the last input record has been read, the calculations specified for the
record have been done, and the detail output for the last record read has been
completed.

If there is more than one input file (primary and secondary), the programmer
determines which files are to be checked for end-of-file by entering an E in
position 19 of the file description specifications. LR is set on when all files with an
end-of-file specification have been completely read, when detail output for the last
record in these files has been completed, and after all matching secondary records
have been processed.

When the LR indicator is set on after the last input record has been read, all
control indicators L1 through L9 defined to the program are also set on.

Subroutine Identifier
An SR entry in positions 7 and 8 may optionally be used for operations within
subroutines as a documentation aid. Subroutine lines must appear after the total
calculation specifications. The operation codes BEGSR and ENDSR serve as
delimiters for a subroutine.

AND/OR Lines Identifier
Positions 7 and 8 can contain AN or OR to define additional indicators (positions 9
through 11) for a calculation.

The entry in positions 7 and 8 of the line immediately preceding an AND/OR line
or a group of AND/OR lines determines when the calculation is to be processed.
The entry in positions 7 and 8 on the first line of a group applies to all AND/OR

Calculation Specification - Traditional Syntax

Chapter 16. Calculation Specifications 393

lines in the group. A control level indicator (L1 through L9, L0, or LR) is entered
for total calculations, an SR or blanks for subroutines, and a blank for detail
calculations.

Positions 9-11 (Indicators)
Entry Explanation

Blank The operation is processed on every record

01-99 General indicators.

KA-KN, KP-KY
Function key indicators.

L1-L9 Control level indicators.

LR Last record indicator.

MR Matching record indicator.

H1-H9 Halt indicators.

RT Return indicator.

U1-U8 External indicators.

OA-OG, OV Overflow indicator.

Positions 10 and 11 contain an indicator that is tested to determine if a particular
calculation is to be processed. A blank in position 9 designates that the indicator
must be on for a calculation to be done. An N in positions 9 designates that the
associated indicator must be off for a calculation to be done.

Positions 12-25 (Factor 1)
Factor 1 names a field or gives actual data (literals) on which an operation is done,
or contains a RPG IV special word (for example, *LOCK) which provides extra
information on how an operation is to be done. The entry must begin in position
12. The entries that are valid for factor 1 depend on the operation code specified in
positions 26 through 35. For the specific entries for factor 1 for a particular
operation code, see Chapter 22, “Operation Codes,” on page 607. With some
operation codes, two operands may be specified separated by a colon.

Positions 26-35 (Operation and Extender)
Positions 26 through 35 specify the kind of operation to be done using factor 1,
factor 2, and the result field entries. The operation code must begin in position 26.
For further information on the operation codes, see Chapter 19, “Operations,” on
page 423 and Chapter 22, “Operation Codes,” on page 607. For further information
on the operation code extenders, see “Operation Extender.”

Operation Extender
Entry Explanation

Blank No operation extension supplied

A Used on the DUMP operation to indicate that the operation is always
performed regardless of the DEBUG option set on the H specification.

H Half adjust (round) result of numeric operation

N Record is read but not locked

Calculation Specification - Traditional Syntax

394 ILE RPG Reference

Set pointer to *NULL after successful DEALLOC

P Pad the result field with blanks

D Pass operational descriptors on bound call

Date field

T Time field

Z Timestamp field

M Default precision rules

R ″Result Decimal Position″ precision rules

E Error handling

The operation extenders provide additional attributes to the operations that they
accompany. Operation extenders are specified in positions 26-35 of calculation
specifications. They must begin to the right of the operation code and be contained
within parentheses; blanks can be used for readability. For example, the following
are all valid entries: MULT(H), MULT (H), MULT (H).

More than one operation extender can be specified. For example, the CALLP
operation can specify both error handling and the default precision rules with
CALLP(EM).

An H indicates whether the contents of the result field are to be half adjusted
(rounded). Resulting indicators are set according to the value of the result field
after half-adjusting has been done.

An N in a READ, READE, READP, READPE, or CHAIN operation on an update
disk file indicates that a record is to be read, but not locked. If no value is
specified, the default action of locking occurs.

An N in a DEALLOC operation indicates that the result field pointer is to be set to
*NULL after a successful deallocation.

A P indicates that, the result field is padded after executing the instruction if the
result field is longer than the result of the operation.

A D when specified on the CALLB operation code indicates that operational
descriptors are included.

The D, T, and Z extenders can be used with the TEST operation code to indicate a
date, time, or timestamp field.

M and R are specified for the precision of single free-form expressions. For more
information, see “Precision Rules for Numeric Operations” on page 486.

An M indicates that the default precision rules are used.

An R indicates that the precision of a decimal intermediate will be computed such
that the number of decimal places will never be reduced smaller than the number
of decimal positions of the result of the assignment.

An E indicates that operation-related errors will be checked with built-in function
%ERROR.

Calculation Specification - Traditional Syntax

Chapter 16. Calculation Specifications 395

Positions 36-49 (Factor 2)
Factor 2 names a field, record format or file, or gives actual data on which an
operation is to be done, or contains a special word (for example, *ALL) which
gives extra information about the operation to be done. The entry must begin in
position 36. The entries that are valid for factor 2 depend on the operation code
specified in positions 26 through 35. With some operation codes, two operands
may be specified separated by a colon. For the specific entries for factor 2 for a
particular operation code, see Chapter 22, “Operation Codes,” on page 607.

Positions 50-63 (Result Field)
The result field names the field or record format that contains the result of the
calculation operation specified in positions 26 through 35. The field specified must
be modifiable. For example, it cannot be a lookahead field or a user date field.
With some operation codes, two operands may be specified separated by a colon.
See Chapter 22, “Operation Codes,” on page 607 for the result field rules for
individual operation codes.

Positions 64-68 (Field Length)
Entry Explanation

1-63 Numeric field length.

1-99999 Character field length.

Blank The result field is defined elsewhere or a field cannot be defined
using this operation code

Positions 64 through 68 specify the length of the result field. This entry is optional,
but can be used to define a numeric or character field not defined elsewhere in the
program. These definitions of the field entries are allowed if the result field
contains a field name. Other data types must be defined on the definition
specification or on the calculation specification using the *LIKE DEFINE operation.

The entry specifies the number of positions to be reserved for the result field. The
entry must be right-adjusted. The unpacked length (number of digits) must be
specified for numeric fields.

If the result field is defined elsewhere in the program, no entry is required for the
length. However, if the length is specified, and if the result field is defined
elsewhere, the length must be the same as the previously defined length.

Positions 69-70 (Decimal Positions)
Entry Explanation

Blank The result field is character data, has been defined elsewhere in the
program, or no field name has been specified.

0-63 Number of decimal positions in a numeric result field.

Positions 69-70 indicate the number of positions to the right of the decimal in a
numeric result field. If the numeric result field contains no decimal positions, enter
a '0' (zero). This position must be blank if the result field is character data or if no
field length is specified. The number of decimal positions specified cannot exceed
the length of the field.

Calculation Specification - Traditional Syntax

396 ILE RPG Reference

##

Positions 71-76 (Resulting Indicators)
These positions can be used, for example, to test the value of a result field after the
completion of an operation, or to indicate conditions like end-of-file, error, or
record-not-found. For some operations, you can control the way the operation is
performed by specifying different combinations of the three resulting indicators
(for example, LOOKUP). The resulting indicator positions have different uses,
depending on the operation code specified. See the individual operation codes in
Chapter 22, “Operation Codes,” on page 607 for a description of the associated
resulting indicators. For arithmetic operations, the result field is tested only after
the field is truncated and half-adjustment is done (if specified). The setting of
indicators depends on the results of the tests specified.

Entry Explanation

Blank No resulting indicator specified

01-99 General indicators

KA-KN, KP-KY
Function key indicators

H1-H9 Halt indicators

L1-L9 Control level indicators

LR Last record indicator

OA-OG, OV Overflow indicators

U1-U8 External indicators

RT Return indicator.

Resulting indicators cannot be used when the result field uses a non-indexed array.

If the same indicator is used as a resulting indicator on more than one calculation
specification, the most recent specification processed determines the status of that
indicator.

Remember the following points when specifying resulting indicators:
v When the calculation operation is done, the specified resulting indicators are set

off, and, if a condition specified by a resulting indicator is satisfied, that
indicator is set on.

v When a control level indicator (L1 through L9) is set on, the lower level
indicators are not set on.

v When a halt indicator (H1 through H9) is set on, the program ends abnormally
at the next *GETIN point in the cycle, or when a RETURN operation is
processed, unless the halt indicator is set off before the indicator is tested.

Extended Factor 2 Syntax
Certain operation codes allow an expression to be used in the extended factor 2
field.

Positions 7-8 (Control Level)
See “Positions 7-8 (Control Level)” on page 392.

Positions 9-11 (Indicators)
See “Positions 9-11 (Indicators)” on page 394.

Calculation Specification - Traditional Syntax

Chapter 16. Calculation Specifications 397

Positions 12-25 (Factor 1)
Factor 1 must be blank.

Positions 26-35 (Operation and Extender)
Positions 26 through 35 specify the kind of operation to be done using the
expression in the extended factor 2 field. The operation code must begin in
position 26. For further information on the operation codes, see Chapter 19,
“Operations,” on page 423 and Chapter 22, “Operation Codes,” on page 607. For
further information on the operation code extenders, see “Operation Extender.”

The program processes the operations in the order specified on the calculation
specifications form.

Operation Extender
Entry Explanation

Blank No operation extension supplied.

H Half adjust (round) result of numeric operation

M Default precision rules

R ″Result Decimal Position″ precision rules

E Error handling

Half adjust may be specified, using the H extender, on arithmetic EVAL and
RETURN operations.

The type of precision may be specified, using the M or R extender, on CALLP,
DOU, DOW, EVAL, IF, RETURN, and WHEN operations.

Error handling may be specified, using the ’E’ extender, on CALLP operations.

Positions 36-80 (Extended Factor 2)
A free form syntax is used in this field. It consists of combinations of operands and
operators, and may optionally span multiple lines. If specified across multiple
lines, the continuation lines must be blank in positions 7-35.

The operations that take an extended factor 2 are:
v “CALLP (Call a Prototyped Procedure or Program)” on page 623
v “DOU (Do Until)” on page 660
v “DOW (Do While)” on page 663
v “EVAL (Evaluate expression)” on page 676
v “EVALR (Evaluate expression, right adjust)” on page 678
v “FOR (For)” on page 692
v “IF (If)” on page 698
v “ON-ERROR (On Error)” on page 758
v “RETURN (Return to Caller)” on page 795
v “WHEN (When True Then Select)” on page 843

See the specific operation codes for more information. See “Continuation Rules” on
page 249 for more information on coding continuation lines.

Calculation Specification - Extended Factor 2

398 ILE RPG Reference

Free-Form Syntax
To begin a free-form calculation group, specify /FREE in positions 7 to 11 and leave
positions 12 to 80 blank. The free-form calculation block ends when you specify
/END-FREE.

In a free-form statement, the operation code does not need to begin in any specific
position within columns 8–80. Any extenders must appear immediately after the
operation code on the same line, within parentheses. There must be no embedded
blanks between the operation code and extenders. Following the operation code
and extenders, you specify the Factor 1, Factor 2, and the Result Field operands
separated by blanks. If any of these are not required by the operation, you may
leave them out. You can freely use blanks and continuation lines in the remainder
of the statement. Each statement must end with a semicolon. The remainder of the
record after the semicolon must be blank or contain an end-of-line comment.

For the EVAL or CALLP operation code, you can omit the operation code, if no
extenders are needed, and if the variable or prototype does not have the same
name as an operation code. For example, the following two statements are
equivalent:
eval pos = %scan (',': name);
pos = %scan (',': name);

For each record within a free-form calculation block, positions 6 and 7 must be
blank.

You can specify compiler directives within a free-format calculation block, with the
following restrictions:
v The compiler directive must be the first item on the line. Code the directive

starting anywhere from column 7 onward. It cannot continue to the next line.
v Compiler directives are not allowed within a statement. The directive must

appear on a new line after one statement ends and before the next statement
begins.

v Any statements that are included by a /COPY or /INCLUDE directive are
considered fixed syntax calculations. Any free-form statements in a /COPY
member must be delimited by the /FREE and /END-FREE directives.

Free-form operands can be longer than 14 characters. The following are not
supported:
v Continuation of numeric literals
v Defining field names
v Resulting indicators. (In most cases where you need to use operation codes with

resulting indicators, you can use an equivalent built-in function instead.)

To indicate the start of total calculations, end the free-form group and code a
fixed-form calculation specification with a control level specified in positions 7-8.
The total calculations may be specified using free-form calculation syntax. Since the
free-form calculation specification does not include a control-level entry,
calculations to be performed on specific level breaks should be conditioned using
the statement ″IF *INLx;″.

Calculation Specification - Free-Form Syntax

Chapter 16. Calculation Specifications 399

#
#
#
#

#
#

You can combine free-form and traditional calculation specifications in the same
program, as shown below:

Positions 8-80 (Free-form Operations)
Enter an operation that is supported in free-form syntax. Code an operation code
(EVAL and CALLP are optional) followed by the operands or expressions. The
operation may optionally span multiple lines. No new continuation characters are
required; each statement ends with a semicolon (;). However, existing continuation
rules still apply.

See Table 54 on page 423 for a list of the operation codes that can use free-form
syntax. For operations that cannot use free-form syntax, check the detailed
description in Chapter 22, “Operation Codes,” on page 607 to see if there is a
suggested replacement. See “Continuation Rules” on page 249 for more
information on coding continuation lines.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/free

read file; // Get next record
dow not %eof(file); // Keep looping while we have

// a record
if %error;

dsply 'The read failed';
leave;

else;
chain(n) name database data;
time = hours * num_employees

+ overtime_saved;
pos = %scan (',': name);
name = %xlate(upper:lower:name);
exsr handle_record;
read file;

endif;
enddo;

begsr handle_record;
eval(h) time = time + total_hours_array (empno);
temp_hours = total_hours - excess_hours;
record_transaction();

endsr;

/end-free

Figure 159. Example of Free-Form Calculation Specification

C testb OPEN_ALL flags 10
/free

if *in10;
openAllFiles();

endif;
/end-free

Figure 160. Example that Combines Traditional and Free-Form Calculation Specifications

Calculation Specification - Free-Form Syntax

400 ILE RPG Reference

Chapter 17. Output Specifications

Output specifications describe the record and the format of fields in a
program-described output file and when the record is to be written. Output
specifications are optional for an externally described file. If MAIN or NOMAIN is
coded on a control specification, only exception output can be done.

Output specifications are not used for all of the files in your program. For some
files, you must code data structures in the result field of your output and update
operatons. The following files in your program do not use Output specifications:
v Files defined in subprocedures
v Files defined with the QUALIFIED keyword
v Files defined with the TEMPLATE keyword
v Files defined with the LIKEFILE keyword

Output specifications can be divided into two categories: record identification and
control (positions 7 through 51), and field description and control (positions 21
through 80). Detailed information for each category of output specifications is
given in:
v Entries for program-described files
v Entries for externally described files

Output Specification Statement
The general layout for the Output specification is as follows:
v the output specification type (O) is entered in position 6
v the non-commentary part of the specification extends from position 7 to position

80
v the comments section of the specification extends from position 81 to position

100

Program Described
For program described files, entries on the output specifications can be divided
into two categories:
v Record identification and control (positions 7 through 51)

v Field description and control (positions 21 through 80). Each field is described
on a separate line, below its corresponding record identification entry.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................Comment+++++++++++++
OFilename++DAddN01N02N03Excnam++++...Comment+++++++++++++
O.........And..N01N02N03Excnam++++...Comment+++++++++++++

Figure 161. Program Described Record Layout

© Copyright IBM Corp. 1994, 2010 401

#
#
#
#

#
#
#

#

#

#

#

Externally Described
For externally described files, entries on output specifications are divided into the
following categories:
v Record identification and control (positions 7 through 39)

v Field description and control (positions 21 through 43, and 45).

Program Described Files

Position 6 (Form Type)
An O must appear in position 6 to identify this line as an output specifications
statement.

Record Identification and Control Entries
Entries in positions 7 through 51 identify the output records that make up the files,
provide the correct spacing on printed reports, and determine under what
conditions the records are to be written.

Positions 7-16 (File Name)
Entry Explanation

A valid file name
Same file name that appears on the file description specifications
for the output file.

Specify the file name on the first line that defines an output record for the file. The
file name specified must be the same file name assigned to the output, update, or
combined file on the file description specifications. If records from files are
interspersed on the output specifications, the file name must be specified each time
the file changes.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++Comment+++++++++++++
O..Constant/editword-ContinutioComment+++++++++++++

Figure 162. Program Described Field Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
ORcdname+++D...N01N02N03Excnam++++...Comment+++++++++++++
ORcdname+++DAddN01N02N03Excnam++++...Comment+++++++++++++
O.........And..N01N02N03Excnam++++...Comment+++++++++++++

Figure 163. Externally Described Record Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
O..............N01N02N03Field+++++++++.B...................................Comment+++++++++++++

Figure 164. Externally Described Field Layout

Output Specification Statement

402 ILE RPG Reference

For files specified as output, update, combined or input with ADD, at least one
output specification is required unless an explicit file operation code with a data
structure name specified in the result field is used in the calculations. For example,
a WRITE operation does not require output specifications.

Positions 16-18 (Logical Relationship)
Entry Explanation

AND or OR AND/OR indicates a relationship between lines of output
indicators. AND/OR lines are valid for output records, but not for
fields.

Positions 16 through 18 specify AND/OR lines for output operations. To specify
this relationship, enter AND/OR in positions 16 through 18 on each additional line
following the line containing the file name. At least one indicator must be specified
on each AND line. For an AND relationship and fetch overflow position 18 must
be specified on the first line only (file name line). A fetch overflow entry is
required on OR lines for record types requiring the fetch overflow routine.

Positions 7 through 15 must be blank when AND/OR is specified.

An unlimited number of AND/OR lines can be specified on the output
specifications.

Position 17 (Type)
Entry Explanation

H or D Detail records usually contain data that comes directly from the
input record or that is the result of calculations processed at detail
time. Heading records usually contain constant identifying
information such as titles, column headings, page number, and
date. No distinction is made between heading and detail records.
The H/D specifications are available to help the programmer
document the program.

T Total records usually contain data that is the end result of specific
calculations on several detail records.

E Exception records are written during calculation time. Exception
records can be specified only when the operation code EXCEPT is
used. See “EXCEPT (Calculation Time Output)” on page 684 for
further information on the EXCEPT operation code.

Position 17 indicates the type of record to be written. Position 17 must have an
entry for every output record. Heading (H) and detail (D) lines are both processed
as detail records. No special sequence is required for coding the output records;
however, lines are handled at separate times within the program cycle based on
their record type. See Figure 7 on page 32 and Figure 8 on page 33 for more
information on when in the cycle output is performed.

Note: If MAIN or NOMAIN is coded on a control specification, only exception
output can be done.

Positions 18-20 (Record Addition/Deletion)
Entry Explanation

Record Identification and Control Entries

Chapter 17. Output Specifications 403

#
#

ADD Add a record to the file or subfile.

DEL Delete the last record read from the file. The deleted record cannot be
retrieved; the record is deleted from the system.

An entry of ADD is valid for input, output, or update files. DEL is valid for update
DISK files only. When ADD is specified, there must be an A in position 20 of the
corresponding file-description specification.

If positions 18-20 are blank, then for an output file, the record will be added; for an
update file, the record is updated.

The Record-Addition/Deletion entry must appear on the same line that contains
the record type (H, D, T, E) specification (position 17). If an AND/OR line is used
following an ADD or DEL entry, this entry applies to the AND/OR line also.

Position 18 (Fetch Overflow/Release)
This entry must be blank if the LIKEFILE keyword is specified. The File
Designation of the parent file is used.

Entry Explanation

Blank Must be blank for all files except printer files (PRINTER specified in
positions 36 through 42 of the file description specifications). If position 18
is blank for printer files, overflow is not fetched.

F Fetch overflow.

R Release a device (workstation) after output.

Fetch Overflow
An F in position 18 specifies fetch overflow for the printer file defined on this line.
This file must be a printer file that has overflow lines. Fetch overflow is processed
only when an overflow occurs and when all conditions specified by the indicators
in positions 21 through 29 are satisfied. An overflow indicator cannot be specified
on the same line as fetch overflow.

If an overflow indicator has not been specified with the OFLIND keyword on the
file description specifications for a printer file, the compiler assigns one to the file.
An overflow line is generated by the compiler for the file, except when no other
output records exist for the file or when the printer uses externally described data.
This compiler-generated overflow can be fetched.

Overflow lines can be written during detail, total, or exception output time. When
the fetch overflow is specified, only overflow output associated with the file
containing the processed fetch is output. The fetch overflow entry (F) is required
on each OR line for record types that require the overflow routine. The fetch
overflow routine does not automatically advance forms. For detailed information
on the overflow routine see “Overflow Routine” on page 39 and Figure 9 on page
39

The form length and overflow line can be specified using the FORMLEN and
OFLIND keywords on the file description specifications, in the printer device file,
or through an i5/OS override command.

Record Identification and Control Entries

404 ILE RPG Reference

#
#

Release
After an output operation is complete, the device used in the operation is released
if you have specified an R in position 18 of the corresponding output
specifications. See the “REL (Release)” on page 787 operation for further
information on releasing devices.

Positions 21-29 (Output Conditioning Indicators)
Entry Explanation

Blank The line or field is output every time the record (heading, detail,
total, or exception) is checked for output.

01-99 A general indicator that is used as a resulting indicator, field
indicator, or record identifying indicator.

KA-KN, KP-KY
Function key indicators.

L1-L9 Control level indicators.

H1-H9 Halt indicators.

U1-U8 External indicator set before running the program or set as a result
of a calculation operation.

OA-OG, OV Overflow indicator previously assigned to this file.

MR Matching record indicator.

LR Last record indicator.

RT Return indicator.

1P First-page indicator. Valid only on heading or detail lines.

Conditioning indicators are not required on output lines. If conditioning indicators
are not specified, the line is output every time that record is checked for output.
Up to three indicators can be entered on one specification line to control when a
record or a particular field within a record is written. The indicators that condition
the output are coded in positions 22 and 23, 25 and 26, and 28 and 29. When an N
is entered in positions 21, 24, or 27, the indicator in the associated position must be
off for the line or field to be written. Otherwise, the indicator must be on for the
line or field to be written. See “PAGE, PAGE1-PAGE7” on page 409 for information
on how output indicators affect the PAGE fields.

If more than one indicator is specified on one line, all indicators are considered to
be in an AND relationship.

If the output record must be conditioned by more than three indicators in an AND
relationship, enter the letters AND in positions 16 through 18 of the following line
and specify the additional indicators in positions 21 through 29 on that line.

For an AND relationship, fetch overflow (position 18) can only be specified on the
first line. Positions 40 through 51 (spacing and skipping) must be blank for all
AND lines.

An overflow indicator must be defined on the file description specifications with
the OFLIND keyword before it can be used as a conditioning indicator. If a line is
to be conditioned as an overflow line, the overflow indicator must appear on the
main specification line or on the OR line. If an overflow indicator is used on an

Record Identification and Control Entries

Chapter 17. Output Specifications 405

AND line, the line is not treated as an overflow line, but the overflow indicator is
checked before the line is written. In this case, the overflow indicator is treated like
any other output indicator.

If the output record is to be written when any one of two or more sets of
conditions exist (an OR relationship), enter the letters OR in positions 16-18 of the
following specification line, and specify the additional OR indicators on that line.

When an OR line is specified for a printer file, the skip and space entries (positions
40 through 51) can all be blank, in which case the space and skip entries of the
preceding line are used. If they differ from the preceding line, enter space and skip
entries on the OR line. If fetch overflow (position 18) is used, it must be specified
on each OR line.

Positions 30-39 (EXCEPT Name)
When the record type is an exception record (indicated by an E in position 17), a
name can be placed in these positions of the record line. The EXCEPT operation
can specify the name assigned to a group of the records to be output. This name is
called an EXCEPT name. An EXCEPT name must follow the rules for using . A
group of any number of output records can use the same EXCEPT name, and the
records do not have to be consecutive records.

When the EXCEPT operation is specified without an EXCEPT name, only those
exception records without an EXCEPT name are checked and written if the
conditioning indicators are satisfied.

When the EXCEPT operation specifies an EXCEPT name, only the exception
records with that name are checked and written if the conditioning indicators are
satisfied.

The EXCEPT name is specified on the main record line and applies to all AND/OR
lines.

If an exception record with an EXCEPT name is conditioned by an overflow
indicator, the record is written only during the overflow portion of the RPG IV
cycle or during fetch overflow. The record is not written at the time the EXCEPT
operation is processed.

An EXCEPT operation with no fields can be used to release a record lock in a file.
The UNLOCK operation can also be used for this purpose. In Figure 165, the
record lock in file RCDA is released by the EXCEPT operation. For more
information, see ILE Application Development Example, SC41-5602-00.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C*
C KEY CHAIN RCDA
C EXCEPT RELEASE
ORcdname+++D...N01N02N03Excnam++++.......................................
O
O*
ORCDA E RELEASE
O* (no fields)

Figure 165. Record Lock in File Released by EXCEPT Operation

Record Identification and Control Entries

406 ILE RPG Reference

Positions 40-51 (Space and Skip)
Use positions 40 through 51 to specify line spacing and skipping for a printer file.
Spacing refers to advancing one line at a time, and skipping refers to jumping from
one print line to another.

If spacing and skipping are specified for the same line, the spacing and skipping
operations are processed in the following sequence:
v Skip before
v Space before
v Print a line
v Skip after
v Space after.

If the PRTCTL (printer control option) keyword is not specified on the file
description specifications, an entry must be made in one of the following positions
when the device is PRINTER: 40-42 (space before), 43-45 (space after), 46-48 (skip
before), or 49-51 (skip after). If a space/skip entry is left blank, the particular
function with the blank entry (such as space before or space after) does not occur.
If entries are made in positions 40-42 (space before) or in positions 46-51 (skip
before and skip after) and no entry is made in positions 43 - 45 (space after), no
space occurs after printing. When PRTCTL is specified, it is used only on records
with blanks specified in positions 40 through 51.

If a skip before or a skip after a line on a new page is specified, but the printer is
on that line, the skip does not occur.

Positions 40-42 (Space Before)
Entry Explanation

0 or Blank No spacing

1-255 Spacing values

Positions 43-45 (Space After)
Entry Explanation

0 or Blank No spacing

1-255 Spacing values

Positions 46-48 (Skip Before)
Entry Explanation

Blank No skipping occurs.

1-255 Skipping values

Positions 49-51 (Skip After)
Entry Explanation

1-255 Skipping values

Record Identification and Control Entries

Chapter 17. Output Specifications 407

Field Description and Control Entries
These entries determine under what conditions and in what format fields of a
record are to be written.

Each field is described on a separate line. Field description and control information
for a field begins on the line following the record identification line.

Positions 21-29 (Output Indicators)
Indicators specified on the field description lines determine whether a field is to be
included in the output record, except for PAGE reserved fields. See “PAGE,
PAGE1-PAGE7” on page 409 for information on how output indicators affect the
PAGE fields. The same types of indicators can be used to control fields as are used
to control records, see “Positions 21-29 (Output Conditioning Indicators)” on page
405. Indicators used to condition field descriptions lines cannot be specified in an
AND/OR relationship. Conditioning indicators cannot be specified on format
name specifications (see “Positions 53-80 (Constant, Edit Word, Data Attributes,
Format Name)” on page 412) for program described WORKSTN files.

Positions 30-43 (Field Name)
In positions 30 through 43, use one of the following entries to specify each field
that is to be written out:
v A field name
v Blanks if a constant is specified in positions 53 through 80
v A table name, array name, or array element
v A named constant
v The RPG IV reserved words PAGE, PAGE1 through PAGE7, *PLACE, UDATE,

*DATE, UDAY, *DAY, UMONTH, *MONTH, UYEAR, *YEAR, *IN, *INxx, or
*IN(xx)

v A data structure name or data structure subfield name.

Note: A pointer field is not a valid output field—that is, pointer fields cannot be
written.

Field Names, Blanks, Tables and Arrays
The field names used must be defined in the program. Do not enter a field name if
a constant or edit word is used in positions 53-80. If a field name is entered in
positions 30 through 43, positions 7 through 20 must be blank.

Fields can be specified in any order because the sequence in which they appear on
the output records is determined by the entry in positions 47 through 51. If fields
overlap, the last field specified is the only field completely written.

When a non-indexed array name is specified, the entire array is written. An array
name with a constant index or variable index causes one element to be written.
When a table name is specified, the element last found in a “LOOKUP (Look Up a
Table or Array Element)” on page 711 operation is written. The first element of a
table is written if no successful LOOKUP operation was done.

The conditions for a record and the field it contains must be satisfied before the
field is written out.

Field Description and Control Entries

408 ILE RPG Reference

PAGE, PAGE1-PAGE7
To use automatic page numbering, code PAGE in positions 30 through 43 as the
name of the output field. Indicators specified in positions 21 through 29 condition
the resetting of the PAGE field, not whether it prints. The PAGE field is always
incremented by 1 and printed. If the conditioning indicators are met, it is reset to
zero before being incremented by 1 and printed. If page numbers are needed for
several output files (or for different numbering within one file), the entries PAGE1
through PAGE7 can be used. The PAGE fields are automatically zero-suppressed
by the Z edit code.

For more information on the PAGE reserved words, see “RPG IV Words with
Special Functions/Reserved Words” on page 5.

*PLACE
*PLACE is an RPG IV reserved word that is used to repeat data in an output
record. Fields or constants that have been specified on previous specification lines
can be repeated in the output record without having the field and end positions
named on a new specification line. When *PLACE is coded in positions 30 through
43, all data between the first position and the highest end position previously
specified for a field in that output record is repeated until the end position
specified in the output record on the *PLACE specification line is reached. The end
position specified on the *PLACE specification line must be at least twice the
highest end position of the group of fields to be duplicated. *PLACE can be used
with any type of output. Blank after (position 45), editing (positions 44, 53 through
80), data format (position 52), and relative end positions cannot be used with
*PLACE.

User Date Reserved Words
The user date reserved words (UDATE, *DATE, UDAY, *DAY, UMONTH,
*MONTH, UYEAR, *YEAR) allow the programmer to supply a date for the
program at run time. For more information on the user date reserved words, see
“Rules for User Date” on page 8.

*IN, *INxx, *IN(xx)
The reserved words *IN, *INxx and *IN(xx) allow the programmer to refer to and
manipulate RPG IV indicators as data.

Position 44 (Edit Codes)
Entry Explanation

Blank No edit code is used.

1-9, A-D, J-Q, X, Y, Z
Numeric fields are zero-suppressed and punctuated according to a
predefined pattern without the use of edit words.

Position 44 is used to specify edit codes that suppress leading zeros in a numeric
field or to punctuate a numeric field without using an edit word. Allowable entries
are 1 through 9, A through D, J through Q, X, Y, Z, and blank.

Note: The entry must be blank if you are writing a float output field.

For more information on edit codes see Chapter 10, “Editing Numeric Fields,” on
page 229.

Field Description and Control Entries

Chapter 17. Output Specifications 409

Edit codes 5 through 9 are user-defined edit codes and are defined externally by an
i5/OS function. The edit code is determined at compilation time. Subsequent
changes to a user-defined edit code will not affect the editing by the RPG IV
compiler unless the program is recompiled.

Position 45 (Blank After)
Entry Explanation

Blank The field is not reset.

B The field specified in positions 30 through 43 is reset to blank, zero, or the
default date/time/timestamp value after the output operation is complete.

Position 45 is used to reset a numeric field to zeros or a character, graphic, or
UCS-2 field to blanks. Date, time, and timestamp fields are reset to their default
values.

If the field is conditioned by indicators in positions 21 through 29, the blank after
is also conditioned. This position must be blank for look-ahead, user date reserved
words, *PLACE, named constants, and literals.

Resetting fields to zeros may be useful in total output when totals are accumulated
and written for each control group in a program. After the total is accumulated
and written for one control group, the total field can be reset to zeros before
accumulation begins on the total for the next control group.

If blank after (position 45) is specified for a field to be written more than once, the
B should be entered on the last line specifying output for that field, or else the
field named will be printed as the blank-after value for all lines after the one doing
the blank after.

Positions 47-51 (End Position)
Entry Explanation

1-n End position

K1-K10 Length of format name for WORKSTN file.

Positions 47 through 51 define the end position of a field or constant on the output
record, or define the length of the data description specifications record format
name for a program described WORKSTN file.

The K identifies the entry as a length rather than an end position, and the number
following the K indicates the length of the record format name. For example, if the
format name is CUSPMT, the entry in positions 50 and 51 is K6. Leading zeros are
permitted following the K, and the entry must be right-adjusted.

Valid entries for end positions are blanks, +nnnn, −nnnn, and nnnnn. All entries in
these positions must end in position 51. Enter the position of the rightmost
character of the field or constant. The end position must not exceed the record
length for the file.

If an entire array is to be written, enter the end position of the last element in the
array in positions 47 through 51. If the array is to be edited, be careful when
specifying the end position to allow enough positions to write all edited elements.
Each element is edited according to the edit code or edit word.

Field Description and Control Entries

410 ILE RPG Reference

The +nnnn or −nnnn entry specifies the placement of the field or constant relative
to the end position of the previous field. The number (nnnn) must be
right-adjusted, but leading zeros are not required. Enter the sign anywhere to the
left of the number within the entry field. To calculate the end position, use these
formulas:
EP = PEP +nnnn + FL

EP = PEP −nnnn + FL

EP is the calculated end position. PEP is the previous end position. For the first
field specification in the record, PEP is equal to zero. FL is the length of the field
after editing, or the length of the constant specified in this specification. The use of
+nnnn is equivalent to placing nnnn positions between the fields. A -nnnn causes
an overlap of the fields by nnnn positions. For example, if the previous end
position (PEP) is 6, the number of positions to be placed between the fields (nnnn)
is 5, and the field length (FL) is 10, the end position (EP) equals 21.

When *PLACE is used, an actual end position must be specified; it cannot be blank
or a displacement.

An entry of blank is treated as an entry of +0000. No positions separate the fields.

Position 52 (Data Format)
Entry Explanation

Blank

v For numeric fields the data is to be written in zoned decimal format.
v For float numeric fields, the data is to be written in the external display

representation.
v For graphic fields, the data is to be written with SO/SI brackets.
v For UCS-2 fields, the data is to be written in UCS-2 format.
v For date, time, and timestamp fields the data is to be written without

format conversion performed.
v For character fields, the data is to be written as it is stored.

A The character field is to be written in either fixed- or variable-length
format depending on the absense or presence of the *VAR data attribute.

C The UCS-2 field is to be written in either fixed- or variable-length format
depending on the absense or presence of the *VAR data attribute.

G The graphic field (without SO/SI brackets) will be written in either fixed-
or variable-length format depending on the absense or presence of the
*VAR data attribute.

B The numeric field is to be written in binary format.

F The numeric field is to be written in float format.

I The numeric field is to be written out in integer format.

L The numeric field is to be written with a preceding (left) plus or minus
sign, in zoned-decimal format.

N The character field is to be written in indicator format.

P The numeric field is to be written in packed-decimal format.

R The numeric field is to be written with a following (right) plus or minus
sign, in zoned-decimal format.

Field Description and Control Entries

Chapter 17. Output Specifications 411

S The numeric field is to be written out in zoned-decimal format.

U The numeric field is to be written out in unsigned integer format.

D Date field— the date field will be converted to the format specified in
positions 53-80 or to the default file date format.

T Time field— the time field will be converted to the format specified in
positions 53-80 or to the default file time format.

Z Valid for Timestamp fields only.

This position must be blank if editing is specified.

The entry in position 52 specifies the external format of the data in the records in
the file. This entry has no effect on the format used for internal processing of the
output field in the program.

For numeric fields, the number of bytes required in the output record depends on
this format. For example, a numeric field with 5 digits requires:
v 5 bytes when written in zoned format
v 3 bytes when written in packed format
v 6 bytes when written in either L or R format
v 4 bytes when written in binary format
v 2 bytes when written in either I or U format. This may cause an error at run

time if the value is larger than the maximum value for a 2-byte integer or
unsigned field. For the case of 5-digit fields, binary format may be better.
Float numeric fields written out with blank Data Format entry occupy either 14
or 23 positions (for 4-byte and 8-byte float fields respectively) in the output
record.

A ’G’ or blank must be specified for a graphic field in a program-described file. If
’G’ is specified, then, the data will be output without SO/SI. If this column is
blank for program-described output, then SO/SI brackets will be placed around
the field in the output record by the compiler if the field is of type graphic. You
must ensure that there is sufficient room in the output record for both the data and
the SO/SI characters.

Positions 53-80 (Constant, Edit Word, Data Attributes, Format
Name)

Positions 53 through 80 are used to specify a constant, an edit word, a data
attribute, or a format name for a program described file.

Constants
Constants consist of character data (literals) that does not change from one
processing of the program to the next. A constant is the actual data used in the
output record rather than a name representing the location of the data.

A constant can be placed in positions 53 through 80. The constant must begin in
position 54 (apostrophe in position 53), and it must end with an apostrophe even if
it contains only numeric characters. Any apostrophe used within the constant must
be entered twice; however, only one apostrophe appears when the constant is
written out. The field name (positions 30 through 43) must be blank. Constants can
be continued (see “Continuation Rules” on page 249 for continuation rules).
Instead of entering a constant, you can use a named constant.

Field Description and Control Entries

412 ILE RPG Reference

Graphic and UCS-2 literals or named constants are not allowed as edit words, but
may be specified as constants.

Edit Words
An edit word specifies the punctuation of numeric fields, including the printing of
dollar signs, commas, periods, and sign status. See “Parts of an Edit Word” on
page 236 for details.

Edit words must be character literals or named constants. Graphic, UCS-2, or
hexadecimal literals and named constants are not allowed.

Data Attributes
Data attributes specify the external format for a date, time, or variable-length
character, graphic, or UCS-2 field.

For date and time data, if no date or time format is specified, then the
format/separator specified for the file (with either DATFMT or TIMFMT or both)
is used. If there is no external date or time format specified for the file, then an
error message is issued. See Table 33 on page 207 and Table 36 on page 209 for
valid date and time formats.

For character, graphic, and UCS-2 data, the *VAR data attribute is used to specify
variable-length output fields. If this entry is blank for character, graphic, and
UCS-2 data, then the external format is fixed length. For more information on
variable-length fields, see “Variable-Length Character, Graphic and UCS-2 Formats”
on page 185.

Note: The number of bytes occupied in the output record depends on the format
specified. For example, a date written in *MDY format requires 8 bytes, but
a date written in *ISO format requires 10 bytes.

For more information on external formats, see “Internal and External Formats” on
page 179.

Record Format Name
The name of the data description specifications record format that is used by a
program described WORKSTN file must be specified in positions 53 through 62.
One format name is required for each output record for the WORKSTN file;
specifying more than one format name per record is not allowed. Conditioning
indicators cannot be specified on format name specifications for program described
WORKSTN files. The format name must be enclosed in apostrophes. You must also
enter Kn in positions 47 through 51, where n is the length of the format name. For
example, if the format name is ‘CUSPMT’, enter K6 in positions 50 and 51. A
named constant can also be used.

Externally Described Files

Position 6 (Form Type)
An O must appear in position 6 to identify this line as an output specifications
statement.

Field Description and Control Entries

Chapter 17. Output Specifications 413

Record Identification and Control Entries
Output specifications for an externally described file are optional. Entries in
positions 7 through 39 of the record identification line identify the record format
and determine under what conditions the records are to be written.

Positions 7-16 (Record Name)
Entry Explanation

A valid record format name
A record format name must be specified for an externally described
file.

Positions 16-18 (Logical Relationship)
Entry Explanation

AND or OR AND/OR indicates a relationship between lines of output
indicators. AND/OR lines are valid for output records, but not for
fields.

See “Positions 16-18 (Logical Relationship)” on page 403 for more information.

Position 17 (Type)
Entry Explanation

H or D Detail records

T Total records

E Exception records.

Position 17 indicates the type of record to be written. See “Position 17 (Type)” on
page 403 for more information.

Position 18 (Release)
Entry Explanation

R Release a device after output.

See “Release” on page 405 for more information.

Positions 18-20 (Record Addition)
Entry Explanation

ADD Add a record to a file.

DEL Delete an existing record from the file.

For more information on record addition, see “Positions 18-20 (Record
Addition/Deletion)” on page 403.

Positions 21-29 (Output Indicators)
Output indicators for externally described files are specified in the same way as
those for program described files. The overflow indicators OA-OG, OV are not

Record Identification and Control Entries

414 ILE RPG Reference

valid for externally described files. For more information on output indicators, see
“Positions 21-29 (Output Conditioning Indicators)” on page 405.

Positions 30-39 (EXCEPT Name)
An EXCEPT name can be specified in these positions for an exception record line.
See “Positions 30-39 (EXCEPT Name)” on page 406 for more information.

Field Description and Control Entries
For externally described files, the only valid field descriptions are output indicators
(positions 21 through 29), field name (positions 30 through 43), and blank after
(position 45).

Positions 21-29 (Output Indicators)
Indicators specified on the field description lines determine whether a field is to be
included in the output record. The same types of indicators can be used to control
fields as are used to control records. See “Positions 21-29 (Output Conditioning
Indicators)” on page 405 for more information.

Positions 30-43 (Field Name)
Entry Explanation

Valid field name
A field name specified for an externally described file must be
present in the external description unless the external name was
renamed for the program.

*ALL Specifies the inclusion of all the fields in the record.

For externally described files, only the fields specified are placed in the output
record. *ALL can be specified to include all the fields in the record. If *ALL is
specified, no other field description lines can be specified for that record. In
particular, you cannot specify a B (blank after) in position 45.

For an update record, only those fields specified in the output field specifications
and meeting the conditions specified by the output indicators are placed in the
output record to be rewritten. The values that were read are used to rewrite all
other fields.

For the creation of a new record (ADD specified in positions 18-20), the fields
specified are placed in the output record. Those fields not specified or not meeting
the conditions specified by the output indicators are written as zeros or blanks,
depending on the data format specified in the external description.

Position 45 (Blank After)
Entry Explanation

Blank The field is not reset.

B The field specified in positions 30 through 43 is reset to blank, zero, or the
default date/time/timestamp value after the output operation is complete.

Position 45 is used to reset a numeric field to zeros or a character, graphic, or
UCS-2 field to blanks. Date, time, and timestamp fields are reset to their default
values.

Record Identification and Control Entries

Chapter 17. Output Specifications 415

If the field is conditioned by indicators in positions 21 through 29, the blank after
is also conditioned. This position must be blank for look-ahead, user date reserved
words, *PLACE, named constants, and literals.

Resetting fields to zeros may be useful in total output when totals are accumulated
and written for each control group in a program. After the total is accumulated
and written for one control group, the total field can be reset to zeros before
accumulation begins on the total for the next control group.

If blank after (position 45) is specified for a field to be written more than once, the
B should be entered on the last line specifying output for that field, or else the
field named will be printed as the blank-after value for all lines after the one doing
the blank after.

Field Description and Control Entries

416 ILE RPG Reference

Chapter 18. Procedure Specifications

Procedure specifications are used to define prototyped procedures that are
specified after the main source section, otherwise known as subprocedures.

The prototype for the subprocedure may be defined in the main source section of
the module containing the subprocedure definition. If the prototype is not
specified, the prototype is implicitly defined using the information in the
procedure interface. If the procedure interface is also not defined, a default
prototype with no return value and no parameters is implicitly defined.

A subprocedure includes the following:
1. A Begin-Procedure specification (B in position 24 of a procedure specification)
2. A Procedure-Interface definition, which specifies the return value and

parameters, if any. The procedure-interface definition is optional if the
subprocedure does not return a value and does not have any parameters that
are passed to it. The procedure interface must match the corresponding
prototype, if the prototype is specified.

3. Other definition specifications of variables, constants and prototypes needed by
the subprocedure. These definitions are local definitions.

4. Any calculation specifications needed to perform the task of the procedure. Any
subroutines included within the subprocedure are local. They cannot be used
outside of the subprocedure. If the subprocedure returns a value, then a
RETURN operation must be coded within the subprocedure. You should ensure
that a RETURN operation is performed before reaching the end of the
procedure.

5. An End-Procedure specification (E in position 24 of a procedure specification)

Except for a procedure-interface definition, which may be placed anywhere within
the definition specifications, a subprocedure must be coded in the order shown
above.

For an example of a subprocedure, see Figure 5 on page 22.

Procedure Specification Statement
The general layout for the procedure specification is as follows:
v The procedure specification type (P) is entered in position 6
v The non-commentary part of the specification extends from position 7 to

position 80
– The fixed-format entries extend from positions 7 to 24
– The keyword entries extend from positions 44 to 80

v The comments section of the specification extends from position 81 to position
100

© Copyright IBM Corp. 1994, 2010 417

|
|
|
|
|

|
|
|
|
|

Procedure Specification Keyword Continuation Line
If additional space is required for keywords, the keywords field can be continued
on subsequent lines as follows:
v Position 6 of the continuation line must contain a P
v Positions 7 to 43 of the continuation line must be blank
v The specification continues on or past position 44

Procedure Specification Continued Name Line
A name that is up to 15 characters long can be specified in the Name entry of the
procedure specification without requiring continuation. Any name (even one with
15 characters or fewer) can be continued on multiple lines by coding an ellipsis (...)
at the end of the partial name. A name definition consists of the following parts:
1. Zero or more continued name lines. Continued name lines are identified as

having an ellipsis as the last non-blank character in the entry. The name must
begin within positions 7 to 21 and may end anywhere up to position 77 (with
an ellipsis ending in position 80). There cannot be blanks between the start of
the name and the ellipsis character. If any of these conditions is not true, the
line is parsed as a main procedure-name line.

2. One main procedure-name line, containing a name, begin/end procedure, and
keywords. If a continued name line is coded, the Name entry of the main
procedure-name line may be left blank.

3. Zero or more keyword continuation lines.

Position 6 (Form Type)
Enter a P in this position for a procedure specification.

Positions 7-21 (Name)
Entry Explanation

Name The name of the subprocedure to be defined.

Use positions 7-21 to specify the name of the subprocedure being defined. If the
name is longer than 15 characters, a name is specified in positions 7 - 80 of the

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
PName+++++++++++..B...................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 166. Procedure Specification Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
P.....................................Keywords+++++++++++++++++++++++++++++Comments++++++++++++

Figure 167. Procedure Specification Keyword Continuation Line Layout

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8 ...+... 9 ...+... 10
PContinuedName+++Comments++++++++++++

Figure 168. Procedure Specification Continued Name Line Layout

Procedure Specification Statement

418 ILE RPG Reference

continued name lines. The normal rules for RPG IV apply; reserved words cannot
be used (see “Symbolic Names” on page 3). The name can begin in any position in
the space provided.

The name specified must be the same as the name of the prototype describing the
procedure, if a prototype is specified. If a prototype is not specified, the prototype
will be implicitly defined using the name specified on the Procedure Specification
and the information specified by the procedure interface.

If position 24 contains an E, then the name is optional.

Position 24 (Begin/End Procedure)
Entry Explanation

B The specification marks the beginning of the subprocedure being defined.

E The specification marks the end of the subprocedure being defined.

A subprocedure coding consists minimally of a beginning procedure specification
and an ending procedure specification. Any parameters and return value, as well
as other definitions and calculations for the subprocedure are specified between the
procedure specifications.

Positions 44-80 (Keywords)
Positions 44 to 80 are provided for procedure specification keywords. Only a
Begin-Procedure specification (B in position 24) can have a keyword entry.

Procedure-Specification Keywords

EXPORT
The specification of the EXPORT keyword allows the procedure to be called by
another module in the program. The name in positions 7-21 is exported in
uppercase form.

Note: Procedure names are not imported using the IMPORT keyword. They are
imported implicitly by any module in the program that makes a bound call
to the procedure or that uses the procedure name to initialize a procedure
pointer.

If the EXPORT keyword is not specified, the procedure can only be called from
within the module.

SERIALIZE
When the SERIALIZE keyword is specified in a concurrent-thread module, only
one thread can run in the procedure at any time. If one thread is running in the
procedure and another thread calls the procedure, the second thread will wait to
run the procedure until the first thread is no longer running in the procedure. If a
thread is running in the procedure and it makes a recursive call to the procedure,
then it must return from all the recursive calls to the procedure before another
thread can begin running in the procedure.

The SERIALIZE keyword is allowed only when THREAD(*CONCURRENT) is
specified on the Control specification.

Procedure Specification Statement

Chapter 18. Procedure Specifications 419

|
|
|
|

#

#
#
#
#
#
#
#

#
#

Specifying SERIALIZE for one procedure is similar to specifying
THREAD(*SERIALIZE) on the control specification. The difference is that
specifying THREAD(*SERIALIZE) on the Control specification limits access by
multiple threads to all the procedures in the module, while specifying the
SERIALIZE keyword for a procedure only limits access to that procedure.

If you have more than one procedure in a module with the SERIALIZE keyword,
the procedures are independent. One thread can be running in one serialized
procedure, while another thread is running in another serialized procedure in the
same module. For example, if procedures PROCA and PROCB in the same module
both have the SERIALIZE keyword, one thread could be running PROCA while
another thread was running PROCB. For more information on using serialized
procedures, see “THREAD(*CONCURRENT | *SERIALIZE)” on page 275.

Procedure-Specification Keywords

420 ILE RPG Reference

#
#
#
#
#

#
#
#
#
#
#
#

Part 4. Operations, Expressions, and Functions

This section describes the various ways in which you can manipulate data or
devices. The major topics include:
v Operations that you can perform, using operation codes or built-in functions
v Expressions and the rules governing them
v Built-in functions
v Operation codes.

© Copyright IBM Corp. 1994, 2010 421

422 ILE RPG Reference

Chapter 19. Operations

The RPG IV programming language allows you to do many different types of
operations on your data. To perform an operation, you use either an operation
code or a built-in function.

This chapter summarizes the operation codes and built-in functions that are
available. It also organizes the operation codes and built-in functions into
categories.

For detailed information about a specific operation code or built-in function, see
Chapter 22, “Operation Codes,” on page 607 or Chapter 21, “Built-in Functions,” on
page 493.

Operation Codes
The following table shows the free-form syntax for each operation code.
v Extenders

(A) Always perform a dump, even if DEBUG(*NO) is specified
(A) Sort ascending
(D) Pass operational descriptors on bound call
(D) Date field
(D) Sort descending
(E) Error handling
(H) Half adjust (round the numeric result)
(M) Default precision rules
(N) Do not lock record
(N) Set pointer to *NULL after successful DEALLOC
(N) Do not force data to non-volatile storage
(P) Pad the result with blanks or zeros
(R) ″Result Decimal Position″ precision rules
(T) Time field
(Z) Timestamp field

Table 54. Operation Codes in Free-Form Syntax

Code Free-Form Syntax

ACQ1 ACQ{(E)} device-name workstn-file

BEGSR BEGSR subroutine-name

CALLP {CALLP{(EMR)}} name({parm1{:parm2...}})

CHAIN CHAIN{(ENHMR)} search-arg file-or-record-name {data-structure}

CLEAR CLEAR {*NOKEY} {*ALL} name

CLOSE CLOSE{(E)} file-name

COMMIT COMMIT{(E)} {boundary}

DEALLOC 1 DEALLOC{(EN)} pointer-name

DELETE DELETE{(EHMR)} {search-arg} file-or-record-name

DOU DOU{(MR)} indicator-expression

DOW DOW{(MR)} indicator-expression

DSPLY DSPLY{(E)} {message {message-queue {response}}}

© Copyright IBM Corp. 1994, 2010 423

||

||

Table 54. Operation Codes in Free-Form Syntax (continued)

Code Free-Form Syntax

DUMP1 DUMP{(A)} {identifier}

ELSE ELSE

ELSEIF ELSEIF{(MR)} indicator-expression

ENDDO ENDDO

ENDFOR ENDFOR

ENDIF ENDIF

ENDMON ENDMON

ENDSL ENDSL

ENDSR ENDSR {return-point}

EVAL {EVAL{(HMR)}} result = expression

EVALR EVALR{(MR)} result = expression

EVAL-CORR EVAL-CORR{(EH)} target-ds = source-ds

EXCEPT EXCEPT {except-name}

EXFMT EXFMT{(E)} format-name {data-structure}

EXSR EXSR subroutine-name

FEOD FEOD{(EN)} file-name

FOR FOR{(MR)} index {= start} {BY increment} {TO|DOWNTO limit}

FORCE FORCE file-name

IF IF{(MR)} indicator-expression

IN 1 IN{(E)} {*LOCK} data-area-name

ITER ITER

LEAVE LEAVE

LEAVESR LEAVESR

MONITOR MONITOR

NEXT1 NEXT{(E)} program-device file-name

ON-ERROR ON-ERROR {exception-id1 {:exception-id2...}}

OPEN OPEN{(E)} file-name

OTHER OTHER

OUT1 OUT{(E)} {*LOCK} data-area-name

POST 1 POST{(E)} {program-device} file-name

READ READ{(EN)} file-or-record-name {data-structure}

READC READC{(E)} record-name {data-structure}

READE READE{(ENHMR)} search-arg|*KEY file-or-record-name {data-structure}

READP READP{(EN)} name {data-structure}

READPE READPE{(ENHMR)} search-arg|*KEY file-or-record-name {data-structure}

REL 1 REL{(E)} program-device file-name

RESET 1 RESET{(E)} {*NOKEY} {*ALL} name

RETURN RETURN{(HMR)} expression

ROLBK ROLBK{(E)}

SELECT SELECT

424 ILE RPG Reference

#

Table 54. Operation Codes in Free-Form Syntax (continued)

Code Free-Form Syntax

SETGT SETGT{(EHMR)} search-arg file-or-record-name

SETLL SETLL{(EHMR)} search-arg file-or-record-name

SORTA SORTA{(AD)} array-name or keyed-ds-array

TEST 1 TEST{(EDTZ)} {dtz-format} field-name

UNLOCK 1 UNLOCK{(E)} name

UPDATE UPDATE{(E)} file-or-record-name {data-structure|%FIELDS(name{:name...})}

WHEN WHEN{(MR)} indicator-expression

WRITE WRITE{(E)} file-or-record-name {data-structure}

XML-INTO XML-INTO{(EH)} target-or-handler xml-document

XML-SAX XML-SAX{(E)} handler xml-document

Notes:

1. Complex-qualified names are note allowed for this operation code.

The next table is a summary of the specifications for each operation code in
traditional syntax.
v An empty column indicates that the field must be blank.
v All underlined fields are required.
v An underscored space denotes that there is no resulting indicator in that

position.
v Symbols

+ Plus
− Minus

v Extenders
(A) Always perform a dump, even if DEBUG(*NO) is specified
(A) Sort ascending
(D) Pass operational descriptors on bound call
(D) Date field
(D) Sort descending
(E) Error handling
(H) Half adjust (round the numeric result)
(M) Default precision rules
(N) Do not lock record
(N) Set pointer to *NULL after successful DEALLOC
(P) Pad the result with blanks or zeros
(R) ″Result Decimal Position″ precision rules
(T) Time field
(Z) Timestamp field

v Resulting indicator symbols
BL Blank(s)
BN Blank(s) then numeric
BOF Beginning of the file
EOF End of the file
EQ Equal
ER Error
FD Found
HI Greater than
IN Indicator

Chapter 19. Operations 425

|

||

||

LO Less than
LR Last record
NR No record was found
NU Numeric
OF Off
ON On
Z Zero
ZB Zero or Blank

Table 55. Operation Codes in Traditional Syntax

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

ACQ (E7) device-name workstn-file ER

ADD (H) Addend Addend Sum + − Z

ADDDUR (E) Date/Time Duration:Duration Code Date/Time ER

ALLOC (E) Length Pointer ER

ANDxx Comparand Comparand

BEGSR subroutine-name

BITOFF Bit numbers Character field

BITON Bit numbers Character field

CABxx Comparand Comparand Label HI LO EQ

CALL (E) Program name Plist name ER LR

CALLB (D E) Procedure name or
Procedure pointer

Plist name ER LR

CALLP (E M/R) name{ (parm1 {:parm2...}) }

CASxx Comparand Comparand Subroutine
name

HI LO EQ

CAT (P) Source string 1 Source string 2:number of
blanks

Target string

CHAIN (E N) search-arg name (file or record
format)

data-structure NR2 ER

CHECK (E) Comparator String Base String:start Left-most
Position(s)

ER FD2

CHECKR (E) Comparator String Base String:start Right-most
Position(s)

ER FD2

CLEAR *NOKEY *ALL name (variable
or record
format)

CLOSE (E) file-name or *ALL ER

COMMIT (E) boundary ER

COMP1 Comparand Comparand HI LO EQ

DEALLOC (E/N) pointer-name ER

DEFINE *LIKE Referenced field Defined field

DEFINE *DTAARA External data area Internal field

DELETE (E) search-arg name (file or record
format)

NR2 ER

DIV (H) Dividend Divisor Quotient + − Z

426 ILE RPG Reference

Table 55. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

DO Starting value Limit value Index value

DOU (M/R) indicator-expression

DOUxx Comparand Comparand

DOW (M/R) indicator-expression

DOWxx Comparand Comparand

DSPLY (E)4 message message-queue response ER

DUMP (A) identifier

ELSE

ELSEIF (M/R) indicator-expression

END Increment value

ENDCS

ENDDO Increment value

ENDFOR

ENDIF

ENDMON

ENDSL

ENDSR label return-point

EVAL (H M/R) Result = Expression

EVALR (M/R) Result = Expression

EVAL-CORR EVAL-CORR target-ds = source-ds

EXCEPT except-name

EXFMT (E) Record format-name data-structure ER

EXSR subroutine-name

EXTRCT (E) Date/Time:Duration Code Target Field ER

FEOD (EN) file-name ER

FOR Index-name = start-value BY increment TO|DOWNTO limit

FORCE file-name

GOTO Label

IF (M/R) indicator-expression

IFxx Comparand Comparand

IN (E) *LOCK data-area-name ER

ITER

KFLD Key field

KLIST KLIST name

LEAVE

LEAVESR

LOOKUP1 (array) Search argument Array name HI LO EQ6

LOOKUP1 (table) Search argument Table name Table name HI LO EQ6

MHHZO Source field Target field

Chapter 19. Operations 427

#

Table 55. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

MHLZO Source field Target field

MLHZO Source field Target field

MLLZO Source field Target field

MONITOR

MOVE (P) Data Attributes Source field Target field + − ZB

MOVEA (P) Source Target + − ZB

MOVEL (P) Data Attributes Source field Target field + − ZB

MULT (H) Multiplicand Multiplier Product + − Z

MVR Remainder + − Z

NEXT (E) program-device file-name ER

OCCUR (E) Occurrence value Data structure Occurrence
value

ER

ON-ERROR Status codes

OPEN (E) file-name ER

ORxx Comparand Comparand

OTHER

OUT (E) *LOCK data-area-name ER

PARM Target field Source field Parameter

PLIST PLIST name

POST (E)3 program-device file-name INFDS name ER

READ (E N) name (file or record
format)

data-
structure

ER EOF5

READC (E) record-name data-
structure

ER EOF5

READE (E N) search-arg name (file or record
format)

data-
structure

ER EOF5

READP (E N) name (file or record
format)

data-
structure

ER BOF5

READPE (E N) search-arg name (file or record
format)

data-
structure

ER BOF5

REALLOC (E) Length Pointer ER

REL (E) program-device file-name ER

RESET (E) *NOKEY *ALL name (variable
or record
format)

ER

RETURN (H M/R) Expression

ROLBK (E) ER

SCAN (E) Comparator
string:length

Base string:start Left-most
position(s)

ER FD2

SELECT

SETGT (E) search-arg name (file or record
format)

NR2 ER

428 ILE RPG Reference

Table 55. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

SETLL (E) search-arg name (file or record
format)

NR2 ER EQ6

SETOFF1 OF OF OF

SETON1 ON ON ON

SHTDN ON

SORTA (A/D) array-name or
keyed-ds-array

SQRT (H) Value Root

SUB (H) Minuend Subtrahend Difference + − Z

SUBDUR (E)
(duration)

Date/Time/
Timestamp

Date/Time/Timestamp Duration:
Duration Code

ER

SUBDUR (E) (new
date)

Date/Time/
Timestamp

Duration:Duration Code Date/Time/
Timestamp

ER

SUBST (E P) Length to extract Base string:start Target string ER

TAG Label

TEST (E)8 Date/Time or
Timestamp
Field

ER

TEST (D E)8 Date Format Character or
Numeric field

ER

TEST (E T)8 Time Format Character or
Numeric field

ER

TEST (E Z)8 Timestamp Format Character or
Numeric field

ER

TESTB1 Bit numbers Character field OF ON EQ

TESTN1 Character field NU BN BL

TESTZ1 Character field AI JR XX

TIME Target field

UNLOCK (E) name (file or data area) ER

UPDATE (E) name (file or record
format)

data-
structure

ER

WHEN (M/R) indicator-expression

WHENxx Comparand Comparand

WRITE (E) name (file or record
format)

data-
structure

ER EOF5

XFOOT (H) Array name Sum + − Z

XLATE (E P) From:To String:start Target String ER

XML-INTO XML-INTO target-or-handler xml-document

XML-SAX XML-SAX{(E)} handler xml-document

Z-ADD (H) Addend Sum + − Z

Z-SUB (H) Subtrahend Difference + − Z

Chapter 19. Operations 429

||
|

Table 55. Operation Codes in Traditional Syntax (continued)

Codes Factor 1 Factor 2 Result Field

Resulting Indicators

71-72 73-74 75-76

Notes:

1. At least one resulting indicator is required.

2. The %FOUND built-in function can be used as an alternative to specifying an NR or FD resulting indicator.

3. You must specify factor 2 or the result field. You may specify both.

4. You must specify factor 1 or the result field. You may specify both.

5. The %EOF built-in function can be used as an alternative to specifying an EOF or BOF resulting indicator.

6. The %EQUAL built-in function can be used to test the SETLL and LOOKUP operations.

7. For all operation codes with extender ’E’, either the extender ’E’ or an ER error indicator can be specified, but
not both.

8. You must specify the extender ’E’ or an error indicator for the TEST operation.

Built-in Functions
Built-in functions are similar to operation codes in that they perform operations on
data you specify. Built-in functions can be used in expressions. Additionally,
constant-valued built-in functions can be used in named constants. These named
constants can be used in any specification.

All built-in functions have the percent symbol (%) as their first character. The
syntax of built-in functions is:
function-name{(argument{:argument...})}

Arguments for the function may be variables, constants, expressions, a prototyped
procedure, or other built-in functions. An expression argument can include a
built-in function. The following example illustrates this.

See the individual built-in function descriptions for details on what arguments are
allowed.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2++++++++++++++++++++++++++
*
* This example shows a complex expression with multiple
* nested built-in functions.
*
* %TRIM takes as its argument a string. In this example, the
* argument is the concatenation of string A and the string
* returned by the %SUBST built-in function. %SUBST will return
* a substring of string B starting at position 11 and continuing
* for the length returned by %SIZE minus 20. %SIZE will return
* the length of string B.
*
* If A is the string ' Toronto,' and B is the string
* ' Ontario, Canada ' then the argument for %TRIM will
* be ' Toronto, Canada ' and RES will have the value
* 'Toronto, Canada'.
*
C EVAL RES = %TRIM(A + %SUBST(B:11:%SIZE(B) - 20))

Figure 169. Built-in Function Arguments Example

430 ILE RPG Reference

Unlike operation codes, built-in functions return a value rather than placing a
value in a result field. The following example illustrates this difference.

Note that the arguments used in this example (the variable CITY and the
expression C+1) are analogous to the factor values for the SUBST operation. The
return value of the function itself is analogous to the result. In general, the
arguments of the built-in function are similar to the factor 1 and factor 2 fields of
an operation code.

Another useful feature of built-in functions is that they can simplify maintenance
of your code when used on the definition specification. The following example
demonstrates this feature.

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In the following example, CITY contains the string
* 'Toronto, Ontario'. The SCAN operation is used to locate the
* separating blank, position 9 in this illustration. SUBST
* places the string 'Ontario' in field TCNTRE.
*
* Next, TCNTRE is compared to the literal 'Ontario' and
* 1 is added to CITYCNT.
*
C ' ' SCAN CITY C
C ADD 1 C
C SUBST CITY:C TCNTRE
C 'Ontario' IFEQ TCNTRE
C ADD 1 CITYCNT
C ENDIF
*
* In this example, CITY contains the same value, but the
* variable TCNTRE is not necessary since the %SUBST built-in
* function returns the appropriate value. In addition, the
* intermediary step of adding 1 to C is simplified since
* %SUBST accepts expressions as arguments.
*
C ' ' SCAN CITY C
C IF %SUBST(CITY:C+1) = 'Ontario'
C EVAL CITYCNT = CITYCNT+1
C ENDIF

Figure 170. Built-in Function Example

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
*
* In this example, CUSTNAME is a field in the
* externally described data structure CUSTOMER.
* If the length of CUSTNAME is changed, the attributes of
* both TEMPNAME and NAMEARRAY would be changed merely by
* recompiling. The use of the %SIZE built-in function means
* no changes to your code would be necessary.
*
D CUSTOMER E DS
D DS
D TEMPNAME LIKE(CUSTNAME)
D NAMEARRAY 1 OVERLAY(TEMPNAME)
D DIM(%SIZE(TEMPNAME))

Figure 171. Simplified Maintenance with Built-in Functions

Chapter 19. Operations 431

Built-in functions can be used in expressions on the extended factor 2 calculation
specification and with keywords on the definition specification. When used with
definition specification keywords, the value of the built-in function must be known
at compile time and the argument cannot be an expression.

The following table lists the built-in functions, their arguments, and the value they
return.

Table 56. Built-In Functions
Name Arguments Value Returned

%ABS numeric expression absolute value of expression

%ADDR variable name {: *DATA} address of variable, or address of the data portion of a
variable-length variable

%ALLOC number of bytes to allocate pointer to allocated storage

%BITAND character, numeric bit wise ANDing of the bits of all the arguments

%BITNOT character, numeric bit-wise reverse of the bits of the argument

%BITOR character, numeric bit-wise ORing of the bits of all the arguments

%BITXOR character, numeric bit-wise exclusive ORing of the bits of the two arguments

%CHAR graphic, UCS-2, numeric, date, time, or
timestamp expression {: date, time, or
timestamp format}

value in character format

%CHECK comparator string:string to be checked{:start
position}

first position of a character that is not in the comparator string, or
zero if not found

%CHECKR comparator string:string to be checked{:start
position}

last position of a character that is not in the comparator string, or
zero if not found

%DATE {value {: date format}} the date that corresponds to the specified value, or the current
system date if none is specified

%DAYS number of days number of days as a duration

%DEC numeric expression {:digits:decpos}
character expression: digits:decpos
date, time or timestamp expression {:format}

value in packed numeric format

%DECH numeric or character expression:
digits:decpos

half-adjusted value in packed numeric format

%DECPOS numeric expression number of decimal digits

%DIFF date or time expression: date or time expression:
unit

difference between the two dates, times, or timestamps in the
specified unit

%DIV dividend: divisor the quotient from the division of the two arguments

%EDITC non-float numeric expression:edit code
{:*CURSYM | *ASTFILL | currency symbol}

string representing edited value

%EDITFLT numeric expression character external display representation of float

%EDITW non-float numeric expression:edit word string representing edited value

%ELEM array, table, or multiple occurrence data
structure name

number of elements or occurrences

%EOF {file name} ’1’ if the most recent cycle input, read operation, or write to a
subfile (for a particular file, if specified) ended in an end-of-file or
beginning-of-file condition; and, when a file is specified, if a more
recent OPEN, CHAIN, SETGT or SETLL to the file was not
successful

’0’ otherwise

%EQUAL {file name} ’1’ if the most recent SETLL (for a particular file, if specified) or
LOOKUP operation found an exact match

’0’ otherwise

%ERROR ’1’ if the most recent operation code with extender ’E’ specified
resulted in an error

’0’ otherwise

%FIELDS list of fields to be updated not applicable

%FLOAT numeric or character expression value in float format

432 ILE RPG Reference

###
#

Table 56. Built-In Functions (continued)
Name Arguments Value Returned

%FOUND {file name} ’1’ if the most recent relevant operation (for a particular file, if
specified) found a record (CHAIN, DELETE, SETGT, SETLL), an
element (LOOKUP), or a match (CHECK, CHECKR, SCAN)

’0’ otherwise

%GRAPH character, graphic, or UCS-2 expression value in graphic format

%HANDLER handling procedure : communication area not applicable

%HOURS number of hours number of hours as a duration

%INT numeric or character expression value in integer format

%INTH numeric or character expression half-adjusted value in integer format

%KDS data structure containing keys
{: number of keys}

not applicable

%LEN any expression length in digits or characters

%LOOKUPxx argument: array{:start index {:number of
elements}}

array index of the matching element

%MINUTES number of minutes number of minutes as a duration

%MONTHS number of months number of months as a duration

%MSECONDS number of microseconds number of microseconds as a duration

%NULLIND null-capable field name value in indicator format representing the null indicator setting
for the null-capable field

%OCCUR multiple-occurrence data structure name current occurrence of the multiple-occurrence data structure

%OPEN file name ’1’ if the specified file is open

’0’ if the specified file is closed

%PADDR procedure or prototype name address of procedure or prototype

%PARMS none number of parameters passed to procedure

%PARMNUM procedure-interface parameter name number of a procedure-interface parameter

%REALLOC pointer: numeric expression pointer to allocated storage

%REM dividend: divisor the remainder from the division of the two arguments

%REPLACE replacement string: source string {:start position
{:source length to replace}}

string produced by inserting replacement string into source string,
starting at start position and replacing the specified number of
characters

%SCAN search argument:string to be searched{:start
position}

first position of search argument in string or zero if not found

%SCANRPL scan string: replacement string: source string
{:scan start position {:scan length}}

string produced by replacing scan string by replacement string in
source string, with the scan starting at start position for the
specified length

%SECONDS number of seconds number of seconds as a duration

%SHTDN ’1’ if the system operator has requested shutdown

’0’ otherwise

%SIZE variable, array, or literal {:* ALL} size of variable or literal

%SQRT numeric value square root of the numeric value

%STATUS {file name} 0 if no program or file error occurred since the most recent
operation code with extender ’E’ specified

most recent value set for any program or file status, if an error
occurred

if a file is specified, the value returned is the most recent status
for that file

%STR pointer{:maximum length} characters addressed by pointer argument up to but not including
the first x’00’

%SUBARR array name:start index{:number of elements} array subset

%SUBDT date or time expression: unit an unsigned numeric value that contains the specified portion of
the date or time value

%SUBST string:start{:length} substring

%THIS the class instance for the native method

%TIME {value {: time format}} the time that corresponds to the specified value, or the current
system time if none is specified

Chapter 19. Operations 433

|||

||
|
|
|
|

Table 56. Built-In Functions (continued)
Name Arguments Value Returned

%TIMESTAMP {(value {: timestamp format})} the timestamp that corresponds to the specified value, or the
current system timestamp if none is specified

%TLOOKUPxx argument: search table {: alternate table} ’*ON’ if there is a match

’*OFF’ otherwise

%TRIM string {: characters to trim} string with left and right blanks or specified characters trimmed

%TRIML string {: characters to trim} string with left blanks or specified characters trimmed

%TRIMR string {: characters to trim} string with right blanks or specified characters trimmed

%UCS2 character, graphic, or UCS-2 expression value in UCS-2 format

%UNS numeric or character expression value in unsigned format

%UNSH numeric or character expression half-adjusted value in unsigned format

%XFOOT array expression sum of the elements

%XLATE from-characters: to-characters: string {: start
position}

the string with from-characters replaced by to-characters

%XML xml document { : options } not applicable

%YEARS number of years number of years as a duration

Arithmetic Operations
The arithmetic operations are shown in the following table.

Table 57. Arithmetic Operations

Operation Traditional Syntax Free-Form Syntax

Absolute Value “%ABS (Absolute Value of Expression)” on page 493

Add “ADD (Add)” on page 609 + operator

Divide “DIV (Divide)” on page 657 / operator or “%DIV (Return Integer Portion
of Quotient)” on page 521

Division Remainder “MVR (Move Remainder)” on page 752 “%REM (Return Integer Remainder)” on
page 567

Multiply “MULT (Multiply)” on page 751 * operator

Square Root “SQRT (Square Root)” on page 820 “%SQRT (Square Root of Expression)” on
page 578

Subtract “SUB (Subtract)” on page 821 - operator

Zero and Add “Z-ADD (Zero and Add)” on page 902 (not allowed)

Zero and Subtract “Z-SUB (Zero and Subtract)” on page 903 (not allowed)

For examples of arithmetic operations, see Figure 172 on page 437.

Remember the following when specifying arithmetic operations:
v Arithmetic operations can be done only on numerics (including numeric

subfields, numeric arrays, numeric array elements, numeric table elements,
numeric named constants, numeric figurative constants, and numeric literals).

v In general, arithmetic operations are performed using the packed-decimal
format. This means that the fields are first converted to packed-decimal format
prior to performing the arithmetic operation, and then converted back to their
specified format (if necessary) prior to placing the result in the result field.
However, note the following exceptions:
– If all operands are unsigned, the operation will use unsigned arithmetic.

434 ILE RPG Reference

– If all are integer, or integer and unsigned, then the operation will use integer
arithmetic.

– If any operands are float, then the remaining operands are converted to float.
However, the DIV operation uses either the packed-decimal or float format for
its operations. For more information on integer and unsigned arithmetic, see
“Integer and Unsigned Arithmetic.”

v Decimal alignment is done for all arithmetic operations. Even though truncation
can occur, the position of the decimal point in the result field is not affected.

v The result of an arithmetic operation replaces the data that was in the result
field.

v An arithmetic operation does not change factor 1 and factor 2 unless they are
the same as the result field.

v If you use conditioning indicators with DIV and MVR, it is your responsibility
to ensure that the DIV operation occurs immediately before the MVR operation.
If conditioning indicators on DIV cause the MVR operation to be executed when
the immediately preceding DIV was not executed, then undesirable results may
occur.

v For information on using arrays with arithmetic operations, see “Specifying an
Array in Calculations” on page 171.

Ensuring Accuracy
v The length of any field specified in an arithmetic operation cannot exceed 63

digits. If the result exceeds 63 digits, digits are dropped from either or both
ends, depending on the location of the decimal point.

v The TRUNCNBR option (as a command parameter or as a keyword on a control
specification) determines whether truncation on the left occurs with numeric
overflow or a runtime error is generated. Note that TRUNCNBR does not apply
to calculations performed within expressions. If any overflow occurs within
expressions calculations, a run-time message is issued. In addition, TRUNCNBR
does not apply to arithmetic operations performed in integer or unsigned
format.

v Half-adjusting is done by adding 5 (-5 if the field is negative) one position to the
right of the last specified decimal position in the result field. The half adjust
entry is allowed only with arithmetic operations, but not with an MVR operation
or with a DIV operation followed by the MVR operation. Half adjust only affects
the result if the number of decimal positions in the calculated result is greater
than the number of decimal positions in the result field. Half adjusting occurs
after the operation but before the result is placed in the result field. Resulting
indicators are set according to the value of the result field after half-adjusting
has been done. Half adjust is not allowed if the result field is float.

Performance Considerations
The fastest performance time for arithmetic operations occurs when all operands
are in integer or unsigned format. The next fastest performance time occurs when
all operands are in packed format, since this eliminates conversions to a common
format.

Integer and Unsigned Arithmetic
For all arithmetic operations (not including those in expressions) if factor 1, factor
2, and the result field are defined with unsigned format, then the operation is
performed using unsigned format. Similarly, if factor 1, factor 2, and the result
field are defined as either integer or unsigned format, then the operation is

Arithmetic Operations

Chapter 19. Operations 435

performed using integer format. If any field does not have either integer or
unsigned format, then the operation is performed using the default format,
packed-decimal.

The following points apply to integer and unsigned arithmetic operations only:
v All integer and unsigned operations are performed in 8-byte form.
v Integer and unsigned values may be used together in one operation. However, if

either factor 1, factor 2, or the result field is integer, then all unsigned values are
converted to integer. If necessary, a 1-byte, 2-byte, or 4-byte unsigned value is
converted to a larger-sized integer value to lessen the chance of numeric
overflow.

v If a literal has 20 digits or less with zero decimal positions, and falls within the
range allowed for integer and unsigned fields, then it is loaded in integer or
unsigned format, depending on whether it is a negative or positive value
respectively.

Note: Integer or unsigned arithmetic may give better performance. However, the
chances of numeric overflow may be greater when using integer or
unsigned numeric format, than when using packed or zoned decimal
format.

Arithmetic Operations

436 ILE RPG Reference

Arithmetic Operations Examples

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
C*
C* In the following example, the initial field values are:
C*
D A s 3p 0 inz(1)
D B s 3p 1 inz(10.0)
D C s 2p 0 inz(32)
D D s 2p 0 inz(-10)
D E s 3p 0 inz(6)
D F s 3p 0 inz(10)
D G s 3p 2 inz(2.77)
D H s 3p 0 inz(70)
D J s 3p 1 inz(0.6)
D K s 2p 0 inz(25)
D L s 2p 1 dim(3)
D V s 5p 2
D W s 5p 1
D X s 8p 4
D Y s 6p 2
D Z s 5p 3

/FREE
L(1) = 1.0;
L(2) = 1.7;
L(3) = -1.1;

A = A + 1; // A = 002
V = B + C; // V = 042.00
V = B + D; // V = 0
V = C; // V = 032.00
E = E - 1; // E = 005
W = C - B; // W = 0022.0
W = C - D; // W = 0042.0
W = - C; // W = -0032.0
F = F * E; // F = 060
X = B * G; // X = 0027.7000
X = B * D; // X = -0100.0000
H = H / B; // H = 007
Y = C / J; // Y = 0053.33
eval(r) Z = %sqrt(K); // Z = 05.000
Z = %xfoot(L); // Z = 01.600

dump(a);
*inlr = *on;

/END-FREE

Figure 172. Arithmetic Operations in Free-form Calculations

Arithmetic Operations

Chapter 19. Operations 437

Array Operations
The array operations are shown in the following table.

Table 58. Array Operations

Operation Traditional Syntax Free-Form Syntax

Look Up Elements “LOOKUP (Look Up a Table or Array
Element)” on page 711

“%LOOKUPxx (Look Up an Array Element)”
on page 551 or “%TLOOKUPxx (Look Up a
Table Element)” on page 593

Number of Elements “%ELEM (Get Number of Elements)” on page 527

Move an Array “MOVEA (Move Array)” on page 734 (not allowed)

Sort an Array “SORTA (Sort an Array)” on page 815

Subset an Array “%SUBARR (Set/Get Portion of an Array)” on page 584

Sum the Elements of
an Array

“XFOOT (Summing the Elements of an
Array)” on page 849

“%XFOOT (Sum Array Expression
Elements)” on page 602

While many operations work with arrays, these operations perform specific array
functions. See each operation for an explanation of its function.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments
C*
C* In the following example, the initial field values are:
C*
C* A = 1
C* B = 10.0
C* C = 32
C* D = -20
C* E = 6
C* F = 10.0
C* G = 2.77
C* H = 70
C* J = .6
C* K = 25
C* L = 1.0, 1.7, -1.1 Result:
C*
C ADD 1 A 3 0 A = 002
C B ADD C V 5 2 V = 042.00
C B ADD D V V = -10.00
C Z-ADD C V V = 032.00
C SUB 1 E 3 0 E = 005
C C SUB B W 5 1 W = 0022.0
C C SUB D W W = 0052.0
C Z-SUB C W W = -0032.0
C MULT E F 3 0 F = 060
C B MULT G X 8 4 X = 0027.7000
C B MULT D X X = -0200.0000
C DIV B H 3 0 H = 007
C C DIV J Y 6 2 Y = 0053.33
C MVR Z 5 3 Z = 00.002
C SQRT K Z Z = 05.000
C XFOOT L Z Z = 01.600

Figure 173. Arithmetic Operations in Fixed-form Calculations

Array Operations

438 ILE RPG Reference

Bit Operations
The bit operations are:
v “%BITAND (Bitwise AND Operation)” on page 498
v “%BITNOT (Invert Bits)” on page 499
v “%BITOR (Bitwise OR Operation)” on page 500
v “%BITXOR (Bitwise Exclusive-OR Operation)” on page 501
v “BITOFF (Set Bits Off)” on page 615
v “BITON (Set Bits On)” on page 617
v “TESTB (Test Bit)” on page 831.

Table 59. Bit Operations

Operation Traditional Syntax Free-Form Syntax

Set bits on BITON %BITOR

Set bits off BITOFF %BITAND with %BITNOT

Test bits TESTB %BITAND (see example of
Figure 195 on page 502)

The BITOFF and BITON operations allow you to turn off and on specific bits in a
field specified in the result field. The result field must be a one-position character
field.

The TESTB operation compares the bits identified in factor 2 with the
corresponding bits in the field named as the result field.

The bits in a byte are numbered from left to right. The left most bit is bit number
0. In these operations, factor 2 specifies the bit pattern (bit numbers) and the result
field specifies a one-byte character field on which the operation is performed. To
specify the bit numbers in factor 2, a 1-byte hexadecimal literal or a 1-byte
character field is allowed. The bit numbers are indicated by the bits that are turned
on in the literal or the field. Alternatively, a character literal which contains the bit
numbers can also be specified in factor 2.

With the BITAND operation the result bit is ON when all of the corresponding bits
in the arguments are ON, and OFF otherwise.

With the BITNOT operation the result bit is ON when the corresponding bit in the
argument is OFF, and OFF otherwise.

With the BITOR operation the result bit is ON when any of the corresponding bits
in the arguments are ON, and OFF otherwise.

With the BITXOR operation the result bit is ON when just one of the
corresponding bits in the arguments are ON, and OFF otherwise.

Branching Operations
The branching operations are shown in the following table.

Table 60. Branching Operations

Operation Traditional Syntax Free-Form Syntax

Compare and Branch “CABxx (Compare and Branch)” on page 619 (not allowed)

Bit Operations

Chapter 19. Operations 439

Table 60. Branching Operations (continued)

Operation Traditional Syntax Free-Form Syntax

Go To “GOTO (Go To)” on page 696 (not allowed)

Iterate “ITER (Iterate)” on page 703

Leave “LEAVE (Leave a Do/For Group)” on page 708

Leave a subroutine “LEAVESR (Leave a Subroutine)” on page 710

Tag “TAG (Tag)” on page 828 (not allowed)

The GOTO operation (when used with a TAG operation) allows branching. When a
GOTO operation occurs, the program branches to the specified label. The label can
be specified before or after the GOTO operation. The label is specified by the TAG
or ENDSR operation.

The TAG operation names the label that identifies the destination of a GOTO or
CABxx operation.

The ITER operation transfers control from within a DO-group to the ENDDO
statement of the DO-group.

The LEAVE operation is similar to the ITER operation; however, LEAVE transfers
control to the statement following the ENDDO operation.

The LEAVESR operation causes control to pass to the ENDSR operation of a
subroutine.

See each operation for an explanation of its function.

Call Operations
The call operations are shown in the following table.

Table 61. Call Operations

Operation Traditional Syntax Free-Form Syntax

Call Program or
Procedure

v “CALL (Call a Program)” on page 621
v “CALLB (Call a Bound Procedure)” on

page 622
v “CALLP (Call a Prototyped Procedure or

Program)” on page 623

“CALLP (Call a Prototyped Procedure or
Program)” on page 623

Identify Parameters v “PARM (Identify Parameters)” on page 765
v “PLIST (Identify a Parameter List)” on

page 768

PI or PR definition specification

Number of Parameters “%PARMS (Return Number of Parameters)” on page 563

Number of a
Parameter

“%PARMNUM (Return Parameter Number)” on page 565

Return “RETURN (Return to Caller)” on page 795

CALLP is one type of prototyped call. The second type is a call from within an
expression. A prototyped call is a call for which there is a prototype defined for
the call interface. The prototype may be explicitly defined using a Prototype
definition, or it may be implicitly defined by the compiler from the Procedure
Interface, if the procedure is defined in the same module as the call.

Branching Operations

440 ILE RPG Reference

|
|
|

|
|
|
|
|

Call operations allow an RPG IV procedure to transfer control to other programs or
procedures. However, prototyped calls differ from the CALL and CALLB
operations in that they allow free-form syntax.

The RETURN operation transfers control back to the calling program or procedure
and returns a value, if any. The PLIST and PARM operations can be used with the
CALL and CALLB operations to indicate which parameters should be passed on
the call. With a prototyped call, you pass the parameters on the call.

The recommended way to call a program or procedure (written in any language) is
to code a prototyped call.

Prototyped Calls
With a prototyped call, you can call (with the same syntax):
v Programs that are on the system at run time
v Exported procedures in other modules or service programs that are bound in the

same program or service program
v Subprocedures in the same module

If the program or procedure is not defined in the same module as the call, a
prototype must be included in the definition specifications of the program or
procedure making the call. It is used by the compiler to call the program or
procedure correctly, and to ensure that the caller passes the correct parameters.

If the procedure is defined in the same module as the call, it is not necessary to
explicitly define a prototype. The prototype can be implicitly defined by the
compiler using the information specified by the Procedure Interface for the
procedure.

When a program or procedure is prototyped, you do not need to know the names
of the data items used in the program or procedure; only the number and type of
parameters.

Prototypes improve the communication between programs or procedures. Some
advantages of using prototyped calls are:
v The syntax is simplified because no PARM or PLIST operations are required.
v For some parameters, you can pass literals and expressions.
v When calling procedures, you do not have to remember whether operational

descriptors are required.
v The compiler helps you pass enough parameters, of the the correct type, format

and length, by giving an error at compile time if the call is not correct.
v The compiler helps you pass parameters with the correct format and length for

some types of parameters, by doing a conversion at run time.

Figure 174 on page 442 shows an example using the prototype ProcName, passing
three parameters. The prototype ProcName could refer to either a program or a
procedure. It is not important to know this when making the call; this is only
important when defining the prototype.

Call Operations

Chapter 19. Operations 441

|
|
|
|

|
|
|
|

When calling a procedure in an expression, you should use the procedure name in
a manner consistent with the data type of the specified return value. For example,
if a procedure is defined to return a numeric, then the call to the procedure within
an expression must be where a numeric would be expected.

For more information on calling programs and procedures, and passing
parameters, see the appropriate chapter in the IBM Rational Development Studio for i:
ILE RPG Programmer’s Guide. For more information on defining prototypes and
parameters, see “Prototypes and Parameters” on page 153.

Operational Descriptors
Sometimes it is necessary to pass a parameter to a procedure even though the data
type is not precisely known to the called procedure, (for example, different types
of strings). In these instances you can use operational descriptors to provide
descriptive information to the called procedure regarding the form of the
parameter. The additional information allows the procedure to properly interpret
the string. You should only use operational descriptors when they are expected by
the called procedure.

You can request operational descriptors for both prototyped and non-prototyped
parameters. For prototyped calls, you specify the keyword OPDESC on the
prototype definition. For non-prototyped parameters, you specify (D) as the
operation code extender of the CALLB operation. In either case, operational
descriptors are then built by the calling procedure and passed as hidden
parameters to the called procedure.

When you have specified the OPDESC keyword for your own procedure, you can
call APIs to find out information about the length and type of some of the
parameters. These APIs require you to pass a parameter number to identify which
parameter you are interested in. Usually, the number of a parameter can be
obtained by simply counting the parameters in the prototype or procedure
interface. However, when the RTNPARM keyword is specified, the number of each
parameter is one higher than its apparent number. Use the %PARMNUM built-in
function to get the number of a particular parameter instead of using a numeric
literal. For more information, see “OPDESC” on page 348, “RTNPARM” on page
363 and “%PARMNUM (Return Parameter Number)” on page 565.

Parsing Program Names on a Call
Program names are specified in factor 2 of a CALL operation or as the parameter
of the EXTPGM keyword on a prototype or procedure interface. If you specify the
library name, it must be immediately followed by a slash and then the program
name (for example, 'LIB/PROG'.). If a library is not specified, the library list is
used to find the program. *CURLIB is not supported.

/FREE
// The following calls ProcName with the 3
// parameters CharField, 7, and Field2:

ProcName (CharField: 7: Field2);

// If you need to specify operation extenders, you must also
// specify the CALLP operation code:

CALLP(e) ProcName (CharField: 7: Field2);
/END-FREE

Figure 174. Sample of CALLP operation

Call Operations

442 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Note the following rules:
v The total length of the non-blank data in a field or named constant, including

the slash, cannot exceed 21 characters.
v If either the program or the library name exceeds 10 characters, it is truncated to

10 characters.

The program name is used exactly as specified in the literal, field, named constant,
or array element to determine the program to be called. Specifically:
v Any leading or trailing blanks are ignored.
v If the first character in the entry is a slash, the library list is used to find the

program.
v If the last character in the entry is a slash, a compile-time message will be

issued.
v Lowercase characters are not shifted to uppercase.
v A name enclosed in quotation marks, for example, '“ABC”', always includes the

quotation marks as part of the name of the program to be called.)

Program references are grouped to avoid the overhead of resolving to the target
program. All references to a specific program using a named constant or literal are
grouped so that the program is resolved to only once, and all subsequent
references to that program (by way of named constant or literal only) do not cause
a resolve to recur.

The program references are grouped if both the program and the library name are
identical. All program references by variable name are grouped by the variable
name. When a program reference is made with a variable, its current value is
compared to the value used on the previous program reference operation that used
that variable. If the value did not change, no resolve is done. If it did change, a
resolve is done to the new program specified. Note that this rule applies only to
references using a variable name. References using a named constant or literal are
never re-resolved, and they do not affect whether or not a program reference by
variable is re-resolved. Figure 175 on page 444 illustrates the grouping of program
references.

Call Operations

Chapter 19. Operations 443

Program CALL Example

Parsing System Built-In Names
When the literal or named constant specified on a bound call starts with ″CEE″ or
an underscore (’_’), the compiler will treat this as a system built-in. (A bound call
results with either CALLB or with a prototyped call where EXTPGM is not specfied
on the prototype).

If it is not actually a system built-in, then a warning will appear in the listing; you
can ignore this warning.

For more information on APIs, see the iSeries Information Center programming
category. To avoid confusion with system provided APIs, you should not name
your procedures starting with ″CEE″.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D Pgm_Ex_A C 'LIB1/PGM1'
D Pgm_Ex_B C 'PGM1'
D PGM_Ex_C C 'LIB/PGM2'
*

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
C CALL Pgm_Ex_A
*
* The following two calls will be grouped together because both
* have the same program name (PGM1) and the same library name
* (none). Note that these will not be grouped with the call using
* Pgm_Ex_A above because Pgm_Ex_A has a different library
* name specified (LIB1).
*
C CALL 'PGM1'
C CALL Pgm_Ex_B
*
* The following two program references will be grouped together
* because both have the same program name (PGM2) and the same
* library name (LIB).
*
C CALL 'LIB/PGM2'
C CALL Pgm_Ex_C
*
*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The first call in the program using CALLV below will result in
* a resolve being done for the variable CALLV to the program PGM1.
* This is independent of any calls by a literal or named constant
* to PGM1 that may have already been done in the program. The
* second call using CALLV will not result in a resolve to PGM1
* because the value of CALLV has not changed.
*
C MOVE 'PGM1' CALLV 21
C CALL CALLV
C CALL CALLV

Figure 175. Example of Grouping of Program References

Call Operations

444 ILE RPG Reference

Value of *ROUTINE
When a call fails, the contents of the *ROUTINE subfield of the program status
data structure (PSDS) is updated with the following:
v On an external call, the name of the called program (that is, for CALL or CALLP

to a program).
v On a bound static call, the name of the called procedure.
v On a bound procedure pointer call, *N.

Note that since the size of this subfield is only 8 bytes long, the name may be
truncated.

Compare Operations
The compare operations are shown in the following table.

Table 62. Compare Operations

Operation Traditional Syntax Free-Form Syntax

And “ANDxx (And)” on page 613 AND operator

Compare “COMP (Compare)” on page 648 =, <, >, <=, >=, or <> operator

Compare and Branch “CABxx (Compare and Branch)” on page 619 (not allowed)

Conditional
Subroutine

“CASxx (Conditionally Invoke Subroutine)”
on page 628

“IF (If)” on page 698 and “EXSR (Invoke
Subroutine)” on page 688

Do Until “DOU (Do Until)” on page 660 or “DOUxx
(Do Until)” on page 661

“DOU (Do Until)” on page 660

Do While “DOW (Do While)” on page 663 or “DOWxx
(Do While)” on page 664

“DOW (Do While)” on page 663

If “IF (If)” on page 698 or “IFxx (If)” on page
699

“IF (If)” on page 698

Or “ORxx (Or)” on page 761 OR operator

When “WHEN (When True Then Select)” on page
843 or “WHENxx (When True Then Select)”
on page 844

“WHEN (When True Then Select)” on page
843

In the ANDxx, CABxx, CASxx, DOUxx, DOWxx, IFxx, ORxx, and WHENxx
operations, xx can be:

xx Meaning

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.

LE Factor 1 is less than or equal to factor 2.

Blanks
Unconditional processing (CASxx or CABxx).

The compare operations test fields for the conditions specified in the operations.
These operations do not change the values of the fields. For COMP, CABXX, and

Call Operations

Chapter 19. Operations 445

CASXX, the resulting indicators assigned in postions 71 and 76 are set according to
the results of the operation. All data types may be compared to fields of the same
data type.

Remember the following when using the compare operations:
v If numeric fields are compared, fields of unequal length are aligned at the

implied decimal point. The fields are filled with zeros to the left and/or right of
the decimal point making the field lengths and number of decimal positions
equal for comparison.

v All numeric comparisons are algebraic. A plus (+) value is always greater than a
minus (-) value.

v Blanks within zoned numeric fields are assumed to be zeros, if the
FIXNBR(*ZONED) control specification keyword or command parameter is used
in the compilation of the program.

v If character, graphic, or UCS-2 fields are compared, fields of unequal length are
aligned to their leftmost character. The shorter field is filled with blanks to equal
the length of the longer field so that the field lengths are equal for comparison.

v Date fields are converted to a common format when being compared.
v Time fields are converted to a common format when being compared.
v An array name cannot be specified in a compare operation, but an array element

may be specified.
v The ANDxx and ORxx operations can be used following DOUxx, DOWxx, IFxx,

and WHENxx.
v When comparing a character, graphic, or UCS-2 literal with zero length to a field

(fixed or varying) containing blanks, the fields will compare equal. If you want
to test that a value is of length 0, use the %LEN built-in function. See Figure 52
on page 133 for examples.

Compare Operations

446 ILE RPG Reference

Attention!
Note the following points, especially if you want to avoid unpredictable
results.
v The order of the characters is not necessarily the same for UCS-2 data as it

is for character or graphic data; for example ’2’ is less than ’A’ in UCS-2,
but it is greater than ’A’ for a character comparison. If a comparison
operation involves implicit conversion to UCS-2, or if you change some of
your fields to have UCS-2 type instead of character or graphic type, then
you may notice that some less-than or greater-than comparisons have
different results than you expect.

v All graphic and UCS-2 comparisons are done using the hexadecimal
representation of the data. The alternate sequence is not used.

v If an alternate collating sequence (using the “ALTSEQ{(*NONE | *SRC |
*EXT)}” on page 258 keyword on the Control specification) has been
specified for the comparison of character fields, the comparands are
converted to the alternate sequence and then compared. If *HIVAL or
*LOVAL is used in the comparison, the alternate collating sequence may
alter the value before the compare operation. Note that if either comparand
is defined with the ALTSEQ(*NONE) keyword on the definition
specification, the alternate collating sequence is not used.

v When comparing a basing pointer to *NULL (or to a basing pointer with
value *NULL), the only comparisons that produce predictable results are
for equality and inequality.

v Comparing pointers for less-than or greater-than produces predictable
results only when the pointers point to addresses in contiguous storage.
For example, all pointers are set to addresses in one *USRSPC, or all
pointers are set to the addresses of array elements in one array.

v When procedure pointer fields are compared for anything except equality
or inequality, the results will be unpredictable.

v Because of the way float values are stored, they should not be compared
for equality or inequality. Instead, the absolute value of the difference
between the two values should be compared with a very small value.

Conversion Operations
The following built-in functions perform conversion operations:
v “%CHAR (Convert to Character Data)” on page 505
v “%DEC (Convert to Packed Decimal Format)” on page 513
v “%DECH (Convert to Packed Decimal Format with Half Adjust)” on page 515
v “%EDITC (Edit Value Using an Editcode)” on page 522
v “%EDITFLT (Convert to Float External Representation)” on page 525
v “%EDITW (Edit Value Using an Editword)” on page 526
v “%FLOAT (Convert to Floating Format)” on page 534
v “%GRAPH (Convert to Graphic Value)” on page 537
v “%INT (Convert to Integer Format)” on page 544
v “%INTH (Convert to Integer Format with Half Adjust)” on page 544
v “%UCS2 (Convert to UCS-2 Value)” on page 599
v “%UNS (Convert to Unsigned Format)” on page 600

Compare Operations

Chapter 19. Operations 447

#
#
#
#
#
#
#

v “%UNSH (Convert to Unsigned Format with Half Adjust)” on page 600

These built-in functions are available in both the traditional syntax and free-form
syntax.

The traditional MOVE and MOVEL operation codes perform conversions when
factor 2 and the result field have different types. See:
v “MOVE (Move)” on page 720
v “MOVEL (Move Left)” on page 741

Data-Area Operations
The data-area operations are:
v “IN (Retrieve a Data Area)” on page 701
v “OUT (Write a Data Area)” on page 764
v “UNLOCK (Unlock a Data Area or Release a Record)” on page 839.

These operations are available in both the traditional syntax and free-form syntax.

The IN and OUT operations allow you to retrieve and write one or all data areas
in a program, depending on the factor 2 entry.

The IN and OUT operations also allow you to control the locking or unlocking of a
data area. When a data area is locked, it can be read but not updated by other
programs or procedures.

The following lock states are used:
v For an IN operation with *LOCK specified, an exclusive allow read lock state is

placed on the data area.
v For an OUT operation with *LOCK the data area remains locked after the write

operation
v For an OUT operation with blank the data area is unlocked after it is updated
v UNLOCK is used to unlock data areas and release record locks, the data areas

and/or records are not updated.

During the actual transfer of data into or out of a data area, there is a
system-internal lock on the data area. If several users are contending for the same
data area, a user may get an error message indicating that the data area is not
available.

Remember the following when using the IN, OUT, and UNLOCK operations:
v A data-area operation cannot be done on a data area that is not defined to the

operating system.
v Before the IN, OUT, and UNLOCK operations can be done on a data area, you

must specify the DTAARA keyword on the definition specification for the data
area, or specify the data area in the result field of an *DTAARA DEFINE
statement. (For further information on the DEFINE statement, see “DEFINE
(Field Definition)” on page 651.)

v A locked data area cannot be updated or locked by another RPG program;
however, the data area can be retrieved by an IN operation with factor 1 blank.

v A data-area name cannot be the name of a multiple-occurrence data structure, an
input record field, an array, an array element, or a table.

Conversion Operations

448 ILE RPG Reference

v A data area cannot be the subfield of a multiple occurrence data structure, a
data-area data structure, a program-status data structure, a file-information data
structure (INFDS), or a data structure that appears on an *DTAARA DEFINE
statement.

v If the name of the data area is determined at runtime, due to the
DTAARA(*VAR) keyword being used, the variable containing the name must be
set before an IN operation. If a data area is locked because of a prior *LOCK IN
operation, any other operations (IN, OUT, UNLOCK) for the data area will use
the previously locked data area, and the variable containing the name will not
be consulted.

v If the library name is not specified by the DTAARA keyword, the library list will
be used to locate the data area.

A data structure defined with a U in position 23 of the definition specifications
indicates that the data structure is a data area. You may specify the DTAARA
keyword for a data area data structure, if specified you can use the IN, OUT and
UNLOCK operation codes to specify further operations for the data area. The data
area is automatically read and locked at program initialization time, and the
contents of the data structure are written to the data area when the program ends
with LR on. If the data area for a data area data structure is not found, it will be
created with an initial value of blanks. If the library list was searched for the data
area, the new data area will be created in QTEMP.

To define the local data area (*LDA) you can do one of the following:
v Specify the DTAARA(*LDA) keyword on the definition specification for the data

area.
v Specify UDS on the definition specification for the data area and leave the name

blank.
v Specify *LDA in factor 2 of a *DTAARA DEFINE statement.

To define the *PDA you may specify the DTAARA(*PDA) keyword on the
definition specification for the data area, or specify *PDA in factor 2 of a
*DTAARA DEFINE statement.

Date Operations
The date operations are shown in the following table.

Table 63. Date Operations

Operation Traditional Syntax Free-Form Syntax

Add Duration “ADDDUR (Add Duration)” on page 610 + operator

Extract “EXTRCT (Extract
Date/Time/Timestamp)” on page 689

“%SUBDT (Extract a Portion of a Date,
Time, or Timestamp)” on page 587

Subtract Duration “SUBDUR (Subtract Duration)” on page
822

- operator or “%DIFF (Difference Between
Two Date, Time, or Timestamp Values)” on
page 518

Convert
date/time/timestamp to
character

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

“%CHAR (Convert to Character Data)” on
page 505

Convert
date/time/timestamp to
numeric

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

“%DEC (Convert to Packed Decimal
Format)” on page 513

Data-Area Operations

Chapter 19. Operations 449

Table 63. Date Operations (continued)

Operation Traditional Syntax Free-Form Syntax

Convert character/numeric
to date

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

“%DATE (Convert to Date)” on page 511

Convert character/numeric
to time

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

“%TIME (Convert to Time)” on page 591

Convert
character/numeric/date to
timestamp

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

“%TIMESTAMP (Convert to Timestamp)”
on page 592

Move date/time to
timestamp

“MOVE (Move)” on page 720 or “MOVEL
(Move Left)” on page 741

date + time

Test “TEST (Test Date/Time/Timestamp)” on page 829

Number of Years “%YEARS (Number of Years)” on page 606

Number of Months “%MONTHS (Number of Months)” on page 555

Number of Days “%DAYS (Number of Days)” on page 512

Number of Hours “%HOURS (Number of Hours)” on page 543

Number of Minutes “%MINUTES (Number of Minutes)” on page 554

Number of Seconds “%SECONDS (Number of Seconds)” on page 574

Number of Microseconds “%MSECONDS (Number of Microseconds)” on page 556

Date operations allow you to work with dates, times, and timestamp fields and
character or numeric fields that represent dates, times, and timestamps. You can:
v Add or subtract a duration in years, months, days, hours, minutes, seconds, or

microseconds
v Determine the duration between two dates, times, or timestamps
v Extract a portion of a date, time, or timestamp (for example, the day)
v Test that a value is valid as a date, time, or timestamp.

To add or subtract a duration, you can use the + or - operator in free-form syntax
or the ADDDUR or SUBDUR operation code in traditional syntax. The following
table shows the built-in functions that you use in free-form syntax and the
duration codes that you use in traditional syntax.

Table 64. Built-In Functions and Duration Codes

Unit Built-In Function Duration Code

Year %YEARS *YEARS or *Y

Month %MONTHS *MONTHS or *M

Day %DAYS *DAYS or *D

Hour %HOURS *HOURS or *H

Minute %MINUTES *MINUTES or *MN

Second %SECONDS *SECONDS or *S

Microsecond %MSECONDS *MSECONDS or *MS

For example, you can add 23 days to an existing date in either of the following
ways:

Date Operations

450 ILE RPG Reference

C ADDDUR 23:*D DUEDATE

/FREE
newdate = duedate + %DAYS(23)

/END-FREE

To calculate the duration between two dates, times, or timestamps, you can use the
%DIFF built-in function in free-form syntax or the SUBDUR operation code in
traditional syntax. In either case, you must specify one of the duration codes
shown in Table 64 on page 450.

The duration is given in complete units, with any remainder discarded. A duration
of 59 minutes, expressed in hours, is 0. A duration of 61 minutes, expressed in
hours, is 1.

The following table shows additional examples, using the SUBDUR operation code.
The %DIFF built-in function would give the same results.

Table 65. Resulting Durations Using SUBDUR

Duration
Unit Factor 1 Factor 2 Result

Months 1999-03-28 1999-02-28 1 month

1999-03-14 1998-03-15 11 months

1999-03-15 1998-03-15 12 months

Years 1999-03-14 1998-03-15 0 years

1999-03-15 1998-03-15 1 year

1999-03-14-12.34.45.123456 1998-03-14-12.34.45.123457 0 years

Hours 1990-03-14-23.00.00.000000 1990-03-14-22.00.00.000001 0 hours

Unexpected Results
A month can contain 28, 29, 30, or 31 days. A year can contain 365 or 366 days.
Because of this inconsistency, the following operations can give unexpected results:
v Adding or subtracting a number of months (or calculating a duration in months)

with a date that is on the 29th, 30th, or 31st of a month
v Adding or subtracting a number of years (or calculating a duration in years)

with a February 29 date.

The following rules are used:
v When months or years are added or subtracted, the day portion remains

unchanged if possible. For example, 2000-03-15 + %MONTHS(1) is 2000-04-15.
v If the addition or subtraction would produce a nonexistent date (for example,

April 31), the last day of the month is used instead.
v Any month or year operation that changes the day portion is not reversible. For

example, 2000-03-31 + %MONTHS(1) is 2000-04-30 changes the day from 31 to
30. You cannot get back the original 2000-03-31 by subtracting one month.
The operation 2000-03-31 + %MONTHS(1) - %MONTHS(1) becomes 2000-03-30.

v The duration between two dates is one month if the later date minus one month
gives the first date. For example, the duration in months (rounded down)
between 2000-03-31 and 2000-04-30 is 0 because 2000-04-30 - %MONTHS(1) is
2000-03-30 (not 2000-03-31).

Date Operations

Chapter 19. Operations 451

Declarative Operations
The declarative operations are shown in the following table.

Table 66. Declarative Operations

Operation Traditional Syntax Free-Form Syntax

Define Field “DEFINE (Field Definition)” on page 651 LIKE or DTAARA keyword on definition
specification

Define Key v “KFLD (Define Parts of a Key)” on page
705

v “KLIST (Define a Composite Key)” on
page 706

(not allowed)

Identify Parameters v “PARM (Identify Parameters)” on page 765
v “PLIST (Identify a Parameter List)” on

page 768

PR definition specification

Tag “TAG (Tag)” on page 828 (not allowed)

The declarative operations do not cause an action to occur (except PARM with
optional factor 1 or 2); they can be specified anywhere within calculations. They
are used to declare the properties of fields or to mark parts of a program. The
control level entry (positions 7 and 8) can be blank or can contain an entry to
group the statements within the appropriate section of the program.

The DEFINE operation either defines a field based on the attributes (length and
decimal positions) of another field or defines a field as a data area.

The KLIST and KFLD operations are used to indicate the name by which a
composite key field may be referred and the fields that compose the composite key.
A composite key is a key that contains a list of key fields. It is built from left to
right, with the first KFLD specified being the leftmost (high-order) field of the
composite key.

The PLIST and PARM operations are used with the CALL and CALLB operations
to allow a called program or procedure access to parameters from a calling
program or procedure.

The TAG operation names the destination of a branching operation such as GOTO
or CABxx.

Error-Handling Operations
The exception-handling operation codes are:
v “MONITOR (Begin a Monitor Group)” on page 718
v “ON-ERROR (On Error)” on page 758
v ENDMON, as described in “ENDyy (End a Structured Group)” on page 673

These operation codes are available in both the traditional syntax and free-form
syntax.

MONITOR, ON-ERROR and ENDMON are used to code a monitor group. The
monitor group consists of a monitor block, followed by one or more on-error
blocks, followed by ENDMON.

Declarative Operations

452 ILE RPG Reference

The monitor block contains the code that you think might generate an error. The
on-error blocks contain the code to handle errors that occur in the monitor block.

A monitor block consists of a MONITOR operation followed by the operations that
will be monitored. An on-error block consists of an ON-ERROR operation, with a
list of status codes, followed by the operations that will be performed if an error in
the monitor block generates any of the listed status codes.

When an error occurs in the monitor block and the operation has an (E) extender
or an error indicator, the error will be handled by the (E) extender or the error
indicator. If no indicator or extender can handle the error, control passes to the
on-error block containing the status code for the error. When the on-error block is
finished, control passes to the ENDMON. If there is no on-error block to handle
the error, control passes to the next level of exception handling (the *PSSR or
INFSR subroutines, or the default error handler).

File Operations
The file operation codes are:
v “ACQ (Acquire)” on page 608
v “CHAIN (Random Retrieval from a File)” on page 633
v “CLOSE (Close Files)” on page 646
v “COMMIT (Commit)” on page 647
v “DELETE (Delete Record)” on page 655
v “EXCEPT (Calculation Time Output)” on page 684
v “EXFMT (Write/Then Read Format)” on page 686
v “FEOD (Force End of Data)” on page 691
v “FORCE (Force a Certain File to Be Read Next Cycle)” on page 695
v “NEXT (Next)” on page 753

/free
MONITOR; _

OPEN FILE; |
DOW getNextRecord (); |

X = X + 1; +-- This is the monitor block
nameList(X) = name; |

ENDDO; |
CLOSE FILE; _|

ON-ERROR 1216; _
DSPMSG |

('Error opening file FILE' |
: %status); +-- First on-error block

RETURN; _|
ON-ERROR 121; _

DSPMSG |
('Array NAME is too small' +-- Second on-error block
: %status); |

RETURN; _|
ON-ERROR *ALL; _

DSPMSG |
('Unexpected error' +-- Final catch-all on-error block
: %status); |

RETURN; _|
ENDMON; --- End of MONITOR group

/end-free

Figure 176. Example of MONITOR and ON-ERROR blocks

Error-Handling Operations

Chapter 19. Operations 453

v “OPEN (Open File for Processing)” on page 759
v “POST (Post)” on page 770
v “READ (Read a Record)” on page 772
v “READC (Read Next Changed Record)” on page 775
v “READE (Read Equal Key)” on page 777
v “READP (Read Prior Record)” on page 780
v “READPE (Read Prior Equal)” on page 782
v “REL (Release)” on page 787
v “ROLBK (Roll Back)” on page 798
v “SETGT (Set Greater Than)” on page 804
v “SETLL (Set Lower Limit)” on page 808
v “UNLOCK (Unlock a Data Area or Release a Record)” on page 839
v “UPDATE (Modify Existing Record)” on page 841
v “WRITE (Create New Records)” on page 847.

The file built-in functions are:
v “%EOF (Return End or Beginning of File Condition)” on page 528
v “%EQUAL (Return Exact Match Condition)” on page 530
v “%FOUND (Return Found Condition)” on page 535
v “%OPEN (Return File Open Condition)” on page 559
v “%STATUS (Return File or Program Status)” on page 579

These operations are available in both the traditional syntax and free-form syntax.

Most file operations can be used with both program described and externally
described files (F or E respectively in position 22 of the file description
specifications).

When an externally described file is used with certain file operations, a record
format name, rather than a file name, can be specified in factor 2. Thus, the
processing operation code retrieves and/or positions the file at a record format of
the specified type according to the rules of the calculation operation code used.

When the OVRDBF (override with data base file) command is used with the MBR
(*ALL) parameter specified, the SETLL, SETGT and CHAIN operations only
process the current open file member. For more information, refer to the see the
iSeries Information Center database and file systems category.

The CHAIN, READ, READC, READE, READP, and READPE operations may have
a result data structure. For these operations, data is transferred directly between
the file and the data structure, without processing the input specifications for the
file. Thus, no record identifying or field indicators are set on as a result of an input
operation to a data structure. If all input operations to the file have a result data
structure, input specifications are not required.

The WRITE and UPDATE operations that specify a program described file name in
factor 2 must have a data structure name specified in the result field. WRITE and
UPDATE operations to an externally described file or record may have a result data
structure. For these operations, data is transferred directly between data structure

File Operations

454 ILE RPG Reference

and the file, without processing the output specifications for the file. If all output
operations to the file have a result data structure, output specifications are not
required.

A data structure name is allowed as the result of an I/O operation to an externally
described file name or record name as follows:
1. When a record name is specified on an I/O operation, the origin of the data

structure must match the record. That is, the data structure must be defined
using LIKEREC(rec) or EXTNAME(file:rec) where rec is the format name
specified on the operation. For input operations, the result data structure (or
base structure for the LIKEDS data structure) must be defined using *INPUT.
For output operations, the result data structure must be defined using
*OUTPUT. For UPDATE to a DISK file, the result data structure may be defined
using either *INPUT or *OUTPUT.

2. A result data structure may be specified for an I/O operation to an externally
described file name, in addition to a record name, for opcodes CHAIN, READ,
READE, READP, and READPE. When the name of an externally described file
is specified, the data structure must contain one subfield data structure for each
record with input-capable fields, where the allowed subfield data structures are
defined as in rule 1. Each subfield data structure must start in position 1.
(Normally the overlaying subfields will be defined using keyword
OVERLAY(ds:1).) In the special case where the file contains only one record,
the result data structure may be defined as in rule 1.

3. The result data structure can also be defined using LIKEDS(ds), where ds is an
data structure following these rules.

If an input operation (CHAIN, EXFMT, READ, READC, READE, READP,
READPE) does not retrieve a record because no record was found, because an
error occurred in the operation, or because the last record was already retrieved
(end of file), then no data is extracted and all fields in the program remain
unchanged.

If you specify N as the operation extender of a CHAIN, READ, READE, READP,
or READPE operation for an update disk file, a record is read without locking. If
no operation extender is specified, the record is locked if the file is an update disk
file.

Exception/errors that occur during file operations can be handled by the
programmer (by coding an error indicator or specifying a file-error subroutine), or
by the RPG IV error handler.

Note: Input and output operations in subprocedures involving input and output
specifications always use the global name, even if there is a local variable of
the same name. For example, if the field name TOTALS is defined in the
main source section, as well as in a subprocedure, any input or output
operation in the subprocedure will use the field as defined in the main
source section.

See “Database Null Value Support” on page 219 for information on handling files
with null-capable fields.

You can pass a file as a parameter to a prototyped program or procedure. When
you pass a file as a parameter, then any settings for the file that are defined using
File specification keywords are in effect for all procedures that access the file. For
example, if the EXTFILE keyword is specified with a variable parameter, and a
called procedure opens the file, then the value of the caller’s variable will be used

File Operations

Chapter 19. Operations 455

#
#
#
#
#

to set the name of the file to be opened. If the called procedure needs to change or
access those variables associated with the file through keywords, the calling
procedure must pass the variables as a parameter.

The file-feedback built-in functions %EOF(filename), %EQUAL(filename),
%FOUND(filename), %OPEN(filename), and %STATUS(filename) can be used in
the called procedure program or to determine the current state of the file by
specifying the name of the file parameter as the operand to the built-in function.

For more information on file parameters, see “LIKEFILE(filename)” on page 343
and Chapter 6, “General File Considerations,” on page 107.

Keys for File Operations
With the file operations CHAIN, DELETE, READE, READPE, SETGT and
SETLL,the search argument, search-arg, must be the key or relative record number
used to identify the record. For free-form calculations, a search argument may be:
1. A single field name
2. A klist name
3. A list of values, such as ″(a:b:c+2)″. Each part of the composite key may be any

expression. Data types must match the corresponding key field, but lengths and
data format do not have to match.

4. %KDS(ds{:num})
A composite key is formed from the subfields of the specified data structure in
turn. Data types must match with the corresponding key field, but lengths and
data format do not have to match. Rules for moving data from expression
values to the key build area are the same as for operations code EVAL in that
shorter search arguments are padded on the right with blanks and longer
search arguments are truncated for type character. If num is specified, that is
the number of subfields to use in the composite key.

For non-free-form calculations, only field names and klist names are allowed as
search argument.

Operation extenders H, M, and R are allowed for CHAIN, DELETE, READE,
READPE, SETGT, and SETLL when a list of search arguments or %KDS is
specified. These extenders apply to the moving of the individual search argument
to the search argument build area.

Indicator-Setting Operations
The indicator setting operation codes are:
v “SETOFF (Set Indicator Off)” on page 812
v “SETON (Set Indicator On)” on page 813

These operation codes are available only in the traditional syntax. In free-form
syntax, you can set the value of *INxx to *ON or *OFF using the EVAL operation.

The following indicator-setting built-in function is available in both the traditional
syntax and free-form syntax:
v “%NULLIND (Query or Set Null Indicator)” on page 557

The SETON and SETOFF operations set (on or off) indicators specified in positions
71 through 76. At least one resulting indicator must be specified in these positions.
Remember the following when setting indicators:

File Operations

456 ILE RPG Reference

#
#
#

#

v The 1P, MR, KA through KN, and KP through KY indicators cannot be set on by
the SETON operation.

v The 1P and MR indicators cannot be set off by the SETOFF operation.
v Setting L1 through L9 on or off with a SETON or SETOFF operation does not set

any lower control level indicators.

Information Operations
The information operations are shown in the following table.

Table 67. Information Operations

Operation Traditional Syntax Free-Form Syntax

Dump “DUMP (Program Dump)” on page 669

Get Shutdown Status “SHTDN (Shut Down)” on page 814 “%SHTDN (Shut Down)” on page 575

Get Time and Date “TIME (Retrieve Time and Date)” on page
837

v “%DATE (Convert to Date)” on page 511
v “%TIME (Convert to Time)” on page 591
v “%TIMESTAMP (Convert to Timestamp)”

on page 592

The DUMP operation provides a dump of all indicators, fields, data structures,
arrays, and tables used in a program.

The SHTDN operation allows the program to determine whether the system
operator has requested shutdown. If so, the resulting indicator that must be
specified in positions 71 and 72 is set on.

The TIME operation allows the program to access the system time of day and
system date at any time during program running.

Initialization Operations
The initialization operations provide run-time clearing and resetting of all elements
in a structure (record format, data structure, array, or table) or a variable (field,
subfield, or indicator).

The initialization operations are:
v “CLEAR (Clear)” on page 642
v “RESET (Reset)” on page 788.

These operations are available in both the traditional syntax and free-form syntax.

The CLEAR operation sets all elements in a structure or variable to their default
value depending on the field type (numeric, character, graphic, UCS-2, indicator,
pointer, or date/time/timestamp).

The RESET operation sets all elements in a structure or variable to their initial
values (the values they had at the end of the initialization step in the program
cycle).

The RESET operation is used with data structure initialization and the initialization
subroutine (*INZSR). You can use both data structure initialization and the *INZSR
to set the initial value of a variable. The initial value will be used to set the
variable if it appears in the result field of a RESET operation.

Indicator-Setting Operations

Chapter 19. Operations 457

When these operation codes are applied to record formats, only fields which are
output are affected (if factor 2 is blank) or all fields (if factor 2 is *ALL). The factor
1 entry of *NOKEY prevents key fields from being cleared or reset.

*ALL may be specified in factor 2 if the result field contains a table name, or
multiple occurrence data structure or record format. If *ALL is specified all
elements or occurrences will be cleared or reset. See “CLEAR (Clear)” on page 642
and “RESET (Reset)” on page 788 for more detail.

For more information see Chapter 9, “Data Types and Data Formats,” on page 179.

Memory Management Operations
The memory management operations are shown in the following table.

Table 68. Memory Management Operations

Operation Traditional Syntax Free-Form Syntax

Allocate Storage “ALLOC (Allocate Storage)” on page 612 “%ALLOC (Allocate Storage)” on page 497

Free Storage “DEALLOC (Free Storage)” on page 649

Reallocate Storage “REALLOC (Reallocate Storage with New
Length)” on page 785

“%REALLOC (Reallocate Storage)” on page
566

Get the Address of a
Variable

“%ADDR (Get Address of Variable)” on page 494

Get the Address of a
Procedure

“%PADDR (Get Procedure Address)” on page 560

The ALLOC operation allocates heap storage and sets the result-field pointer to
point to the storage. The storage is uninitialized.

The REALLOC operation changes the length of the heap storage pointed to by the
result-field pointer. New storage is allocated and initialized to the value of the old
storage. The data is truncated if the new size is smaller than the old size. If the
new size is greater than the old size, the storage following the copied data is
uninitialized. The old storage is released. The result-field pointer is set to point to
the new storage.

The DEALLOC operation releases the heap storage that the result-field pointer is
set to. If operational extender (N) is specified, the pointer is set to *NULL after a
successful deallocation.

Storage is implicitly freed when the activation group ends. Setting LR on will not
free any heap storage allocated by the module, but any pointers to heap storage
will be lost.

There are two types of heap storage: single-level and teraspace. You can use the
ALLOC keyword on the Control specification to control which type of heap
storage is used by your memory management operations.

There are advantages and disadvantages of each type of heap storage.
v The maximum size of an individual allocation or reallocation is larger for

teraspace heap storage.

Initialization Operations

458 ILE RPG Reference

|
|
|

|

|
|

– The maximum size that RPG allows for the %ALLOC and %REALLOC
built-in functions is 4294967295 bytes. When you use single-level heap
storage, the maximum size that RPG allows is 16776704 bytes.

– RPG allows the larger maximum of 4294967295 bytes for the ALLOC and
REALLOC operation codes when the compiler can detect at compile time that
memory management operations will use teraspace heap storage. If RPG
memory management operations will use single-level heap storage, or if the
compiler cannot detect the type of heap storage at compile time, then the
smaller limit of 16776704 bytes will be in effect.

– Note that the actual maximum size that you can allocate may be less than the
maximum size that RPG allows, depending on the availability of heap storage
at runtime.

v The system functions that RPG uses to reallocate and deallocate teraspace heap
storage can handle pointers to either single-level heap storage or teraspace heap
storage. When the teraspace reallocation function is used to reallocate a pointer,
the new allocation will be the same type of heap storage as the original
allocation.

v The system functions that RPG uses to reallocate and deallocate single-level
heap storage can only handle pointers to single-level heap storage.

v Single-level storage can provide greater integrity than teraspace storage. For
example, using single-level storage, the storage that can be affected by a storage
over-run is measured in megabytes; for teraspace storage, it is measured in
terabytes.

For more information on the different types of heap storage, see the chapter on
storage management in ILE Concepts, SC41-5606-09.

Misuse of heap storage can cause problems. The following example illustrates a
scenario to avoid:

Following are more problematic situations:
v A similar error can be made if a pointer is copied before being reallocated or

deallocated. Great care must be taken when copying pointers to allocated
storage, to ensure that they are not used after the storage is deallocated or
reallocated.

D Fld1 S 25A BASED(Ptr1)
D Fld2 S 5A BASED(Ptr2)
D Ptr1 S *
D Ptr2 S *
....
C ALLOC 25 Ptr1
C DEALLOC Ptr1
* After this point, Fld1 should not be accessed since the
* basing pointer Ptr1 no longer points to allocated storage.
C CALL 'SOMEPGM'

* During the previous call to 'SOMEPGM', several storage allocations
* may have been done. In any case, it is extremely dangerous to
* make the following assignment, since 25 bytes of storage will
* be filled with 'a'. It is impossible to know what that storage
* is currently being used for.
C EVAL Fld1 = *ALL'a'

Memory Management Operations

Chapter 19. Operations 459

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

v If a pointer to heap storage is copied, the copy can be used to deallocate or
reallocate the storage. In this case, the original pointer should not be used until
it is set to a new value.

v If a pointer to heap storage is passed as a parameter, the callee could deallocate
or reallocate the storage. After the call returns, attempts to access the storage
through pointer could cause problems.

v If a pointer to heap storage is set in the *INZSR, a later RESET of the pointer
could cause the pointer to get set to storage that is no longer allocated.

v Another type of problem can be caused if a pointer to heap storage is lost (by
being cleared, or set to a new pointer by an ALLOC operation, for example).
Once the pointer is lost, the storage it pointed to cannot be freed. This storage is
unavailable to be allocated since the system does not know that the storage is no
longer addressable. The storage will not be freed until the activation group ends.

Message Operation
The message operation
v “DSPLY (Display Message)” on page 666

allows interactive communication between the program and the operator or
between the program and the display workstation that requested the program.

This operation is available in both the traditional syntax and free-form syntax.

Move Operations
The move operations are shown in the following table.

Table 69. Move Operations

Operation Traditional Syntax Free-Form Syntax

Move “MOVE (Move)” on page 720 “EVALR (Evaluate expression, right adjust)”
on page 678 or conversion built-in functions

Move an Array “MOVEA (Move Array)” on page 734 (not allowed)

Move Left “MOVEL (Move Left)” on page 741 “EVAL (Evaluate expression)” on page 676 or
conversionbuilt-in functions

Move operations transfer all or part of factor 2 to the result field. Factor 2 remains
unchanged.

The source and target of the move operation can be of the same or different types,
but some restrictions apply:
v For pointer moves, source and target must be the same type, either both basing

pointers or both procedure pointers.
v When using MOVEA, both the source and target must be of the same type.
v MOVEA is not allowed for Date, Time or Timestamp fields.
v MOVE and MOVEL are not allowed for float fields or literals.

Resulting indicators can be specified only for character, graphic, UCS-2, and
numeric result fields. For the MOVE and MOVEL operations, resulting indicators
are not allowed if the result field is an unindexed array. For MOVEA, resulting
indicators are not allowed if the result field is an array, regardless of whether or
not it is indexed.

Memory Management Operations

460 ILE RPG Reference

The P operation extender can only be specified if the result field is character,
graphic, UCS-2, or numeric.

Moving Character, Graphic, UCS-2, and Numeric Data
When a character field is moved into a numeric result field, the digit portion of
each character is converted to its corresponding numeric character and then moved
to the result field. Blanks are transferred as zeros. For the MOVE operation, the
zone portion of the rightmost character is converted to its corresponding sign and
moved to the rightmost position of the numeric result field. It becomes the sign of
the field. (See Figure 345 on page 732 for an example.) For the MOVEL operation,
the zone portion of the rightmost character of factor 2 is converted and used as the
sign of the result field (unless factor 2 is shorter than the result field) whether or
not the rightmost character is included in the move operation. (See Figure 347 on
page 744 for an example.)

If move operations are specified between numeric fields, the decimal positions
specified for the factor 2 field are ignored. For example, if 1.00 is moved into a
three-position numeric field with one decimal position, the result is 10.0.

Factor 2 may contain the figurative constants *ZEROS for moves to character or
numeric fields. To achieve the same function for graphic fields, the user should
code *ALLG’oXXi’ (where ’XX’ represents graphic zeros).

When moving data from a character source to graphic fields, if the source is a
character literal, named constant, or *ALL, the compiler will check to make sure it
is entirely enclosed by one pair of shift-out shift-in characters (SO/SI). The
compiler also checks that the character source is of even length and at least 4 bytes
(SO/SI plus one graphic character). When moving from a hexadecimal literal or
*ALLX to graphic field, the first byte and last byte of the hexadecimal literal or the
pattern within *ALLX must not be 0E (shift out) and 0F (shift in). But the
hexadecimal literal (or pattern) should still represent an even number of bytes.

When a character field is involved in a move from/to a graphic field, the compiler
will check that the character field is of even length and at least 4 bytes long. At
runtime, the compiler checks the content of the character field to make sure it is
entirely enclosed by only one pair of SO/SI.

When moving from a graphic field to a character field, if the length of the
character field is greater than the length of the graphic field (in bytes) plus 2 bytes,
the SO/SI are added immediately before and after the graphic data. This may
cause unbalanced SO/SI in the character field due to residual data in the character
field, which will not be diagnosed by the compiler.

When move operations are used to move data from character fields to graphic
fields, shift-out and shift-in characters are removed. When moving data from
graphic fields to character fields, shift-out and shift-in characters are inserted in the
target field.

When move operations are used to convert data from character to UCS-2 or from
UCS-2 to character, the number of characters moved is variable since the character
data may or may not contain shift characters and graphic characters. For example,
five UCS-2 characters can convert to:
v Five single-byte characters
v Five double-byte characters

Move Operations

Chapter 19. Operations 461

v A combination of single-byte and double-byte characters with shift characters
separating the modes

If the resulting data is too long to fit the result field, the data will be truncated. If
the result is single-byte character, it is the responsibility of the user to ensure that
the result contains complete characters, and contains matched SO/SI pairs.

If you specify operation extender P for a move operation, the result field is padded
from the right for MOVEL and MOVEA and from the left for MOVE. The pad
characters are blank for character, double-byte blanks for graphic, UCS-2 blanks for
UCS-2, 0 for numeric, and '0' for indicator. The padding takes place after the
operation. If you use MOVE or MOVEL to move a field to an array, each element
of the array will be padded. If you use these operations to move an array to an
array and the result contains more elements than the factor 2 array, the same
padding takes place but the extra elements are not affected. A MOVEA operation
with an array name in the result field will pad the last element affected by the
operation plus all subsequent elements.

When resulting indicators are specified for move operations, the result field
determines which indicator is set on. If the result field is a character, graphic, or
UCS-2 field, only the resulting indicator in positions 75 and 76 can be specified.
This indicator is set on if the result field is all blanks. When the result field is
numeric, all three resulting indicator positions may be used. These indicators are
set on as follows:

High (71-72) Set on if the result field is greater than 0.

Low (73-74) Set on if the result field is less than 0.

Equal (75-76) Set on if the result field is equal to 0.

Moving Date-Time Data
The MOVE and MOVEL operation codes can be used to move Date, Time and
Timestamp data type fields.

The following combinations are allowed for the MOVE and MOVEL operation
codes:
v Date to Date
v Time to Time
v Timestamp to Timestamp
v Date to Timestamp
v Time to Timestamp (sets micro-seconds to 000000)
v Timestamp to Date
v Timestamp to Time
v Date to Character or Numeric
v Time to Character or Numeric
v Timestamp to Character or Numeric
v Character or Numeric to Date
v Character or Numeric to Time
v Character or Numeric to Timestamp

Factor 1 must be blank if both the source and the target of the move are Date,
Time or Timestamp fields. If factor 1 is blank, the format of the Date, Time, or
Timestamp field is used.

Move Operations

462 ILE RPG Reference

Otherwise, factor 1 contains the date or time format compatible with the character
or numeric field that is the source or target of the operation. Any valid format may
be specified. See “Date Data Type” on page 206, “Time Data Type” on page 208,
and “Timestamp Data Type” on page 210.

Keep in mind the following when specifying factor 1:
v Time format *USA is not allowed for movement between Time and numeric

fields.
v The formats *LONGJUL, *CYMD, *CMDY, and *CDMY, and a special value

*JOBRUN are allowed in factor 1. (For more information, see Table 35 on page
208.)

v A zero (0) specified at the end of a format (for example *MDY0) indicates that
the character field does not contain separators.

v A 2-digit year format (*MDY, *DMY, *YMD, *JUL and *JOBRUN) can only
represent dates in the range 1940 through 2039. A 3-digit year format (*CYMD,
*CMDY, *CDMY) can only represent dates in the range 1900 through 2899. An
error will be issued if conversion to a 2- or 3-digit year format is requested for
dates outside these ranges.

v When MOVE and MOVEL are used to move character or numeric values to or
from a timestamp, the character or numeric value is assumed to contain a
timestamp.

Factor 2 is required and must be a character, numeric, Date, Time, or Timestamp
value. It contains the field, array, array element, table name, literal, or named
constant to be converted.

The following rules apply to factor 2:
v Separator characters must be valid for the specified format.
v If factor 2 is not a valid representation of a date or time or its format does not

match the format specified in factor 1, an error is generated.
v If factor 2 contains UDATE or *DATE, factor 1 is optional and corresponds to the

header specifications DATEDIT keyword.
v If factor 2 contains UDATE and factor 1 entry is coded, it must be a date format

with a 2-digit year. If factor 2 contains *DATE and factor 1 is coded, it must be a
date format with a 4-digit year.

The result field must be a Date, Time, Timestamp, numeric, or character variable. It
can be a field, array, array element, or table name. The date or time is placed in the
result field according to its defined format or the format code specified in factor 1.
If the result field is numeric, separator characters will be removed, prior to the
operation. The length used is the length after removing the separator characters.

When moving from a Date to a Timestamp field, the time and microsecond portion
of the timestamp are unaffected, however the entire timestamp is checked and an
error will be generated if it is not valid.

When moving from a Time to a Timestamp field, the microseconds part of the
timestamp is set to 000000. The date portion remains unaffected, but the entire
timestamp will be checked and an error will be generated when it is not valid.

If character or numeric data is longer than required, only the leftmost data
(rightmost for the MOVE operation) is used. Keep in mind that factor 1 determines

Move Operations

Chapter 19. Operations 463

the length of data to be moved. For example, if the format of factor 1 is *MDY for
a MOVE operation from a numeric date, only the rightmost 6 digits of factor 2
would be used.

Examples of Converting a Character Field to a Date Field
Figure 177 on page 465 shows some examples of how to define and move 2- and
4-digit year dates between date fields, or between character and date fields.

Move Operations

464 ILE RPG Reference

The following example shows how to convert from a character field in the form
CYYMMDD to a date field in *ISO format. This is particularly useful when using
command parameters of type *DATE.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* Define two 8-byte character fields.
D CHR_8a s 8a inz('95/05/21')
D CHR_8b s 8a inz('abcdefgh')
*
* Define two 8-byte date fields. To get a 2-digit year instead of
* the default 4-digit year (for *ISO format), they are defined
* with a 2-digit year date format, *YMD. For D_8a, a separator (.)
* is also specified. Note that the format of the date literal
* specified with the INZ keyword must be the same as the format
* specified on the * control specification. In this case, none
* is specified, so it is the default, *ISO.
*
D D_8a s d datfmt(*ymd.)
D D_8b s d inz(d'1995-07-31') datfmt(*ymd)
*
* Define a 10-byte date field. By default, it has *ISO format.
D D_10 s d inz(d'1994-06-10')
*
* D_10 now has the value 1995-05-21
*
* Move the 8-character field to a 10-character date field D_10.
* It will contain the date that CHR_8a was initialized to, but
* with a 4-digit year and the format of D_10, namely,
* 1995-05-21 (*ISO format).
*
* Note that a format must be specified with built-in function
* %DATE to indicate the format of the character field.
*
/FREE

D_10 = %DATE (CHR_8a: *YMD);
//
// Move the 10-character date to an 8-character field CHR_8b.
// It will contain the date that was just moved to D_10, but with
// a 2-digit year and the default separator indicated by the *YMD
// format.
//
CHR_8b = %CHAR (D_10: *YMD);
//
// Move the 10-character date to an 8-character date D_8a.
// It will contain the date that * was just moved to D_10, but
// with a 2-digit year and a . separator since D_8a was defined
// with the (*YMD.) format.
//
D_8a = D_10;
//
// Move the 8-character date to a 10-character date D_10
// It will contain the date that * D_8b was initialized to,
// but with a 4-digit year, 1995-07-31.
//
D_10 = D_8b;
//
// After the last move, the fields will contain
// CHR_8b: 95/05/21
// D_8a: 95.05.21
// D_10: 1995-07-31
//
*INLR = *ON;

/END-FREE

Figure 177. Moving character and date data

Move Operations

Chapter 19. Operations 465

The RPG program is only intended to be called using the command interface, so it
is not necessary to specify a prototype for the program. The prototype will be
implicitly defined by the compiler using the information in the procedure interface.

Move Zone Operations
The move zone operations are:
v “MHHZO (Move High to High Zone)” on page 714
v “MHLZO (Move High to Low Zone)” on page 715
v “MLHZO (Move Low to High Zone)” on page 716
v “MLLZO (Move Low to Low Zone)” on page 717.

These operations are available only in the traditional syntax.

The move zone operations move only the zone portion of a character.

Whenever the word high is used in a move zone operation, the field involved must
be a character field; whenever low is used, the field involved can be either a
character or a numeric field. Float numeric fields are not allowed in the Move
Zone operations.

Characters J through R have D zones and can be used to obtain a negative value:
(J = hexadecimal D1, ..., R = hexadecimal D9).

Note: While you may see this usage in old programs, your code will be clearer if
you use hexadecimal literals for this purpose. Use X’F0’ to obtain a positive
zone and X’D0’ to obtain a negative zone.

Note: The character (-) is represented by a hexadecimal 60, and cannot be used to
obtain a negative result, since it has a zone of 6, and a negative result
requires a zone of ″D″.

CMD PROMPT('Use DATE parameter')
PARM KWD(DATE) TYPE(*DATE)

Figure 178. Source for a command using a date parameter.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* Procedure interface for this program (no prototype is necessary)
D FIG210 PI EXTPGM('FIG210')
D DateParm 7A

* Declare a date type with date format *ISO.
D ISO_DATE S D DATFMT(*ISO)

* The format of the DateParm parameter is CYYMMDD, so code
* *CYMD0 as the 2nd parameter of built-in function %DATE.
/FREE

ISO_DATE = %DATE (DateParm: *CYMD0);
/END-FREE

Figure 179. Part of RPG IV command processing program for this command.

Move Operations

466 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|

Result Operations
The following built-in functions work with the result of the previous operation:
v “%EQUAL (Return Exact Match Condition)” on page 530
v “%FOUND (Return Found Condition)” on page 535
v “%ERROR (Return Error Condition)” on page 532
v “%STATUS (Return File or Program Status)” on page 579

These built-in functions are available in both the traditional syntax and free-form
syntax.

Size Operations
The following built-in functions return information about the size of a varible,
field, constant, array, table, or data structure:
v “%DECPOS (Get Number of Decimal Positions)” on page 517
v “%LEN (Get or Set Length)” on page 547
v “%SIZE (Get Size in Bytes)” on page 576

These built-in functions are available in both the traditional syntax and free-form
syntax.

String Operations
The string operations are shown in the following table.

Character

Numeric

Factor
Two

Factor
Two

Result
Field

Result
Field

Character

Character

MHHZO
MLHZO

MLHZO

MHLZO

MLLZO

MLLZO

Character

Numeric

Factor
Two

Factor
Two

Result
Field

Result
Field

Numeric

Numeric

MHLZO

MLLZO

MLLZO

Figure 180. Function of MOVE Zone Operations

Result Operations

Chapter 19. Operations 467

Table 70. String Operations

Operation Traditional Syntax Free-Form Syntax

Concatenate “CAT (Concatenate Two Strings)” on page
630

+ operator

Check “CHECK (Check Characters)” on page 636 “%CHECK (Check Characters)” on page 507

Check Reverse “CHECKR (Check Reverse)” on page 639 “%CHECKR (Check Reverse)” on page 509

Create “%STR (Get or Store Null-Terminated String)” on page 582

Replace “%REPLACE (Replace Character String)” on page 568

Scan “SCAN (Scan String)” on page 799 “%SCAN (Scan for Characters)” on page 570

Scan and Replace “%SCANRPL (Scan and Replace Characters)” on page 572

Substring “SUBST (Substring)” on page 825 “%SUBST (Get Substring)” on page 588

Translate “XLATE (Translate)” on page 850 “%XLATE (Translate)” on page 603

Trim Blanks “%TRIM (Trim Characters at Edges)” on page 595, “%TRIML (Trim Leading Characters)” on
page 597, or “%TRIMR (Trim Trailing Characters)” on page 598

The string operations include concatenation, scanning, substringing, translation,
and verification. String operations can only be used on character, graphic, or UCS-2
fields.

The CAT operation concatenates two strings to form one.

The CHECK and CHECKR operations verify that each character in factor 2 is
among the valid characters in factor 1. CHECK verifies from left to right and
CHECKR from right to left.

The SCAN operation scans the base string in factor 2 for occurrences of another
string specified in factor 1.

The SUBST operation extracts a specified string from a base string in factor 2. The
extracted string is placed in the result field.

The XLATE operation translates characters in factor 2 according to the from and to
strings in factor 1.

Note: Figurative constants cannot be used in the factor 1, factor 2, or result fields.
No overlapping in a data structure is allowed for factor 1 and the result
field, or factor 2 and the result field.

In the string operations, factor 1 and factor 2 may have two parts. If both parts are
specified, they must be separated by a colon. This option applies to all but the
CAT, CHECK, CHECKR, and SUBST operations (where it applies only to factor 2).

If you specify P as the operation extender for the CAT, SUBST, or XLATE
operations, the result field is padded from the right with blanks after the
operation.

See each operation for a more detailed explanation.

String Operations

468 ILE RPG Reference

When using string operations on graphic fields, all data in factor 1, factor 2, and
the result field must be graphic. When numeric values are specified for length,
start position, and number of blanks for graphic characters, the values represent
double byte characters.

When using string operations on UCS-2 fields, all data in factor 1, factor 2, and the
result field must be UCS-2. When numeric values are specified for length, start
position, and number of blanks for UCS-2 characters, the values represent double
byte characters.

When using string operations on the graphic part of mixed-mode character data,
the start position, length and number of blanks represent single byte characters.
Preserving data integrity is the user’s responsibility.

Structured Programming Operations
The structured programming operations are shown in the following table.

Table 71. Structured Programming Operations

Operation Traditional Syntax Free-Form Syntax

And “ANDxx (And)” on page 613 AND operator

Do “DO (Do)” on page 658 “FOR (For)” on page 692

Do Until “DOU (Do Until)” on page 660 or “DOUxx
(Do Until)” on page 661

“DOU (Do Until)” on page 660

Do While “DOW (Do While)” on page 663 or “DOWxx
(Do While)” on page 664

“DOW (Do While)” on page 663

Else “ELSE (Else)” on page 671

Else If “ELSEIF (Else If)” on page 672

End “ENDyy (End a Structured Group)” on page 673

For “FOR (For)” on page 692

If “IF (If)” on page 698 or “IFxx (If)” on page
699

“IF (If)” on page 698

Iterate “ITER (Iterate)” on page 703

Leave “LEAVE (Leave a Do/For Group)” on page 708

Or “ORxx (Or)” on page 761 OR operator

Otherwise “OTHER (Otherwise Select)” on page 762

Select “SELECT (Begin a Select Group)” on page 802

When “WHEN (When True Then Select)” on page
843 or “WHENxx (When True Then Select)”
on page 844

“WHEN (When True Then Select)” on page
843

The DO operation allows the processing of a group of calculations zero or more
times starting with the value in factor 1, incrementing each time by a value on the
associated ENDDO operation until the limit specified in factor 2 is reached.

The DOU and DOUxx (Do Until) operations allow the processing of a group of
calculations one or more times. The end of a Do-Until operation is indicated by an
ENDDO operation.

String Operations

Chapter 19. Operations 469

The DOW and DOWxx (Do While) operations allow the processing of a group of
calculations zero or more times. The end of a Do-While operation is indicated by
an ENDDO operation.

The FOR operation allows the repetitive processing of a group of calculations. A
starting value is assigned to the index name. Increment and limit values can be
specified, as well. Starting, increment, and limit values can be free-form
expressions. An ENDFOR operation indicates the end of the FOR group.

The LEAVE operation interrupts control flow prematurely and transfers control to
the statement following the ENDDO or ENDFOR operation of an iterative
structured group. The ITER operation causes the next loop iteration to occur
immediately.

The IF and IFxx operations allow the processing of a group of calculations if a
specified condition is satisfied. The ELSE operation allows you to specify a group
of calculations to be processed if the condition is not satisfied. The ELSEIF
operation is a combination of an ELSE operation and an IF operation. The end of
an IF or IFxx group is indicated by ENDIF.

The SELECT, WHEN, WHENxx, and OTHER group of operations are used to
conditionally process one of several alternative sequences of operations. The
beginning of the select group is indicated by the SELECT operation. The WHEN
and WHENxx operations are used to choose the operation sequence to process.
The OTHER operation is used to indicate an operation sequence that is processed
when none of the WHENxx conditions are fulfilled. The end of the select group is
indicated by the ENDSL operation.

The ANDxx and ORxx operations are used with the DOUxx, DOWxx, WHENxx,
and IFxx operations to specify a more complex condition. The ANDxx operation
has higher precedence than the ORxx operation. Note, however, that the IF, DOU,
DOW, and WHEN operations allow a more straightforward coding of complex
expressions than their xx counterparts.

A DO, DOUxx, DOWxx, FOR, IFxx, MONITOR, or SELECT operation (with or
without ANDxx or ORxx operations), and an ENDyy operation, delimit a
structured group. The ENDDO operation ends each DO, DOUxx, and DOWxx
group or causes the structured group to be reprocessed until the specified ending

*...1....+....2....+....3....+....4....+....5....+....6....+....7...
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In the following example, indicator 25 will be set on only if the
* first two conditions are true or the third condition is true.
*
* As an expression, this would be written:
* EVAL *IN25 = ((FIELDA > FIELDB) AND (FIELDA >= FIELDC)) OR (FIELDA < FIELDD)
*
*
C FIELDA IFGT FIELDB
C FIELDA ANDGE FIELDC
C FIELDA ORLT FIELDD
C SETON 25
C ELSE
C SETOFF 25
C ENDIF

Figure 181. Example of AND/OR Precedence

Structured Programming Operations

470 ILE RPG Reference

conditions are met. The ENDFOR operation ends each FOR group. The SELECT
must end with an ENDSL. An IFxx operation and an IFxx operation with an ELSE
operation must end with an ENDIF operation.

The rules for making the comparison on the ANDxx, DOUxx, DOWxx, IFxx, ORxx
and WHENxx operation codes are the same as those given under “Compare
Operations” on page 445.

In the ANDxx, DOUxx, DOWxx, IFxx, ORxx, and WHENxx operations, xx can be:

xx Meaning

GT Factor 1 is greater than factor 2.

LT Factor 1 is less than factor 2.

EQ Factor 1 is equal to factor 2.

NE Factor 1 is not equal to factor 2.

GE Factor 1 is greater than or equal to factor 2.

LE Factor 1 is less than or equal to factor 2.

In the ENDyy operation, yy can be:

yy Meaning

CS End for CASxx operation.

DO End for DO, DOUxx, and DOWxx operation.

FOR End for FOR operation.

IF End for IFxx operation.

SL End for SELECT operation.

Blanks
End for any structured operation.

Note: The yy in the ENDyy operation is optional.

If a structured group, in this case a do group, contains another complete structured
group, together they form a nested structured group. Structured groups can be
nested to a maximum depth of 100 levels. The following is an example of nested
structured groups, three levels deep:

Remember the following when specifying structured groups:
v Each nested structured group must be completely contained within the outer

level structured group.

DO
DO
ENDDO
IFxx
SELECT
WHENxx
ENDSL
ELSE
ENDIF
ENDDO

Figure 182. Nested Structured Groups

Structured Programming Operations

Chapter 19. Operations 471

v Each structured group must contain one of a DO, DOUxx, DOWxx, FOR, IFxx,
or SELECT operation and its associated ENDyy operation.

v A structured group can be contained in detail, total, or subroutine calculations,
but it cannot be split among them.

v Branching into a structured group from outside the structured group may cause
undesirable results.

Subroutine Operations
The subroutine operations are:
v “BEGSR (Beginning of Subroutine)” on page 614
v “ENDSR (End of Subroutine)” on page 675
v “EXSR (Invoke Subroutine)” on page 688
v “LEAVESR (Leave a Subroutine)” on page 710
v “CASxx (Conditionally Invoke Subroutine)” on page 628 (traditional syntax

only)

All of these operations except CASxx are available in both the traditional syntax
and free-form syntax.

A subroutine is a group of calculation specifications in a program that can be
processed several times in that program. Subroutine specifications must follow all
other calculation operations that can be processed for a procedure; however, the
PLIST, PARM, KLIST, KFLD, and DEFINE operations may be specified between an
ENDSR operation (the end of one subroutine) and a BEGSR operation (the
beginning of another subroutine) or after all subroutines. A subroutine can be
called using an EXSR or CASxx operation anywhere in the calculation
specifications. Subroutine lines can be identified by SR in positions 7 and 8. The
only valid entries in positions 7 and 8 of a subroutine line are SR, AN, OR, or
blanks.

Coding Subroutines
An RPG IV subroutine can be processed from any point in the calculation
operations. All RPG IV operations can be processed within a subroutine, and these
operations can be conditioned by any valid indicators in positions 9 through 11. SR
or blanks can appear in positions 7 and 8. Control level indicators (L1 through L9)
cannot be used in these positions. However, AND/OR lines within the subroutine
can be indicated in positions 7 and 8.

Fields used in a subroutine can be defined either in the subroutine or in the rest of
the procedure. In either instance, the fields can be used by both the body of the
procedure and the subroutine.

A subroutine cannot contain another subroutine. One subroutine can call another
subroutine; that is, a subroutine can contain an EXSR or CASxx. However, an EXSR
or CASxx specification within a subroutine cannot directly call itself. Indirect calls
to itself through another subroutine should not be performed, because
unpredictable results will occur. Use the GOTO and TAG operation codes if you
want to branch to another point within the same subroutine.

Subroutines do not have to be specified in the order they are used. Each
subroutine must have a unique symbolic name and must contain a BEGSR and an
ENDSR statement.

Structured Programming Operations

472 ILE RPG Reference

The use of the GOTO (branching) operation is allowed within a subroutine. GOTO
can specify the label on the ENDSR operation associated with that subroutine; it
cannot specify the name of a BEGSR operation. A GOTO cannot be issued to a
TAG or ENDSR within a subroutine unless the GOTO is in the same subroutine as
the TAG or ENDSR. You can use the LEAVESR operation to exit a subroutine from
any point within the subroutine. Control passes to the ENDSR operation for the
subroutine. Use LEAVESR only from within a subroutine.

A GOTO within a subroutine in the cycle-main procedure can be issued to a TAG
within the same subroutine, detail calculations or total calculations. A GOTO
within a subroutine in a subprocedure can be issued to a TAG within the same
subroutine, or within the body of the subprocedure.

Subroutine Operations

Chapter 19. Operations 473

#
#
#
#

Subroutine Coding Examples

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* For a subroutine, positions 7 and 8 can be blank or contain SR.
*
C :
C :
C EXSR SUBRTB
C :
C :
C :
CL2 EXSR SUBRTA
C :
C :
C :
C SUBRTA BEGSR
C :
C :
C :
*
* One subroutine can call another subroutine.
*
C EXSR SUBRTC
C :
C :
C :
C ENDSR
C SUBRTB BEGSR
C :
C :
C :
*
*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* GOTO and TAG operations can be used within a subroutine.
*
C START TAG
C :
C :
C :
C 23 GOTO END
C :
C :
C :
C 24 GOTO START
C END ENDSR
C SUBRTC BEGSR
C :
C :
C :
C ENDSR
*

Figure 183. Examples of Coding Subroutines

Subroutine Operations

474 ILE RPG Reference

Test Operations
The test operations are:
v “TEST (Test Date/Time/Timestamp)” on page 829
v “TESTB (Test Bit)” on page 831
v “TESTN (Test Numeric)” on page 834
v “TESTZ (Test Zone)” on page 836.

TEST is available in both the traditional syntax and free-form syntax. The other
operations are available only in the traditional syntax. See Figure 195 on page 502
for an example of how %BITAND can be used to duplicate the function of TESTB.

The TESTx operations allow you to test fields specified in the result field. TEST
tests for valid date, time, or timestamp data. TESTB tests the bit pattern of a result
field. TESTN tests if the character field specified in the result field contain all
numbers, or numbers with leading blanks, or all blanks. TESTZ tests the zone
portion of the leftmost character of a character field specified in the result field.
The result of these operations is indicated by the resulting indicators.

XML Operations
The XML operations include SAX parsing and reading an XML document directly
into a variable.

The XML operations are:
v “XML-SAX (Parse an XML Document)” on page 886
v “XML-INTO (Parse an XML Document into a Variable)” on page 852
v “%XML (xmlDocument {:options})” on page 604
v “%HANDLER (handlingProcedure : communicationArea)” on page 539

The %HANDLER and %XML built-in functions are special built-in functions that
do not return a value. They can be used only with the XML operation codes
XML-SAX and XML-INTO.

XML-SAX initiates a SAX parse that repeatedly calls your SAX-handling procedure
to handle events.

XML-INTO copies the information in an XML document into a program variable.

For XML documents with many repeated XML elements, it can be used to handle a
limited number of XML elements at a time, having the elements passed to your
XML-INTO handling procedure.

For more information about processing XML documents in your RPG programs,
see IBM Rational Development Studio for i: ILE RPG Programmer’s Guide.

Test Operations

Chapter 19. Operations 475

XML Operations

476 ILE RPG Reference

Chapter 20. Expressions

Expressions are a way to express program logic using free-form syntax. They can
be used to write program statements in a more readable or concise manner than
fixed-form statements.

An expression is simply a group of operands and operations. For example, the
following are valid expressions:

A+B*21
STRINGA + STRINGB
D = %ELEM(ARRAYNAME)
*IN01 OR (BALANCE > LIMIT)
SUM + TOTAL(ARRAY:%ELEM(ARRAY))
'The tax rate is ' + %editc(tax : 'A') + '%.'

Expressions may be coded in the following statements:
v “CALLP (Call a Prototyped Procedure or Program)” on page 623
v “CHAIN (Random Retrieval from a File)” on page 633 (free-form calculations

only)
v “CLEAR (Clear)” on page 642(free-form calculations only)
v “DELETE (Delete Record)” on page 655 (free-form calculations only)
v “DSPLY (Display Message)” on page 666(free-form calculations only)
v “DOU (Do Until)” on page 660
v “DOW (Do While)” on page 663
v “EVAL (Evaluate expression)” on page 676
v “EVALR (Evaluate expression, right adjust)” on page 678
v “EVAL-CORR (Assign corresponding subfields)” on page 678
v “FOR (For)” on page 692
v “IF (If)” on page 698
v “RETURN (Return to Caller)” on page 795
v “READE (Read Equal Key)” on page 777 (free-form calculations only)
v “READPE (Read Prior Equal)” on page 782 (free-form calculations only)
v “SETGT (Set Greater Than)” on page 804 (free-form calculations only)
v “SETLL (Set Lower Limit)” on page 808 (free-form calculations only)
v “SORTA (Sort an Array)” on page 815
v “WHEN (When True Then Select)” on page 843
v “XML-INTO (Parse an XML Document into a Variable)” on page 852
v “XML-SAX (Parse an XML Document)” on page 886

Figure 184 on page 478 shows several examples of how expressions can be used:

© Copyright IBM Corp. 1994, 2010 477

General Expression Rules
The following are general rules that apply to all expressions:
1. Expressions are coded in the Extended-Factor 2 entry on the Calculation

Specification or after the operation code on a free-form calculation.
2. An expression can be continued on more than one specification. On a

continuation specification, the only entries allowed are C in column 6 and the
Extended-Factor 2 entry.
No special continuation character is needed unless the expression is split within
a literal or a name.

3. Blanks (like parentheses) are required only to resolve ambiguity. However, they
may be used to enhance readability.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* The operations within the DOU group will iterate until the
* logical expression is true. That is, either COUNTER is less
* than MAXITEMS or indicator 03 is on.
/FREE

dou counter < MAXITEMS or *in03;
enddo;

// The operations controlled by the IF operation will occur if
// DUEDATE (a date variable) is an earlier date than
// December 31, 1994.
if DueDate < D'12-31-94';
endif;

// In this numeric expression, COUNTER is assigned the value
// of COUNTER plus 1.
Counter = Counter + 1;

// This numeric expression uses a built-in function to assign the numb
// of elements in the array ARRAY to the variable ARRAYSIZE.
ArraySize = %elem (Array);

// This expression calculates interest and performs half adjusting on
// the result which is placed in the variable INTEREST.
eval(h) Interest = Balance * Rate;

// This character expression builds a sentence from a name and a
// number using concatentation. You can use built-in function
// %CHAR, %EDITC, %EDITW or %EDITFLT to convert the numeric value
// to character data.
// This statement produces 'Id number for John Smith is 231 364'
String = 'Id number for '

+ %trimr (First) + ' ' + %trimr (Last)
+ ' is ' + %editw (IdNum: ' & ');

// This expression adds a duration of 10 days to a date.
DueDate = OriginalDate + %days(10);

// This expression determines the difference in seconds between
// two time values.
Seconds = %diff (CompleteTime: t'09:00:00': *seconds);

// This expression combines a date value and a time value into a
// timestamp value.
TimeStamp = TransactionDate + TransactionTime;

/END-FREE

Figure 184. Expression Examples

General Expression Rules

478 ILE RPG Reference

Note that RPG will read as many characters as possible when parsing each
token of an expression. For example,
v X**DAY is X raised to the power of DAY
v X* *DAY is X multiplied by *DAY

4. The TRUNCNBR option (as a command parameter or as a keyword on a
control specification) does not apply to calculations done within expressions.
When overflow occurs during an expression operation, an exception is always
issued.

Expression Operands
An operand can be any field name, named constant, literal, or prototyped
procedure returning a value. In addition, the result of any operation can also be
used as an operand to another operation. For example, in the expression A+B*21,
the result of B*21 is an operand to the addition operation.

Expression Operators
There are several types of operations:

Unary Operations
Unary operations are coded by specifying the operator followed by one
operand. The unary operators are:

+ The unary plus operation maintains the value of the numeric
operand.

- The unary minus operation negates the value of the numeric
operand. For example, if NUMBER has the value 123.4, the value
of -NUMBER is -123.4.

NOT The logical negation operation returns ’1’ if the value of the
indicator operand is ’0’ and ’0’ if the indicator operand is ’1’. Note
that the result of any comparison operation or operation AND or
OR is a value of type indicator.

Binary Operations
Binary operations are coded by specifying the operator between the two
operands. The binary operators are:

+ The meaning of this operation depends on the types of the
operands. It can be used for:
1. Adding two numeric values
2. Adding a duration to a date, time, or timestamp.
3. Concatenating two character, two graphic, or two UCS-2 values
4. Adding a numeric offset to a basing pointer
5. Combining a date and a time to yield a timestamp

- The meaning of this operation depends on the types of the
operands. It can be used for:
1. Subtracting two numeric values
2. Subtracting a duration from a date, time, or timestamp.
3. Subtracting a numeric offset from a basing pointer
4. Subtracting two pointers

* The multiplication operation is used to multiply two numeric
values.

General Expression Rules

Chapter 20. Expressions 479

/ The division operation is used to divide two numeric values.

** The exponentiation operation is used to raise a number to the
power of another. For example, the value of 2**3 is 8.

= The equality operation returns ’1’ if the two operands are equal,
and ’0’ if not.

<> The inequality operation returns ’0’ if the two operands are equal,
and ’1’ if not.

> The greater than operation returns ’1’ if the first operand is greater
than the second.

>= The greater than or equal operation returns ’1’ if the first operand
is greater or equal to the second.

< The less than operation returns ’1’ if the first operand is less than
the second.

<= The less than or equal operation returns ’1’ if the first operand is
less or equal to the second.

AND The logical and operation returns returns ’1’ if both operands have
the value of indicator ’1’.

OR The logical or operation returns returns ’1’ if either operand has
the value of indicator ’1’.

Assignment Operations

Assignment operations are coded by specifying the target of the
assignment followed by an assignment operator followed by the expression
to be assigned to the target. Compound-assignment operators of the form
op= (for example +=) combine assignment with another operation, using
the target as one of the operands of the operation. The = assignment
operator is used with the EVAL and EVALR operations. The op=
compound-assignment operators are used with the EVAL operation only.
The assignment operators are:
v = The expression is assigned to the target
v += The expression is added to the target
v -= The expression is subtracted from the target
v *= The target is multiplied by the expression
v /= The target is divided by the expression
v **= The target is assigned the target raised to the power of the

expression

Built-In Functions
Built-in functions are discussed in “Built-in Functions” on page 430.

User-Defined Functions
Any prototyped procedure that returns a value can be used within an
expression. The call to the procedure can be placed anywhere that a value
of the same type as the return value of the procedure would be used. For
example, assume that procedure MYFUNC returns a character value. The
following shows three calls to MYFUNC:

Expression Operators

480 ILE RPG Reference

For more information on user-defined functions see “Subprocedures and
Subroutines” on page 25.

Operation Precedence
The precedence of operations determines the order in which operations are
performed within expressions. High precedence operations are performed before
lower precedence operations.

Since parentheses have the highest precedence, operations within parentheses are
always performed first.

Operations of the same precedence (for example A+B+C) are evaluated in left to
right order, except for **, which is evaluated from right to left.

(Note that although an expression is evaluated from left to right, this does not
mean that the operands are also evaluated from left to right. See “Order of
Evaluation” on page 492 for additional considerations.)

The following list indicates the precedence of operations from highest to lowest:
1. ()
2. Built-in functions, user-defined functions
3. unary +, unary -, NOT
4. **
5. *, /
6. binary +, binary -
7. =, <>, >, >=, <, <=
8. AND
9. OR

Figure 186 on page 482 shows how precedence works.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

if MyFunc (string1) = %trim (MyFunc (string2));
%subst(X(3))= MyFunc('abc');

endif;
/END-FREE

Figure 185. Using a Prototyped Procedure in an Expression

Expression Operators

Chapter 20. Expressions 481

Data Types
All data types are allowed within expressions. However, specific operations only
support certain data types as operands. For example, the * operation only allows
numeric values as operands. Note that the relational and logical operations return
a value of type indicator, which is a special type of character data. As a result, any
relational or logical result can be used as an operand to any operation that expects
character operands.

Data Types Supported by Expression Operands
Table 72 describes the type of operand allowed for each unary operator and the
type of the result. Table 73 describes the type of operands allowed for each binary
operator and the type of the result. Table 74 on page 483 describes the type of
operands allowed for each built-in function and the type of the result. Prototyped
procedures support whatever data types are defined in the prototype definition.

Table 72. Types Supported for Unary Operations

Operation Operand Type Result Type

- (negation) Numeric Numeric

+ Numeric Numeric

NOT Indicator Indicator

Table 73. Operands Supported for Binary Operations

Operator Operand 1 Type Operand 2 Type Result Type

+ (addition) Numeric Numeric Numeric

+ (addition) Date Duration Date

+ (addition) Time Duration Time

+ (addition) Timestamp Duration Timestamp

- (subtraction) Numeric Numeric Numeric

- (subtraction) Date Duration Date

- (subtraction) Time Duration Time

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* The following two operations produce different results although
* the order of operands and operators is the same. Assume that
* PRICE = 100, DISCOUNT = 10, and TAXRATE = 0.15.
* The first EVAL would result in a TAX of 98.5.
* Since multiplication has a higher precedence than subtraction,
* DISCOUNT * TAXRATE is the first operation performed. The result
* of that operation (1.5) is then subtracted from PRICE.

/FREE
TAX = PRICE - DISCOUNT * TAXRATE;

// The second EVAL would result in a TAX of 13.50.
// Since parentheses have the highest precedence the operation
// within parenthesis is performed first and the result of that
// operation (90) is then multiplied by TAXRATE.

TAX = (PRICE - DISCOUNT) * TAXRATE;
/END-FREE

Figure 186. Precedence Example

Data Types

482 ILE RPG Reference

Table 73. Operands Supported for Binary Operations (continued)

Operator Operand 1 Type Operand 2 Type Result Type

- (subtraction) Timestamp Duration Timestamp

* (multiplication) Numeric Numeric Numeric

/ (division) Numeric Numeric Numeric

** (exponentiation) Numeric Numeric Numeric

+ (concatenation) Character Character Character

+ (concatenation) Graphic Graphic Graphic

+ (concatenation) UCS-2 UCS-2 UCS-2

+ (add offset to pointer) Basing Pointer Numeric Basing Pointer

- (subtract pointers) Basing Pointer Basing Pointer Numeric

- (subtract offset from
pointer)

Basing Pointer Numeric Basing Pointer

Note: For the following operations the operands may be of any type, but the two operands must be of the same
type.

= (equal to) Any Any Indicator

>= (greater than or equal
to)

Any Any Indicator

> (greater than) Any Any Indicator

<= (less than or equal to) Any Any Indicator

< (less than) Any Any Indicator

<> (not equal to) Any Any Indicator

AND (logical and) Indicator Indicator Indicator

OR (logical or) Indicator Indicator Indicator

Table 74. Types Supported for Built-in Functions

Operation Operands Result Type

%ABS Numeric Numeric

%ALLOC Numeric Pointer

%BITAND Character:character{:character...} Character

%BITAND Numeric:numeric{:numeric...} Numeric

%BITNOT Character Character

%BITNOT Numeric Numeric

%BITOR Character:character{:character...} Character

%BITOR Numeric:numeric{:numeric...} Numeric

%BITXOR Character:character Character

%BITXOR Numeric:numeric Numeric

%CHAR Graphic, Numeric, UCS-2, Date, Time or Timestamp {:
Format of Date, Time, or Timestamp}

Character

%CHECK Character, Graphic, or UCS-2 {: Numeric} Numeric

%CHECKR Character, Graphic, or UCS-2 {: Numeric} Numeric

%DATE {Character, Numeric, or Timestamp {: Date Format}} Date

%DAYS Numeric Numeric (duration)

Data Types

Chapter 20. Expressions 483

Table 74. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

%DEC Character : Numeric constant : Numeric constant Numeric (packed)

%DEC Numeric {: Numeric constant : Numeric constant} Numeric (packed)

%DEC Date, time or timestamp {: format} Numeric (packed)

%DECH Character : Numeric constant : Numeric constant Numeric (packed)

%DECH Numeric : Numeric constant : Numeric constant Numeric (packed)

%DECPOS Numeric Numeric (unsigned)

%DIFF Date, Time, or Timestamp : Date, Time, or Timestamp :
Unit

Numeric (duration) (compatible
with both)

%DIV Numeric : Numeric Numeric

%EDITC Non-float Numeric : Character Constant of Length 1
{:*CURSYM | *ASTFILL | character currency symbol}

Character (fixed length)

%EDITFLT Numeric Character (fixed length)

%EDITW Non-float Numeric : Character Constant Character (fixed length)

%EOF {File name} Indicator

%EQUAL {File name} Indicator

%ERROR Indicator

%FLOAT Character Numeric (float)

%FLOAT Numeric Numeric (float)

%FOUND {File name} Indicator

%GRAPH Character, Graphic, or UCS-2 {: ccsid} Graphic

%HOURS Numeric Numeric (duration)

%INT Character Numeric (integer)

%INT Numeric Numeric (integer)

%INTH Character Numeric (integer)

%INTH Numeric Numeric (integer)

%LEN Any Numeric (unsigned)

%LOOKUPxx Any : Any array {: Numeric {: Numeric}} Numeric (unsigned)

%MINUTES Numeric Numeric (duration)

%MONTHS Numeric Numeric (duration)

%MSECONDS Numeric Numeric (duration)

%OCCUR Multiple Occurrence Data Structure Multiple Occurrence Data
Structure

%OPEN File name Indicator

%PARMS Numeric (integer)

%REALLOC Pointer : Numeric Pointer

%REM Numeric : Numeric Numeric

%REPLACE Character : Character {: Numeric {: Numeric}} Character

%REPLACE Graphic : Graphic {: Numeric {: Numeric}} Graphic

%REPLACE UCS-2 : UCS-2 {: Numeric {: Numeric}} UCS-2

%SCAN Character : Character {: Numeric} Numeric (unsigned)

%SCAN Graphic : Graphic {: Numeric} Numeric (unsigned)

Data Types

484 ILE RPG Reference

#

Table 74. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

%SCAN UCS-2 : UCS-2 {: Numeric} Numeric (unsigned)

%SCANRPL Character : Character : Character {: Numeric {:
Numeric}}

Character

%SCANRPL Graphic : Graphic : Graphic {: Numeric {: Numeric}} Graphic

%SCANRPL UCS-2 : UCS-2 : UCS-2 {: Numeric {: Numeric}} UCS-2

%SECONDS Numeric Numeric (duration)

%SHUTDOWN Indicator

%SQRT Numeric Numeric

%STATUS {File name} Numeric (zoned decimal)

%STR Basing Pointer {: Numeric} Character

Note: When %STR appears on the left-hand side of an expression, the second operand is required.

%SUBARR Any: Numeric {:Numeric} Any (same type as first operand)

%SUBDT Date, Time, or Timestamp : Unit Numeric (unsigned)

%SUBST Character : Numeric {: Numeric} Character

%SUBST Graphic : Numeric {: Numeric} Graphic

%SUBST UCS-2 : Numeric {: Numeric} UCS-2

%THIS Object

%TIME {Character, Numeric, or Timestamp {: Time Format}} Time

%TIMESTAMP {Character, Numeric, or Date {: Timestamp Format}} Timestamp

%TLOOKUPxx Any table: Any table {: Any} Indicator

%TRIM Character { : Character } Character

%TRIM Graphic { : Graphic} Graphic

%TRIM UCS-2 { : UCS-2 } UCS-2

%TRIML Character { : Character } Character

%TRIML Graphic { : Graphic} Graphic

%TRIML UCS-2 { : UCS-2 } UCS-2

%TRIMR Character { : Character } Character

%TRIMR Graphic { : Graphic} Graphic

%TRIMR UCS-2 { : UCS-2 } UCS-2

%UCS2 Character, Graphic, or UCS-2 {: ccsid} Varying length UCS-2 value

%UNS Character Numeric (unsigned)

%UNS Numeric Numeric (unsigned)

%UNSH Character Numeric (unsigned)

%UNSH Numeric Numeric (unsigned)

%XFOOT Numeric Numeric

%XLATE Character, Graphic, or UCS-2 : Character, Graphic, or
UCS-2 : Character, Graphic, or UCS-2 {: Numeric}

Character, Graphic, or UCS-2

%YEARS Numeric Numeric (duration)

Note: For the following built-in functions, arguments must be literals, named constants or variables.

%PADDR Character Procedure or prototype pointer

Data Types

Chapter 20. Expressions 485

||
|
|

|||

|||

#

Table 74. Types Supported for Built-in Functions (continued)

Operation Operands Result Type

%SIZE Any {: *ALL} Numeric (unsigned)

Note: For the following built-in functions, arguments must be variables. However, if an array index is specified, it
may be any valid numeric expression.

%ADDR Any Basing pointer

%ELEM Any Numeric (unsigned)

%NULLIND Any Indicator

Note: The following built-in functions are not true built-in functions in that they do not return a value. They are
used in some free-form operations.

%FIELDS Any{: Any {: Any ...} Not Applicable

%HANDLER Prototype name : Any Not Applicable

%KDS Data structure {: numeric } Not Applicable

%XML Character or UCS-2 { : Character } Not Applicable

Format of Numeric Intermediate Results
For binary operations involving numeric fields, the format of the intermediate
result depends on the format of the operands.

For the operators +, -, and *:
v If at least one operand has a float format, the result is float format.
v Otherwise, if at least one operand has packed-decimal, zoned-decimal, or binary

format, the result has packed-decimal format.
v Otherwise, if at least one operand has integer format, the result has integer

format.
v Otherwise, the result has unsigned format.
v For numeric literals that are not in float format:

– If the literal is within the range of an unsigned integer, the literal is assumed
to be an unsigned integer.

– Otherwise, if the literal is within the range of an integer, the literal is assumed
to be an integer.

– Otherwise, the literal is assumed to be packed decimal.

For the / operator:
If one operand is float or the FLTDIV keyword is specified on the control
specification, then the result of the / operator is float. Otherwise the result is
packed-decimal.

For the ** operator:
The result is represented in float format.

Precision Rules for Numeric Operations
Unlike the fixed-form operation codes where you must always specify the result of
each individual operation, RPG must determine the format and precision of the
result of each operation within an expression.

If an operation has a result of format float, integer, or unsigned the precision is the
maximum size for that format. Integer and unsigned operations produce 4-byte
values and float operations produce 8-byte values.

Data Types

486 ILE RPG Reference

#
#

However, if the operation has a packed-decimal, zoned decimal, or binary format,
the precision of the result depends on the precisions of the operands.

It is important to be aware of the precision rules for decimal operations since even
a relatively simple expression may have a result that may not be what you expect.
For example, if the two operands of a multiplication are large enough, the result of
the multiplication will have zero decimal places. If you are multiplying two 40
digit numbers, ideally you would need a 80 digit result to hold all possible results
of the multiplication. However, since RPG supports numeric values only up to 63
digits, the result is adjusted to 63 digits. In this case, as many as 17 decimal digits
are dropped from the result.

There are two sets of precision rules that you can use to control the sizes of
intermediate values:
1. The default rules give you intermediate results that are as large as possible in

order to minimize the possibility of numeric overflow. Unfortunately, in certain
cases, this may yield results with zero decimal places if the result is very large.

2. The ″Result Decimal Positions″ precision rule works the same as the default
rule except that if the statement involves an assignment to a numeric variable
or a conversion to a specific decimal precision, the number of decimal positions
of any intermediate result is never reduced below the desired result decimal
places.
In practice, you don’t have to worry about the exact precisions if you examine
the compile listing when coding numeric expressions. A diagnostic message
indicates that decimal positions are being dropped in an intermediate result. If
there is an assignment involved in the expression, you can ensure that the
decimal positions are kept by using the ″Result Decimal Positions″ precision
rule for the statement by coding operation code extender (R).
If the ″Result Decimal Position″ precision rule cannot be used (say, in a
relational expression), built-in function %DEC can be used to convert the result
of a sub-expression to a smaller precision which may prevent the decimal
positions from being lost.

Using the Default Precision Rules
Using the default precision rule, the precision of a decimal intermediate in an
expression is computed to minimize the possibility of numeric overflow. However,
if the expression involves several operations on large decimal numbers, the
intermediates may end up with zero decimal positions. (Especially, if the
expression has two or more nested divisions.) This may not be what the
programmer expects, especially in an assignment.

When determining the precision of a decimal intermediate, two steps occur:
1. The desired or ″natural″ precision of the result is computed.
2. If the natural precision is greater than 63 digits, the precision is adjusted to fit

in 63 digits. This normally involves first reducing the number of decimal
positions, and then if necessary, reducing the total number of digits of the
intermediate.

This behaviour is the default and can be specified for an entire module (using
control specification keyword EXPROPTS(*MAXDIGITS) or for single free-form
expressions (using operation code extender M).

Precision Rules for Numeric Operations

Chapter 20. Expressions 487

Precision of Intermediate Results
Table 75 describes the default precision rules in more detail.

Table 75. Precision of Intermediate Results

Operation Result Precision

Note: The following operations produce a numeric result. L1 and L2 are the number of
digits of the two operands. Lr is the number of digits of the result. D1 and D2 are the
number of decimal places of the two operands. Dr is the number of decimal places of the
result. T is a temporary value.

N1+N2 T=min (max (L1-D1, L2-D2)+1, 63)

Dr=min (max (D1,D2), 63-t)

Lr=t+Dr

N1-N2 T=min (max (L1-D1, L2-D2)+1, 63)

Dr=min (max (D1,D2), 63-t)

Lr=t+Dr

N1*N2 Lr=min (L1+L2, 63)

Dr=min (D1+D2, 63-min ((L1-D1)+(L2-D2), 63))

N1/N2 Lr=63

Dr=max (63-((L1-D1)+D2), 0)

N1**N2 Double float

Note: The following operations produce a character result. Ln represents the length of the
operand in number of characters.

C1+C2 Lr=min(L1+L2,16773104)

Note: The following operations produce a DBCS result. Ln represents the length of the
operand in number of DBCS characters.

D1+D2 Lr=min(L1+L2,8386552)

Note: The following operations produce a result of type character with subtype indicator.
The result is always an indicator value (1 character).

V1=V2 1 (indicator)

V1>=V2 1 (indicator)

V1>V2 1 (indicator)

V1<=V2 1 (indicator)

V1<V2 1 (indicator)

V1<>V2 1 (indicator)

V1 AND V2 1 (indicator)

V1 OR V2 1 (indicator)

Example of Default Precision Rules
This example shows how the default precision rules work.

Precision Rules for Numeric Operations

488 ILE RPG Reference

#

#

When the above Calculation specification is processed, the resulting value assigned
to FLD1 will have a precision of zero decimals, not the three decimals expected.
The reason is that when it gets to the last evaluation (�4� in the above example),
the number to which the factor is scaled is negative. To see why, look at how the
expression is evaluated.

�1� Evaluate FLD3/100

Rules:
Lr = 63
Dr = max(63-((L1-D1)+D2),0)

= max(63-((5-2)+0),0)
= max(63-3,0)
= 60

�2� Evaluate (Result of 1 * FLD4)

Rules:
Lr = min(L1+L2,63)

= min(63+9,63)
= 63

Dr = min(D1+D2,63-min((L1-D1)+(L2-D2),63))
= min(60+4,63-min((63-60)+(9-4),63))
= min(64,63-min(4+5,63)
= min(64,55)
= 55

�3� Evaluate (Result of 2 + FLD5)

Rules:
T = min(max(L1-D1,L2-D2)+1,63)

= min(max(63-55,9-4)+1,63)
= min(max(8,5)+1,63)
= min(9,63)
= 9

Dr = min(max(D1,D2),31-T)
= min(max(55,4),63-9)
= min(55,54)
= 54

Lr = T + Dr
= 9 + 54 = 63

�4� Evaluate FLD2/Result of 3

Rules:
Lr = 63
Dr = max(63-((L1-D1)+D2),0)

= max(63-((15-2)+ 54),0)

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D FLD1 S 15P 4
D FLD2 S 15P 2
D FLD3 S 5P 2
D FLD4 S 9P 4
D FLD5 S 9P 4
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C EVAL FLD1 = FLD2/(((FLD3/100)*FLD4)+FLD5)

(�1�)
(�2�)

(�3�)
(�4�)

Figure 187. Precision of Intermediate Results

Precision Rules for Numeric Operations

Chapter 20. Expressions 489

= max(63-(13+54),0)
= max(-4,0)

**** NEGATIVE NUMBER TO WHICH FACTOR IS SCALED **** = 0

To avoid this problem, you can change the above expression so that the first
evaluation is a multiplication rather than a division, that is, FLD3 * 0.01 or use the
%DEC built-in function to set the sub-expression FLD3/100: %DEC(FLD3/100 : 15 :
4) or use operation extender (R) to ensure that the number of decimal positions
never falls below 4.

Using the ″Result Decimal Position″ Precision Rules
The ″Result Decimal Position″ precision rule means that the precision of a decimal
intermediate will be computed such that the number of decimal places will never
be reduced smaller than the number of decimal positions of the result of the
assignment. This is specified by:
1. EXPROPTS(*RESDECPOS) on the Control Specification. Use this to specify

this behaviour for an entire module.
2. Operation code extender R specified for a free-form operation.

Result Decimal Position rules apply in the following circumstances:
1. Result Decimal Position precision rules apply only to packed decimal

intermediate results. This behaviour does not apply to the intermediate results
of operations that have integer, unsigned, or float results.

2. Result Decimal Position precision rules apply only where there is an
assignment (either explicit or implicit) to a decimal target (packed, zoned, or
binary). This can occur in the following situations:
a. For an EVAL statement, the minimum decimal places is given by the

decimal positions of the target of the assignment and applies to the
expression on the right-hand side of the assignment. If half-adjust also
applies to the statement, one extra digit is added to the minimum decimal
positions (provided that the minimum is less than 63).

b. For a RETURN statement, the minimum decimal places is given by the
decimal positions of the return value defined on the PI specification for the
procedure. If half-adjust also applies to the statement, one extra digit is
added to the minimum decimal positions (provided that the minimum is
less than 63).

c. For a VALUE or CONST parameter, the minimum decimal positions is
given by the decimal positions of the formal parameter (specified on the
procedure prototype) and applies to the expression specified as the passed
parameter.

d. For built-in function %DEC and %DECH with explicit length and decimal
positions specified, the minimum decimal positions is given by the third
parameter of the built-in function and applies to the expression specified as
the first parameter.

The minimum number of decimal positions applies to the entire sub-expression
unless overridden by another of the above operations. If half-adjust is specified
(either as the H operation code extender, or by built-in function %DECH), the
number of decimal positions of the intermediate result is never reduced below
N+1, where N is the number of decimal positions of the result.

3. The Result Decimal Position rules do not normally apply to conditional
expressions since there is no corresponding result. (If the comparisons must be
performed to a particular precision, then %DEC or %DECH must be used on
the two arguments.)

Precision Rules for Numeric Operations

490 ILE RPG Reference

On the other hand, if the conditional expression is embedded within an
expression for which the minimum decimal positions are given (using one of
the above techniques), then the Result Decimal Positions rules do apply.

Example of ″Result Decimal Position″ Precision Rules
The following examples illustrate the ″Result Decimal Position″ precision rules:

Short Circuit Evaluation
Relational operations AND and OR are evaluated from left to right. However, as
soon as the value is known, evaluation of the expression stops and the value is
returned. As a result, not all operands of the expression need to be evaluated.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* This example shows the precision of the intermediate values
* using the two precision rules.

D p1 s 26p 2
D p2 s 26p 2
D p3 s 26p 2
D p4 s 26p 9
D s1 s 26s 2
D s2 s 26s 2
D i1 s 10i 0
D f1 s 8f
D proc pr 15p 3
D parm1 20p 5 value

* In the following examples, for each sub-expression,
* two precisions are shown. First, the natural precision,
* and then the adjusted precision.

/FREE
// Example 1:
eval p1 = p1 * p2 * p3;
// p1*p2 -> P(52,4); P(52,4)
// p1*p2*p3 -> P(78,6); P(63,0) (decimal positions are truncated)
eval(r) p1 = p1 * p2 * p3;
// p1*p2 -> P(52,4); P(52,4)
// p1*p2*p3 -> P(78,6); P(63,2) (decimal positions do not drop
// below target decimal positions)
eval(rh)p1 = p1 * p2 * p3;
// p1*p2 -> P(52,4); P(52,5)
// p1*p2*p3 -> P(78,6); P(63,3) (decimal positions do not drop
// below target decimals + 1)
// Example 2:
eval p4 = p1 * p2 * proc (s1*s2*p4);
// p1*p2 -> P(52,4); P(52,4)
// s1*s2 -> P(52,4); P(52,4)
// s1*s2*p4 -> P(78,13); P(63,0) (decimal positions are truncated)
// p1*p2*proc() -> P(67,7); P(63,3) (decimal positions are truncated)
eval(r) p4 = p1 * p2 * proc (s1*s2*p4);
// p1*p2 -> P(52,4); P(52,4)
// s1*s2 -> P(52,4); P(52,4)
// s1*s2*p4 -> P(78,13); P(63,5)
// p1*p2*proc() -> P(67,7); P(63,7) (we keep all decimals since we are
// already below target decimals)

/END-FREE

Figure 188. Examples of Precision Rules

Precision Rules for Numeric Operations

Chapter 20. Expressions 491

For operation AND, if the first operand is false, then the second operand is not
evaluated. Likewise, for operation OR, if the first operand is true, the second
operand is not evaluated.

There are two implications of this behaviour. First, an array index can be both
tested and used within the same expression. The expression

I<=%ELEM(ARRAY) AND I>0 AND ARRAY(I)>10

will never result in an array indexing exception.

The second implication is that if the second operand is a call to a user-defined
function, the function will not be called. This is important if the function changes
the value of a parameter or a global variable.

Order of Evaluation
The order of evaluation of operands within an expression is not guaranteed.
Therefore, if a variable is used twice anywhere within an expression, and there is
the possibility of side effects, then the results may not be the expected ones.

For example, consider the source shown in Figure 189, where A is a variable, and
FN is a procedure that modifies A. There are two occurrences of A in the
expression portion of the second EVAL operation. If the left-hand side (operand 1)
of the addition operation is evaluated first, X is assigned the value 17, (5 + FN(5)
= 5 + 12 = 17). If the right-hand side (operand 2) of the addition operation is
evaluated first, X is assigned the value 18, (6 + FN(5) = 6 + 12 = 18).

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* A is a variable. FN is procedure that modifies A.
/free

a = 5;
x = a + fn(a);

/end-free

P fn B
D fn PI 5P 0
D parm 5P 0
/free

parm = parm + 1;
return 2 * parm;

/end-free
P fn E

Figure 189. Sample coding of a call with side effects

Short Circuit Evaluation

492 ILE RPG Reference

Chapter 21. Built-in Functions

This chapter describes, in alphabetical order, each built-in function.

%ABS (Absolute Value of Expression)
%ABS(numeric expression)

%ABS returns the absolute value of the numeric expression specified as the
parameter. If the value of the numeric expression is non-negative, the value is
returned unchanged. If the value is negative, the value returned is the value of the
expression but with the negative sign removed.

%ABS may be used either in expressions or as parameters to keywords. When
used with keywords, the operand must be a numeric literal, a constant name
representing a numeric value, or a built-in function with a numeric value known at
compile-time.

For more information, see “Arithmetic Operations” on page 434 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name +++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D f8 s 8f inz (-1)
D i10 s 10i 0 inz (-123)
D p7 s 7p 3 inz (-1234.567)

/FREE
f8 = %abs (f8); // "f8" is now 1.
i10 = %abs (i10 - 321); // "i10" is now 444.
p7 = %abs (p7); // "p7" is now 1234.567.

/END-FREE

Figure 190. %ABS Example

© Copyright IBM Corp. 1994, 2010 493

%ADDR (Get Address of Variable)
%ADDR(variable)
%ADDR(varying-length variable : *DATA)

%ADDR returns a value of type basing pointer. The value is the address of the
specified variable. It may only be compared with and assigned to items of type
basing pointer.

%ADDR returns the address of the data portion of a variable-length field when
*DATA is specified as the second parameter of %ADDR.

If %ADDR with an array index parameter is specified as parameter for definition
specification keywords INZ or CONST, the array index must be known at
compile-time. The index must be either a numeric literal or a numeric constant.

In an EVAL operation where the result of the assignment is an array with no
index, %ADDR on the right hand side of the assignment operator has a different
meaning depending on the argument for the %ADDR. If the argument for %ADDR
is an array name without an index and the result is an array name, each element of
the result array will contain the address of the beginning of the argument array. If
the argument for %ADDR is an array name with an index of (*), then each element
of the result array will contain the address of the corresponding element in the
argument array. This is illustrated in Figure 191 on page 495.

If the variable specified as parameter is a table, multiple occurrence data structure,
or subfield of a multiple occurrence data structure, the address will be the address
of the current table index or occurrence number.

If the variable is based, %ADDR returns the value of the basing pointer for the
variable. If the variable is a subfield of a based data structure, the value of
%ADDR is the value of the basing pointer plus the offset of the subfield.

If the variable is specified as a PARM of the *ENTRY PLIST, %ADDR returns the
address passed to the program by the caller.

When the argument of %ADDR cannot be modified, %ADDR can only be used in
a comparison operation. An example of an argument that cannot be modified is a
read-only reference parameter (CONST keyword specified on the Procedure
Interface).

%ADDR (Get Address of Variable)

494 ILE RPG Reference

#
#

#
#

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
*
* The following set of definitions is valid since the array
* index has a compile-time value
*
D ARRAY S 20A DIM (100)
* Set the pointer to the address of the seventh element of the array.
D PTR S * INZ (%ADDR(ARRAY(SEVEN)))
D SEVEN C CONST (7)
*
D DS1 DS OCCURS (100)
D 20A
D SUBF 10A
D 30A
D CHAR10 S 10A BASED (P)
D PARRAY S * DIM(100)

/FREE
%OCCUR(DS1) = 23;
SUBF = *ALL'abcd';
P = %ADDR (SUBF);
IF CHAR10 = SUBF;

// This condition is true.
ENDIF;
IF %ADDR (CHAR10) = %ADDR (SUBF);

// This condition is also true.
ENDIF;
// The following statement also changes the value of SUBF.
CHAR10 = *ALL'efgh';
IF CHAR10 = SUBF;

// This condition is still true.
ENDIF;
//--
%OCCUR(DS1) = 24;
IF CHAR10 = SUBF;

// This condition is no longer true.
ENDIF;
//--
// The address of an array element is taken using an expression
// as the array index.
P = %ADDR (ARRAY (X + 10));
//--
// Each element of the array PARRAY contains the address of the
// first element of the array ARRAY.
PARRAY = %ADDR(ARRAY);
// Each element of the array PARRAY contains the address of the
// corresponding element of the array ARRAY.
PARRAY = %ADDR(ARRAY(*));

// The first three elements of the array PARRAY
// contain the addresses of the first three elements
// of the array ARRAY.
%SUBARR(PARRAY : 1 : 3) = %ADDR(ARRAY(*));

/END-FREE

Figure 191. %ADDR Example

%ADDR (Get Address of Variable)

Chapter 21. Built-in Functions 495

|

1. Use %ADDR(fld:*DATA) to call a procedure with the
address of the data portion of a varying field.

// Assume procedure "uppercaseData" requires a pointer and a length.
// %ADDR(fld:*DATA) returns the pointer to the data portion of
// the varying field, and %LEN(fld) returns the length.
uppercaseData (%ADDR(fld : *DATA) : %LEN(fld));

2. Use %ADDR(fld:*DATA) to determine the maximum size
of the data portion of a varying field.

// The number of bytes used for the prefix is the
// offset between the address of the field and the
// address of the data.
prefix_size = %addr(fld : *data) - %addr(fld);

// The number of bytes used for the data is the
// difference between the total bytes and the
// bytes used for the prefix.
data_size = %size(fld) - prefix_size;

// If variable "fld" is UCS-2 or DBCS, the number
// of characters is half the number of bytes
max_dbcs_chars = data_size / 2;

Figure 192. Example of %ADDR with *DATA

%ADDR (Get Address of Variable)

496 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

%ALLOC (Allocate Storage)
%ALLOC(num)

%ALLOC returns a pointer to newly allocated heap storage of the length specified.
The newly allocated storage is uninitialized.

The parameter must be a non-float numeric value with zero decimal places. The
length specified must be between 1 and the maximum size allowed.

The maximum size allowed depends on the type of heap storage used for RPG
memory management operations due to the ALLOC keyword on the Control
specification. If the module uses teraspace heap storage, the maximum size
allowed is 4294967295 bytes. Otherwise, the maximum size allowed is 16776704
bytes.

The maximum size available at runtime may be less than the maximum size
allowed by RPG.

For more information, see “Memory Management Operations” on page 458.

If the operation cannot complete successfully, exception 00425 or 00426 is issued.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

// Allocate an area of 200 bytes
pointer = %ALLOC(200);

/END-FREE

Figure 193. %ALLOC Example

%ALLOC (Allocate Storage)

Chapter 21. Built-in Functions 497

|
|

|
|
|
|
|

|
|

%BITAND (Bitwise AND Operation)
%BITAND(expr:expr{:expr...})

%BITAND returns the bit-wise ANDing of the bits of all the arguments. That is,
the result bit is ON when all of the corresponding bits in the arguments are ON,
and OFF otherwise.

The arguments to this built-in function can be either character or numeric. For
numeric arguments, if they are not integer or unsigned, they are first converted to
integer. If the value does not fit in an 8-byte integer, a numeric overflow exception
is issued.

%BITAND can have two or more arguments. All arguments must be the same
type, either character or numeric. The result type is the same as the types of the
arguments. For numeric arguments, the result is unsigned if all arguments are
unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different
lengths, they are padded on the left with bit zeros for numeric arguments. Shorter
character arguments are padded on the right with bit ones.

%BITAND can be coded in any expression. It can also be coded as the argument to
a File or Definition Specification keyword if all arguments are known at
compile-time. If all arguments of this built-in function are hex literals, the compiler
produces a constant-folded result that is a hex literal.

Please see Figure 194 on page 502, Figure 195 on page 502, and Figure 196 on page
503 for examples demonstrating the use of %BITAND.

For more information, see “Bit Operations” on page 439 or “Built-in Functions” on
page 430.

%BITAND (Bitwise AND Operation)

498 ILE RPG Reference

%BITNOT (Invert Bits)
%BITNOT(expr)

%BITNOT returns the bit-wise inverse of the bits of the argument. That is, the
result bit is ON when the corresponding bit in the argument is OFF, and OFF
otherwise.

The argument to this built-in function can be either character or numeric. For
numeric arguments, if they are not integer or unsigned, they are first converted to
integer. If the value does not fit in an 8-byte integer, a numeric overflow exception
is issued.

%BITNOT takes just one argument. The result type is the same as the types of the
arguments. For numeric arguments, the result is unsigned if all arguments are
unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different
lengths, they are padded on the left with bit zeros for numeric arguments.

%BITNOT can be coded in any expression. It can also be coded as the argument to
a File or Definition Specification keyword if all arguments are known at
compile-time. If all arguments of this built-in function are hex literals, the compiler
produces a constant-folded result that is a hex literal.

Please see Figure 194 on page 502 for an example demonstrating the use of
%BITNOT.

For more information, see “Bit Operations” on page 439 or “Built-in Functions” on
page 430.

%BITNOT (Invert Bits)

Chapter 21. Built-in Functions 499

%BITOR (Bitwise OR Operation)
%BITOR(expr:expr{:expr...})

%BITOR returns the bit-wise ORing of the bits of all the arguments. That is, the
result bit is ON when any of the corresponding bits in the arguments are ON, and
OFF otherwise.

The arguments to this built-in function can be either character or numeric. For
numeric arguments, if they are not integer or unsigned, they are first converted to
integer. If the value does not fit in an 8-byte integer, a numeric overflow exception
is issued.

%BITOR can have two or more arguments. All arguments must be the same type,
either character or numeric. However, when coded as keyword parameters, these
two BIFs can have only two arguments. The result type is the same as the types of
the arguments. For numeric arguments, the result is unsigned if all arguments are
unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different
lengths, they are padded on the left with bit zeros for numeric arguments. Shorter
character arguments are padded on the right with bit zeros.

%BITOR can be coded in any expression. It can also be coded as the argument to a
File or Definition Specification keyword if all arguments are known at
compile-time. If all arguments of this built-in function are hex literals, the compiler
produces a constant-folded result that is a hex literal.

Please see Figure 194 on page 502 for an example demonstrating the use of
%BITOR.

For more information, see “Bit Operations” on page 439 or “Built-in Functions” on
page 430.

%BITOR (Bitwise OR Operation)

500 ILE RPG Reference

%BITXOR (Bitwise Exclusive-OR Operation)
%BITXOR(expr:expr)

%BITXOR returns the bit-wise exclusive ORing of the bits of the two arguments.
That is, the result bit is ON when just one of the corresponding bits in the
arguments are ON, and OFF otherwise.

The argument to this built-in function can be either character or numeric. For
numeric arguments, if they are not integer or unsigned, they are first converted to
integer. If the value does not fit in an 8-byte integer, a numeric overflow exception
is issued.

%BITXOR takes exactly two arguments. The result type is the same as the types of
the arguments. For numeric arguments, the result is unsigned if all arguments are
unsigned, and integer otherwise.

The length is the length of the largest operand. If the arguments have different
lengths, they are padded on the left with bit zeros for numeric arguments. Shorter
character arguments are padded on the right with bit zeros .

%BITXOR can be coded in any expression. It can also be coded as the argument to
a File or Definition Specification keyword if all arguments are known at
compile-time. If all arguments of this built-in function are hex literals, the compiler
produces a constant-folded result that is a hex literal.

For more information, see “Bit Operations” on page 439 or “Built-in Functions” on
page 430.

%BITXOR (Bitwise Exclusive-OR Operation)

Chapter 21. Built-in Functions 501

Examples of Bit Operations

D const c x'0007'

D ch1 s 4a inz(%BITNOT(const))
* ch1 is initialized to x'FFF84040'
D num1 s 5i 0 inz(%BITXOR(const:x'000F'))
* num is initialized to x'0008', or 8

D char2a s 2a
D char2b s 2a
D uA s 5u 0
D uB s 3u 0
D uC s 5u 0
D uD s 5u 0

C eval char2a = x'FE51'
C eval char2b = %BITAND(char10a : x'0F0F')
* operand1 = b'1111 1110 0101 0001'
* operand2 = b'0000 1111 0000 1111'
* bitwise AND: 0000 1110 0000 0001
* char2b = x'0E01'
C eval uA = x'0123'
C eval uB = x'AB'
C eval uc = x'8816'
C eval uD = %BITOR(uA : uB : uC)
* operand1 = b'0000 0001 0010 0011'
* operand2 = b'0000 0000 1010 1011' (fill with x'00')
* operand3 = b'1000 1000 0001 0110'
* bitwise OR: 1000 1001 1011 1111
* uD = x'89BF'

Figure 194. Using Bit Operations

* This example shows how to duplicate the function of TESTB using %BITAND
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D fld1 s 1a
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq
C testb x'F1' fld1 010203

* Testing bits 1111 0001
* If FLD1 = x'00' (0000 0000), the indicators have the values '1' '0' '0'
* (all tested bits are off)
* If FLD1 = x'15' (0001 0101), the indicators have the values '0' '1' '0'
* (some tested bits are off and some are on)
* If FLD1 = x'F1' (1111 0001), the indicators have the values '0' '0' '1'
* (all tested bits are on)

/free
// this code performs the equivalent of the TESTB operation above

// test if all the "1" bits in x'F1' are off in FLD1
*in01 = %bitand(fld1 : x'F1') = x'00';

// test if some of the "1" bits in x'F1' are on
// and some are off in FLD1
*in02 = %bitand(fld1 : x'F1') <> x'00'

and %bitand(fld1 : x'F1') <> x'F1';

// test if all the "1" bits in x'F1' are on in FLD1
*in03 = %bitand(fld1 : x'F1') = x'F1';

/end-free

Figure 195. Deriving TESTB Functionality from %BITAND

%BITXOR (Bitwise Exclusive-OR Operation)

502 ILE RPG Reference

* This example shows how to duplicate the function of
* BITON and BITOFF using %BITAND, %BITNOT, and %BITOR

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D fld1 s 1a inz(x'01')
D fld2 s 1a inz(x'FF')
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq
C biton x'F4' fld1
* fld1 has an initial value of x'01' (0000 0001)
* The 1 bits in x'F4' (1111 0100) are set on
* fld1 has a final value of x'F5' (1111 0101)
C bitoff x'F1' fld2
* fld2 has an initial value of x'FF' (1111 1111)
* The 1 bits in x'F1' (1111 0001) are set off
* fld2 has a final value of x'0E' (0000 1110)
/free

// this code performs the equivalent of the
// BITON and BITOFF operations above
// Set on the "1" bits of x'F4' in FLD1
fld1 = %bitor(fld1 : x'F4');
// Set off the "1" bits of x'F1' in FLD2
fld2 = %bitand(fld2 : %bitnot(x'F1'));

/end-free

Figure 196. BITON/BITOFF Functionality Using Built In Functions

%BITXOR (Bitwise Exclusive-OR Operation)

Chapter 21. Built-in Functions 503

D c1 s 2a inz(x'ABCD')
D c2hh s 2a inz(x'EF12')
D c2hl s 2a inz(x'EF12')
D c2lh s 2a inz(x'EF12')
D c2ll s 2a inz(x'EF12')
/free

// mhhzo c1 c2hh
// c2hh becomes x'AF12'
%subst(c2hh:1:1)

= %bitor(%bitand(x'0F'
: %subst(c2hh:1:1))

: %bitand(x'F0'
: %subst(c1:1:1)));

// c2hl becomes x'EFA2'
// mhlzo c1 c2hl
%subst(c2hl:%len(c2hl):1)

= %bitor(%bitand(x'0F'
: %subst(c2hl:%len(c2hl):1))

: %bitand(x'F0'
: %subst(c1:1:1)));

// mlhzo c1 c2lh
// c2lh becomes x'CF12'
%subst(c2lh:1:1)

= %bitor(%bitand(x'0F'
: %subst(c2lh:1:1))

: %bitand(x'F0'
: %subst(c1:%len(c1):1)));

// mhllo c1 c2ll
// c2ll becomes x'EFC2'
%subst(c2ll:%len(c2hl):1)

= %bitor(%bitand(x'0F'
: %subst(c2ll:%len(c2ll):1))

: %bitand(x'F0'
: %subst(c1:%len(c1):1)));

Figure 197. Deriving MxxZO functionality from %BITOR and %BITAND

%BITXOR (Bitwise Exclusive-OR Operation)

504 ILE RPG Reference

%CHAR (Convert to Character Data)
%CHAR(expression{:format})

%CHAR converts the value of the expression from graphic, UCS-2, numeric, date,
time or timestamp data to type character. The converted value remains unchanged,
but is returned in a format that is compatible with character data.

If the parameter is a constant, the conversion will be done at compile time.

If a UCS-2 conversion results in substitution characters, a warning message will be
given in the compiler listing if the parameter is a constant. Otherwise, status 00050
will be set at run time but no error message will be given.

For graphic data, the value returned includes the shift-in and shift-out characters.
For example, if a 5 character graphic field is converted, the returned value is 12
characters (10 bytes of graphic data plus the two shift characters). If the value of
the expression has a variable length, the value returned is in varying format.

For date, time, or timestamp data, the second parameter contains the date, time, or
timestamp format to which the returned character data is converted. The value
returned will include separator characters unless the format specified is followed
by a zero.

For numeric data, if the value of the expression is float, the result will be in float
format (for example ’+1.125000000000000E+020’). Otherwise, the result will be in
decimal format with a leading negative sign if the value is negative, and without
leading zeros. The character used for any decimal point will be the character
indicated by the control specification DECEDIT keyword (default is ’.’). For
example, %CHAR of a packed(7,3) expression might return the value ’-1.234’.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

%CHAR (Convert to Character Data)

Chapter 21. Built-in Functions 505

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D Name S 20G VARYING INZ(G'oXXYYZZi')
D date S D INZ(D'1997/02/03')
D time S T INZ(T'12:23:34')
D result S 100A VARYING
D points S 10i 0 INZ(234)

*---
* To format the time and date with the default formats, use this:
*---
/FREE

result = 'It is ' + %CHAR(time) + ' on ' + %CHAR(date);
// If the default formats are both *USA,
// result = 'It is 12:23 PM on 02/03/1997'

//---
// To format the time and date with the job formats, use this:
//---
result = 'It is ' + %CHAR(time : *jobrun)

+ ' on ' + %CHAR(date : *jobrun);
// If the job date format is *MDY- and the time separator is '.',
// then the result = 'It is 12.23.34 on 97-02-03'

//--
// To format the time and date with specific formats, use this:
//--
result = 'It is ' + %CHAR(time : *hms:)

+ ' on ' + %CHAR(date : *iso);
// result = 'It is 12:23:34 on 1997-02-03'
//

//---
// You can use %subst with the %char result if you only want
// part of the result
//---
result = 'The time is now ' + %SUBST (%CHAR(time):1:5) + '.';
// result = 'The time is now 12:23.'

//---
// Use %CHAR to convert a graphic value to character so it
// can be concatenated with a character value.
//---
result = 'The customer''s name is ' + %CHAR(Name) + '.';
// result = 'The customer's name is oXXYYZZi.'

//--
// Use %CHAR to convert a number to character format:
//--
result = 'You have ' + %char(points) + ' points.';
// result = 'You have 234 points.'
//

/END-FREE

Note: The graphic literal in this example is not a valid graphic literal. See “Graphic
Format” on page 183 for more information.

Figure 198. %CHAR Examples

%CHAR (Convert to Character Data)

506 ILE RPG Reference

%CHECK (Check Characters)
%CHECK(comparator : base {: start})

%CHECK returns the first position of the string base that contains a character that
does not appear in string comparator. If all of the characters in base also appear in
comparator, the function returns 0.

The check begins at the starting position and continues to the right until a
character that is not contained in the comparator string is found. The starting
position defaults to 1.

The first parameter must be of type character, graphic, or UCS-2, fixed or varying
length. The second parameter must be the same type as the first parameter. The
third parameter, if specified, must be a non-float numeric with zero decimal
positions.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

%CHECK (Check Characters)

Chapter 21. Built-in Functions 507

See also Figure 201 on page 510.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*--
* A string contains a series of numbers separated
* by blanks and/or commas.
* Use %CHECK to extract the numbers
*--
D string s 50a varying
D inz('12, 233 17, 1, 234')
D delimiters C ' ,'
D digits C '0123456789'
D num S 50a varying
D pos S 10i 0
D len S 10i 0
D token s 50a varying

/free

// make sure the string ends with a delimiter
string = string + delimiters;

dou string = '';

// Find the beginning of the group of digits
pos = %check (delimiters : string);
if (pos = 0);

leave;
endif;

// skip past the delimiters
string = %subst(string : pos);

// Find the length of the group of digits
len = %check (digits : string) - 1;

// Extract the group of digits
token = %subst(string : 1 : len);
dsply ' ' ' ' token;

// Skip past the digits
if (len < %len(string));

string = %subst (string : len + 1);
endif;

enddo;

/end-free

Figure 199. %CHECK Example

%CHECK (Check Characters)

508 ILE RPG Reference

%CHECKR (Check Reverse)
%CHECKR(comparator : base {: start})

%CHECKR returns the last position of the string base that contains a character that
does not appear in string comparator. If all of the characters in base also appear in
comparator, the function returns 0.

The check begins at the starting position and continues to the left until a character
that is not contained in the comparator string is found. The starting position
defaults to the end of the string.

The first parameter must be of type character, graphic, or UCS-2, fixed or varying
length. The second parameter must be the same type as the first parameter. The
third parameter, if specified, must be a non-float numeric with zero decimal
positions.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*---
* If a string is padded at the end with some
* character other than blanks, the characters
* cannot be removed using %TRIM.
* %CHECKR can be used for this by searching
* for the last character in the string that
* is not in the list of "pad characters".
*---
D string1 s 50a varying
D inz('My *dog* Spot.* @ * @ *')
D string2 s 50a varying
D inz('someone@somewhere.com')
D padChars C ' *@'

/free

%len(string1) = %checkr(padChars:string1);
// %len(string1) is set to 14 (the position of the last character
// that is not in "padChars").

// string1 = 'My *dog* Spot.'

%len(string2) = %checkr(padChars:string2);
// %len(string2) is set to 21 (the position of the last character
// that is not in "padChars").

// string2 = 'someone@somewhere.com' (the string is not changed)

/end-free

Figure 200. %CHECKR Example

%CHECKR (Check Reverse)

Chapter 21. Built-in Functions 509

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*--
* A string contains a numeric value, but it might
* be surrounded by blanks and asterisks and might be
* preceded by a currency symbol.
*--
D string s 50a varying inz('$****12.345*** ')

/free
// Find the position of the first character that is not one of ' $*'
numStart = %CHECK (' $*' : string);
// = 6

// Find the position of the last character that is not one of ' *'
numEnd = %CHECKR (' *' : string);
// = 11

// Extract the numeric string
string = %SUBST(string : numStart : numEnd - numStart + 1);
// = '12.345'

/end-free

Figure 201. %CHECK and %CHECKR Example

%CHECKR (Check Reverse)

510 ILE RPG Reference

%DATE (Convert to Date)
%DATE{(expression{:date-format})}

%DATE converts the value of the expression from character, numeric, or timestamp
data to type date. The converted value remains unchanged, but is returned as a
date.

The first parameter is the value to be converted. If you do not specify a value,
%DATE returns the current system date.

The second parameter is the date format for character or numeric input. Regardless
of the input format, the output is returned in *ISO format.

For information on the input formats that can be used, see “Date Data Type” on
page 206. If the date format is not specified for character or numeric input, the
default value is either the format specified on the DATFMT control-specification
keyword or *ISO. For more information, see “DATFMT(fmt{separator})” on page
263.

If the first parameter is a timestamp, *DATE, or UDATE, do not specify the second
parameter. The system knows the format of the input in these cases.

For more information, see “Information Operations” on page 457 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

string = '040596';
date = %date(string:*MDY0);
// date now contains d'1996-04-05'

/END-FREE

Figure 202. %DATE Example

%DATE (Convert to Date)

Chapter 21. Built-in Functions 511

%DAYS (Number of Days)
%DAYS(number)

%DAYS converts a number into a duration that can be added to a date or
timestamp value.

%DAYS can only be the right-hand value in an addition or subtraction operation.
The left-hand value must be a date or timestamp. The result is a date or timestamp
value with the appropriate number of days added or subtracted. For a date, the
resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%DAYS (Number of Days)

512 ILE RPG Reference

%DEC (Convert to Packed Decimal Format)
%DEC(numeric or character expression{:precision:decimal places})
%DEC(date time or timestamp expression {:format})

%DEC converts the value of the first parameter to decimal (packed) format.

Numeric or character expression
When the first parameter is a numeric or character expression, the result has
precision digits and decimal places decimal positions. The precision and decimal
places must be numeric literals, named constants that represent numeric literals, or
built-in functions with a numeric value known at compile-time.

Note: %LEN and %DECPOS cannot be used directly for the second and third
parameters of %DEC or %DECH, even if the values of %LEN and
%DECPOS are constant. See Figure 227 on page 548 for an example using
the length and decimal positions of a variable to control %DEC and
%DECH.

Parameters precision and decimal places may be omitted if the type of expression is
neither float nor character. If these parameters are omitted, the precision and
decimal places are taken from the attributes of the numeric expression.

If the parameter is a character expression, the following rules apply:
v The sign is optional. It can be ’+’ or ’-’. It can precede or follow the numeric

data.
v The decimal point is optional. It can be either a period or a comma.
v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.
v The second and third parameters are required.
v Floating point data, for example ’1.2E6’, is not allowed.
v If invalid numeric data is found, an exception occurs with status code 105.

See %DECHfor examples using %DEC.

Date, time or timestamp expression
When the first parameter is a date time or timestamp expression, the optional
format parameter specifies the format of the value returned. The converted decimal
value will have the number of digits that a value of that format can have, and zero
decimal positions. For example, if the first parameter is a date, and the format is
*YMD, the decimal value will have six digits.

If the format parameter is omitted, the format of the first parameter is used. See
“DATFMT(fmt{separator})” on page 263 and “TIMFMT(fmt{separator})” on page
277.

Format *USA is not allowed with a time expression. If the first parameter is a time
value with a time-format of *USA, the second format parameter for %DEC must be
specified.

Figure 204 on page 515 shows an example of the %DEC built-in function.

%DEC (Convert to Packed Decimal Format)

Chapter 21. Built-in Functions 513

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

D yyddd S 5S 0
D yyyymmdd S 8P 0
D hhmmss S 6P 0
D numeric S 20S 0
D date S D inz(D'2003-06-27') DATFMT(*USA)
D time S T inz(T'09.25.59')
D timestamp S Z inz(Z'2003-06-27-09.25.59.123456'
/free

// Using the format of the first parameter

numeric = %dec(date); // numeric = 06272003
numeric = %dec(time); // numeric = 092559
numeric = %dec(timestamp); // numeric = 20030627092559123456

// Using the second parameter to specify the result format

yyddd = %dec(date : *jul); // yyddd = 03178
yyyymmdd = %dec(date : *iso); // yyyymmdd = 20030627

Figure 203. Using %DEC to convert dates, times and timestamps to numeric

%DEC (Convert to Packed Decimal Format)

514 ILE RPG Reference

%DECH (Convert to Packed Decimal Format with Half Adjust)
%DECH(numeric or character expression :precision:decimal places)

%DECH is the same as %DEC except that if the expression is a decimal or float
value, half adjust is applied to the value of the expression when converting to the
desired precision. No message is issued if half adjust cannot be performed..

Unlike, %DEC, all three parameters are required.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

%DECH Examples

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D p7 s 7p 3 inz (1234.567)
D s9 s 9s 5 inz (73.73442)
D f8 s 8f inz (123.456789)
D c15a s 15a inz (' 123.456789 -')
D c15b s 15a inz (' + 9 , 8 7 6 ')
D result1 s 15p 5
D result2 s 15p 5
D result3 s 15p 5

/FREE

// using numeric parameters
result1 = %dec (p7) + 0.011; // "result1" is now 1234.57800
result2 = %dec (s9 : 5: 0); // "result2" is now 73.00000
result3 = %dech (f8: 5: 2); // "result3" is now 123.46000

// using character parameters
result1 = %dec (c15a: 5: 2); // "result1" is now -123.45
result2 = %dech(c15b: 5: 2); // "result2" is now 9.88000

/END-FREE

Figure 204. Using Numeric and Character Parameters

%DECH (Convert to Packed Decimal Format with Half Adjust)

Chapter 21. Built-in Functions 515

*---
* If the character data is known to contain non-numeric characters
* such as thousands separators (like 1,234,567) or leading
* asterisks and currency symbols (like $***1,234,567.89), some
* preprocessing is necessary to remove these characters from the
* data.
*---

D data s 20a inz('$1,234,567.89')
D num s 21p 9
/free

// Use the %XLATE built-in function to replace any currency
// symbol, asterisks or thousands separators with blanks
num = %dech(%xlate('$*,' : ' ' : data)

: 21 : 9);
// If the currency symbol or thousands separator might
// vary at runtime, use variables to hold these values.
num = %dech(%xlate(cursym + '*' + thousandsSep : ' ' : data)

: 21 : 9);

Figure 205. Handling Currency Symbols and Thousands Separators

%DECH (Convert to Packed Decimal Format with Half Adjust)

516 ILE RPG Reference

%DECPOS (Get Number of Decimal Positions)
%DECPOS(numeric expression)

%DECPOS returns the number of decimal positions of the numeric variable or
expression. The value returned is a constant, and so may participate in constant
folding.

The numeric expression must not be a float variable or expression.

See Figure 227 on page 548 for an example of %DECPOS with %LEN.

For more information, see “Size Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D p7 s 7p 3 inz (8236.567)
D s9 s 9s 5 inz (23.73442)
D result1 s 5i 0
D result2 s 5i 0
D result3 s 5i 0

/FREE
result1 = %decpos (p7); // "result1" is now 3.
result2 = %decpos (s9); // "result2" is now 5.
result3 = %decpos (p7 * s9);// "result3" is now 8.

/END-FREE

Figure 206. %DECPOS Example

%DECPOS (Get Number of Decimal Positions)

Chapter 21. Built-in Functions 517

%DIFF (Difference Between Two Date, Time, or Timestamp Values)
%DIFF(op1:op2:*MSECONDS|*SECONDS|*MINUTES|*HOURS|*DAYS|*MONTHS|*YEARS)
%DIFF(op1:op2:*MS|*S|*MN|*H|*D|*M|*Y)

%DIFF produces the difference (duration) between two date or time values. The
first and second parameters must have the same, or compatible types. The
following combinations are possible:
v Date and date
v Time and time
v Timestamp and timestamp
v Date and timestamp (only the date portion of the timestamp is considered)
v Time and timestamp (only the time portion of the timestamp is considered).

The third parameter specifies the unit. The following units are valid:
v For two dates or a date and a timestamp: *DAYS, *MONTHS, and *YEARS
v For two times or a time and a timestamp: *SECONDS, *MINUTES, and *HOURS
v For two timestamps: *MSECONDS, *SECONDS, *MINUTES, *HOURS, *DAYS,

*MONTHS, and *YEARS

The difference is calculated by subtracting the second operand from the first.

The result is rounded down, with any remainder discarded. For example, 61
minutes is equal to 1 hour, and 59 minutes is equal to 0 hours.

The value returned by the function is compatible with both type numeric and type
duration. You can add the result to a number (type numeric) or a date, time, or
timestamp (type duration).

If you ask for the difference in microseconds between two timestamps that are
more than 32 years 9 months apart, you will exceed the 15-digit limit for duration
values. This will result in an error or truncation.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

518 ILE RPG Reference

D due_date S D INZ(D'2005-06-01')
D today S D INZ(D'2004-09-23')
D num_days S 15P 0

D start_time S Z
D time_taken S 15P 0

/FREE

// Determine the number of days between two dates.

// If due_date has the value 2005-06-01 and
// today has the value 2004-09-23, then
// num_days will have the value 251.

num_days = %DIFF (due_date: today: *DAYS);

// If the arguments are coded in the reverse order,
// num_days will have the value -251.

num_days = %DIFF (today: due_date: *DAYS);

// Determine the number of seconds required to do a task:
// 1. Get the starting timestamp
// 2. Do the task
// 3. Calculate the difference between the current
// timestamp and the starting timestamp

start_time = %timestamp();
process();
time_taken = %DIFF (%timestamp() : start_time : *SECONDS);

/END-FREE

Figure 207. Using the result of %DIFF as a numeric value

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

Chapter 21. Built-in Functions 519

D estimated_end...
D S D
D prev_start S D INZ(D'2003-06-21')
D prev_end S D INZ(D'2003-06-24')

/FREE

// Add the number of days between two dates
// to a third date

// prev_start is the date a previous task began
// prev_end is the date a previous task ended.

// The following calculation will estimate the
// date a similar task will end, if it begins
// today.

// If the current date, returned by %date(), is
// 2003-08-15, then estimated_end will be
// 2003-08-18.

estimated_end = %date() + %DIFF(prev_end : prev_start : *days);

/END-FREE

Figure 208. Using the result of %DIFF as a duration

%DIFF (Difference Between Two Date, Time, or Timestamp Values)

520 ILE RPG Reference

%DIV (Return Integer Portion of Quotient)
%DIV(n:m)

%DIV returns the integer portion of the quotient that results from dividing
operands n by m. The two operands must be numeric values with zero decimal
positions. If either operand is a packed, zoned, or binary numeric value, the result
is packed numeric. If either operand is an integer numeric value, the result is
integer. Otherwise, the result is unsigned numeric. Float numeric operands are not
allowed. (See also “%REM (Return Integer Remainder)” on page 567.)

If the operands are constants that can fit in 8-byte integer or unsigned fields,
constant folding is applied to the built-in function. In this case, the %DIV built-in
function can be coded in the definition specifications.

For more information, see “Arithmetic Operations” on page 434 or “Built-in
Functions” on page 430.

This function is illustrated in Figure 242 on page 567.

%DIV (Return Integer Portion of Quotient)

Chapter 21. Built-in Functions 521

%EDITC (Edit Value Using an Editcode)
%EDITC(numeric : editcode {: *ASTFILL | *CURSYM | currency-symbol})

This function returns a character result representing the numeric value edited
according to the edit code. In general, the rules for the numeric value and edit
code are identical to those for editing numeric values in output specifications. The
third parameter is optional, and if specified, must be one of:

*ASTFILL
Indicates that asterisk protection is to be used. This means that leading
zeros are replaced with asterisks in the returned value. For example,
%EDITC(-0012.5 : ’K’ : *ASTFILL) returns ’***12.5-’.

*CURSYM
Indicates that a floating currency symbol is to be used. The actual symbol
will be the one specified on the control specification in the CURSYM
keyword, or the default, ’$’. When *CURSYM is specified, the currency
symbol is placed in the the result just before the first significant digit. For
example, %EDITC(0012.5 : ’K’ : *CURSYM) returns ’ $12.5 ’.

currency-symbol
Indicates that floating currency is to be used with the provided currency
symbol. It must be a 1-byte character constant (literal, named constant or
expression that can be evaluated at compile time). For example,
%EDITC(0012.5 : ’K’ : ’X’) returns ’ X12.5 ’.

The result of %EDITC is always the same length, and may contain leading and
trailing blanks. For example, %EDITC(NUM : ’A’ : ’$’) might return ’$1,234.56CR’
for one value of NUM and ’ $4.56 ’ for another value.

Float expressions are not allowed in the first parameter (you can use %DEC to
convert a float to an editable format). In the second parameter, the edit code is
specified as a character constant; supported edit codes are: ’A’ - ’D’, ’J’ - ’Q’, ’X’ -
’Z’, ’1’ - ’9’. The constant can be a literal, named constant or an expression whose
value can be determined at compile time.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

%EDITC (Edit Value Using an Editcode)

522 ILE RPG Reference

A common requirement is to edit a field as follows:
v Leading zeros are suppressed
v Parentheses are placed around the value if it is negative

The following accomplishes this using an %EDITC in a subprocedure:

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D msg S 100A
D salary S 9P 2 INZ(1000)
* If the value of salary is 1000, then the value of salary * 12
* is 12000.00. The edited version of salary * 12 using the A edit
* code with floating currency is ' $12,000.00 '.
* The value of msg is 'The annual salary is $12,000.00'
CL0N01Factor1+++++++Opcode&ExtExtended-factor2+++++++++++++++++++++++++++
C EVAL msg = 'The annual salary is '
C + %trim(%editc(salary * 12
C :'A': *CURSYM))
* In the next example, the value of msg is 'The annual salary is &12,000.00'
C EVAL msg = 'The annual salary is '
C + %trim(%editc(salary * 12
C :'A': '&'))

* In the next example, the value of msg is 'Salary is $*****12,000.00'
* Note that the '$' comes from the text, not from the edit code.
C EVAL msg = 'Salary is $'
C + %trim(%editc(salary * 12
C :'B': *ASTFILL))

* In the next example, the value of msg is 'The date is 1/14/1999'
C EVAL msg = 'The date is '
C + %trim(%editc(*date : 'Y'))

Figure 209. %EDITC Example 1

%EDITC (Edit Value Using an Editcode)

Chapter 21. Built-in Functions 523

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D neg S 5P 2 inz(-12.3)
D pos S 5P 2 inz(54.32)
D editparens PR 50A
D val 30P 2 value
D editedVal S 10A
CL0N01Factor1+++++++Opcode&ExtExtended-factor2+++++++++++++++++++++++++++
C EVAL editedVal = editparens(neg)
* Now editedVal has the value '(12.30) '
C EVAL editedVal = editparens(pos)
* Now editedVal has the value ' 54.32 '
*---
* Subprocedure EDITPARENS
*---
P editparens B
D editparens PI 50A
D val 30P 2 value
D lparen S 1A inz(' ')
D rparen S 1A inz(' ')
D res S 50A
* Use parentheses if the value is negative
C IF val < 0
C EVAL lparen = '('
C EVAL rparen = ')'
C ENDIF
* Return the edited value
* Note that the '1' edit code does not include a sign so we
* don't have to calculate the absolute value.
C RETURN lparen +
C %editc(val : '1') +
C rparen
P editparens E

Figure 210. %EDITC Example 2

%EDITC (Edit Value Using an Editcode)

524 ILE RPG Reference

%EDITFLT (Convert to Float External Representation)
%EDITFLT(numeric expression)

%EDITFLT converts the value of the numeric expression to the character external
display representation of float. The result is either 14 or 23 characters. If the
argument is a 4-byte float field, the result is 14 characters. Otherwise, it is 23
characters.

If specified as a parameter to a definition specification keyword, the parameter
must be a numeric literal, float literal, or numeric valued constant name or built-in
function. When specified in an expression, constant folding is applied if the
numeric expression has a constant value.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D f8 s 8f inz (50000)
D string s 40a varying

/FREE
string = 'Float value is ' + %editflt (f8 - 4E4) + '.';
// Value of "string" is 'Float value is +1.000000000000000E+004. '

/END-FREE

Figure 211. %EDITFLT Example

%EDITFLT (Convert to Float External Representation)

Chapter 21. Built-in Functions 525

%EDITW (Edit Value Using an Editword)
%EDITW(numeric : editword)

This function returns a character result representing the numeric value edited
according to the edit word. The rules for the numeric value and edit word are
identical to those for editing numeric values in output specifications.

Float expressions are not allowed in the first parameter. Use %DEC to convert a
float to an editable format.

The edit word must be a character constant.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D amount S 30A
D salary S 9P 2
D editwd C '$, , **Dollars& &Cents'

* If the value of salary is 2451.53, then the edited version of
* (salary * 12) is '$***29,418*Dollars 36 Cents'. The value of
* amount is 'The annual salary is $***29,418*Dollars 36 Cents'.

/FREE
amount = 'The annual salary is '

+ %editw(salary * 12 : editwd);
/END-FREE

Figure 212. %EDITW Example

%EDITW (Edit Value Using an Editword)

526 ILE RPG Reference

%ELEM (Get Number of Elements)
%ELEM(table_name)
%ELEM(array_name)
%ELEM(multiple_occurrence_data_structure_name)

%ELEM returns the number of elements in the specified array, table, or
multiple-occurrence data structure. The value returned is in unsigned integer
format (type U). It may be specified anywhere a numeric constant is allowed in the
definition specification or in an expression in the extended factor 2 field.

The parameter must be the name of an array, table, or multiple occurrence data
structure.

For more information, see “Array Operations” on page 438 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D arr1d S 20 DIM(10)
D table S 10 DIM(20) ctdata
D mds DS 20 occurs(30)
D num S 5p 0

* like_array will be defined with a dimension of 10.
* array_dims will be defined with a value of 10.
D like_array S like(arr1d) dim(%elem(arr1d))
D array_dims C const (%elem (arr1d))

/FREE
num = %elem (arr1d); // num is now 10
num = %elem (table); // num is now 20
num = %elem (mds); // num is now 30

/END-FREE

Figure 213. %ELEM Example

%ELEM (Get Number of Elements)

Chapter 21. Built-in Functions 527

%EOF (Return End or Beginning of File Condition)
%EOF{(file_name)}

%EOF returns ’1’ if the most recent read operation or write to a subfile ended in an
end of file or beginning of file condition; otherwise, it returns ’0’.

The operations that set %EOF are:
v “READ (Read a Record)” on page 772
v “READC (Read Next Changed Record)” on page 775
v “READE (Read Equal Key)” on page 777
v “READP (Read Prior Record)” on page 780
v “READPE (Read Prior Equal)” on page 782
v “WRITE (Create New Records)” on page 847 (subfile only).

The following operations, if successful, set %EOF(filename) off. If the operation is
not successful, %EOF(filename) is not changed. %EOF with no parameter is not
changed by these operations.
v “CHAIN (Random Retrieval from a File)” on page 633
v “OPEN (Open File for Processing)” on page 759
v “SETGT (Set Greater Than)” on page 804
v “SETLL (Set Lower Limit)” on page 808

When a full-procedural file is specified, this function returns ’1’ if the previous
operation in the list above, for the specified file, resulted in an end of file or
beginning of file condition. For primary and secondary files, %EOF is available
only if the file name is specified. It is set to ’1’ if the most recent input operation
during *GETIN processing resulted in an end of file or beginning of file condition.
Otherwise, it returns ’0’.

This function is allowed for input, update, and record-address files; and for display
files allowing WRITE to subfile records.

For more information, see “File Operations” on page 453 or “Built-in Functions” on
page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
* File INFILE has record format INREC
FINFILE IF E DISK

/FREE
READ INREC; // read a record
IF %EOF;

// handle end of file
ENDIF;

/END-FREE

Figure 214. %EOF without a Filename Parameter

%EOF (Return End or Beginning of File Condition)

528 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* This program is comparing two files

F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
FFILE1 IF E DISK
FFILE2 IF E DISK

* Loop until either FILE1 or FILE2 has reached end-of-file
/FREE

DOU %EOF(FILE1) OR %EOF(FILE2);
// Read a record from each file and compare the records

READ REC1;
READ REC2;
IF %EOF(FILE1) AND %EOF(FILE2);

// Both files have reached end-of-file
EXSR EndCompare;

ELSEIF %EOF(FILE1);
// FILE1 is shorter than FILE2
EXSR F1Short;

ELSEIF %EOF(FILE2);
// FILE2 is shorter than FILE1
EXSR F2Short;

ELSE;
// Both files still have records to be compared
EXSR CompareRecs;

ENDIF;
ENDDO;

// ...
/END-FREE

Figure 215. %EOF with a Filename Parameter

%EOF (Return End or Beginning of File Condition)

Chapter 21. Built-in Functions 529

%EQUAL (Return Exact Match Condition)
%EQUAL{(file_name)}

%EQUAL returns ’1’ if the most recent relevant operation found an exact match;
otherwise, it returns ’0’.

The operations that set %EQUAL are:
v “SETLL (Set Lower Limit)” on page 808
v “LOOKUP (Look Up a Table or Array Element)” on page 711

If %EQUAL is used without the optional file_name parameter, then it returns the
value set for the most recent relevant operation.

For the SETLL operation, this function returns ’1’ if a record is present whose key
or relative record number is equal to the search argument.

For the LOOKUP operation with the EQ indicator specified, this function returns
’1’ if an element is found that exactly matches the search argument.

If a file name is specified, this function applies to the most recent SETLL operation
for the specified file. This function is allowed only for files that allow the SETLL
operation code.

For more examples, see Figure 332 on page 713 and Figure 378 on page 811.

For more information, see “File Operations” on page 453, “Result Operations” on
page 467, or “Built-in Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
* File CUSTS has record format CUSTREC
FCUSTSIF E K DISK

/FREE
// Check if the file contains a record with a key matching Cust
setll Cust CustRec;
if %equal;
// an exact match was found in the file
endif;

/END-FREE

Figure 216. %EQUAL with SETLL Example

%EQUAL (Return Exact Match Condition)

530 ILE RPG Reference

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D TabNames S 10A DIM(5) CTDATA ASCEND
D SearchName S 10A
* Position the table at or near SearchName
* Here are the results of this program for different values
* of SearchName:
* SearchName | DSPLY
* -------------+-------------------------------
* 'Catherine ' | 'Next greater Martha'
* 'Andrea ' | 'Exact Andrea'
* 'Thomas ' | 'Not found Thomas'
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C SearchName LOOKUP TabNames 10 10
C SELECT
C WHEN %EQUAL
* An exact match was found
C 'Exact 'DSPLY TabNames
C WHEN %FOUND
* A name was found greater than SearchName
C 'Next greater'DSPLY TabNames
C OTHER
* Not found. SearchName is greater than all the names in the table
C 'Not found 'DSPLY SearchName
C ENDSL
C RETURN

**CTDATA TabNames
Alexander
Andrea
Bohdan
Martha
Samuel

Figure 217. %EQUAL and %FOUND with LOOKUP Example

%EQUAL (Return Exact Match Condition)

Chapter 21. Built-in Functions 531

%ERROR (Return Error Condition)
%ERROR returns ’1’ if the most recent operation with extender ’E’ specified
resulted in an error condition. This is the same as the error indicator being set on
for the operation. Before an operation with extender ’E’ specified begins, %ERROR
is set to return ’0’ and remains unchanged following the operation if no error
occurs. All operations that allow an error indicator can also set the %ERROR
built-in function. The CALLP operation can also set %ERROR.

For examples of the %ERROR built-in function, see Figure 249 on page 580 and
Figure 250 on page 581.

For more information, see “Result Operations” on page 467 or “Built-in Functions”
on page 430.

%ERROR (Return Error Condition)

532 ILE RPG Reference

%FIELDS (Fields to update)
%FIELDS(name{:name...})

A list of fields can be specified as the final argument to Input/Output operation
UPDATE coded in a free-form group. Only the fields specified are updated into the
Input/Output buffer.

Notes:

1. Each name must be the name of a field in the input buffer for the record. If the
field is renamed, the internal name is used.

2. The name can be a subfield from a data structure defined with the
EXTNAME/LIKEREC keyword using the file/format name of the record being
updated. *INPUT must be specified with the keyword used. The name
specified must contain the subfield name that corresponds to the input field.
For a qualified data structure, the simple qualified name of the subfield is used.

3. The name can be a subfield of a data structure defined with the LIKEDS
keyword of a data structure defined as described above.

%FIELDS specifies a list of fields to update. For example:

/free
chain empno record;
salary = salary + 2000;
status = STATEXEMPT;
update record %fields(salary:status);

/end-free

Figure 218. Updating Fields

%Fields (Fields to update)

Chapter 21. Built-in Functions 533

#

#

#
#

#
#
#
#
#

#
#

%FLOAT (Convert to Floating Format)
%FLOAT(numeric or character expression)

%FLOAT converts the value of the expression to float format. This built-in function
may only be used in expressions.

If the parameter is a character expression, the following rules apply:
v The sign is optional. It can be ’+’ or ’-’. It must precede the numeric data.
v The decimal point is optional. It can be either a period or a comma.
v The exponent is optional. It can be either ’E’ or ’e’. The sign for the exponent is

optional. It must precede the numeric part of the exponent.
v Blanks are allowed anywhere in the data. For example, ’ + 3 , 5 E 9’ is a valid

parameter.
v If invalid numeric data is found, an exception occurs with status code 105.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D p1 s 15p 0 inz (1)
D p2 s 25p13 inz (3)
D c15a s 15a inz('-5.2e-1')
D c15b s 15a inz(' + 5 . 2 ')
D result1 s 15p 5
D result2 s 15p 5
D result3 s 15p 5
D result4 s 8f
/FREE
// using numeric parameters

result1 = p1 / p2; // "result1" is now 0.33000.
result2 = %float (p1) / p2; // "result2" is now 0.33333.
result3 = %float (p1 / p2); // "result3" is now 0.33333.
result4 = %float (12345); // "result4" is now 1.2345E4

// using character parameters
result1 = %float (c15a); // "result1" is now -0.52000.
result2 = %float (c15b); // "result2" is now 5.20000.
result4 = %float (c15b); // "result4" is now 5.2E0

/END-FREE

Figure 219. %FLOAT Example

%FLOAT (Convert to Floating Format)

534 ILE RPG Reference

%FOUND (Return Found Condition)
%FOUND{(file_name)}

%FOUND returns ’1’ if the most recent relevant file operation found a record, a
string operation found a match, or a search operation found an element.
Otherwise, this function returns ’0’.

The operations that set %FOUND are:
v File operations:

– “CHAIN (Random Retrieval from a File)” on page 633
– “DELETE (Delete Record)” on page 655
– “SETGT (Set Greater Than)” on page 804
– “SETLL (Set Lower Limit)” on page 808

v String operations:
– “CHECK (Check Characters)” on page 636
– “CHECKR (Check Reverse)” on page 639
– “SCAN (Scan String)” on page 799

Note: Built-in function %SCAN does not change the value of %FOUND.
v Search operations:

– “LOOKUP (Look Up a Table or Array Element)” on page 711

If %FOUND is used without the optional file_name parameter, then it returns the
value set for the most recent relevant operation. When a file_name is specified,
then it applies to the most recent relevant operation on that file.

For file operations, %FOUND is opposite in function to the ″no record found NR″
indicator.

For string operations, %FOUND is the same in function as the ″found FD″
indicator.

For the LOOKUP operation, %FOUND returns ’1’ if the operation found an
element satisfying the search conditions. For an example of %FOUND with
LOOKUP, see Figure 217.

For more information, see “File Operations” on page 453, “Result Operations” on
page 467, or “Built-in Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
* File CUSTS has record format CUSTREC
FCUSTS IF E K DISK

/FREE
// Check if the customer is in the file
chain Cust CustRec;
if %found;

exsr HandleCustomer;
endif;

/END-FREE

Figure 220. %FOUND used to Test a File Operation without a Parameter

%FOUND (Return Found Condition)

Chapter 21. Built-in Functions 535

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
* File MASTER has all the customers
* File GOLD has only the "privileged" customers
FMASTER IF E K DISK
FGOLD IF E K DISK

/FREE
// Check if the customer exists, but is not a privileged customer
chain Cust MastRec;
chain Cust GoldRec;

// Note that the file name is used for %FOUND, not the record name
if %found (Master) and not %found (Gold);
//
endif;

/END-FREE

Figure 221. %FOUND used to Test a File Operation with a Parameter

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D Numbers C '0123456789'
D Position S 5I 0
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* If the actual position of the name is not required, just use
* %FOUND to test the results of the SCAN operation.
* If Name has the value 'Barbara' and Line has the value
* 'in the city of Toronto. ', then %FOUND will return '0'.
* If Line has the value 'the city of Toronto where Barbara lives, '
* then %FOUND will return '1'.
C Name SCAN Line
C IF %FOUND
C EXSR PutLine
C ENDIF
* If Value contains the value '12345.67', Position would be set
* to 6 and %FOUND would return the value '1'.
* If Value contains the value '10203040', Position would be set
* to 0 and %FOUND would return the value '0'.
C Numbers CHECK Value Position
C IF %FOUND
C EXSR HandleNonNum
C ENDIF

Figure 222. %FOUND used to Test a String Operation

%FOUND (Return Found Condition)

536 ILE RPG Reference

%GRAPH (Convert to Graphic Value)
%GRAPH(char-expr | graph-expr | UCS-2-expr { : ccsid })

%GRAPH converts the value of the expression from character, graphic, or UCS-2
and returns a graphic value. The result is varying length if the parameter is
varying length.

The second parameter, ccsid, is optional and indicates the CCSID of the resulting
expression. The CCSID defaults to the graphic CCSID related to the CCSID of the
job. If CCSID(*GRAPH : *IGNORE) is specified on the control specification or
assumed for the module, the %GRAPH built-in is not allowed.

If the parameter is a constant, the conversion will be done at compile time. In this
case, the CCSID is the graphic CCSID related to the CCSID of the source file.

If the parameter is character, the character data must be in the form
shift-out graphic-data shift-in

For example, ’oAABBCCi’.

If the conversion results in substitution characters, a warning message is issued at
compile time. At run time, status 00050 is set and no error message is issued.

For more information, see “Graphic Format” on page 183, “Conversion
Operations” on page 447, or “Built-in Functions” on page 430.

%GRAPH (Convert to Graphic Value)

Chapter 21. Built-in Functions 537

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
H*Keywords+++
H ccsid (*graph: 300)

D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++
D char S 8A inz('oXXYYZZi')
* The %GRAPH built-in function is used to initialize a graphic field
D graph S 10G inz (%graph ('oAABBCCDDEEi'))
D ufield S 2C inz (%ucs2 ('oFFGGi'))
D graph2 S 2G ccsid (4396) inz (*hival)
D isEqual S 1N
D proc PR
D gparm 2G ccsid (4396) value

/FREE
graph = %graph (char) + %graph (ufield);
// graph now has the value XXYYZZFFGG.
// %graph(char) removes the shift characters from the
// character data, and treats the non-shift data as
// graphic data.

isEqual = graph = %graph (graph2 : 300);
// The result of the %GRAPH built-in function is the value of
// graph2, converted from CCSID 4396 to CCSID 300.

graph2 = graph;
// The value of graph is converted from CCSID 300 to CCSID 4396
// and stored in graph2.
// This conversion is performed implicitly by the compiler.

proc (graph);
// The value of graph is converted from CCSID 300 to CCSID 4396
// implicitly, as part of passing the parameter by value.

/END-FREE

Figure 223. %GRAPH Examples

%GRAPH (Convert to Graphic Value)

538 ILE RPG Reference

%HANDLER (handlingProcedure : communicationArea)
%HANDLER is used to identify a procedure to handle an event or a series of
events. %HANDLER does not return a value, and it can only be specified as the
first operand of XML-SAX and XML-INTO.

The first operand, handlingProcedure specifies the prototype of the handling
procedure. The return value and parameters specified by the prototype, or by the
procedure interface if the prototype is not explicitly specified, must match the
parameters required for the handling procedure; the requirements are determined
by the operation that %HANDLER is specified for. See “XML-SAX (Parse an XML
Document)” on page 886 and “XML-INTO (Parse an XML Document into a
Variable)” on page 852 for the specific requirements for the definition of the
handling procedures.

The second operand, communicationArea, specifies a variable to be passed as a
parameter on every call to the handling procedure. The operand must be an exact
match for the first prototyped parameter of the handling procedure, according to
the same rules that are used for checking prototyped parameters passed by
reference. The communication-area parameter can be any type, including arrays
and data structures.

When an operation code uses the %HANDLER built-in function, the following
sequence of events occurs:
1. The operation using the %HANDLER built-in function begins.
2. When an event occurs during the operation that must be handled by the

handling procedure, the RPG runtime calls the handling procedure specified as
the first operand of %HANDLER. The first parameter passed to the handling
procedure is the communication area that was specified as the second operand
of %HANDLER. The other parameters depend on the operation and the nature
of the event that occurred.

3. The handling procedure processes the parameters, possibly updating the
communication-area parameter.

4. The handling procedure returns a zero if it completed successfully, and a
non-zero value if it did not complete successfully.

5. If the returned value was zero, the RPG runtime continues processing until
either the operation is complete, or another event occurs. If the returned value
was not zero, the operation ends.

6. If another event occurs, the handling procedure is called again. If the previous
call to the handling procedure changed the communication area, the changes
can be seen on subsequent calls.

7. When the operation is complete, control passes to the statement following the
operation that used the %HANDLER built-in function. If the handling
procedure changed the communication area, the changes can be seen in the
procedure that used the %HANDLER built-in function.

The communication area can be used for several purposes.
1. To communicate information from the procedure coding the %HANDLER

built-in function to the handling procedure.
2. To communicate information from the handling procedure back to the

procedure coding the %HANDLER built-in function.
3. To keep state information between successive calls of the handling procedure.

State information can also be kept in static variables in the handling procedure,

%HANDLER (handlingProcedure : communicationArea)

Chapter 21. Built-in Functions 539

|
|
|
|
|
|
|
|

but when static variables are used, incorrect results can occur if the handling
procedure has been enabled by more than one %HANDLER operation. By
using a communication area parameter, the usages of the handling procedure
are independent from each other.

%HANDLER (handlingProcedure : communicationArea)

540 ILE RPG Reference

* Data structure used as a parameter between
* the XML-SAX operation and the handling
* procedure.
* - "attrName" is set by the procedure doing the
* XML-SAX operation and used by the handling procedure
* - "attrValue" is set by the handling procedure
* and used by the procedure doing the XML-SAX
* operation
* - "haveAttr" is used internally by the handling
* procedure
D info DS
D attrName 20A VARYING
D haveAttr N
D attrValue 20A VARYING

* Prototype for procedure "myHandler" defining
* the communication-area parameter as being
* like data structure "info"
D myHandler PR 10I 0
D commArea LIKEDS(info)
D event 10I 0 VALUE
D string * VALUE
D stringLen 20I 0 VALUE
D exceptionId 10I 0 VALUE
/free

// The purpose of the following XML-SAX operation
// is to obtain the value of the first "companyname"
// attribute found in the XML document.

// The communication area "info" is initialized with
// the name of the attribute whose value is
// to be obtained from the XML document.
attrName = 'companyname';

// Start SAX processing. The procedure "myHandler"
// will be called for every SAX event; the first
// parameter will be the data structure "info".
xml-sax(e) %handler(myHandler : info) %xml(xmldoc);
// The XML-SAX operation is complete. The
// communication area can be checked to get the
// value of the attribute.
if not %error() and attrValue <> '';

dsply (attrName + '=' + attrValue);
endif;

:
:
* The SAX handling procedure "myHandler"
P myHandler B
D PI 10I 0
D comm LIKEDS(info)
D event 10I 0 VALUE
D string * VALUE
D stringLen 20I 0 VALUE
D exceptionId 10I 0 VALUE
D value S 65535A VARYING
D BASED(string)
D ucs2value S 16383C VARYING
D BASED(string)
D rc S 10I 0 INZ(0)
/free

select;

Figure 224. Using a communication-area with %HANDLER (Part 1 of 2)

%HANDLER (handlingProcedure : communicationArea)

Chapter 21. Built-in Functions 541

For more examples of %HANDLER, see “XML-SAX (Parse an XML Document)” on
page 886 and “XML-INTO (Parse an XML Document into a Variable)” on page 852.

For more information, see “XML Operations” on page 475 or “Built-in Functions”
on page 430.

// When the event is a "start document" event,
// the handler can initialize any internal
// subfields in the communication area.
when event = *XML_START_DOCUMENT;

comm.haveAttr = *OFF;

// When the event is an "attribute name" event,
// and the value of the event is the required
// name, the internal subfield "haveAttr" is
// set to *ON. If the next event is an
// attribute-value event, the value will be
// saved in the "attrValue" subfield.
when event = *XML_ATTR_NAME
and %subst(value : 1 : stringLen) = comm.attrName;

comm.haveAttr = *ON;
comm.attrValue = '';

// When "haveAttr" is on, the data from any
// attribute-value should be saved in the "attrValue"
// string until the *XML_END_ATTR event occurs
when comm.haveAttr;

select;
when event = *XML_ATTR_CHARS
or event = *XML_ATTR_PREDEF_REF;

comm.attrValue +=
%subst(value : 1 : stringLen);

when event = *XML_ATTR_UCS2_REF;
stringLen = stringLen / 2;
comm.attrValue +=

%char(%subst(ucs2value : 1 : stringLen));
when event = *XML_END_ATTR;

// We have the entire attribute value
// so no further parsing is necessary.
// A non-zero return value tells the
// RPG runtime that the handler does
// not want to continue the operation
rc = -1;

endsl;

endsl;

return rc;
/end-free
P E

Figure 224. Using a communication-area with %HANDLER (Part 2 of 2)

%HANDLER (handlingProcedure : communicationArea)

542 ILE RPG Reference

%HOURS (Number of Hours)
%HOURS(number)

%HOURS converts a number into a duration that can be added to a time or
timestamp value.

%HOURS can only be the right-hand value in an addition or subtraction operation.
The left-hand value must be a time or timestamp. The result is a time or
timestamp value with the appropriate number of hours added or subtracted. For a
time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%HOURS (Number of Hours)

Chapter 21. Built-in Functions 543

%INT (Convert to Integer Format)
%INT(numeric or character expression)

%INT converts the value of the expression to integer. Any decimal digits are
truncated. This built-in function may only be used in expressions. %INT can be
used to truncate the decimal positions from a float or decimal value allowing it to
be used as an array index.

If the parameter is a character expression, the following rules apply:
v The sign is optional. It can be ’+’ or ’-’. It can precede or follow the numeric

data.
v The decimal point is optional. It can be either a period or a comma.
v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.
v Floating point data is not allowed. That is, where the numeric value is followed

by E and an exponent, for example ’1.2E6’.
v If invalid numeric data is found, an exception occurs with status code 105

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

Figure 225 on page 545 shows an example of the %INT built-in function.

%INTH (Convert to Integer Format with Half Adjust)
%INTH(numeric or character expression)

%INTH is the same as %INT except that if the expression is a decimal, float or
character value, half adjust is applied to the value of the expression when
converting to integer type. No message is issued if half adjust cannot be
performed.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

%INT (Convert to Integer Format)

544 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D p7 s 7p 3 inz (1234.567)
D s9 s 9s 5 inz (73.73442)
D f8 s 8f inz (123.789)
D c15a s 15a inz (' 12345.6789 -')
D c15b s 15a inz (' + 9 8 7 . 6 5 4 ')
D result1 s 15p 5
D result2 s 15p 5
D result3 s 15p 5
D array s 1a dim (200)
D a s 1a

/FREE
// using numeric parameters

result1 = %int (p7) + 0.011; // "result1" is now 1234.01100.
result2 = %int (s9); // "result2" is now 73.00000
result3 = %inth (f8); // "result3" is now 124.00000.

// using character parameters
result1 = %int (c15a); // "result1" is now -12345.00000
result2 = %inth (c15b); // "result2" is now 988.00000

// %INT and %INTH can be used as array indexes
a = array (%inth (f8));

/END-FREE

Figure 225. %INT and %INTH Example

%INTH (Convert to Integer Format with Half Adjust)

Chapter 21. Built-in Functions 545

%KDS (Search Arguments in Data Structure)
%KDS(data-structure-name{:num-keys})

%KDS is allowed as the search argument for any keyed Input/Output operation
(CHAIN, DELETE, READE, READPE, SETGT, SETLL) coded in a free-form group.
The search argument is specified by the subfields of the data structure name coded
as the first argument of the built-in function. The key data structure may be (but is
not limited to), an externally described data structure with keyword
EXTNAME(...:*KEY) or LIKEREC(...:*KEY)..

Notes:

1. The first argument must be the name of a data structure. This includes any
subfield defined with keyword LIKEDS or LIKEREC.

2. The second argument specifies how many of the subfields to use as the search
argument.

3. The individual key values in the compound key are taken from the top level
subfields of the data structure. Subfields defined with LIKEDS are considered
character data.

4. Subfields used to form the compound key must not be arrays.
5. The types of all subfields (up to the number specified by ″num-keys″) must

match the types of the actual keys. Where lengths and formats differ, the value
is converted to the proper length and format.

6. If the data structure is defined as an array data structure (using keyword DIM),
an index must be supplied for the data structure.

7. Opcode extenders H, M, or R specified on the keyed Input/Output operations
code affect the moving of the search argument to the corresponding position in
the key build area.

Example:

A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++
A R CUSTR
A NAME 100A
A ZIP 10A
A ADDR 100A
A K NAME
A K ZIP
FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++
Fcustfile if e k disk rename(CUSTR:custRec)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D custRecKeys ds likerec(custRec : *key)
...
/free

// custRecKeys is a qualified data structure
custRecKeys.name = customer;
custRecKeys.zip = zipcode;
// the *KEY data structure is used as the search argument for CHAIN
chain %kds(custRecKeys) custRec;

/end-free

Figure 226. Example of Search on Keyed Input/Output Operations

%KDS (Search Arguments in Data Structure)

546 ILE RPG Reference

%LEN (Get or Set Length)
%LEN(expression)

%LEN(varying-length expression : *MAX)

%LEN can be used to get the length of a variable expression, to set the current
length of a variable-length field, or to get the maximum length of a varying-length
expression.

The parameter must not be a figurative constant.

For more information, see “Size Operations” on page 467 or “Built-in Functions”
on page 430.

%LEN Used for its Value
When used on the right-hand side of an expression, this function returns the
number of digits or characters of the variable expression.

For numeric expressions, the value returned represents the precision of the
expression and not necessarily the actual number of significant digits. For a float
variable or expression, the value returned is either 4 or 8. When the parameter is a
numeric literal, the length returned is the number of digits of the literal.

For character, graphic, or UCS-2 expressions the value returned is the number of
characters in the value of the expression. For variable-length values, such as the
value returned from a built-in function or a variable-length field, the value
returned by %LEN is the current length of the character, graphic, or UCS-2 value.

Note that if the parameter is a built-in function or expression that has a value
computable at compile-time, the length returned is the actual number of digits of
the constant value rather than the maximum possible value that could be returned
by the expression.

For all other data types, the value returned is the number of bytes of the value.

%LEN (Get or Set Length)

Chapter 21. Built-in Functions 547

|

|
|
|

%LEN Used to Set the Length of Variable-Length Fields
When used on the left-hand side of an expression, this function sets the current
length of a variable-length field. If the set length is greater than the current length,
the characters in the field between the old length and the new length are set to
blanks.

Note: %LEN can only be used on the left-hand-side of an expression when the
parameter is variable length, and when *MAX is not specified.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D num1 S 7P 2
D NUM1_LEN C %len(num1)
D NUM1_DECPOS C %decpos(num1)
D num2 S 5S 1
D num3 S 5I 0 inz(2)
D chr1 S 10A inz('Toronto ')
D chr2 S 10A inz('Munich ')
D ptr S *

* Numeric expressions:
/FREE

num1 = %len(num1); // 7
num1 = %decpos(num2); // 1
num1 = %len(num1*num2); // 12
num1 = %decpos(num1*num2); // 3
// Character expressions:
num1 = %len(chr1); // 10
num1 = %len(chr1+chr2); // 20
num1 = %len(%trim(chr1)); // 7
num1 = %len(%subst(chr1:1:num3) + ' ' + %trim(chr2));// 9
// %len and %decpos can be useful with other built-in functions:
// Although this division is performed in float, the result is
// converted to the same precision as the result of the eval:
// Note: %LEN and %DECPOS cannot be used directly with %DEC
// and %DECH, but they can be used as named constants
num1 = 27 + %dec (%float(num1)/num3 : NUM1_LEN : NUM1_DECPOS);
// Allocate sufficient space to hold the result of the catenation
// (plus an extra byte for a trailing null character):
num3 = %len (chr1 + chr2) + 1;
ptr = %alloc (num3);
%str (ptr: num3) = chr1 + chr2;

/END-FREE

Figure 227. %DECPOS and %LEN Example

%LEN Used to Set the Length of Variable-Length Fields

548 ILE RPG Reference

|
|

%LEN Used to Get the Maximum Length of Varying-Length
Expressions

When the second parameter of %LEN is *MAX, this function returns the maximum
number of characters for a varying-length expression. When the first parameter of
%LEN is a field name, this value is the same as the defined length of the field. For
example, if a variable-length UCS-2 field is defined as 25C, %LEN(fld:*MAX)
returns 25.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
*
D city S 40A varying inz('North York')
D n1 S 5i 0

* %LEN used to get the current length of a variable-length field:
/FREE

n1 = %len(city);
// Current length, n1 = 10

// %LEN used to set the current length of a variable-length field:
%len (city) = 5;
// city = 'North' (length is 5)

%len (city) = 15;
// city = 'North ' (length is 15)

/END-FREE

Figure 228. %LEN with Variable-Length Field Example

%LEN Used to Get the Maximum Length of Varying-Length Expressions

Chapter 21. Built-in Functions 549

|

|

|
|
|
|
|
|

D char_varying s 100a varying
D ucs2_varying s 5000c varying
D graph_varying s 7000g varying(4)
D graph_fld10 s 10g
D char_fld10 s 10a
/free

// Calculate several length and size values
// - The maximum length, %LEN(*MAX), measured in characters
// - The current length, %LEN, measured in characters
// - The size, %SIZE, measured in bytes, including the
// 2- or 4-byte length prefix

// Each alphanumeric character has one byte
char_varying = 'abc'; // Length is 3
max_len = %len(char_varying : *MAX);
len = %len(char_varying);
size = %size(char_varying);
// max_len = 100
// len = 3
// size = 102 (100 + 2)

// Each UCS-2 character has two bytes
ucs2_varying = 'abc'; // Length is 3
max_len = %len(ucs2_varying : *MAX);
len = %len(ucs2_varying);
size = %size(ucs2_varying);
// max_len = 5000
// len = 3
// size = 10002 (5000 * 2 + 4)

// Each graphic character has two bytes.
// For field graph_varying, VARYING(4) was specified,
// so the length prefix has four bytes
graph_varying = graph_fld10; // Length is 10
max_len = %len(graph_varying : *MAX);
len = %len(graph_varying);
size = %size(graph_varying);
// max_len = 7000
// len = 10
// size = 14004 (7000 * 2 + 4)

// Calculate %LEN(*MAX) of a concatenation
graph_varying = %subst(graph_fld10:1:5); // Length is 5
max_len = %len(graph_varying + graph_fld10 : *MAX);
len = %len(graph_varying + graph_fld10);
// max_len = 7010 (7000 + 10)
// len = 15 (5 + 10)

// Calculate %LEN(*MAX) of a %TRIM expression
char_fld10 = '1234'; // Trimmed length is 4
max_len = %len(%trim(char_fld10) : *MAX);
len = %len(%trim(char_fld10));
// max_len = 10 (maximum trimmed length)
// len = 4 (actual trimmed length)

Figure 229. %LEN with *MAX Example

%LEN Used to Get the Maximum Length of Varying-Length Expressions

550 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

%LOOKUPxx (Look Up an Array Element)
%LOOKUP(arg : array | keyed array data structure {: start_index {: number_of_elements}})
%LOOKUPLT(arg : array | keyed array data structure {: start_index {: number_of_elements}})
%LOOKUPGE(arg : array | keyed array data structure {: start_index {: number_of_elements}})
%LOOKUPGT(arg : array | keyed array data structure {: start_index {: number_of_elements}})
%LOOKUPLE(arg : array | keyed array data structure {: start_index {: number_of_elements}})

The following functions return the array index of the item in the array or the
keyed array data structure that matches that matches arg as follows:

%LOOKUP An exact match.

%LOOKUPLT The value that is closest to arg but less than arg.

%LOOKUPLE An exact match, or the value that is closest to arg but less than arg.

%LOOKUPGT
The value that is closest to arg but greater than arg.

%LOOKUPGE
An exact match, or the value that is closest to arg but greater than
arg.

If no value matches the specified condition, zero is returned. The value returned is
in unsigned integer format (type U).

The search starts at index start_index and continues for number_of_elems elements.
By default, the entire array is searched.

The second parameter can be a scalar array in the form ARRAY_NAME, or a keyed
array data structure in the form ARRAY_DS_NAME(*).SUBFIELD_NAME.

To search an array data structure, specify the data structure name with an index of
(*), then specify the subfield to be used as the key for the search. For example, to
search for a value of ’XP2’ in the CODE subfield of array data structure INFO,
specify ’XP2’ as the first parameter and specify INFO(*).CODE as the second
parameter. The part of the qualified name up to the (*) index must represent an
array, and the part of the qualified name after the (*) must represent a scalar
subfield, or indexed array of scalars.

The first two parameters can have any type but must have the same type. For a
keyed data structure array, the first parameter must have the same type as the key.
They do not need to have the same length or number of decimal positions. The
third and fourth parameters must be non-float numeric values with zero decimal
positions.

For %LOOKUPLT, %LOOKUPLE, %LOOKUPGT, and %LOOKUPGE, the array
must be defined with keyword ASCEND or DESCEND. The ALTSEQ table is used,
unless arg or array is defined with ALTSEQ(*NONE).

Built-in functions %FOUND and %EQUAL are not set following a %LOOKUP
operation.

The %LOOKUPxx built-in functions use a binary search for sequenced arrays
(arrays that have the ASCEND or DESCEND keyword specified).

Note: Unlike the LOOKUP operation code, %LOOKUP applies only to arrays. To
look up a value in a table, use the %TLOOKUP built-in function.

%LOOKUPxx (Look Up an Array Element)

Chapter 21. Built-in Functions 551

|
|
|
|
|

|
|

||

||

||

|
|

|
|
|

#
#

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

For more information, see:
v “Array Operations” on page 438
v “Built-in Functions” on page 430
v “Array Data Structures” on page 137

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

arr(1) = 'Cornwall';
arr(2) = 'Kingston';
arr(3) = 'London';
arr(4) = 'Paris';
arr(5) = 'Scarborough';
arr(6) = 'York';

n = %LOOKUP('Paris':arr);
// n = 4

n = %LOOKUP('Thunder Bay':arr);
// n = 0 (not found)

n = %LOOKUP('Kingston':arr:3);
// n = 0 (not found after start index)

n = %LOOKUPLE('Paris':arr);
// n = 4

n = %LOOKUPLE('Milton':arr);
// n = 3

n = %LOOKUPGT('Sudbury':arr);
// n = 6

n = %LOOKUPGT('Yorks':arr:2:4);
// n = 0 (not found between elements 2 and 5)

/END-FREE

Figure 230. %LOOKUPxx with a scalar array

%LOOKUPxx (Look Up an Array Element)

552 ILE RPG Reference

Sequenced arrays that are not in the correct sequence
When the data is not in the correct sequence for a sequenced array, the
%LOOKUPxx built-in functions and the LOOKUP operation code may find
different values. The %LOOKUPxx built-in functions may not find a data value
even if it is present in the array.

Since a binary search is used by the %LOOKUPxx built-in functions for a
sequenced array, and the correct function of a binary search depends on the data
being in order, the search may only look at a few elements of the array. When the
array is out of order, the result of a binary search is unpredictable.

Note: When the LOOKUP operation code is used to find an exact match in a
sequenced array, the search starts from the specified element and continues
one element at a time until either the value is found or the last element of
the array is reached.

D emps DS QUALIFIED DIM(20)
D name 25A VARYING
D id 9S 0
D numEmps S 10I 0
/FREE

emps(1).name = 'Mary';
emps(1).id = 00138;
emps(2).name = 'Patrick';
emps(2).id = 10379;
emps(3).name = 'Juan';
emps(3).id = 06254;
numEmps = 3;

// Search for employee 'Patrick'
n = %lookup('Patrick' : emps(*).name : 1 : numEmps);
// n = 2

// Search for the employee with id 06254
n = %lookup(06254 : emps(*).id : 1 : numEmps);
// n = 3

// Search for employee 'Bill' (not found)
n = %lookup('Bill' : emps(*).name : 1 : numEmps);
// n = 0

Figure 231. %LOOKUP with an array data structure

%LOOKUPxx (Look Up an Array Element)

Chapter 21. Built-in Functions 553

%MINUTES (Number of Minutes)
%MINUTES(number)

%MINUTES converts a number into a duration that can be added to a time or
timestamp value.

%MINUTES can only be the right-hand value in an addition or subtraction
operation. The left-hand value must be a time or timestamp. The result is a time or
timestamp value with the appropriate number of minutes added or subtracted. For
a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%MINUTES (Number of Minutes)

554 ILE RPG Reference

%MONTHS (Number of Months)
%MONTHS(number)

%MONTHS converts a number into a duration that can be added to a date or
timestamp value.

%MONTHS can only be the right-hand value in an addition or subtraction
operation. The left-hand value must be a date or timestamp. The result is a date or
timestamp value with the appropriate number of months added or subtracted. For
a date, the resulting value is in *ISO format.

In most cases, the result of adding or subtracting a given number of months is
obvious. For example, 2000-03-15 + %MONTHS(1) is 2000-04-15. If the addition or
subtraction would produce a nonexistent date (for example, February 30), the last
day of the month is used instead.

Adding or subtracting a number of months to the 29th, 30th, or 31st day of a
month may not be reversible. For example, 2000-03-31 + %MONTHS(1) -
%MONTHS(1) is 2000-03-30.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

// Determine the date in 3 years
newdate = date + %YEARS(3);

// Determine the date in 6 months prior
loandate = duedate - %MONTHS(6);

// Construct a timestamp from a date and time
duestamp = duedate + t'12.00.00';

/END-FREE

Figure 232. %MONTHS and %YEARS Example

%MONTHS (Number of Months)

Chapter 21. Built-in Functions 555

%MSECONDS (Number of Microseconds)
%MSECONDS(number)

%MSECONDS converts a number into a duration that can be added to a time or
timestamp value.

%MSECONDS can only be the right-hand value in an addition or subtraction
operation. The left-hand value must be a time or timestamp. The result is a time or
timestamp value with the appropriate number of microseconds added or
subtracted. For a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%MSECONDS (Number of Microseconds)

556 ILE RPG Reference

%NULLIND (Query or Set Null Indicator)
%NULLIND(fieldname)

The %NULLIND built-in function can be used to query or set the null indicator for
null-capable fields. This built-in function can only be used if the
ALWNULL(*USRCTL) keyword is specified on a control specification or as a
command parameter. The fieldname can be a null-capable array element, data
structure, stand-alone field, subfield, or multiple occurrence data structure.

%NULLIND can only be used in expressions in extended factor 2.

When used on the right-hand side of an expression, this function returns the
setting of the null indicator for the null-capable field. The setting can be *ON or
*OFF.

When used on the left-hand side of an expression, this function can be used to set
the null indicator for null-capable fields to *ON or *OFF. The content of a
null-capable field remains unchanged.

See “Database Null Value Support” on page 219 for more information on handling
records with null-capable fields and keys.

For more information, see “Indicator-Setting Operations” on page 456 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* Test the null indicator for a null-capable field.
/FREE

if %nullind (fieldname1);
// field is null

endif;

// Set the null indicator for a null-capable field.
%nullind(fieldname1) = *ON;
%nullind (fieldname2) = *OFF;

/END-FREE

Figure 233. %NULLIND Example

%NULLIND (Query or Set Null Indicator)

Chapter 21. Built-in Functions 557

%OCCUR (Set/Get Occurrence of a Data Structure)
%OCCUR(dsn-name)

%OCCUR gets or sets the current position of a multiple-occurrence data structure.

When this function is evaluated for its value, it returns the current occurrence
number of the specified data structure. This is an unsigned numeric value.

When this function is specified on the left-hand side of an EVAL statement, the
specified number becomes the current occurrence number. This must be a non-float
numeric value with zero decimal places. Exception 00122 is issued if the value is
less than 1 or greater than the total number of occurrences.

For more information about multiple-occurrence data structures and the OCCUR
operation code, see “OCCUR (Set/Get Occurrence of a Data Structure)” on page
754.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D mds DS OCCURS(10)

/FREE
n = %OCCUR(mds);
// n = 1

%OCCUR(mds) = 7;

n = %OCCUR(mds);
// n = 7

/END-FREE

Figure 234. %OCCUR Example

%OCCUR (Set/Get Occurrence of a Data Structure)

558 ILE RPG Reference

%OPEN (Return File Open Condition)
%OPEN(file_name)

%OPEN returns ’1’ if the specified file is open. A file is considered ″open″ if it has
been opened by the RPG module during initialization or by an OPEN operation,
and has not subsequently been closed. If the file is conditioned by an external
indicator and the external indicator was off at module initialization, the file is
considered closed, and %OPEN returns ’0’.

For more information, see “File Operations” on page 453 or “Built-in Functions” on
page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Filename+IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
* The printer file is opened in the calculation specifications
FQSYSPRT O F 132 PRINTER USROPN

/FREE
// Open the file if it is not already open
if not %open (QSYSPRT);

open QSYSPRT;
endif;

/END-FREE

Figure 235. %OPEN Example

%OPEN (Return File Open Condition)

Chapter 21. Built-in Functions 559

|
|
|
|
|

%PADDR (Get Procedure Address)
%PADDR(string|prototype)

%PADDR returns a value of type procedure pointer. The value is the address of the
entry point identified by the argument.

%PADDR may be compared with and assigned to only items of type procedure
pointer.

The parameter to %PADDR must be a character constant or a prototype name. If
the prototype for a procedure is implicitly defined from its procedure interface, the
prototype name is the same as the procedure name.

The character constant can be a character or hexadecimal literal or constant name
that represents a character or hexadecimal literal. When a character constant is
used, this identifies the entry point by name.

The prototype must a prototype for a bound call. The EXTPGM keyword cannot be
used. The entry point identified by the prototype is the procedure identified in the
EXTPROC keyword for the prototype. If the EXTPROC keyword is not specified,
the entry point is the the same as the prototype name (in upper case).

%PADDR Used with a Prototype
The argument of %PADDR can be a prototype name, with the following
restrictions:
v It must not be a prototype for a Java method.
v It must not have the EXTPGM keyword.
v If its EXTPROC keyword has a procedure pointer for an argument, %PADDR

cannot be used in definition specifications.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D
D PROC S * PROCPTR
D INZ (%PADDR ('FIRSTPROG'))
D PROC1 S * PROCPTR
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
*
* The following statement calls procedure 'FIRSTPROG'.
*
C CALLB PROC
*---
* The following statements call procedure 'NextProg'.
* This a C procedure and is in mixed case. Note that
* the procedure name is case sensitive.
*
C EVAL PROC1 = %PADDR ('NextProg')
C CALLB PROC1

Figure 236. %PADDR Example with an Entry Point

%PADDR (Get Procedure Address)

560 ILE RPG Reference

|
|
|

*--
* Several prototypes
*--
D proc1 PR
D proto2 PR EXTPROC('proc2')
D proc3 PR EXTPROC(procptr3)
D pgm1 PR EXTPGM('PGM3')
D meth PR EXTPROC(*JAVA : 'myClass'
D : 'meth1')

D procptr3 S *

*--
* Valid examples of %PADDR with prototype names as the argument
*--

* constant1 is the same as %PADDR('PROC1') since 'PROC1' is the
* procedure called by the prototype proc1
D constant1 C %PADDR(proc1)

* constant2 is the same as %PADDR('proc2') since 'proc2' is the
* procedure called by the prototype proto2
D constant2 C %PADDR(proto2)

* %paddr(proc3) is the same as procedure pointer procptr3 since
* procptr3 points to the procedure called by prototype proc3
C eval procptr = %paddr(proc3)

*--
* Examples of %PADDR with prototype names as the argument
* that are not valid
*--
* %PADDR(pgm1) is not valid because it is a prototype for a program
* %PADDR(meth) is not valid because it is a prototype for a Java method

Figure 237. %PADDR Example with a Prototype

%PADDR Used with a Prototype

Chapter 21. Built-in Functions 561

* constant1 is the same as %PADDR('myProc1'). Prototype
* proc1 is implicitly defined from the procedure interface
* of procedure proc1. The external name 'myProc1' is
* defined by the EXTPROC keyword of the implicitly defined
* prototype.
D constant1 C %PADDR(proc1)

* constant2 is the same as %PADDR('PROC2'). Prototype
* proc2 has no prototype or procedure interface, so it has
* a default prototype with the external name the same as
* the internal procedure name.
D constant2 C %PADDR(proc2)

P proc1 B
* The prototype for proc1 is implicitly defined from the
* procedure interface.
* - The name of the implicit prototype is proc1, the name
* of the procedure
* - The external procedure name is 'myProc1' taken from the
* EXTPROC keyword of the procedure interface
D PI EXTPROC('myProc1')
...
P E

P proc2 B
* No procedure interface is specified.
* A default prototype is implicitly defined.
* - The name of the implicit prototype is proc2, the name
* of the procedure
* - The external procedure name is 'PROC2' taken from the
* uppercased form of the name of the procedure.
...
P E

Figure 238. %PADDR with procedures whose prototype is implicitly defined from the
procedure interface

%PADDR Used with a Prototype

562 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

%PARMS (Return Number of Parameters)
%PARMS returns the number of parameters that were passed to the procedure in
which %PARMS is used. For a cycle-main procedure, %PARMS is the same as
*PARMS in the program status data structure.

When %PARMS is used in a procedure that was called by a bound call, the value
returned by %PARMS is not available if the calling program or procedure does not
pass a minimal operational descriptor. The ILE RPG compiler always passes one,
but other languages do not. So if the caller is written in another ILE language, it
will need to pass an operational descriptor on the call. If the operational descriptor
is not passed, the value returned by %PARMS cannot be trusted. The value
returned by %PARMS will be -1 if the system can determine that the operational
descriptor was not passed, but in some cases when the system cannot detect this,
the value returned by %PARMS may be an incorrect value that is zero or greater.

The value returned by %PARMS includes the additional first parameter that is
used to handle the the return value when the RTNPARM keyword is specified. For
more information, see “RTNPARM” on page 363.

For more information, see “Call Operations” on page 440 or “Built-in Functions”
on page 430.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
* Prototype for procedure MaxInt which calculates the maximum
* value of its parameters (at least 2 parameters must be passed)
D MaxInt PR 10I 0
D p1 10I 0 VALUE
D p2 10I 0 VALUE
D p3 10I 0 VALUE OPTIONS(*NOPASS)
D p4 10I 0 VALUE OPTIONS(*NOPASS)
D p5 10I 0 VALUE OPTIONS(*NOPASS)
D Fld1 S 10A DIM(40)
D Fld2 S 20A
D Fld3 S 100A
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C *ENTRY PLIST
C PARM MaxSize 10 0
* Make sure the main procedure was passed a parameter
C IF %PARMS < 1
C 'No parms' DSPLY
C RETURN
C ENDIF
* Determine the maximum size of Fld1, Fld2 and Fld3
C EVAL MaxSize = MaxInt(%size(Fld1:*ALL) :
C %size(Fld2) :
C %size(Fld3))
C 'MaxSize is' DSPLY MaxSize
C RETURN

Figure 239. %PARMS Example (Part 1 of 2)

%PARMS (Return Number of Parameters)

Chapter 21. Built-in Functions 563

|
|
|

|
|
|
|
#
#
#
#
#

|
|
|

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
*--
* MaxInt - return the maximum value of the passed parameters
*--
P MaxInt B
D MaxInt PI 10I 0
D p1 10I 0 VALUE
D p2 10I 0 VALUE
D p3 10I 0 VALUE OPTIONS(*NOPASS)
D p4 10I 0 VALUE OPTIONS(*NOPASS)
D p5 10I 0 VALUE OPTIONS(*NOPASS)
D Max S 10I 0 INZ(*LOVAL)
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
* Branch to the point in the calculations where we will never
* access unpassed parameters.
C SELECT
C WHEN %PARMS = 2
C GOTO PARMS2
C WHEN %PARMS = 3
C GOTO PARMS3
C WHEN %PARMS = 4
C GOTO PARMS4
C WHEN %PARMS = 5
C GOTO PARMS5
C ENDSL
* Determine the maximum value. Max was initialized to *LOVAL.
C PARMS5 TAG
C IF p5 > Max
C EVAL Max = p5
C ENDIF
*
C PARMS4 TAG
C IF p4 > Max
C EVAL Max = p4
C ENDIF
*
C PARMS3 TAG
C IF p3 > Max
C EVAL Max = p3
C ENDIF
*
C PARMS2 TAG
C IF p2 > Max
C EVAL Max = p2
C ENDIF
C IF p1 > Max
C EVAL Max = p1
C ENDIF
C RETURN Max
P MaxInt E

Figure 239. %PARMS Example (Part 2 of 2)

%PARMS (Return Number of Parameters)

564 ILE RPG Reference

%PARMNUM (Return Parameter Number)
%PARMNUM returns the number of the parameter in the parameter list. The
operand for %PARMNUM is the name of a parameter defined as part of a
procedure interface.

Notes:

1. A parameter defined using a *ENTRY PLIST cannot be specified as the operand
for %PARMNUM.

2. The parameter must be specified the same way it appears in the procedure
interface parameter list. If the parameter is an array, an index cannot be
specified. If the parameter is a data structure, a subfield cannot be specified. If
the parameter is a file, a record format cannot be specified.

3. If the RTNPARM keyword is coded for a procedure, the return value is
handled as an additional first parameter. The other parameters have a number
one higher than the apparent number. For example, if a procedure defined with
RTNPARM has two parameters P1 and P2, %PARMNUM(P1) will return 2 and
%PARMNUM(P2) will return 3.

For more information, see “Built-in Functions” on page 430.

D myProc pi 10A RTNPARM OPDESC
D companyName 25A OPTIONS(*VARSIZE)
D errorCode 1A OPTIONS(*OMIT)
D cityName 25A OPTIONS(*NOPASS)
/free

// test the length of companyName
callp CEEDOD(%parmnum(companyName) : more parameters ...

: parmlen : *omit);
if parmlen < 25;

// the full parameter was not passed
endif;

// test the presence of the omissible errorCode parameter
callp CEETSTA(isPresent : %parmnum(errorCode) : *omit);
if isPresent = 1;

// errorCode was not omitted
endif;

// test the presence of the optional city parameter
if %parms >= %parmnum(cityName);

// cityName was passed
endif;

Figure 240. Example of %PARMNUM

%PARMNUM (Return Parameter Number)

Chapter 21. Built-in Functions 565

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

|
|

%REALLOC (Reallocate Storage)
%REALLOC(ptr:num)

%REALLOC changes the heap storage pointed to by the first parameter to be the
length specified in the second parameter. The heap storage pointed to by the
returned pointer has the same value as the heap storage pointed to by ptr. If the
new length is longer than the old length, the additional storage is uninitialized.

The first parameter must be a basing pointer value. The second parameter must be
a non-float numeric value with zero decimal places. The length specified must be
between 1 and the maximum size allowed.

The maximum size allowed depends on the type of heap storage used for RPG
memory management operations due to the ALLOC keyword on the Control
specification. If the module uses teraspace heap storage, the maximum size
allowed is 4294967295 bytes. Otherwise, the maximum size allowed is 16776704
bytes.

The maximum size available at runtime may be less than the maximum size
allowed by RPG.

The function returns a pointer to the allocated storage. This may be the same as ptr
or different. If the %REALLOC function is successful, the original pointer value
specified in the first operand should not be used.

When RPG memory management operations for the module are using single-level
heap storage due to the ALLOC keyword on the Control specification, the
%REALLOC built-in function can only handle pointers to single-level heap storage.
When RPG memory management operations for the module are using teraspace
heap storage, the %REALLOC built-in function operation can handle pointers to
both single-level and teraspace heap storage.

For more information, see “Memory Management Operations” on page 458.

If the operation cannot complete successfully, exception 00425 or 00426 is issued.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

// Allocate an area of 200 bytes
pointer = %ALLOC(200);
// Change the size of the area to 500 bytes
pointer = %REALLOC(pointer:500);
// Using two different pointers:
pointer2 = %REALLOC(pointer1:500);
pointer1 = *NULL;;
// The returned value was assigned to
// "pointer2", a different variable
// from the input pointer "pointer1".
// In this case, the value of "pointer1"
// is no longer valid, so "pointer1" must
// be set to *NULL to avoid using the
// old value.

/END-FREE

Figure 241. %REALLOC Example

%REALLOC (Reallocate Storage)

566 ILE RPG Reference

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

%REM (Return Integer Remainder)
%REM(n:m)

%REM returns the remainder that results from dividing operands n by m. The two
operands must be numeric values with zero decimal positions. If either operand is
a packed, zoned, or binary numeric value, the result is packed numeric. If either
operand is an integer numeric value, the result is integer. Otherwise, the result is
unsigned numeric. Float numeric operands are not allowed. The result has the
same sign as the dividend. (See also “%DIV (Return Integer Portion of Quotient)”
on page 521.)

%REM and %DIV have the following relationship:
%REM(A:B) = A - (%DIV(A:B) * B)

If the operands are constants that can fit in 8-byte integer or unsigned fields,
constant folding is applied to the built-in function. In this case, the %REM built-in
function can be coded in the definition specifications.

For more information, see “Arithmetic Operations” on page 434 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D A S 10I 0 INZ(123)
D B S 10I 0 INZ(27)
D DIV S 10I 0
D REM S 10I 0
D E S 10I 0

/FREE
DIV = %DIV(A:B); // DIV is now 4
REM = %REM(A:B); // REM is now 15
E = DIV*B + REM; // E is now 123

/END-FREE

Figure 242. %DIV and %REM Example

%REM (Return Integer Remainder)

Chapter 21. Built-in Functions 567

%REPLACE (Replace Character String)
%REPLACE(replacement string: source string{:start position {:source
length to replace}})

%REPLACE returns the character string produced by inserting a replacement string
into the source string, starting at the start position and replacing the specified
number of characters.

The first and second parameter must be of type character, graphic, or UCS-2 and
can be in either fixed- or variable-length format. The second parameter must be the
same type as the first.

The third parameter represents the starting position, measured in characters, for
the replacement string. If it is not specified, the starting position is at the beginning
of the source string. The value may range from one to the current length of the
source string plus one.

The fourth parameter represents the number of characters in the source string to be
replaced. If zero is specified, then the replacement string is inserted before the
specified starting position. If the parameter is not specified, the number of
characters replaced is the same as the length of the replacement string. The value
must be greater than or equal to zero, and less than or equal to the current length
of the source string.

The starting position and length may be any numeric value or numeric expression
with no decimal positions.

The returned value is varying length if the source string or replacement string are
varying length, or if the start position or source length to replace are variables.
Otherwise, the result is fixed length.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

%REPLACE (Replace Character String)

568 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D var1 S 30A INZ('Windsor') VARYING
D var2 S 30A INZ('Ontario') VARYING
D var3 S 30A INZ('Canada') VARYING
D fixed1 S 15A INZ('California')
D date S D INZ(D'1997-02-03')
D result S 100A VARYING

/FREE
result = var1 + ', ' + 'ON';

// result = 'Windsor, ON'

// %REPLACE with 2 parameters to replace text at begining of string:
result = %replace ('Toronto': result);

// result = 'Toronto, ON'

// %REPLACE with 3 parameters to replace text at specified position:
result = %replace (var3: result: %scan(',': result) + 2);

// result = 'Toronto, Canada'

// %REPLACE with 4 parameters to insert text:
result = %replace (', ' + var2: result: %scan (',': result): 0);

// result = 'Toronto, Ontario, Canada'

// %REPLACE with 4 parameters to replace strings with different length
result = %replace ('Scarborough': result:
1: %scan (',': result) - 1);

// result = 'Scarborough, Ontario, Canada'

// %REPLACE with 4 parameters to delete text:
result = %replace ('': result: 1: %scan (',': result) + 1);

// result = 'Ontario, Canada'

// %REPLACE with 4 parameters to add text to the end of the string:
result = %replace (', ' + %char(date): result:

%len (result) + 1: 0);
// result = 'Ontario, Canada, 1997-02-03'

// %REPLACE with 3 parameters to replace fixed-length text at
// specified position: (fixed1 has fixed-length of 15 chars)

result = %replace (fixed1: result: %scan (',': result) + 2);
// result = 'Ontario, California -03'

// %REPLACE with 4 parameters to prefix text at beginning:
result = %replace ('Somewhere else: ': result: 1: 0);

// result = 'Somewhere else: Ontario, California -03'
/END-FREE

Figure 243. %REPLACE Example

%REPLACE (Replace Character String)

Chapter 21. Built-in Functions 569

%SCAN (Scan for Characters)
%SCAN(search argument : source string {: start})

%SCAN returns the first position of the search argument in the source string, or 0
if it was not found. If the start position is specified, the search begins at the
starting position. The result is always the position in the source string even if the
starting position is specified. The starting position defaults to 1.

The first parameter must be of type character, graphic, or UCS-2. The second
parameter must be the same type as the first parameter. The third parameter, if
specified, must be numeric with zero decimal positions.

When any parameter is variable in length, the values of the other parameters are
checked against the current length, not the maximum length.

The type of the return value is unsigned integer. This built-in function can be used
anywhere that an unsigned integer expression is valid.

If the search argument contains trailing blanks, the scan will include those trailing
blanks. For example if ’b’ represents a blank, %SCAN(’12b’:’12312b’) would return
4. If trailing blanks should not be considered in the scan, use %TRIMR on the
search argument. For example %SCAN(%TRIMR(’12b’):’12312b’) would return 1.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

Note: Unlike the SCAN operation code, %SCAN cannot return an array containing
all occurrences of the search string and its results cannot be tested using the
%FOUND built-in function.

%SCAN (Scan for Characters)

570 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D source S 15A inz ('Dr. Doolittle')
D pos S 5U 0
D posTrim S 5U 0
D posVar S 5U 0
D srchFld S 10A
D srchFldVar S 10A varying
/FREE

pos = %scan ('oo' : source);
// After the EVAL, pos = 6 because 'oo' begins at position 6 in
// 'Dr. Doolittle'.
pos = %scan ('D' : source : 2);
// After the EVAL, pos = 5 because the first 'D' found starting from
// position 2 is in position 5.
pos = %scan ('abc' : source);
// After the EVAL, pos = 0 because 'abc' is not found in
// 'Dr. Doolittle'.
pos = %scan ('Dr.' : source : 2);
// After the EVAL, pos = 0 because 'Dr.' is not found in
// 'Dr. Doolittle', if the search starts at position 2.
srchFld = 'Dr.';
srchFldVar = 'Dr.';
pos = %scan (srchFld : source);
posTrim = %scan (%trimr(srchFld) : source);
posVar = %scan (srchFldVar : source);
// After the EVAL, pos = 0 because srchFld is a 10-byte field, so
// the search argument is 'Dr.' followed by seven blanks. However,
// posTrim and posVar are both 1, since the %TRIMR and srchFldVar
// scans both use a 3-byte search argument 'Dr.', no trailing blanks.

/END-FREE

Figure 244. %SCAN Example

%SCAN (Scan for Characters)

Chapter 21. Built-in Functions 571

%SCANRPL (Scan and Replace Characters)
%SCANRPL(scan string : replacement : source { : scan start { : scan length })

%SCANRPL returns the string produced by replacing all occurrences of the scan
string in the source string with the replacement string. The search for the scan
string starts at the scan start position and continues for the scan length. The parts
of the source string that are outside the range specified by the scan start position
and the scan length are included in the result.

The first, second and third parameters must be of type character, graphic, or
UCS-2. They can be in either fixed-length or variable-length format. These
parameters must all be of the same type and CCSID.

The fourth parameter represents the starting position, measured in characters,
where the search for the scan string should begin. If it is not specified, the starting
position defaults to one. The value may range from one to the current length of the
source string.

The fifth parameter represents the number of characters in the source string to be
scanned. If the parameter is not specified, the length defaults to remainder of the
source string starting from the start position. The value must be greater than or
equal to zero, and less than or equal to the remaining length of the source string
starting at the start position.

The starting position and length may be any numeric value or numeric expression
with no decimal positions.

The returned value may be larger, equal to or smaller than the source string. The
resulting length depends on the lengths of the scan string and the replacement
string, and also on the number of times the replacement is performed. For
example, assume the scan string is ’a’ and the replacement string is ’bc’. If the
source string is ’ada’, the returned value has a length of five (’bcdbc’). If the source
string is ’ddd’, the returned value has a length of three (’ddd’).

The returned value is varying length if the source string and replacement string
have different lengths, or if any of the strings are varying length. Otherwise, the
returned value is fixed length. The returned value has the same type as the source
string.

Each position in the source string is scanned only once. For example, if the scan
string is ’aa’, and the source string is ’baaaaac’, then the first match is in positions
2 and 3. The next scan begins at position 4, and finds a match in positions 4 and 5.
The next scan begins at position 6, and does not find any further matches. If the
replacement string is ’xy’, then the returned value is ’bxyxyac’.

Tip: %SCANRPL can be used to completely remove occurrences of the scan string
from the source string by specifying an empty replacement string.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

%SCANRPL (Scan and Replace Characters)

572 ILE RPG Reference

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

//+....1....+....2....+....3....+...
string1 = 'See NAME. See NAME run. Run NAME run.';

// 1. All occurrences of "NAME" are replaced by the
// replacement value. In the first case,
// the resulting string is shorter than the source
// string, since the replacment string is shorter
// than the scan string. In the second case, the
// resulting string is longer.
string2 = %ScanRpl('NAME' : 'Tom' : string1);
// string2 = 'See Tom. See Tom run. Run Tom run.'
string2 = %ScanRpl('NAME' : 'Jenny' : string1);
// string2 = 'See Jenny. See Jenny run. Run Jenny run.'

// 2. All occurrences of ** are removed from the string.
// The replacement string, '', has zero length.
string3 = '*Hello**There**Everyone*';
string2 = %ScanRpl('**' : '' : string3);
// string2 = '*HelloThereEveryone*'

// 3. All occurrences of "NAME" are replaced by "Tom"
// starting at position 6. Since the first "N" of
// the first "NAME" in the string is not part of the
// source string that is scanned, the first "NAME"
// is not considered replaceable.
string2 = %ScanRpl('NAME' : 'Tom' : string1 : 6);
// string2 = 'See NAME. See Tom run. Run Tom run.'

// 4. All occurrences of "NAME" are replaced by "Tom"
// up to length 31. Since the final "E" of
// the last "NAME" in the string is not part of the
// source string that is scanned, , the final "NAME"
// is not considered replaceable.
string2 = %ScanRpl('NAME' : 'Tom' : string1 : 1 : 31);
// string2 = 'See Tom. See Tom run. Run NAME run.'

// 5. All occurrences of "NAME" are replaced by "Tom"
// from position 10 for length 10. Only the second
// "NAME" value falls in that range.
string2 = %ScanRpl('NAME' : 'Tom' : string1 : 10 : 10);
// string2 = 'See NAME. See Tom run. Run NAME run.'

Figure 245. %SCANRPL Example

%SCANRPL (Scan and Replace Characters)

Chapter 21. Built-in Functions 573

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

%SECONDS (Number of Seconds)
%SECONDS(number)

%SECONDS converts a number into a duration that can be added to a time or
timestamp value.

%SECONDS can only be the right-hand value in an addition or subtraction
operation. The left-hand value must be a time or timestamp. The result is a time or
timestamp value with the appropriate number of seconds added or subtracted. For
a time, the resulting value is in *ISO format.

For an example of date and time arithmetic operations, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%SECONDS (Number of Seconds)

574 ILE RPG Reference

%SHTDN (Shut Down)
%SHTDN

%SHTDN returns ’1’ if the system operator has requested shutdown; otherwise, it
returns ’0’. See “SHTDN (Shut Down)” on page 814 for more information.

For more information, see “Information Operations” on page 457 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

// If the operator has requested shutdown, quit the
// program.

IF %SHTDN;
QuitProgram();

ENDIF;
/END-FREE

Figure 246. %SHTDN Example

%SHTDN (Shut Down)

Chapter 21. Built-in Functions 575

%SIZE (Get Size in Bytes)
%SIZE(variable)
%SIZE(literal)
%SIZE(array{:*ALL})
%SIZE(table{:*ALL})
%SIZE(multiple occurrence data structure{:*ALL})

%SIZE returns the number of bytes occupied by the constant or field. The
argument may be a literal, a named constant, a data structure, a data structure
subfield, a field, an array or a table name. It cannot contain an expression, but
some constant-valued built-in functions and constant expressions may be accepted.
The value returned is in unsigned integer format (type U).

For a graphic literal, the size is the number of bytes occupied by the graphic
characters, not including leading and trailing shift characters. For a hexadecimal or
UCS-2 literal, the size returned is half the number of hexadecimal digits in the
literal.

For variable-length fields, %SIZE returns the total number of bytes occupied by the
field (two bytes longer than the declared maximum length).

The length returned for a null-capable field (%SIZE) is always its full length,
regardless of the setting of its null indicator.

If the argument is an array name, table name, or multiple occurrence data structure
name, the value returned is the size of one element or occurrence. If *ALL is
specified as the second parameter for %SIZE, the value returned is the storage
taken up by all elements or occurrences. For a multiple-occurrence data structure
containing pointer subfields, the size may be greater than the size of one
occurrence times the number of occurrences. The system requires that pointers be
placed in storage at addresses evenly divisible by 16. As a result, the length of each
occurrence may have to be increased enough to make the length an exact multiple
of 16 so that the pointer subfields will be positioned correctly in storage for every
occurrence. If the array is non-contiguous due to being overlaid on a larger array,
the value returned is the same as it would be if the array were contiguous; it does
not include the storage between the non-contiguous array elements.

%SIZE may be specified anywhere that a numeric constant is allowed on the
definition specification and in an expression in the extended factor 2 field of the
calculation specification.

For more information, see “Size Operations” on page 467 or “Built-in Functions”
on page 430.

%SIZE (Get Size in Bytes)

576 ILE RPG Reference

#
#
#
#
#
#
#
#
#
#
#
#

*..1....+....2....+....3....+....4....+....5....+....6....+....7....+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D arr1 S 10 DIM(4)
D table1 S 5 DIM(20)
D field1 S 10
D field2 S 9B 0
D field3 S 5P 2
D num S 5P 0
D mds DS 20 occurs(10)
D mds_size C const (%size (mds: *all))
D mds_ptr DS 20 OCCURS(10)
D pointer *
D vCity S 40A VARYING INZ('North York')
D fCity S 40A INZ('North York')

/FREE
num = %SIZE(field1); // 10
num = %SIZE('HH'); // 2
num = %SIZE(123.4); // 4
num = %SIZE(-03.00); // 4
num = %SIZE(arr1); // 10
num = %SIZE(arr1:*ALL); // 40
num = %SIZE(table1); // 5
num = %SIZE(table1:*ALL); // 100
num = %SIZE(mds); // 20
num = %SIZE(mds:*ALL); // 200
num = %SIZE(mds_ptr); // 20
num = %SIZE(mds_ptr:*ALL); // 320
num = %SIZE(field2); // 4
num = %SIZE(field3); // 3
n1 = %SIZE(vCity); // 42
n2 = %SIZE(fCity); // 40

/END-FREE

Figure 247. %SIZE Example

%SIZE (Get Size in Bytes)

Chapter 21. Built-in Functions 577

%SQRT (Square Root of Expression)
%SQRT(numeric expression)

%SQRT returns the square root of the specified numeric expression. If the operand
is of type float, the result is of type float; otherwise, the result is packed decimal
numeric. If the parameter has a value less than zero, exception 00101 is issued.

For more information, see “Arithmetic Operations” on page 434 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D n S 10I 0
D p S 9P 2
D f S 4F

/FREE

n = %SQRT(239874);
// n = 489

p = %SQRT(239874);
// p = 489.76

f = %SQRT(239874);
// f = 489.7693

/END-FREE

Figure 248. %SQRT Example

%SQRT (Square Root of Expression)

578 ILE RPG Reference

%STATUS (Return File or Program Status)
%STATUS{(file_name)}

%STATUS returns the most recent value set for the program or file status.
%STATUS is set whenever the program status or any file status changes, usually
when an error occurs.

If %STATUS is used without the optional file_name parameter, then it returns the
program or file status most recently changed. If a file is specified, the value
contained in the INFDS *STATUS field for the specified file is returned. The INFDS
does not have to be specified for the file.

%STATUS starts with a return value of 00000 and is reset to 00000 before any
operation with an ’E’ extender specified begins.

%STATUS is best checked immediately after an operation with the ’E’ extender or
an error indicator specified, or at the beginning of an INFSR or the *PSSR
subroutine.

For more information, see “File Operations” on page 453, “Result Operations” on
page 467, or “Built-in Functions” on page 430.

%STATUS (Return File or Program Status)

Chapter 21. Built-in Functions 579

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* The 'E' extender indicates that if an error occurs, the error
* is to be handled as though an error indicator were coded.
* The success of the operation can then be checked using the
* %ERROR built-in function. The status associated with the error
* can be checked using the %STATUS built-in function.
/FREE

exfmt(e) InFile;
if %error;

exsr CheckError;
endif;

//---
// CheckError: Subroutine to process a file I/O error
//---

begsr CheckError;
select;
when %status < 01000;

// No error occurred
when %status = 01211;

// Attempted to read a file that was not open
exsr InternalError;

when %status = 01331;
// The wait time was exceeded for a READ operation
exsr TimeOut;

when %status = 01261;
// Operation to unacquired device
exsr DeviceError;

when %status = 01251;
// Permanent I/O error
exsr PermError;

other;
// Some other error occurred
exsr FileError;

endsl;
endsr;

/END-FREE

Figure 249. %STATUS and %ERROR with ’E’ Extender

%STATUS (Return File or Program Status)

580 ILE RPG Reference

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
D Zero S 5P 0 INZ(0)
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* %STATUS starts with a value of 0
*
* The following SCAN operation will cause a branch to the *PSSR
* because the start position has a value of 0.
C 'A' SCAN 'ABC':Zero Pos
C BAD_SCAN TAG
* The following EXFMT operation has an 'E' extender, so %STATUS will
* be set to 0 before the operation begins. Therefore, it is
* valid to check %STATUS after the operation.
* Since the 'E' extender was coded, %ERROR can also be used to
* check if an error occurred.
C EXFMT(E) REC1
C IF %ERROR
C SELECT
C WHEN %STATUS = 01255
C ...
C WHEN %STATUS = 01299
C ...
* The following scan operation has an error indicator. %STATUS will
* not be set to 0 before the operation begins, but %STATUS can be
* reasonably checked if the error indicator is on.
C 'A' SCAN 'ABC':Zero Pos 10
C IF *IN10 AND %STATUS = 00100
C ...

* The following scan operation does not produce an error.
* Since there is no 'E' extender %STATUS will not be set to 0,
* so it would return a value of 00100 from the previous error.
* Therefore, it is unwise to use %STATUS after an operation that
* does not have an error indicator or the 'E' extender coded since
* you cannot be sure that the value pertains to the previous
* operation.
C 'A' SCAN 'ABC' Pos
C ...
C *PSSR BEGSR
* %STATUS can be used in the *PSSR since an error must have occurred.
C IF %STATUS = 00100
C GOTO BAD_SCAN
C ...

Figure 250. %STATUS and %ERROR with ’E’ Extender, Error Indicator and *PSSR

%STATUS (Return File or Program Status)

Chapter 21. Built-in Functions 581

%STR (Get or Store Null-Terminated String)
%STR(basing pointer{: max-length})(right-hand-side)
%STR(basing pointer : max-length)(left-hand-side)

%STR is used to create or use null-terminated character strings, which are very
commonly used in C and C++ applications.

The first parameter must be a basing-pointer value. (Any basing pointer expression
is valid, such as ″%ADDR(DATA)″ or ″P+1″.) The second parameter, if specified,
must be a numeric value with zero decimal positions. If not specified, it defaults to
the maximum allowed length for defining a character variable.

The first parameter must point to storage that is at least as long as the length given
by the second parameter.

Error conditions:
1. If the length parameter is less than 1 or greater than the maximum length

allowed, an error will occur.
2. If the pointer is not set, an error will occur.
3. If the storage addressed by the pointer is shorter than indicated by the length

parameter, either
a. An error will occur
b. Data corruption will occur.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

%STR Used to Get Null-Terminated String
When used on the right-hand side of an expression, this function returns the data
pointed to by the first parameter up to but not including the first null character
(x’00’) found within the length specified. This built-in function can be used
anywhere that a character expression is valid. No error will be given at run time if
the null terminator is not found within the length specified. In this case, the length
of the resulting value is the same as the length specified.

The following is an example of %STR with the second parameter specified.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D String1 S *
D Fld1 S 10A

/FREE
Fld1 = '<' + %str(String1) + '>';

// Assuming that String1 points to '123¬' where '¬' represents the
// null character, after the EVAL, Fld1 = '<123> '.
/END-FREE

Figure 251. %STR (right-hand-side) Example 1

%STR (Get or Store Null-Terminated String)

582 ILE RPG Reference

#
#
#
#

#
#

In this example, the null-terminator is found within the specified maximum length.

%STR Used to Store Null-Terminated String
When used on the left-hand side of an expression, %STR(ptr:length) assigns the
value of the right-hand side of the expression to the storage pointed at by the
pointer, adding a null-terminating byte at the end. If the length specified as the
second parameter of %STR is N, then at most N-1 bytes of the right-hand side can
be used, since 1 byte must be reserved for the null-terminator at the end.

The maximum length that can be specified is 65535. This means that at most 65534
bytes of the right-hand side can be used, since 1 byte must be reserved for the
null-terminator at the end.

The length indicates the amount of storage that the pointer points to. This length
should be greater than the maximum length the right-hand side will have. The
pointer must be set to point to storage at least as long as the length parameter. If
the length of the right-hand side of the expression is longer than the specified
length, the right-hand side value is truncated.

Note: Data corruption will occur if both of the following are true:
1. The length parameter is greater than the actual length of data addressed

by the pointer.
2. The length of the right-hand side is greater than or equal to the actual

length of data addressed by the pointer.

If you are dynamically allocating storage for use by %STR, you must keep
track of the length that you have allocated.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D String1 S *
D Fld1 S 10A

/FREE
Fld1 = '<' + %str(String1 : 2) + '>';

// Assuming that String1 points to '123¬' where '¬' represents the
// null character, after the EVAL, Fld1 = '<12> '.
// Since the maximum length read by the operation was 2, the '3' and
// the '¬' were not considered.
/END-FREE

Figure 252. %STR (right-hand-side) Example 2

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D String1 S *
D Fld1 S 10A

/FREE
Fld1 = '<' + %str(String1 : 5) + '>';
// Assuming that String1 points to '123¬' where '¬' represents the
// null character, after the EVAL, Fld1 = '<123> '.
// Since the maximum length read by the operation was 5, the
// null-terminator in position 4 was found so all the data up to
// the null-terminator was used.

/END-FREE

Figure 253. %STR (right-hand-side) Example 3

%STR Used to Get Null-Terminated String

Chapter 21. Built-in Functions 583

#
#
#
#
#

#
#
#

%SUBARR (Set/Get Portion of an Array)
%SUBARR(array:start-index{:number-of-elements})

Built-in function %SUBARR returns a section of the specified array starting at
start-index. The number of elements returned is specified by the optional
number-of-elements parameter. If not specified, the number-of-elements defaults to the
remainder of the array.

The first parameter of %SUBARR must be an array. That is, a standalone field, data
structure, or subfield defined as an array. The first parameter must not be a table
name or procedure call.

The start-index parameter must be a numeric value with zero decimal positions. A
float numeric value is not allowed. The value must be greater than or equal to 1
and less than or equal to the number of elements of the array.

The optional number-of-elements parameter must be a numeric value with zero
decimal positions. A float numeric value is not allowed. The value must be greater
than or equal to 1 and less than or equal to the number of elements remaining in
the array after applying the start-index value.

Generally, %SUBARR is valid in any expression where an unindexed array is
allowed. However, %SUBARR cannot be used in the following places:
v as the array argument of built-in function %LOOKUPxx
v as a parameter passed by reference

%SUBARR may be used in the following ways:
v On the left-hand side of an assignment using EVAL or EVALR. This changes the

specified elements in the specified array.
v Within the expression on the right-hand side of an assignment using EVAL or

EVALR where the target of the assignment is an array. This uses the values of
the specified elements of the array. The array elements are used directly; a
temporary copy of the sub-array is not made.

v In Extended Factor 2 of the SORTA operation.
v In Extended Factor 2 of the RETURN operation.
v Passed by VALUE or by read-only reference (CONST keyword) when the

corresponding parameter is defined as an array.
v As the parameter of the %XFOOT built-in function.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D String1 S *
D Fld1 S 10A

/FREE
%str(String1: 25)= 'abcdef';
// The storage pointed at by String1 now contains 'abcdef¬'
// Bytes 8-25 following the null-terminator are unchanged.

%str (String1: 4) = 'abcdef';
// The storage pointed at by String1 now contains 'abc¬'

/END-FREE

Figure 254. %STR (left-hand-side) Examples

%SUBARR (Set/Get Portion of an Array)

584 ILE RPG Reference

For more information, see “Array Operations” on page 438 or “Built-in Functions”
on page 430.

D a s 10i 0 dim(5)
D b s 10i 0 dim(15)
D resultArr s 10i 0 dim(20)
D sum s 20i 0
/free

a(1)=9;
a(2)=5;
a(3)=16;
a(4)=13;
a(5)=3;
// Copy part of an array to another array:
resultArr = %subarr(a:4:n);

// this is equivalent to:
// resultArr(1) = a(4)
// resultArr(2) = a(5)
// ...
// resultArr(n) = a(4 + n - 1)

// Copy part of an array to part of another array:
%subarr(b:3:n) = %subarr(a:m:n);
// Specifying the array from the start element to the end of the array
// B has 15 elements and A has 5 elements. Starting from element 2
// in array A means that only 4 elements will be copied to array B.
// The remaining elements in B will not be changed.
b = %subarr(a : 2);

// Sort a subset of an array:
sorta %subarr(a:1:4);

// Now, A=(5 9 13 16 3);
// Since only 4 elements were sorted, the fifth element
// is out of order.
// Using %SUBARR in an implicit array indexing assignment

resultArr = b + %subarr(a:2:3)
// this is equivalent to:
// resultArr(1) = b(1) + a(2)
// resultArr(2) = b(2) + a(3)
// resultArr(3) = b(3) + a(4)

// Using %SUBARR nested within an expression
resultArr = %trim(%subst(%subarr(stringArr:i):j));

// this is equivalent to:
// resultArr(1) = %trim(%subst(stringArr(i+0):j))
// resultArr(2) = %trim(%subst(stringArr(i+1):j))
// resultArr(3) = %trim(%subst(stringArr(i+2):j))

// Sum a subset of an array
sum = %xfoot (%subarr(a:2:3));

// Now sum = 9 + 13 + 16 = 38

Figure 255. Using %SUBARR

%SUBARR (Set/Get Portion of an Array)

Chapter 21. Built-in Functions 585

CAUTION:
It is valid to use %SUBARR to assign part of an array to another part of the
same array. However, if the source part of the array overlaps the target part of
the array, unpredictable results can occur.

For more information, see “Built-in Functions” on page 430.

// Using %SUBARR with dynamically allocated arrays
D dynArrInfo ds qualified
D numAlloc 10i 0 inz(0)
D current 10i 0 inz(0)
D p *
D dynArr s 5a dim(32767) based(dynArrInfo.p)
D otherArray s 3a dim(10) inz('xy')
/free

// Start the array with an allocation of five elements,
// and with two current elements
dynArrInfo.numAlloc = 5;
dynArrInfo.p = %alloc(%size(dynArr) *

dynarrInfo.numAlloc);
dynArrInfo.current = 2;
// Initialize to blanks
%subarr(dynArr : 1 : dynarrInfo.current) = *blank;

// Set the two elements to some values
dynArr(1) = 'Dog';

dynArr(2) = 'Cat';

// Sort the two elements
sorta %subarr(dynArr : 1 : dynarrInfo.current);

// dynArr(1) = 'Cat'
// dynArr(2) = 'Dog'

// Assign another array to the two elements
otherArray(1) = 'ab';
otherArray(2) = 'cd';
otherArray(3) = 'ef';
%subarr(dynArr : 1 : dynarrInfo.current) = otherArray;

// dynArr(1) = 'ab'
// dynArr(2) = 'cd'

// Changing the size of the array
oldElems = dynArrInfo.current;
dynArrInfo.current = 7;
if (dynArrInfo.current > dynArrInfo.numAlloc);

dynArrInfo.p = %realloc (dynArrInfo.p : dynArrInfo.current);
dynArrInfo.numAlloc = dynArrInfo.current;

endif;
if (oldElems < dynArrInfo.current);

// Initialize new elements to blanks
clear %subarr(dynArr : oldElems + 1 : dynArrInfo.current - oldElems);

endif;

Figure 256. Using %SUBARR with dynamically allocated arrays

%SUBARR (Set/Get Portion of an Array)

586 ILE RPG Reference

#
#
#
#
#
#
#

%SUBDT (Extract a Portion of a Date, Time, or Timestamp)
%SUBDT(value:*MSECONDS|*SECONDS|*MINUTES|*HOURS|*DAYS|*MONTHS|*YEARS)
%SUBDT(value:*MS|*S|*MN|*H|*D|*M|*Y)

%SUBDT extracts a portion of the information in a date, time, or timestamp value.
It returns an unsigned numeric value.

The first parameter is the date, time, or timestamp value.

The second parameter is the portion that you want to extract. The following values
are valid:
v For a date: *DAYS, *MONTHS, and *YEARS
v For a time: *SECONDS, *MINUTES, and *HOURS
v For a timestamp: *MSECONDS, *SECONDS, *MINUTES, *HOURS, *DAYS,

*MONTHS, and *YEARS

For this function, *DAYS always refers to the day of the month not the day of the
year (even if you are using a Julian date format). For example, the day portion of
February 10 is 10 not 41.

This function always returns a 4-digit year, even if the date format has a 2-digit
year.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

date = d'1999-02-17';
time = t'01.23.45';

num = %subdt(date:*YEARS);
// num = 1999

num = %subdt(time:*MN);
// num = 23

/END-FREE

Figure 257. %SUBDT Example

%SUBDT (Extract a Portion of a Date, Time, or Timestamp)

Chapter 21. Built-in Functions 587

%SUBST (Get Substring)
%SUBST(string:start{:length})

%SUBST returns a portion of argument string. It may also be used as the result of
an assignment with the EVAL operation code.

The start parameter represents the starting position of the substring.

The length parameter represents the length of the substring. If it is not specified,
the length is the length of the string parameter less the start value plus one.

The string must be character, graphic, or UCS-2data. Starting position and length
may be any numeric value or numeric expression with zero decimal positions. The
starting position must be greater than zero. The length may be greater than or
equal to zero.

When the string parameter is varying length, the values of the other parameters
are checked against the current length, not the maximum length.

When specified as a parameter for a definition specification keyword, the
parameters must be literals or named constants representing literals. When
specified on a free-form calculation specification, the parameters may be any
expression.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

%SUBST Used for its Value
%SUBST returns a substring from the contents of the specified string. The string
may be any character, graphic, or UCS-2 field or expression. Unindexed arrays are
allowed for string, start, and length. The substring begins at the specified starting
position in the string and continues for the length specified. If length is not
specified then the substring continues to the end of the string. For example:

The value of %subst('Hello World': 5+2) is 'World'
The value of %subst('Hello World':5+2:10-7) is 'Wor'
The value of %subst('abcd' + 'efgh':4:3) is 'def'

For graphic or UCS-2 characters the start position and length is consistent with the
2-byte character length (position 3 is the third 2-byte character and length 3
represents 3 2-byte characters to be operated on).

Figure 258 on page 589 shows an example of the %SUBST built-in function used
for its value.

%SUBST Used as the Result of an Assignment
When used as the result of an assignment this built-in function refers to certain
positions of the argument string. Unindexed arrays are not allowed for start and
length.

The result begins at the specified starting position in the variable and continues for
the length specified. If the length is not specified then the string is referenced to its
end. If the length refers to characters beyond the end of the string, then a run-time
error is issued.

%SUBST (Get Substring)

588 ILE RPG Reference

When %SUBST is used as the result of an assignment, the first parameter must
refer to a storage location. That is, the first parameter of the %SUBST operation
must be one of the following.
v Field
v Data Structure
v Data Structure Subfield
v Array Name
v Array Element
v Table Element

Any valid expressions are permitted for the second and third parameters of
%SUBST when it appears as the result of an assignment with an EVAL operation.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
*
* In this example, CITY contains 'Toronto, Ontario'
* %SUBST returns the value 'Ontario'.
*
C ' ' SCAN CITY C
C IF %SUBST(CITY:C+1) = 'Ontario'
C EVAL CITYCNT = CITYCNT+1
C ENDIF
*
* Before the EVAL, A has the value 'abcdefghijklmno'.
* After the EVAL A has the value 'ab****ghijklmno'
*
C EVAL %SUBST(A:3:4) = '****'

Figure 258. %SUBST Example

%SUBST Used as the Result of an Assignment

Chapter 21. Built-in Functions 589

%THIS (Return Class Instance for Native Method)
%THIS

%THIS returns an Object value that contains a reference to the class instance on
whose behalf the native method is being called. %THIS is valid only in non-static
native methods. This built-in gives non-static native methods access to the class
instance.

A non-static native method works on a specific instance of its class. This object is
actually passed as a parameter to the native method by Java, but it does not
appear in the prototype or procedure interface for the native method. In a Java
method, the object instance is referred to by the Java reserved word this. In an
RPG native method, the object instance is referred to by the %THIS built-in
function.

* Method "vacationDays" is a method in the class 'Employee'
D vacationDays PR 10I 0 EXTPROC(*JAVA
D : 'Employee'
D : 'vacationDays')

* Method "getId" is another method in the class 'Employee'
D getId PR 10I 0 EXTPROC(*JAVA
D : 'Employee'
D : 'getId')
...
* "vacationDays" is an RPG native method. Since the STATIC keyword
* is not used, it is an instance method.
P vacationDays B EXPORT
D vacationDays PI 10I 0

D id_num S 10I 0

* Another Employee method must be called to get the Employee's
* id-number. This method requires an Object of class Employee.
* We use %THIS as the Object parameter, to get the id-number for
* the object that our native method "vacationDays" is working on.
C eval id_num = getId(%THIS)
C id_num chain EMPFILE
C if %found
C return VACDAYS
C else
C return -1
C endif

P vacationDays E

Figure 259. %THIS Example

%THIS (Return Class Instance for Native Method)

590 ILE RPG Reference

%TIME (Convert to Time)
%TIME{(expression{:time-format})}

%TIME converts the value of the expression from character, numeric, or timestamp
data to type time. The converted value remains unchanged, but is returned as a
time.

The first parameter is the value to be converted. If you do not specify a value,
%TIME returns the current system time.

The second parameter is the time format for numeric or character input. Regardless
of the input format, the output is returned in *ISO format.

For information on the input formats that can be used, see “Time Data Type” on
page 208. If the time format is not specified for numeric or character input, the
default value is either the format specified on the TIMFMT control-specification
keyword or *ISO. For more information, see “TIMFMT(fmt{separator})” on page
277.

If the first parameter is a timestamp, do not specify the second parameter. The
system knows the format of the input in this case.

For more information, see “Information Operations” on page 457 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

string = '12:34 PM';
time = %time(string:*USA);
// time = t'12.34.00'

/END-FREE

Figure 260. %TIME Example

%TIME (Convert to Time)

Chapter 21. Built-in Functions 591

%TIMESTAMP (Convert to Timestamp)
%TIMESTAMP{(expression{:*ISO|*ISO0})}

%TIMESTAMP converts the value of the expression from character, numeric, or
date data to type timestamp. The converted value is returned as a timestamp.

The first parameter is the value to be converted. If you do not specify a value,
%TIMESTAMP returns the current system timestamp. The last three digits of the
microsecond portion of the current system timestamp will be 000.

The second parameter is the timestamp format for character input. Regardless of
the input format, the output is returned in *ISO format. You can specify either *ISO
(the default) or *ISO0. For more information, see “Timestamp Data Type” on page
210.

If the first parameter is numeric, you do not need to specify the second parameter.
The only allowed value is *ISO (the default).

If the first parameter is a date, do not specify the second parameter. The system
converts the date from its current format to *ISO format and adds 00.00.00.0000.

For more information, see “Information Operations” on page 457 or “Built-in
Functions” on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

string = '1960-09-29-12.34.56.000000';
timest = %timestamp(string);
// timest now contains z'1960-09-29-12.34.56.000000'

/END-FREE

Figure 261. %TIMESTAMP Example

%TIMESTAMP (Convert to Timestamp)

592 ILE RPG Reference

#
#
#

%TLOOKUPxx (Look Up a Table Element)
%TLOOKUP(arg : search-table {: alt-table})
%TLOOKUPLT(arg : search-table {: alt-table})
%TLOOKUPGE(arg : search-table {: alt-table})
%TLOOKUPGT(arg : search-table {: alt-table})
%TLOOKUPLE(arg : search-table {: alt-table})

The following functions search search-table for a value that matches arg as follows:

%TLOOKUP An exact match.

%TLOOKUPLT
The value that is closest to arg but less than arg.

%TLOOKUPLE
An exact match, or the value that is closest to arg but less than arg.

%TLOOKUPGT
The value that is closest to arg but greater than arg.

%TLOOKUPGE
An exact match, or the value that is closest to arg but greater than
arg.

If a value meets the specified condition, the current table element for the search
table is set to the element that satisfies the condition, the current table element for
the alternate table is set to the same element, and the function returns the value
*ON.

If no value matches the specified condition, *OFF is returned.

The first two parameters can have any type but must have the same type. They do
not need to have the same length or number of decimal positions.

The ALTSEQ table is used, unless arg or search-table is defined with
ALTSEQ(*NONE).

Built-in functions %FOUND and %EQUAL are not set following a %LOOKUP
operation.

Note: Unlike the LOOKUP operation code, %TLOOKUP applies only to tables. To
look up a value in an array, use the %LOOKUP built-in function.

The %TLOOKUPxx built-in functions use a binary search for sequenced tables
(tables that have the ASCEND or DESCEND keyword specified). See “Sequenced
arrays that are not in the correct sequence” on page 553.

For more information, see “Array Operations” on page 438 or “Built-in Functions”
on page 430.

%TLOOKUPxx (Look Up a Table Element)

Chapter 21. Built-in Functions 593

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

*IN01 = %TLOOKUP('Paris':tab1);
IF %TLOOKUP('Thunder Bay':tab1:tab2);
// code to handle Thunder Bay
ENDIF;

/END-FREE

Figure 262. %TLOOKUPxx Example

%TLOOKUPxx (Look Up a Table Element)

594 ILE RPG Reference

%TRIM (Trim Characters at Edges)
%TRIM(string {: characters to trim})

%TRIM with only one parameter returns the given string with any leading and
trailing blanks removed.

%TRIM with two parameters returns the given string with any leading and trailing
characters that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string
parameter.

When specified as a parameter for a definition specification keyword, the string
parameter must be a constant.

Note: Specifying %TRIM with two parameters is not supported for parameters of
Definition keywords.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D Location S 16A
D FirstName S 10A inz (' Chris ')
D LastName S 10A inz (' Smith ')

D Name S 20A

* LOCATION will have the value 'Toronto, Ontario'.
/FREE

Location = %trim (' Toronto, Ontario ');

// Name will have the value 'Chris Smith! '.
Name = %trim (FirstName) + ' ' + %trim (LastName) + '!';

/END-FREE

Figure 263. %TRIM Example

%TRIM (Trim Characters at Edges)

Chapter 21. Built-in Functions 595

D edited S 20A INZ('$******5.27*** ')
D trimmed S 20A varying
D numeric S 15P 3
/FREE

// Trim '$' and '*' from the edited numeric value
// Note: blanks will not be trimmed, since a blank
// is not specified in the 'characters to trim' parameter

trimmed = %trim(edited : '$*');
// trimmed is now '5.27*** '

// Trim '$' and '*' and blank from the edited numeric value

trimmed = %trim(edited : '$* ');
// trimmed is now '5.27'

// Get the numeric value from the edited value

numeric = %dec(%trim(edited : '$* ') : 31 : 9);
// numeric is now 5.27

Figure 264. Trimming characters other than blank

%TRIM (Trim Characters at Edges)

596 ILE RPG Reference

%TRIML (Trim Leading Characters)
%TRIML(string {: characters to trim})

%TRIML with only one parameter returns the given string with any leading blanks
removed.

%TRIML with two parameters returns the given string with any leading characters
that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string
parameter.

When specified as a parameter for a definition specification keyword, the string
parameter must be a constant.

Note: Specifying %TRIML with two parameters is not supported for parameters of
Definition keywords.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* LOCATION will have the value 'Toronto, Ontario '.

/FREE
// Trimming blanks
Location = %triml(' Toronto, Ontario ');
// LOCATION now has the value 'Toronto, Ontario '.

// Trimming other characters

trimmed = %triml('$******5.27*** ' : '$* ');
// trimmed is now '5.27*** '

Figure 265. %TRIML Example

%TRIML (Trim Leading Characters)

Chapter 21. Built-in Functions 597

%TRIMR (Trim Trailing Characters)
%TRIMR(string {: characters to trim})

%TRIMR with only one parameter returns the given string with any trailing blanks
removed.

%TRIMR with two parameters returns the given string with any trailing characters
that are in the characters to trim parameter removed.

The string can be character, graphic, or UCS-2 data.

If the characters to trim parameter is specified, it must be the same type as the string
parameter.

When specified as a parameter for a definition specification keyword, the string
parameter must be a constant.

Note: Specifying %TRIMR with two parameters is not supported for parameters of
Definition keywords.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D Location S 16A varying
D FirstName S 10A inz ('Chris')
D LastName S 10A inz ('Smith')
D Name S 20A varying

* LOCATION will have the value ' Toronto, Ontario'.
/FREE

Location = %trim (' Toronto, Ontario ');

// Name will have the value 'Chris Smith:'.
Name = %trimr (FirstName) + ' ' + %trimr (LastName) + ':';

/END-FREE

Figure 266. %TRIMR Example

string = '(' + %trimr('$******5.27*** ' : '$*') + ')';
// string is now '($******5.27***)'
//
// Nothing has been trimmed from the right-hand side because
// the right-most character is a blank, and a blank does not
// appear in the 'characters to trim' parameter

string = '(' + %trimr('$******5.27*** ' : '$ *') + ')';
// string is now '($******5.27)'

Figure 267. Trimming characters other than blanks

%TRIMR (Trim Trailing Characters)

598 ILE RPG Reference

%UCS2 (Convert to UCS-2 Value)
%UCS2 converts the value of the expression from character, graphic, or UCS-2 and
returns a UCS-2 value. The result is varying length if the parameter is varying
length, or if the parameter is single-byte character.

The second parameter, ccsid, is optional and indicates the CCSID of the resulting
expression. The CCSID defaults to 13488.

If the parameter is a constant, the conversion will be done at compile time.

If the conversion results in substitution characters, a warning message is issued at
compile time. At run time, status 00050 is set and no error message is issued.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

HKeywords++
H CCSID(*UCS2 : 13488)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D char S 5A INZ('abcde')
D graph S 2G INZ(G'oAABBi')
* The %UCS2 built-in function is used to initialize a UCS-2 field.
D ufield S 10C INZ(%UCS2('abcdefghij'))
D ufield2 S 1C CCSID(61952) INZ(*LOVAL)
D isLess 1N
D proc PR
D uparm 2G CCSID(13488) CONST
CL0N01Factor1+++++++Opcode&ExtExtended-factor2+++++++++++++++++++++++++
C EVAL ufield = %UCS2(char) + %UCS2(graph)
* ufield now has 7 UCS-2 characters representing
* 'a.b.c.d.e.AABB' where 'x.' represents the UCS-2 form of 'x'
C EVAL isLess = ufield < %UCS2(ufield2:13488)
* The result of the %UCS2 built-in function is the value of
* ufield2, converted from CCSID 61952 to CCSID 13488
* for the comparison.

C EVAL ufield = ufield2
* The value of ufield2 is converted from CCSID 61952 to
* CCSID 13488 and stored in ufield.
* This conversion is handled implicitly by the compiler.

C CALLP proc(ufield2)
* The value of ufield2 is converted to CCSID 13488
* implicitly, as part of passing the parameter by constant reference.

Note: The graphic literal in this example is not a valid graphic literal. See “Graphic
Format” on page 183 for more information.

Figure 268. %UCS2 Examples

%UCS2 (Convert to UCS-2 Value)

Chapter 21. Built-in Functions 599

%UNS (Convert to Unsigned Format)
%UNS(numeric or character expression)

%UNS converts the value of the expression to unsigned format. Any decimal digits
are truncated. %UNS can be used to truncate the decimal positions from a float or
decimal value allowing it to be used as an array index.

If the parameter is a character expression, the following rules apply:
v The sign is optional. It can only be ’+’ . It can precede or follow the numeric

data.
v The decimal point is optional. It can be either a period or a comma.
v Blanks are allowed anywhere in the data. For example, ’ + 3 ’ is a valid

parameter.
v Floating point data is not allowed. That is, where the numeric value is followed

by E and an exponent, for example ’1.2E6’.
v If invalid numeric data is found, an exception occurs with status code 105

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

Figure 269 on page 601 shows an example of the %UNS built-in function.

%UNSH (Convert to Unsigned Format with Half Adjust)
%UNSH(numeric or character expression)

%UNSH is the same as %UNS except that if the expression is a decimal, float or
character value, half adjust is applied to the value of the expression when
converting to integer type. No message is issued if half adjust cannot be
performed.

For more information, see “Conversion Operations” on page 447 or “Built-in
Functions” on page 430.

%UNS (Convert to Unsigned Format)

600 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D p7 s 7p 3 inz (8236.567)
D s9 s 9s 5 inz (23.73442)
D f8 s 8f inz (173.789)
D c15a s 15a inz (' 12345.6789 +')
D c15b s 15a inz (' + 5 , 6 7 ')
D result1 s 15p 5
D result2 s 15p 5
D result3 s 15p 5
D array s 1a dim (200)
D a s 1a

/FREE
// using numeric parameters

result1 = %uns (p7) + 0.1234; // "result1" is now 8236.12340
result2 = %uns (s9); // "result2" is now 23.00000
result3 = %unsh (f8); // "result3" is now 174.00000

// using character parameters
result1 = %uns (c15a); // "result1" is now 12345.0000
result2 = %unsh (c15b); // "result2" is now 6.00000

// %UNS and %UNSH can be used as array indexes
a = array (%unsh (f8));

/END-FREE

Figure 269. %UNS and %UNSH Example

%UNSH (Convert to Unsigned Format with Half Adjust)

Chapter 21. Built-in Functions 601

%XFOOT (Sum Array Expression Elements)
%XFOOT(array-expression)

%XFOOT results in the sum of all elements of the specified numeric array
expression.

The precision of the result is the minimum that can hold the result of adding
together all array elements, up to a maximum of 63 digits. The number of decimal
places in the result is always the same as the decimal places of the array
expression.

For example, if ARR is an array of 500 elements of precision (17,4), the result of
%XFOOT(ARR) is (20,4).

For %XFOOT(X) where X has precision (m,n), the following table shows the
precision of the result based on the number of elements of X:
Elements of X Precision of %XFOOT(X)
1 (m,n)
2-10 (m+1,n)
11-100 (m+2,n)
101-1000 (m+3,n)
1001-10000 (m+4,n)
10001-32767 (m+5,n)

Normal rules for array expressions apply. For example, if ARR1 has 10 elements
and ARR2 has 20 elements, %XFOOT(ARR1+ARR2) results in the sum of the first
10 elements of ARR1+ARR2.

This built-in function is similar to the XFOOT operation, except that float arrays
are summed like all other types, beginning from index 1 on up.

For more information, see “Array Operations” on page 438 or “Built-in Functions”
on page 430.

%XFOOT (Sum Array Expression Elements)

602 ILE RPG Reference

%XLATE (Translate)
%XLATE(from:to:string{:startpos})

%XLATE translates string according to the values of from, to, and startpos.

The first parameter contains a list of characters that should be replaced, and the
second parameter contains their replacements. For example, if the string contains
the third character in from, every occurrence of that character is replaced with the
third character in to.

The third parameter is the string to be translated. The fourth parameter is the
starting position for translation. By default, translation starts at position 1.

If the first parameter is longer than the second parameter, the additional characters
in the first parameter are ignored.

The first three parameters can be of type character, graphic, or UCS-2. All three
must have the same type. The value returned has the same type and length as
string.

The fourth parameter is a non-float numeric with zero decimal positions.

For more information, see “String Operations” on page 467 or “Built-in Functions”
on page 430.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D up C 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
D lo C 'abcdefghijklmnopqrstuvwxyz'
D string S 10A inz('rpg dept')

/FREE

string = %XLATE(lo:up:'rpg dept');
// string now contains 'RPG DEPT'

string = %XLATE(up:lo:'RPG DEPT':6);
// string now contains 'RPG Dept'

/END-FREE

Figure 270. %XLATE Example

%XLATE (Translate)

Chapter 21. Built-in Functions 603

|
|

%XML (xmlDocument {:options})
%XML is used as the second operand of the XML-SAX and XML-INTO operation
codes to specify the XML document to be parsed, and the options to control how
the document is parsed. %XML does not return a value, and it cannot be specified
anywhere other than for the XML-SAX and XML-INTO operation codes.

The first operand specifies the document to be parsed. It can be a constant or
variable character or UCS-2 expression containing either an XML document or the
name of a file containing an XML document.

The second operand specifies options that control how the XML document is to be
interpreted and parsed. It can be a constant or variable character expression. The
value of the character expression is a list of zero or more options specified in the
form

optionname1=value1 optionname2=value2

No spaces are allowed between the option name and the equal sign or between the
equal sign and the value. However, any number of spaces can appear before,
between or following the options. The options can be specified in any case. The
following are all valid ways to specify the ″doc=file″ and ″allowextra=yes″ options
for XML-INTO:

'doc=file allowextra=yes'
' doc=file allowextra=yes '
'ALLOWEXTRA=YES DOC=FILE '
'AllowExtra=Yes Doc=File '

The following are not valid option strings:

Option string The problem with the option string

’doc = file’ Spaces around the equal sign are not
allowed

’allowextra’ Each option must have an equal sign and a
value

’badopt=yes’ Only valid options are allowed

’allowextra=ok’ The ’allowextra’ value can only be ’yes’ or
’no’

The valid options and values depend on the context of the %XML built-in function.
See “XML-SAX (Parse an XML Document)” on page 886 and “XML-INTO (Parse
an XML Document into a Variable)” on page 852 for a complete list of valid
options and values.

When an option is specified more than once, the last value specified is the value
that is used. For example, if the options parameter has the value

'doc=file doc=string'

then the parser will use the value ″string″ for the ″doc″ option.

If the parser discovers an invalid option or invalid value, the operation will fail
with status code 00352.

%XML (xmlDocument {:options})

604 ILE RPG Reference

For more examples of %XML, see “XML-SAX (Parse an XML Document)” on page
886 and “XML-INTO (Parse an XML Document into a Variable)” on page 852.

For more information, see “XML Operations” on page 475 or “Built-in Functions”
on page 430.

// The "options" parameter is omitted. Default values are used for
// all options. Since the default value for the "doc" option is
// always "string", the parser will correctly assume that the first
// parameter contains an XML document.
xmldocument = '<myfld>new value</myfld>';
XML-INTO myfld %XML(xmldocument);

// The "options" parameter is specified as a literal with two options.
XML-INTO myds %XML(xmldocument : 'allowmissing=yes allowextra=yes');

// The "options" parameter is specified as a variable expression
// with two options.
ccsidOpt = 'ccsid=' + %char(ccsid);
XML-SAX %HANDLER(mySaxHandler : myCommArea)

%XML('myinfo.xml' : 'doc=file ' + ccsidOpt);

Figure 271. Examples of %XML

%XML (xmlDocument {:options})

Chapter 21. Built-in Functions 605

%YEARS (Number of Years)
%YEARS(number)

%YEARS converts a number into a duration that can be added to a date or
timestamp value.

%YEARS can only be the right-hand value in an addition or subtraction operation.
The left-hand value must be a date or timestamp. The result is a date or timestamp
value with the appropriate number of years added or subtracted. For a date, the
resulting value is in *ISO format.

If the left-hand value is February 29 and the resulting year is not a leap year,
February 28 is used instead. Adding or subtracting a number of years to a
February 29 date may not be reversible. For example, 2000-02-29 + %YEARS(1) -
%YEARS(1) is 2000-02-28.

For an example of the %YEARS built-in function, see Figure 232 on page 555.

For more information, see “Date Operations” on page 449 or “Built-in Functions”
on page 430.

%YEARS (Number of Years)

606 ILE RPG Reference

Chapter 22. Operation Codes

This chapter describes, in alphabetical order, each operation code.

© Copyright IBM Corp. 1994, 2010 607

ACQ (Acquire)

Free-Form Syntax ACQ{(E)} device-name workstn-file

Code Factor 1 Factor 2 Result Field Indicators

ACQ (E) device- name workstn-file _ ER _

The ACQ operation acquires the program device specified by device-name for the
WORKSTN file specified by workstn-file. If the device is available, ACQ attaches it
to the file. If it is not available or is already attached to the file, an error occurs.

To handle ACQ exceptions (file status codes greater than 1000), either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. If no
error indicator or ’E’ extender is specified, but the INFSR subroutine is specified,
the INFSR receives control when an error/exception occurs. If no indicator, ’E’
extender, or INFSR subroutine is specified, the default error/exception handler
receives control when an error/exception occurs. For more information on error
handling, see “File Exception/Errors” on page 79.

No input or output operation occurs when the ACQ operation is processed. ACQ
may be used with a multiple device file or, for error recovery purposes, with a
single device file. One program may acquire and have the device available to any
called program which shares the file and allow the called program to release the
device. See the section on "Multiple-Device Files" in the chapter about using
WORKSTN files in the IBM Rational Development Studio for i: ILE RPG Programmer’s
Guide.

For more information, see “File Operations” on page 453.

ACQ (Acquire)

608 ILE RPG Reference

ADD (Add)

Free-Form Syntax (not allowed - use the + or += operator)

Code Factor 1 Factor 2 Result Field Indicators

ADD (H) Addend Addend Sum + − Z

If factor 1 is specified, the ADD operation adds it to factor 2 and places the sum in
the result field. If factor 1 is not specified, the contents of factor 2 are added to the
result field and the sum is placed in the result field. Factor 1 and factor 2 must be
numeric and can contain one of: an array, array element, constant, field name,
literal, subfield, or table name. For the rules for specifying an ADD operation, see
“Arithmetic Operations” on page 434.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The value 1 is added to RECNO.
C ADD 1 RECNO
* The contents of EHWRK are added to CURHRS.
C ADD EHWRK CURHRS
* The contents of OVRTM and REGHRS are added together and
* placed in TOTPAY.
C OVRTM ADD REGHRS TOTPAY

Figure 272. ADD Operations

ADD (Add)

Chapter 22. Operation Codes 609

ADDDUR (Add Duration)

Free-Form Syntax (not allowed - use the + or += operators with duration functions such as %YEARS
and %MONTHS)

Code Factor 1 Factor 2 Result Field Indicators

ADDDUR (E) Date/Time Duration:Duration Code Date/Time _ ER _

The ADDDUR operation adds the duration specified in factor 2 to a date or time
and places the resulting Date, Time or Timestamp in the result field.

Factor 1 is optional and may contain a Date, Time or Timestamp field, subfield,
array, array element, literal or constant. If factor 1 contains a field name, array or
array element then its data type must be the same data type as the field specified
in the result field. If factor 1 is not specified the duration is added to the field
specified in the result field.

Factor 2 is required and contains two subfactors. The first is a duration and may
be a numeric field, array element or constant with zero decimal positions. If the
duration is negative then it is subtracted from the date. The second subfactor must
be a valid duration code indicating the type of duration. The duration code must
be consistent with the result field data type. You can add a year, month or day
duration but not a minute duration to a date field. For list of duration codes and
their short forms see “Date Operations” on page 449.

The result field must be a date, time or timestamp data type field, array or array
element. If factor 1 is blank, the duration is added to the value in the result field. If
the result field is an array, the value in factor 2 is added to each element of the
array. If the result field is a time field, the result will always be a valid Time. For
example adding 59 minutes to 23:59:59 would give 24:58:59. Since this time is not
valid, the compiler adjusts it to 00:58:59.

When adding a duration in months to a date, the general rule is that the month
portion is increased by the number of months in the duration, and the day portion
is unchanged. The exception to this is when the resulting day portion would
exceed the actual number of days in the resulting month. In this case, the resulting
day portion is adjusted to the actual month end date. The following examples
(which assume a *YMD format) illustrate this point.
v '98/05/30' ADDDUR 1:*MONTH results in ’98/06/30’

The resulting month portion has been increased by 1; the day portion is
unchanged.

v '98/05/31' ADDDUR 1:*MONTH results in ’98/06/30’
The resulting month portion has been increased by 1; the resulting day portion
has been adjusted because June has only 30 days.

Similar results occur when adding a year duration. For example, adding one year
to ’92/02/29’ results in ’93/02/28’, an adjusted value since the resulting year is not
a leap year.

An error situation arises when one of the following occurs:
v The value of the Date, Time or Timestamp field in factor 1 is invalid
v Factor 1 is blank and the value of the result field before the operation is invalid

ADDDUR (Add Duration)

610 ILE RPG Reference

v Overflow or underflow occurred (that is, the resulting value is greater than
*HIVAL or less than *LOVAL).

In an error situation,
v An error (status code 112 or 113) is signalled.
v The error indicator (columns 73-74) — if specified — is set on, or the %ERROR

built-in function — if the ’E’ extender is specified — is set to return ’1’.
v The value of the result field remains unchanged.

To handle exceptions with program status codes 112 or 113, either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

Note: The system places a 15-digit limit on durations. Adding a Duration with
more than 15 significant digits will cause errors or truncation. These
problems can be avoided by limiting the first subfactor in Factor 2 to 15
digits.

For more information on working with date-time fields, see “Date Operations” on
page 449.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
HKeywords+++
H TIMFMT(*USA) DATFMT(*MDY&)
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
*
DDateconst C CONST(D'12 31 92')
*
* Define a Date field and initialize
*
DLoandate S D DATFMT(*EUR) INZ(D'12 31 92')
DDuedate S D DATFMT(*ISO)
Dtimestamp S Z
Danswer S T
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* Determine a DUEDATE which is xx years, yy months, zz days later
* than LOANDATE.
C LOANDATE ADDDUR XX:*YEARS DUEDATE
C ADDDUR YY:*MONTHS DUEDATE
C ADDDUR ZZ:*DAYS DUEDATE
* Determine the date 23 days later
*
C ADDDUR 23:*D DUEDATE
* Add a 1234 microseconds to a timestamp
*
C ADDDUR 1234:*MS timestamp
* Add 12 HRS and 16 minutes to midnight
*
C T'00:00 am' ADDDUR 12:*Hours answer
C ADDDUR 16:*Minutes answer
* Subtract 30 days from a loan due date
*
C ADDDUR -30:*D LOANDUE

Figure 273. ADDDUR Operations

ADDDUR (Add Duration)

Chapter 22. Operation Codes 611

ALLOC (Allocate Storage)

Free-Form Syntax (not allowed - use the %ALLOC built-in function)

Code Factor 1 Factor 2 Result Field Indicators

ALLOC (E) Length Pointer _ ER _

The ALLOC operation allocates storage in the default heap of the length specified
in factor 2. The result field pointer is set to point to the new heap storage. The
storage is uninitialized.

Factor 2 must be a numeric with zero decimal positions. It can be a literal,
constant, standalone field, subfield, table name or array element. The value must
be between 1 and the maximum size supported. If the value is out of range at
runtime, an error will occur with status 425. If the storage could not be allocated,
an error will occur with status 426. If these errors occur, the result field pointer
remains unchanged.

The maximum size allowed depends on the type of heap storage used for memory
management operations due to the ALLOC keyword on the Control specification.
If it is known at compile time that the module uses the teraspace storage model for
memory management operations, the maximum size allowed is 4294967295 bytes.
Otherwise, the maximum size allowed is 16776704 bytes.

The maximum size available at runtime may be less than the maximum size
allowed by RPG.

The result field must be a basing pointer scalar variable (a standalone field, data
structure subfield, table name, or array element).

To handle exceptions with program status codes 425 or 426, either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

For more information, see “Memory Management Operations” on page 458.

D Ptr1 S *
D Ptr2 S *
C ALLOC 7 Ptr1
* Now Ptr1 points to 7 bytes of storage
*
C ALLOC (E) 12345678 Ptr2
* This is a large amount of storage, and sometimes it may
* be unavailable. If the storage could not be allocated,
* %ERROR will return '1', the status is set to 00426, and
* %STATUS will return 00426.

Figure 274. ALLOC Operation

ALLOC (Allocate Storage)

612 ILE RPG Reference

|
|
|
|
|
|

|
|
|
|
|

|
|

ANDxx (And)

Free-Form Syntax (not allowed - use the AND operator)

Code Factor 1 Factor 2 Result Field Indicators

ANDxx Comparand Comparand

This operation must immediately follow a ANDxx, DOUxx, DOWxx, IFxx, ORxx,
or WHENxx operation. With ANDxx, you can specify a complex condition for the
DOUxx, DOWxx, IFxx, and WHENxx operations. The ANDxx operation has higher
precedence than the ORxx operation.

The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, an LR indicator, or an L0 entry to group the statement within
the appropriate section of the program. The control level entry must be the same
as the control level entry for the associated DOUxx, DOWxx, IFxx, or WHENxx
operation. Conditioning indicator entries (positions 9 through 11) are not
permitted.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative
constant, a table name, an array element, a data structure name, or a field name.
Factor 1 and factor 2 must be of the same type. For example, a character field
cannot be compared with a numeric. The comparison of factor 1 and factor 2
follows the same rules as those given for the compare operations. See “Compare
Operations” on page 445.

For more information, see “Structured Programming Operations” on page 469.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* If ACODE is equal to A and indicator 50 is on, the MOVE
* and WRITE operations are processed.
C ACODE IFEQ 'A'
C *IN50 ANDEQ *ON
C MOVE 'A' ACREC
C WRITE RCRSN
* If the previous conditions were not met but ACODE is equal
* to A, indicator 50 is off, and ACREC is equal to D, the
* following MOVE operation is processed.
C ELSE
C ACODE IFEQ 'A'
C *IN50 ANDEQ *OFF
C ACREC ANDEQ 'D'
C MOVE 'A' ACREC
C ENDIF
C ENDIF

Figure 275. ANDxx Operations

ANDxx (And)

Chapter 22. Operation Codes 613

BEGSR (Beginning of Subroutine)

Free-Form Syntax BEGSR subroutine-name

Code Factor 1 Factor 2 Result Field Indicators

BEGSR subroutine-name

The BEGSR operation identifies the beginning of an RPG IV subroutine.
subroutine-name is the subroutine name. You may specify the same name as the
subroutine-name on the EXSR operation referring to the subroutine, in the result
field of the CASxx operation referring to the subroutine, or in the entry of an
INFSR file specification keyword of the subroutine is a file-error subroutine. The
control level entry (positions 7 and 8) can be SR or blank. Conditioning indicator
entries are not permitted.

Every subroutine must have a unique symbolic name. The keyword *PSSR used in
factor 1 specifies that this is a program exception/error subroutine to handle
program-detected exception/errors. Only one subroutine can be defined by this
keyword. *INZSR in factor 1 specifies a subroutine to be run during the
initialization step. Only one subroutine can be defined *INZSR.

See Figure 183 on page 474 for an example of coding subroutines; see “Subroutine
Operations” on page 472 for general information on subroutine operations.

BEGSR (Beginning of Subroutine)

614 ILE RPG Reference

BITOFF (Set Bits Off)

Free-Form Syntax (not allowed - use the%BITAND and %BITNOT built-in functions. See Figure 196 on
page 503.)

Code Factor 1 Factor 2 Result Field Indicators

BITOFF Bit numbers Character field

The BITOFF operation causes bits identified in factor 2 to be set off (set to 0) in the
result field. Bits not identified in factor 2 remain unchanged. Therefore, when
using BITOFF to format a character, you should use both BITON and BITOFF:
BITON to specify the bits to be set on (=1), and BITOFF to specify the bits to be set
off (=0). Unless you explicitly set on or off all the bits in the character, you might
not get the character you want.

If you want to assign a particular bit pattern to a character field, use the “MOVE
(Move)” on page 720 operation with a hexadecimal literal in factor 2.

Factor 2 can contain:
v Bit numbers 0-7: From 1 to 8 bits can be set off per operation. They are identified

by the numbers 0 through 7. (0 is the leftmost bit.) Enclose the bit numbers in
apostrophes. For example, to set off bits 0, 2, and 5, enter ‘025’ in factor 2.

v Field name: You can specify the name of a one-position character field, table
element, or array element in factor 2. The bits that are on in the field, table
element, or array element are set off in the result field; bits that are off do not
affect the result.

v Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal literal
or hexadecimal named constant. Bits that are on in factor 2 are set off in the
result field; bits that are off are not affected.

v Named constant: A character named constant up to eight positions long
containing the bit numbers to be set off.

In the result field, specify a one-position character field. It can be an array element
if each element in the array is a one-position character field.

For more information, see “Bit Operations” on page 439.

BITOFF (Set Bits Off)

Chapter 22. Operation Codes 615

* Set off bits 0,4,6 in FieldG. Leave bits 1,2,3,5,7 unchanged.
* Setting off bit 0, which is already off, results in bit 0 remaining off.
* Factor 2 = 10001010
* FieldG = 01001111 (before)
* FieldG = 01000101 (after)
C BITOFF '046' FieldG
* Set off bits 0,2,4,6 in FieldI. Leave bits 1,3,5,7 unchanged.
* Setting off bit 2, which is already off, results in bit 2 remaining off.
* Factor 2 = 10101010
* FieldI = 11001110 (before)
* FieldI = 01000100 (after)
C BITOFF BITNC FieldI
* HEXNC is equivalent to literal '4567', bit pattern 00001111.
* Set off bits 4,5,6,7 in FieldK. Leave bits 0,1,2,3 unchanged.
* Factor 2 = 11110000
* FieldK = 10000000 (before)
* FieldK = 00000000 (after)
C BITOFF HEXNC2 FieldK
C RETURN

Figure 276. BITOFF Example

BITOFF (Set Bits Off)

616 ILE RPG Reference

BITON (Set Bits On)

Free-Form Syntax (not allowed - use the %BITOR built-in function. See Figure 196 on page 503.)

Code Factor 1 Factor 2 Result Field Indicators

BITON Bit numbers Character field

The BITON operation causes bits identified in factor 2 to be set on (set to 1) in the
result field. Bits not identified in factor 2 remain unchanged. Therefore, when
using BITON to format a character, you should use both BITON and BITOFF:
BITON to specify the bits to be set on (=1), and BITOFF to specify the bits to be set
off (=0). Unless you explicitly set on or off all the bits in the character, you might
not get the character you want.

If you want to assign a particular bit pattern to a character field, use the “MOVE
(Move)” on page 720 operation with a hexadecimal literal in factor 2.

Factor 2 can contain:
v Bit numbers 0-7: From 1 to 8 bits can be set on per operation. They are identified

by the numbers 0 through 7. (0 is the leftmost bit.) Enclose the bit numbers in
apostrophes. For example, to set bits 0, 2, and 5 on, enter ‘025’ in factor 2.

v Field name: You can specify the name of a one-position character field, table
element, or array element in factor 2. The bits that are on in the field, table
element, or array element are set on in the result field; bits that are off are not
affected.

v Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal literal.
Bits that are on in factor 2 are set on in the result field; bits that are off do not
affect the result.

v Named constant: A character named constant up to eight positions long
containing the bit numbers to be set on.

In the result field, specify a one-position character field. It can be an array element
if each element in the array is a one-position character field.

For more information, see “Bit Operations” on page 439.

BITON (Set Bits On)

Chapter 22. Operation Codes 617

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D FieldA S 1A INZ(X'00')
D FieldB S 1A INZ(X'00')
D FieldC S 1A INZ(X'FF')
D FieldD S 1A INZ(X'C0')
D FieldE S 1A INZ(X'C0')
D FieldF S 1A INZ(X'81')
D FieldG S 1A INZ(X'4F')
D FieldH S 1A INZ(X'08')
D FieldI S 1A INZ(X'CE')
D FieldJ S 1A INZ(X'80')
D FieldK S 1A INZ(X'80')
D BITNC C CONST('0246')
D HEXNC C CONST(X'0F')
D HEXNC2 C CONST(X'F0')
C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Set on bits 0,4,5,6,7 in FieldA. Leave bits 1,2,3 unchanged.
* Factor 2 = 10001111
* FieldA = 00000000 (before)
* FieldA = 10001111 (after)
C BITON '04567' FieldA
* Set on bit 3 in FieldB. Leave bits 0,1,2,4,5,6,7 unchanged.
* Factor 2 = 00010000
* FieldB = 00000000 (before)
* FieldB = 00010000 (after)
C BITON '3' FieldB
* Set on bit 3 in FieldC. Leave bits 0,1,2,4,5,6,7 unchanged.
* Setting on bit 3, which is already on, results in bit 3 remaining on.
* Factor 2 = 00010000
* FieldC = 11111111 (before)
* FieldC = 11111111 (after)
C BITON '3' FieldC
* Set on bit 3 in FieldD. Leave bits 0,1,2,4,5,6,7 unchanged.
* Factor 2 = 00010000
* FieldD = 11000000 (before)
* FieldD = 11010000 (after)
C BITON '3' FieldD
* Set on bits 0 and 1 in FieldF. Leave bits 2,3,4,5,6,7 unchanged.
* (Setting on bit 0, which is already on, results in bit 0 remaining on.)
* Factor 2 = 11000000
* FieldF = 10000001 (before)
* FieldF = 11000001 (after)
C BITON FieldE FieldF
* X'C1' is equivalent to literal '017', bit pattern 11000001.
* Set on bits 0,1,7 in FieldH. Leave bits 2,3,4,5,6 unchanged.
* Factor 2 = 11000001
* FieldH = 00001000 (before)
* FieldH = 11001001 (after)
C BITON X'C1' FieldH
* HEXNC is equivalent to literal '4567', bit pattern 00001111.
* Set on bits 4,5,6,7 in FieldJ. Leave bits 0,1,2,3 unchanged.
* Factor 2 = 00001111
* FieldJ = 10000000 (before)
* FieldJ = 10001111 (after)
C BITON HEXNC FieldJ
C RETURN

Figure 277. BITON Example

BITON (Set Bits On)

618 ILE RPG Reference

CABxx (Compare and Branch)

Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, ITER, and RETURN)

Code Factor 1 Factor 2 Result Field Indicators

CABxx Comparand Comparand Label HI LO EQ

The CABxx operation compares factor 1 with factor 2. If the condition specified by
xx is true, the program branches to the TAG or ENDSR operation associated with
the label specified in the result field. Otherwise, the program continues with the
next operation in the sequence. If the result field is not specified, the resulting
indicators (positions 71-76) are set accordingly, and the program continues with the
next operation in the sequence.

You can specify conditioning indicators. Factor 1 and factor 2 must contain a
literal, a named constant, a figurative constant, a table name, an array element, a
data structure name, or a field name. Factor 1 and factor 2 must be of the same
type. The label specified in the result field must be associated with a unique TAG
operation and must be a unique symbolic name.

A CABxx operation in the cycle-main procedure can specify a branch:
v To a previous or a succeeding specification line
v From a detail calculation line to another detail calculation line
v From a total calculation line to another total calculation line
v From a detail calculation line to a total calculation line
v From a subroutine to a detail calculation line or a total calculation line.

A CABxx operation in a subprocedure can specify a branch:
v From a line in the body of the subprocedure to another line in the body of the

subprocedure
v From a line in a subroutine to another line in the same subroutine
v From a line in a subroutine to a line in the body of the subprocedure

The CABxx operation cannot specify a branch from outside a subroutine to a TAG
or ENDSR operation within that subroutine.

Attention!
Branching from one point in the logic to another may result in an endless
loop. You must ensure that the logic of your program or procedure does not
produce undesirable results.

Resulting indicators are optional. When specified, they are set to reflect the results
of the compare operation. For example, the HI indicator is set when F1>F2, LO is
set when F1<F2, and EQ is set when F1=F2.

See “Compare Operations” on page 445 for the rules for comparing factor 1 with
factor 2.

For more information, see “Branching Operations” on page 439.

CABxx (Compare and Branch)

Chapter 22. Operation Codes 619

#

#

#

#

#

#

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The field values are:
* FieldA = 100.00
* FieldB = 105.00
* FieldC = ABC
* FieldD = ABCDE
*
* Branch to TAGX.
C FieldA CABLT FieldB TAGX
*
* Branch to TAGX.
C FieldA CABLE FieldB TAGX
*
* Branch to TAGX; indicator 16 is off.
C FieldA CABLE FieldB TAGX 16
*
* Branch to TAGX; indicator 17 is off, indicator 18 is on.
C FieldA CAB FieldB TAGX 1718
*
* Branch to TAGX; indicator 19 is on.
C FieldA CAB FieldA TAGX 19
*
* No branch occurs.
C FieldA CABEQ FieldB TAGX
*
* No branch occurs; indicator 20 is on.
C FieldA CABEQ FieldB TAGX 20
*
* No branch occurs; indicator 21 is off.
C FieldC CABEQ FieldD TAGX 21
C :
C TAGX TAG

Figure 278. CABxx Operations

CABxx (Compare and Branch)

620 ILE RPG Reference

CALL (Call a Program)

Free-Form Syntax (not allowed - use the CALLP operation code)

Code Factor 1 Factor 2 Result Field Indicators

CALL (E) Program name Plist name _ ER LR

The CALL operation passes control to the program specified in factor 2.

Factor 2 must contain a character entry specifying the name of the program to be
called.

In the result field, specify parameters in one of the following ways:
v Enter the name of a PLIST
v Leave the result field blank. This is valid if the called program does not access

parameters or if the PARM statements directly follow the CALL operation.

Positions 71 and 72 must be blank.

To handle CALL exceptions (program status codes 202, 211, or 231), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “Program Exception/Errors” on page
96.

Any valid resulting indicator can be specified in positions 75 and 76 to be set on if
the called program is an RPG program or cycle-main procedure that returns with
the LR indicator on.

Note: The LR indicator is not allowed in a thread-safe environment.

For more information on call operations, see “Call Operations” on page 440.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* The CALL operation calls PROGA and allows PROGA to access
* FieldA and FieldB, defined elsewhere. PROGA is run using the content
* of FieldA and FieldB. When PROGA has completed, control
* returns to the statement following the last PARM statement.
*
*
C CALL 'PROGA'
C PARM FieldA
C PARM FieldB

Figure 279. CALL Operation

CALL (Call a Program)

Chapter 22. Operation Codes 621

#
#
#

#

CALLB (Call a Bound Procedure)

Free-Form Syntax (not allowed - use the CALLP operation code)

Code Factor 1 Factor 2 Result Field Indicators

CALLB (D E) Procedure name or
procedure pointer

Plist name _ ER LR

The CALLB operation is used to call bound procedures written in any of the ILE
languages.

The operation extender D may be used to include operational descriptors. This is
similar to calling a prototyped procedure with CALLP when its parameters have
been defined with keyword OPDESC. (Operational descriptors provide the
programmer with run-time resolution of the exact attributes of character or graphic
strings passed (that is, length and type of string). For more information, see
chapter on calling programs and procedures in the IBM Rational Development Studio
for i: ILE RPG Programmer’s Guide.

Factor 2 is required and must be a literal or constant containing the name of the
procedure to be called, or a procedure pointer containing the address of the
procedure to be called. All references must be able to be resolved at bind time. The
procedure name provided is case sensitive and may contain more than 10
characters, but no more than 255. If the name is longer than 255, it will be
truncated to 255. The result field is optional and may contain a PLIST name.

To handle CALLB exceptions (program status codes 202, 211, or 231), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “Program Exception/Errors” on page
96.

An indicator specified in positions 75-76 will be set on when the call ends with LR
set on.

Note: The LR indicator is not allowed in a thread-safe environment.

For more information on call operations, see “Call Operations” on page 440.

DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* Define a procedure pointer
D
D ProcPtr S * PROCPTR INZ(%PADDR('Create_Space'))
D Extern S 10
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* The following call linkage would be STATIC
C CALLB 'BOUNDPROC'
* The following call linkage would be DYNAMIC
C CALL Extern
* The following call linkage would be STATIC, using a procedure pointer
C CALLB ProcPtr

Figure 280. CALLB Operation

CALLB (Call a Bound Procedure)

622 ILE RPG Reference

CALLP (Call a Prototyped Procedure or Program)

Free-Form Syntax {CALLP{(EMR)}} name({parm1{:parm2...}})

Code Factor 1 Extended Factor 2

CALLP (E M/R) name{ (parm1 {:parm2...}) }

The CALLP operation is used to call prototyped procedures or programs.

Unlike the other call operations, CALLP uses a free-form syntax. You use the name
operand to specify the name of the prototype of the called program or procedure,
as well as any parameters to be passed. (This is similar to calling a built-in
function.) A maximum of 255 parameters are allowed for a program call, and a
maximum of 399 for a procedure call.

On a free-form calculation specification, the operation code name may be omitted
if no extenders are needed, and if the prototype does not have the same name as
an operation code.

The compiler then uses the prototype name to obtain an external name, if required,
for the call. If the keyword EXTPGM is specified on the prototype, the call will be
a dynamic external call; otherwise it will be a bound procedure call.

If the called program or procedure is defined in a different module, a prototype for
the program or procedure being called must be included in the definition
specifications preceding the CALLP. If the called program or procedure is defined
in the same module as the call, an explicit prototype is not required; the prototype
can be implicitly defined from the procedure interface of the called program or
procedure.

Note that if CALLP is used to call a procedure which returns a value, that value
will not be available to the caller. If the value is required, call the prototyped
procedure from within an expression.

To handle CALLP exceptions (program status codes 202, 211, or 231), the operation
code extender ’E’ can be specified. For more information on error handling, see
“Program Exception/Errors” on page 96.

Note: The E extender is only active during the final call for CALLP. If an error
occurs on a call that is done as part of the parameter processing, control will
not pass to the next operation. For example, if FileRecs is a procedure
returning a numeric value, and an error occurs when FileRecs is called in
the following statement, the E extender would have no effect.
CALLP(E) PROGNAME(FileRecs(Fld) + 1)

For more information on call operations, see “Call Operations” on page 440. For
more information on defining prototypes, see “Prototypes and Parameters” on
page 153. For information on how operation extenders M and R are used, see
“Precision Rules for Numeric Operations” on page 486.

CALLP (Call a Prototyped Procedure or Program)

Chapter 22. Operation Codes 623

|
|
|
|
|
|

The following example of CALLP is from the service program example in IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide. CvtToHex is a
procedure in a service program created to hold conversion routines. CvtToHex
converts an input string to its hexadecimal form. The prototyped calls are to the
ILE CEE API, CEEDOD (Retrieve Operational Descriptor). It is used to determine
the length of the input string.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*---
* This prototype for QCMDEXC defines two parameters:
* 1- a character field that may be shorter in length
* than expected
* 2- any numeric field
*---
D qcmdexc PR extpgm('QCMDEXC')
D cmd 200A options(*varsize) const
D cmdlen 15P 5 const

/FREE
qcmdexc ('WRKSPLF' : %size ('WRKSPLF'));

/END-FREE

Figure 281. Calling a Prototyped Program Using CALLP

* The prototype for the procedure has an array parameter.
D proc pr
D parm 10a dim(5)

* An array to pass to the procedure
D array s 10a dim(5)

* Call the procedure, passing the array
C callp proc (array)

Figure 282. Passing an array parameter using CALLP

CALLP (Call a Prototyped Procedure or Program)

624 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
===
* CvtToHex - convert input string to hex output string *
===
D/COPY MYLIB/QRPGLESRC,CVTHEXPR

* Main entry parameters *
* 1. Input: string character(n) *
* 2. Output: hex string character(2 * n) *

D CvtToHex PI OPDESC
D InString 16383 CONST OPTIONS(*VARSIZE)
D HexString 32766 OPTIONS(*VARSIZE)

* Prototype for CEEDOD (Retrieve operational descriptor) *

D CEEDOD PR
D 10I 0 CONST
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 12A OPTIONS(*OMIT)

* Parameters passed to CEEDOD
D ParmNum S 10I 0
D DescType S 10I 0
D DataType S 10I 0
D DescInfo1 S 10I 0
D DescInfo2 S 10I 0
D InLen S 10I 0
D HexLen S 10I 0

Figure 283. Calling a Prototyped Procedure Using CALLP (Part 1 of 3)

CALLP (Call a Prototyped Procedure or Program)

Chapter 22. Operation Codes 625

* Other fields used by the program *

D HexDigits C CONST('0123456789ABCDEF')
D IntDs DS
D IntNum 5I 0 INZ(0)
D IntChar 1 OVERLAY(IntNum:2)
D HexDs DS
D HexC1 1
D HexC2 1
D InChar S 1
D Pos S 5P 0
D HexPos S 5P 0

/FREE
//---//
// Use the operational descriptors to determine the lengths of //
// the parameters that were passed. //
//---//
CEEDOD (1 : DescType : DataType :

DescInfo1 : DescInfo2 : Inlen : *OMIT);
CEEDOD (2 : DescType : DataType :

DescInfo1 : DescInfo2 : HexLen : *OMIT);

//---//
// Determine the length to handle (minimum of the input length //
// and half of the hex length) //
//---//
if InLen > HexLen / 2;

InLen = HexLen / 2;
endif;

//---//
// For each character in the input string, convert to a 2-byte //
// hexadecimal representation (for example, '5' --> 'F5') //
//---//
HexPos = 1;
for Pos = 1 to InLen;

InChar = %SUBST(InString : Pos :1);
exsr GetHex;
%subst (HexString: HexPos: 2) = HexDs;
HexPos = HexPos + 2;

endfor;

//------------------------------//
// Done; return to caller. //
//------------------------------//
return;

//==//
// GetHex - subroutine to convert 'InChar' to 'HexDs' //
// //
// Use division by 16 to separate the two hexadecimal digits. //
// The quotient is the first digit, the remainder is the second. //
//==//
begsr GetHex;

IntChar = InChar;

//---//
// Use the hexadecimal digit (plus 1) to substring the //
// list of hexadecimal characters '012...CDEF'. //
//---//
HexC1 = %subst (HexDigits: %div(IntNum:16) + 1: 1);
HexC2 = %subst (HexDigits: %rem(IntNum:16) + 1: 1);

Figure 283. Calling a Prototyped Procedure Using CALLP (Part 2 of 3)

CALLP (Call a Prototyped Procedure or Program)

626 ILE RPG Reference

endsr; // GetHex
/END-FREE

Figure 283. Calling a Prototyped Procedure Using CALLP (Part 3 of 3)

CALLP (Call a Prototyped Procedure or Program)

Chapter 22. Operation Codes 627

CASxx (Conditionally Invoke Subroutine)

Free-Form Syntax (not allowed - use the IF and EXSR operation codes)

Code Factor 1 Factor 2 Result Field Indicators

CASxx Comparand Comparand Subroutine
name

HI LO EQ

The CASxx operation allows you to conditionally select a subroutine for
processing. The selection is based on the relationship between factor 1 and factor 2,
as specified by xx. If the relationship denoted by xx exists between factor 1 and
factor 2, the subroutine specified in the result field is processed.

You can specify conditioning indicators. Factor 1 and factor 2 can contain a literal,
a named constant, a figurative constant, a field name, a table name, an array
element, a data structure name, or blanks (blanks are valid only if xx is blank and
no resulting indicators are specified in positions 71 through 76). If factor 1 and
factor 2 are not blanks, both must be of the same data type. In a CAS�� operation,
factor 1 and factor 2 are required only if resulting indicators are specified in
positions 71 through 76.

The result field must contain the name of a valid RPG IV subroutine, including
*PSSR, the program exception/error subroutine, and *INZSR, the program
initialization subroutine. If the relationship denoted by xx exists between factor 1
and factor 2, the subroutine specified in the result field is processed. If the
relationship denoted by xx does not exist, the program continues with the next
CASxx operation in the CAS group. A CAS group can contain only CASxx
operations. An ENDCS operation must follow the last CASxx operation to denote
the end of the CAS group. After the subroutine is processed, the program
continues with the next operation to be processed following the ENDCS operation,
unless the subroutine passes control to a different operation.

The CAS�� operation with no resulting indicators specified in positions 71 through
76 is functionally identical to an EXSR operation, because it causes the
unconditional running of the subroutine named in the result field of the CAS��
operation. Any CASxx operations that follow an unconditional CAS�� operation in
the same CAS group are never tested. Therefore, the normal placement of the
unconditional CAS�� operation is after all other CASxx operations in the CAS
group.

You cannot use conditioning indicators on the ENDCS operation for a CAS group.

See “Compare Operations” on page 445 or “Subroutine Operations” on page 472
for further rules for the CASxx operation.

CASxx (Conditionally Invoke Subroutine)

628 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The CASGE operation compares FieldA with FieldB. If FieldA is
* greater than or equal to FieldB, Subr01 is processed and the
* program continues with the operation after the ENDCS operation.
*
C FieldA CASGE FieldB Subr01
*
* If FieldA is not greater than or equal to FieldB, the program
* next compares FieldA with FieldC. If FieldA is equal to FieldC,
* SUBR02 is processed and the program continues with the operation
* after the ENDCS operation.
*
C FieldA CASEQ FieldC Subr02
*
* If FieldA is not equal to FieldC, the CAS operation causes Subr03
* to be processed before the program continues with the operation
* after the ENDCS operation.
* The CAS statement is used to provide a subroutine if none of
* the previous CASxx operations have been met.
*
C CAS Subr03
*
* The ENDCS operation denotes the end of the CAS group.
*
C ENDCS

Figure 284. CASxx Operation

CASxx (Conditionally Invoke Subroutine)

Chapter 22. Operation Codes 629

CAT (Concatenate Two Strings)

Free-Form Syntax (not allowed - use the + operator)

Code Factor 1 Factor 2 Result Field Indicators

CAT (P) Source string 1 Source string 2: number of
blanks

Target string

The CAT operation concatenates the string specified in factor 2 to the end of the
string specified in factor 1 and places it in the result field. The source and target
strings must all be of the same type, either all character, all graphic, or all UCS-2. If
no factor 1 is specified, factor 2 is concatenated to the end of the result field string.

Factor 1 can contain a string, which can be one of: a field name, array element,
named constant, data structure name, table name, or literal. If factor 1 is not
specified, the result field is used. In the following discussion, references to factor 1
apply to the result field if factor 1 is not specified.

Factor 2 must contain a string, and may contain the number of blanks to be
inserted between the concatenated strings. Its format is the string, followed by a
colon, followed by the number of blanks. The blanks are in the format of the data.
For example, for character data a blank is x’40’, while for UCS-2 data a blank is
x’0020’. The string portion can contain one of: a field name, array element, named
constant, data structure name, table name, literal, or data structure subfield name.
The number of blanks portion must be numeric with zero decimal positions, and
can contain one of: a named constant, array element, literal, table name, or field
name.

If a colon is specified, the number of blanks must be specified. If no colon is
specified, concatenation occurs with the trailing blanks, if any, in factor 1, or the
result field if factor 1 is not specified.

If the number of blanks, N, is specified, factor 1 is copied to the result field
left-justified. If factor 1 is not specified the result field string is used. Then N
blanks are added following the last non-blank character. Then factor 2 is appended
to this result. Leading blanks in factor 2 are not counted when N blanks are added
to the result; they are just considered to be part of factor 2. If the number of blanks
is not specified, the trailing and leading blanks of factor 1 and factor 2 are
included in the result.

The result field must be a string and can contain one of: a field name, array
element, data structure name, or table name. Its length should be the length of
factor 1 and factor 2 combined plus any intervening blanks; if it is not, truncation
occurs from the right. If the result field is variable-length, its length does not
change.

A P operation extender indicates that the result field should be padded on the
right with blanks after the concatenation occurs if the result field is longer than the
result of the operation. If padding is not specified, only the leftmost part of the
field is affected.

At run time, if the number of blanks is fewer than zero, the compiler defaults the
number of blanks to zero.

CAT (Concatenate Two Strings)

630 ILE RPG Reference

For more information, see “String Operations” on page 467.

Note: Figurative constants cannot be used in the factor 1, factor 2, or result fields.
No overlapping is allowed in a data structure for factor 1 and the result
field, or for factor 2 and the result field.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following example shows leading blanks in factor 2. After
* the CAT, the RESULT contains 'MR.�SMITH'.
*
C MOVE 'MR.' NAME 3
C MOVE ' SMITH' FIRST 6
C NAME CAT FIRST RESULT 9
*
* The following example shows the use of CAT without factor 1.
* FLD2 is a 9 character string. Prior to the concatenation, it
* contains 'ABC������'; FLD1 contains 'XYZ
* After the concatenation, FLD2 contains 'ABC��XYZ�'.
*
C MOVEL(P) 'ABC' FLD2 9
C MOVE 'XYZ' FLD1 3
C CAT FLD1:2 FLD2

Figure 285. CAT Operation

CAT (Concatenate Two Strings)

Chapter 22. Operation Codes 631

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* CAT concatenates LAST to NAME and inserts one blank as specified
* in factor 2. TEMP contains 'Mr.�Smith'.
C MOVE 'Mr. ' NAME 6
C MOVE 'Smith ' LAST 6
C NAME CAT LAST:1 TEMP 9
*
* CAT concatenates 'RPG' to STRING and places 'RPG/400' in TEMP.
C MOVE '/400' STRING 4
C 'RPG' CAT STRING TEMP 7
*
* The following example is the same as the previous example except
* that TEMP is defined as a 10 byte field. P operation extender
* specifies that blanks will be used in the rightmost positions
* of the result field that the concatenation result, 'RPG/400',
* does not fill. As a result, TEMP contains 'RPG/400���'
* after concatenation.
C MOVE *ALL'*' TEMP 10
C MOVE '/400' STRING 4
C 'RPG' CAT(P) STRING TEMP
*
* After this CAT operation, the field TEMP contains 'RPG/4'.
* Because the field TEMP was not large enough, truncation occurred.
C MOVE '/400' STRING 4
C 'RPG' CAT STRING TEMP 5
*
* Note that the trailing blanks of NAME are not included because
* NUM=0. The field TEMP contains 'RPGIV�����'.
C MOVE 'RPG ' NAME 5
C MOVE 'IV ' LAST 5
C Z-ADD 0 NUM 1 0
C NAME CAT(P) LAST:NUM TEMP 10

Figure 286. CAT Operation with leading blanks

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*
* The following example shows the use of graphic strings
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++
* Value of Graffld is 'AACCBBGG'.
* Value of Graffld2 after CAT 'aa AACCBBGG '
* Value of Graffld3 after CAT 'AABBCCDDEEFFGGHHAACC'
*
D Graffld 4G INZ(G'oAACCBBGGi')
D Graffld2 10G INZ
D Graffld3 10G INZ(G'oAABBCCDDEEFFGGHHi')
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.
* The value 2 represents 2 graphic blanks as separators
C G'oaai' cat Graffld:2 Graffld2
C cat Graffld Graffld3

Figure 287. CAT Operation with Graphic data

CAT (Concatenate Two Strings)

632 ILE RPG Reference

CHAIN (Random Retrieval from a File)

Free-Form Syntax CHAIN{(ENHMR)} search-arg name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

CHAIN (E N) search-arg name (file or record format) data-structure NR ER _

The CHAIN operation retrieves a record from a full procedural file (F in position
18 of the file description specifications), sets a record identifying indicator on (if
specified on the input specifications), and places the data from the record into the
input fields.

The search argument, search-arg, must be the key or relative record number used to
retrieve the record. If access is by key, search-arg can be a a single key in the form
of a field name, a named constant, a figurative constant, or a literal.

If the file is an externally-described file, search-arg can also be a composite key in
the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields
must have the same CCSID as the key in the file. For an example of %KDS, see the
example at the end of “%KDS (Search Arguments in Data Structure)” on page 546.
If access is by relative record number, search-arg must be an integer literal or a
numeric field with zero decimal positions.

The name operand specifies the file or record format name that is to be read. A
record format name is valid with an externally described file. If a file name is
specified in name and access is by key, the CHAIN operation retrieves the first
record that matches the search argument.

If name is a record format name and access is by key, the CHAIN operation
retrieves the first record of the specified record type whose key matches the search
argument. If no record is found of the specified record type that matches the
search argument, a no-record-found condition exists.

If the data-structure operand is specified, the record is read directly into the data
structure. If name refers to a program-described file (identified by an F in position
22 of the file description specification), the data structure can be any data structure
of the same length as the file’s declared record length. If name refers to an
externally-described file or a record format from an externally described file, the
data structure must be a data structure defined with EXTNAME(...:*INPUT) or
LIKEREC(...:*INPUT). See “File Operations” on page 453 for information on how to
define the data structure and how data is transferred between the file and the data
structure.

For a WORKSTN file, the CHAIN operation retrieves a subfile record.

For a multiple device file, you must specify a record format in the name operand.
Data is read from the program device identified by the field name specified in the
“DEVID(fieldname)” on page 293 keyword in the file specifications for the device
file. If the keyword is not specified, data is read from the device for the last
successful input operation to the file.

If the file is specified as an input DISK file, all records are read without locks and
so no operation extender can be specified. If the file is specified as update, all
records are locked if the N operation extender is not specified.

CHAIN (Random Retrieval from a File)

Chapter 22. Operation Codes 633

If you are reading from an update disk file, you can specify an N operation
extender to indicate that no lock should be placed on the record when it is read
(e.g. CHAIN (N)). See the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide for more information.

You can specify an indicator in positions 71-72 that is set on if no record in the file
matches the search argument. This information can also be obtained from the
%FOUND built-in function, which returns ’0’ if no record is found, and ’1’ if a
record is found.

To handle CHAIN exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

Positions 75 and 76 must be blank.

When the CHAIN operation is successful, the file specified in name is positioned
such that a subsequent read operation retrieves the record logically following or
preceding the retrieved record. When the CHAIN operation is not completed
successfully (for example, an error occurs or no record is found), the file specified
in name must be repositioned (for example, by a CHAIN or SETLL operation)
before a subsequent read operation can be done on that file.

If an update (on the calculation or output specifications) is done on the file
specified in name immediately after a successful CHAIN operation to that file, the
last record retrieved is updated.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

For more information, see “File Operations” on page 453.

Note: Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*
* The CHAIN operation retrieves the first record from the file,
* FILEX, that has a key field with the same value as the search
* argument KEY (factor 1).

/FREE
CHAIN KEY FILEX;

// If a record with a key value equal to the search argument is
// not found, %FOUND returns '0' and the EXSR operation is
// processed. If a record is found with a key value equal
// to the search argument, the program continues with
// the calculations after the EXSR operation.

IF NOT %FOUND;
EXSR Not_Found;

ENDIF;
/END-FREE

Figure 288. CHAIN Operation with a File Name

CHAIN (Random Retrieval from a File)

634 ILE RPG Reference

FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++
FCUSTFILE IF E K DISK
/free

// Specify the search keys directly in a list
chain ('abc' : 'AB') custrec;
// Expressions can be used in the list of keys
chain (%xlate(custname : LO : UP) : companyCode + partCode)

custrec;
return;

Figure 289. CHAIN Operation Using a List of Key Fields

FFilename++IPEASF.....L.....A.Device+.Keywords+++++++++++++++++++++++++
FCUSTFILE IF E K DISK
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D custRecDs ds likerec(custRec)

/free
// Read the record directly into the data structure
chain ('abc' : 'AB') custRec custRecDs;
// Use the data structure fields
if (custRecDs.code = *BLANKS);

custRecDs.code = getCompanyCode (custRecDs);
update custRec custRecDs;

endif;

Figure 290. CHAIN Operation Using a Data Structure with an Externally-Described File

CHAIN (Random Retrieval from a File)

Chapter 22. Operation Codes 635

CHECK (Check Characters)

Free-Form Syntax (not allowed - use the %CHECK built-in function)

Code Factor 1 Factor 2 Result Field Indicators

CHECK (E) Comparator string Base string:start Left-
position

_ ER FD

The CHECK operation verifies that each character in the base string (factor 2) is
among the characters indicated in the comparator string (factor 1). The base string
and comparator string must be of the same type, either both character, both
graphic, or both UCS-2. (Graphic and UCS-2 types must have the same CCSID
value.) Verifying begins at the leftmost character of factor 2 and continues
character by character, from left to right. Each character of the base string is
compared with the characters of factor 1. If a match for a character in factor 2
exists in factor 1, the next base string character is verified. If a match is not found,
an integer value is placed in the result field to indicate the position of the incorrect
character.

You can specify a start position in factor 2, separating it from the base string by a
colon. The start position is optional and defaults to 1. If the start position is greater
than 1, the value in the result field is relative to the leftmost position in the base
string, regardless of the start position.

The operation stops checking when it finds the first incorrect character or when the
end of the base string is encountered. If no incorrect characters are found, the
result field is set to zero.

If the result field is an array, the operation continues checking after the first
incorrect character is found for as many occurrences as there are elements in the
array. If there are more array elements than incorrect characters, all of the
remaining elements are set to zeros.

Factor 1 must be a string, and can contain one of: a field name, array element,
named constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location. The base string portion of factor 2 can contain: a
field name, array element, named constant, data-structure name, literal, or table
name. The start location portion of factor 2 must be numeric with no decimal
positions, and can be a named constant, array element, field name, literal, or table
name. If no start location is specified, a value of 1 is used.

The result field can be a numeric variable, numeric array element, numeric table
name, or numeric array. Define the field or array specified with no decimal
positions. If graphic or UCS-2 data is used, the result field will contain double-byte
character positions (that is, position 3, the 3rd double-byte character, will be
character position 5).

Note: Figurative constants cannot be used in the factor 1, factor 2, or result fields.
No overlapping is allowed in a data structure for factor 1 and the result
field or for factor 2 and the result field.

Any valid indicator can be specified in positions 7 to 11.

CHECK (Check Characters)

636 ILE RPG Reference

To handle CHECK exceptions (program status code 100), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

You can specify an indicator in positions 75-76 that is set on if any incorrect
characters are found. This information can also be obtained from the %FOUND
built-in function, which returns ’1’ if any incorrect characters are found.

For more information, see “String Operations” on page 467.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* In this example, the result will be N=6, because the start
* position is 2 and the first nonnumeric character found is the '.'.
* The %FOUND built-in function is set to return '1', because some
* nonnumeric characters were found.
*
D
D Digits C '0123456789'
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
C
C MOVE '$2000.' Salary
C Digits CHECK Salary:2 N
C IF %FOUND
C EXSR NonNumeric
C ENDIF
*
* Because factor 1 is a blank, CHECK indicates the position
* of the first nonblank character. If STRING contains '���th
* NUM will contain the value 4.
*
C
C ' ' CHECK String Num 2 0

Figure 291. CHECK Operation

CHECK (Check Characters)

Chapter 22. Operation Codes 637

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
* The following example checks that FIELD contains only the letters
* A to J. As a result, ARRAY=(136000) after the CHECK operation.
* Indicator 90 turns on.
*
D
D Letter C 'ABCDEFGHIJ'
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
C
C MOVE '1A=BC*' Field 6
C Letter CHECK Field Array 90
C
*
* In the following example, because FIELD contains only the
* letters A to J, ARRAY=(000000). Indicator 90 turns off.
*
C
C MOVE 'FGFGFG' Field 6
C Letter CHECK Field Array 90
C
C

Figure 292. CHECK Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D
* The following example checks a DBCS field for valid graphic
* characters starting at graphic position 2 in the field.
D
* Value of Graffld is 'DDBBCCDD'.
* The value of num after the CHECK is 4, since this is the
* first character 'DD' which is not contained in the string.
D
D Graffld 4G INZ(G'oDDBBCCDDi')
D Num 5 0
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.
C
C
C G'oAABBCCi' check Graffld:2 Num

Figure 293. CHECK Operation with graphic data

CHECK (Check Characters)

638 ILE RPG Reference

CHECKR (Check Reverse)

Free-Form Syntax (not allowed - use the %CHECKR built-in function)

Code Factor 1 Factor 2 Result Field Indicators

CHECKR (E) Comparator string Base string:start Right-
position

_ ER FD

The CHECKR operation verifies that each character in the base string (factor 2) is
among the characters indicated in the comparator string (factor 1). The base string
and comparator string must be of the same type, either both character, both
graphic, or both UCS-2. (Graphic and UCS-2 types must have the same CCSID
value.) Verifying begins at the rightmost character of factor 2 and continues
character by character, from right to left. Each character of the base string is
compared with the characters of factor 1. If a match for a character in factor 2
exists in factor 1, the next source character is verified. If a match is not found, an
integer value is placed in the result field to indicate the position of the incorrect
character. Although checking is done from the right, the position placed in the
result field will be relative to the left.

You can specify a start position in factor 2, separating it from the base string by a
colon. The start position is optional and defaults to the length of the string. The
value in the result field is relative to the leftmost position in the source string,
regardless of the start position.

If the result field is not an array, the operation stops checking when it finds the
first incorrect character or when the end of the base string is encountered. If no
incorrect characters are found, the result field is set to zero.

If the result field is an array, the operation continues checking after the first
incorrect character is found for as many occurrences as there are elements in the
array. If there are more array elements than incorrect characters, all of the
remaining elements are set to zeros.

Factor 1 must be a string and can contain one of: a field name, array element,
named constant, data structure name, data structure subfield, literal, or table name.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location. The base string portion of factor 2 can contain: a
field name, array element, named constant, data structure name, data structure
subfield name, literal, or table name. The start location portion of factor 2 must be
numeric with no decimal positions, and can be a named constant, array element,
field name, literal, or table name. If no start location is specified, the length of the
string is used.

The result field can be a numeric variable, numeric array element, numeric table
name, or numeric array. Define the field or array specified with no decimal
positions. If graphic or UCS-2 data is used, the result field will contain double-byte
character positions (that is, position 3, the 3rd double-byte character, will be
character position 5).

Note: Figurative constants cannot be used in the factor 1, factor 2, or result fields.
No overlapping is allowed in a data structure for factor 1 and the result
field, or for factor 2 and the result field.

CHECKR (Check Reverse)

Chapter 22. Operation Codes 639

Any valid indicator can be specified in positions 7 to 11.

To handle CHECKR exceptions (program status code 100), either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

You can specify an indicator in positions 75-76 that is set on if any incorrect
characters are found. This information can also be obtained from the %FOUND
built-in function, which returns ’1’ if any incorrect characters are found.

For more information, see “String Operations” on page 467.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Because factor 1 is a blank character, CHECKR indicates the
* position of the first nonblank character. This use of CHECKR
* allows you to determine the length of a string. If STRING
* contains 'ABCDEF ', NUM will contain the value 6.
* If an error occurs, %ERROR is set to return '1' and
* %STATUS is set to return status code 00100.
*
C
C ' ' CHECKR(E) String Num
C
C SELECT
C WHEN %ERROR
C ... an error occurred
C WHEN %FOUND
C ... NUM is less than the full length of the string
C ENDIF

Figure 294. CHECKR Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
*
* After the following example, N=1 and the found indicator 90
* is on. Because the start position is 5, the operation begins
* with the rightmost 0 and the first nonnumeric found is the '$'.
*
D Digits C '0123456789'
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C
C MOVE '$2000.' Salary 6
C Digits CHECKR Salary:5 N 90
C

Figure 295. CHECKR Operation

CHECKR (Check Reverse)

640 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
*
* The following example checks that FIELD contains only the letters
* A to J. As a result, ARRAY=(876310) after the CHECKR operation.
* Indicator 90 turns on. %FOUND would return '1'.
D
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
D Array S 1 DIM(6)
D Letter C 'ABCDEFGHIJ'
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C
C MOVE '1A=BC***' Field 8
C Letter CHECKR Field Array 90
C

Figure 296. CHECKR Operation

CHECKR (Check Reverse)

Chapter 22. Operation Codes 641

CLEAR (Clear)

Free-Form Syntax CLEAR {*NOKEY} {*ALL} name

Code Factor 1 Factor 2 Result Field Indicators

CLEAR *NOKEY *ALL name (variable
or record
format)

The CLEAR operation sets elements in a structure (record format, data structure,
array, or table) or a variable (field, subfield, array element or indicator), to their
default initialization value depending on field type (numeric, character, graphic,
UCS-2, indicator, pointer, or date/time/timestamp). For the default initialization
value for a data type, see Chapter 9, “Data Types and Data Formats,” on page 179.

Fully qualified names may be specified as the Result-Field operand for CLEAR
when coded in free-form calculation specifications. If the structure or variable
being cleared is variable-length, its length changes to 0. The CLEAR operation
allows you to clear structures on a global basis, as well as element by element,
during run time.

See “Initialization Operations” on page 457.

Clearing Variables
You cannot specify *NOKEY.

*ALL is optional. If *ALL is specified and the name operand is a multiple
occurrence data structure or a table name, all occurrences or table elements are
cleared and the occurrence level or table index is set to 1.

The name operand specifies the variable to be cleared. The particular entry in the
name operand determines the clear action as follows:

Single occurrence data structure
All fields are cleared in the order in which they are declared within the
structure.

Multiple-occurrence data structure
If *ALL is not specified, all fields in the current occurrence are cleared. If
*ALL is specified, all fields in all occurrences are cleared.

Table name
If *ALL is not specified, the current table element is cleared. If *ALL is
specified, all table elements are cleared.

Array name
Entire array is cleared

Array element (including indicators)
Only the element specified is cleared.

Clearing Record Formats
*NOKEY is optional. If *NOKEY is specified, then key fields are not cleared to their
initial values.

CLEAR (Clear)

642 ILE RPG Reference

*ALL is optional. If *ALL is specified and *NOKEY is not, all fields in the record
format are cleared. If *ALL is not specified, only those fields that are output in that
record format are affected. If *NOKEY is specified, then key fields are not cleared,
even if *ALL is specified.

The name operand is the record format to be cleared. For WORKSTN file record
formats (positions 36-42 on a file-description specification), if *ALL is not specified,
only those fields with a usage of output or both are affected. All field-conditioning
indicators of the record format are affected by the operation. When the RESET
operation is applied to a record format name, and INDARA has been specified in
the DDS, the indicators in the record format are not cleared.

Fields in DISK, SEQ, or PRINTER file record formats are affected only if the record
format is output in the program. Input-only fields are not affected by the RESET
operation, except when *ALL is specified.

A RESET operation of a record format with *ALL specified is not valid when:
v A field is defined externally as input-only, and the record was not used for

input.
v A field is defined externally as output-only, and the record was not used for

output.
v A field is defined externally as both input and output capable, and the record

was not used for either input or output.

For more information, see “Initialization Operations” on page 457.

Note: Input-only fields in logical files will appear in the output specifications,
although they are not actually written to the file. When a CLEAR or RESET
without *NOKEY being specified is done to a record containing these fields,
then these fields will be cleared or reset because they appear in the output
specifications.

CLEAR Examples
v Figure 297 on page 644 shows an example of the CLEAR operation.
v Figure 298 on page 645 shows an example of the field initialization for the

CLEAR record format.
v The examples in “RESET Examples” on page 790 also apply to CLEAR, except

for the actual operation performed on the fields.

CLEAR (Clear)

Chapter 22. Operation Codes 643

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D DS1 DS
D Num 2 5 0
D Char 20 30A
D
D MODS DS OCCURS(2)
D Fld1 1 5
D Fld2 6 10 0

* In the following example, CLEAR sets all subfields in the data
* structure DS1 to their defaults, CHAR to blank, NUM to zero.
/FREE

CLEAR DS1;

// In the following example, CLEAR sets all occurrences for the
// multiple occurrence data structure MODS to their default values
// Fld1 to blank, Fld2 to zero.
CLEAR *ALL MODS;

/END-FREE

Figure 297. CLEAR Operation

CLEAR (Clear)

644 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
A* Field2 and Field3 are defined as output capable fields and can be
A* affected by the CLEAR operation. Indicator 10 can also be
A* changed by the CLEAR operation even though it conditions an
A* input only field because field indicators are all treated
A* as output fields. The reason for this is that *ALL was not specifie
A* on the CLEAR operation
A*
A*N01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*
A R FMT01
A 10 Field1 10A I 2 30
A Field2 10A O 3 30
A Field3 10A B 4 30
A*
A* End of DDS source
A*

F*Flename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
FWORKSTN CF E WORKSTN INCLUDE(FMT01)
F
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++
D IN C 'INPUT DATA'

/FREE
CLEAR FMT01;
WRITE FMT01;

// Loop until PF03 is pressed
DOW NOT *IN03;

READ FMT01;
*INLR = %EOF;

// PF04 will transfer input fields to output fields.
IF *IN04;

Field2 = Field3;
Field3 = Field1;
CLEAR *IN04;

ENDIF;
Field1 = IN;

// When PF11 is pressed, all the fields in the record format
// defined as output or both will be reset to the values they
// held after the initialization step.
IF *IN11;

RESET FMT01;
CLEAR *IN11;

ENDIF;

// When PF12 is pressed, all the fields in the record
// format defined as output or both will be cleared.
IF *IN12;

CLEAR FMT01;
CLEAR *IN12;

ENDIF;

IF NOT *IN03;
WRITE FMT01;

ENDIF;
ENDDO;

*INLR = *ON;
/END-FREE

Figure 298. Field Initialization for the CLEAR Record Format

CLEAR (Clear)

Chapter 22. Operation Codes 645

CLOSE (Close Files)

Free-Form Syntax CLOSE{(E)} file-name|*ALL

Code Factor 1 Factor 2 Result Field Indicators

CLOSE (E) file-name or *ALL _ ER _

The explicit CLOSE operation closes one or more files or devices and disconnects
them from the module. The file cannot be used again in the module unless you
specify an explicit OPEN for that file. A CLOSE operation to an already closed file
does not produce an error.

file-name names the file to be closed.

You can specify the keyword *ALL to close all files defined on global File
specifications at once. Specifying CLOSE *ALL in a subprocedure does not have
any effect on local files in the subprocedure. To close all the local files in a
subprocedure, you must code a separate CLOSE operation for each file. You cannot
specify an array or table file (identified by a T in position 18 of the file description
specifications).

To handle CLOSE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

Positions 71, 72, 75, and 76 must be blank.

If an array or table is to be written to an output file (specified using the TOFILE
keyword) the array or table dump does not occur at LR time if the file is closed by
a CLOSE operation). If the file is closed, it must be reopened for the dump to
occur.

For more information, see “File Operations” on page 453.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* The explicit CLOSE operation closes FILEB.

/FREE
CLOSE FILEB;

// The CLOSE *ALL operation closes all files in the
// module. You must specify an explicit OPEN for any file that
// you wish to use again. If the CLOSE operation is not
// completed successfully, %ERROR returns '1'.

CLOSE(E) *ALL;

/END-FREE

Figure 299. CLOSE Operation

CLOSE (Close Files)

646 ILE RPG Reference

#
#
#
#
#
#

COMMIT (Commit)

Free-Form Syntax COMMIT{(E)} {boundary}

Code Factor 1 Factor 2 Result Field Indicators

COMMIT (E) boundary _ ER _

The COMMIT operation:
v Makes all the changes to your files, opened for commitment control, that have

been specified in output operations since the previous commit or rollback
“ROLBK (Roll Back)” on page 798 operation (or since the beginning of
operations under commitment control if there has been no previous commit or
rollback operation). You specify a file to be opened for commit by specifying the
COMMIT keyword on the file specification.

v Releases all the record locks for files you have under commitment control.

The file changes and the record-lock releases apply to all the files you have under
commitment control, whether the changes have been requested by the program
issuing the COMMIT operation, or by another program in the same activation
group or job, dependent on the commit scope specified on the STRCMTCTL
command. The program issuing the COMMIT operation does not need to have any
files under commitment control. The COMMIT operation does not change the file
position.

Commitment control starts when the CL command STRCMTCTL is executed. See
the section on “Commitment Control” in the IBM Rational Development Studio for i:
ILE RPG Programmer’s Guide for more information.

For the boundary operand, , you can specify a constant or variable (of any type
except pointer) to identify the boundary between the changes made by this
COMMIT operation and subsequent changes. If boundary is not specified, the
identifier is null.

To handle COMMIT exceptions (program status codes 802 to 805), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For example, an error occurs if commitment control is not active. For more
information on error handling, see “Program Exception/Errors” on page 96.

For more information, see “File Operations” on page 453.

COMMIT (Commit)

Chapter 22. Operation Codes 647

COMP (Compare)

Free-Form Syntax (not allowed - use the use the =, <, <=, >, >=, or <> operators)

Code Factor 1 Factor 2 Result Field Indicators

COMP Comparand Comparand HI LO EQ

The COMP operation compares factor 1 with factor 2. Factor 1 and factor 2 can
contain a literal, a named constant, a field name, a table name, an array element, a
data structure, or a figurative constant. Factor 1 and factor 2 must have the same
data type. As a result of the comparison, indicators are set on as follows:
v High: (71-72) Factor 1 is greater than factor 2.
v Low: (73-74) Factor 1 is less than factor 2.
v Equal: (75-76) Factor 1 equals factor 2.

You must specify at least one resulting indicator in positions 71 through 76. Do not
specify the same indicator for all three conditions. When specified, the resulting
indicators are set on or off (for each cycle) to reflect the results of the compare.

For further rules for the COMP operation, see “Compare Operations” on page 445.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Initial field values are:
* FLDA = 100.00
* FLDB = 105.00
* FLDC = 100.00
* FLDD = ABC
* FLDE = ABCDE
*
* Indicator 12 is set on; indicators 11 and 13 are set off.
C FLDA COMP FLDB 111213
*
* Indicator 15 is set on; indicator 14 is set off.
C FLDA COMP FLDB 141515
*
* Indicator 18 is set on; indicator 17 is set off.
C FLDA COMP FLDC 171718
*
* Indicator 21 is set on; indicators 20 and 22 are set off
C FLDD COMP FLDE 202122

Figure 300. COMP Operation

COMP (Compare)

648 ILE RPG Reference

DEALLOC (Free Storage)

Free-Form Syntax DEALLOC{(EN)} pointer-name

Code Factor 1 Factor 2 Result Field Indicators

DEALLOC
(E/N)

pointer-name _ ER _

The DEALLOC operation frees one previous allocation of heap storage.
pointer-name is a pointer that must be the value previously set by a heap-storage
allocation operation (either an ALLOC operation in RPG, or some other
heap-storage allocation mechanism). It is not sufficient to simply point to heap
storage; the pointer must be set to the beginning of an allocation.

The storage pointed to by the pointer is freed for subsequent allocation by this
program or any other in the activation group.

If operation code extender N is specified, the pointer is set to *NULL after a
successful deallocation.

To handle DEALLOC exceptions (program status code 426), either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. The result
field pointer will not be changed if an error occurs, even if ’N’ is specified. For
more information on error handling, see “Program Exception/Errors” on page 96.

pointer-name must be a basing pointer scalar variable (a standalone field, data
structure subfield, table name or array element).

No error is given at runtime if the pointer is already *NULL.

When RPG memory management operations for the module are using single-level
heap storage due to the ALLOC keyword on the Control specification, the
DEALLOC operation can only handle pointers to single-level heap storage. When
RPG memory management operations for the module are using teraspace heap
storage, the DEALLOC operation can handle pointers to both single-level and
teraspace heap storage.

For more information, see “Memory Management Operations” on page 458.

DEALLOC (Free Storage)

Chapter 22. Operation Codes 649

|
|
|
|
|
|

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
*
D Ptr1 S *
D Fld1 S 1A
D BasedFld S 7A BASED(Ptr1)

/FREE
// 7 bytes of storage are allocated from the heap and
// Ptr1 is set to point to it
Ptr1 = %alloc (7);

// The DEALLOC frees the storage. This storage is now available
// for allocation by this program or any other program in the
// activation group. (Note that the next allocation may or
// may not get the same storage back).
dealloc Ptr1;

// Ptr1 still points at the deallocated storage, but this pointer
// should not be used with its current value. Any attempt to
// access BasedFld which is based on Ptr1 is invalid.
Ptr1 = %addr (Fld1);

// The DEALLOC is not valid because the pointer is set to the
// address of program storage. %ERROR is set to return '1',
// the program status is set to 00426 (%STATUS returns 00426),
// and the pointer is not changed.
dealloc(e) Ptr1;

// Allocate and deallocate storage again. Since operational
// extender N is specified, Ptr1 has the value *NULL after the
// DEALLOC.
Ptr1 = %alloc (7);
dealloc(n) Ptr1;

/END-FREE

Figure 301. DEALLOC operation

DEALLOC (Free Storage)

650 ILE RPG Reference

DEFINE (Field Definition)

Free-Form Syntax (not allowed - use the LIKE or DTAARA keyword on the Definition specification)

Code Factor 1 Factor 2 Result Field Indicators

DEFINE *LIKE Referenced field Defined field

DEFINE *DTAARA External data area Internal field

Depending on the factor 1 entry, the declarative DEFINE operation can do either of
the following:
v Define a field based on the attributes (length and decimal positions) of another

field .
v Define a field as a data area .

You can specify the DEFINE operation anywhere within calculations, although you
cannot specify a *DTAARA DEFINE in a subprocedure or use it with a UCS-2
result field. The control level entry (positions 7 and 8) can be blank or can contain
an L1 through L9 indicator, the LR indicator, or an L0 entry to group the statement
within the appropriate section of the program. The control level entry is used for
documentation only. Conditioning indicator entries (positions 9 through 11) are not
permitted.

*LIKE DEFINE
The “DEFINE (Field Definition)” operation with *LIKE in factor 1 defines a field
based upon the attributes (length and decimal positions) of another field.

Factor 2 must contain the name of the field being referenced, and the result field
must contain the name of the field being defined. The field specified in factor 2,
which can be defined in the program or externally, provides the attributes for the
field being defined. Factor 2 cannot be a literal, a named constant, a float numeric
field, or an object. If factor 2 is an array, an array element, or a table name, the
attributes of an element of the array or table are used to define the field. The result
field cannot be an array, an array element, a data structure, or a table name.
Attributes such as ALTSEQ(*NO), NOOPT, ASCEND, CONST or null capability are
not inherited from factor 2 by the result field. Only the data type, length, and
decimal positions are inherited.

You can use positions 64 through 68 (field length) to make the result field entry
longer or shorter than the factor 2 entry. A plus sign (+) preceding the number
indicates a length increase; a minus sign (-) indicates a length decrease. Positions
65-68 can contain the increase or decrease in length (right-adjusted) or can be
blank. If positions 64 through 68 are blank, the result field entry is defined with
the same length as the factor 2 entry. You cannot change the number of decimal
positions for the field being defined. The field length entry is allowed only for
graphic, UCS-2, numeric, and character fields.

For graphic or UCS-2 fields the field length difference is calculated in double-byte
characters.

If factor 2 is a graphic or UCS-2 field, the result field will be defined as the same
type, that is, as graphic or UCS-2. The new field will have the default graphic or
UCS-2 CCSID of the module. If you want the new field to have the same CCSID as

DEFINE (Field Definition)

Chapter 22. Operation Codes 651

the field in factor 2, use the LIKE keyword on a definition specification. The length
adjustment is expressed in double bytes.

Note the following for *LIKE DEFINE of numeric fields:
v If the field is fully defined on Definition Specifications, the format is not

changed by the *LIKE DEFINE.
v Otherwise, if the field is a subfield of a data structure, it is defined in zoned

format.
v Otherwise, the field is defined in packed format.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* FLDA is a 7-position character field.
* FLDB is a 5-digit field with 2 decimal positions.
*
*
* FLDP is a 7-position character field.
C *LIKE DEFINE FLDA FLDP
*
* FLDQ is a 9-position character field.
C *LIKE DEFINE FLDA FLDQ +2
*
* FLDR is a 6-position character field.
C *LIKE DEFINE FLDA FLDR - 1
*
* FLDS is a 5-position numeric field with 2 decimal positions.
C *LIKE DEFINE FLDB FLDS
*
* FLDT is a 6-position numeric field with 2 decimal positions.
C *LIKE DEFINE FLDB FLDT + 1
*
* FLDU is a 3-position numeric field with 2 decimal positions.
C *LIKE DEFINE FLDB FLDU - 2
*
* FLDX is a 3-position numeric field with 2 decimal positions.
C *LIKE DEFINE FLDU FLDX

Figure 302. DEFINE Operation with *LIKE

D DS
D Fld1
D Fld2 S 7P 2
*
* Fld1 will be defined as zoned because it is a subfield of a
* data structure and numeric subfields default to zoned format.
*
C *LIKE DEFINE Fld2 Fld1
*
* Fld3 will be defined as packed because it is a standalone field
* and all numeric items except subfields default to packed format.
C *LIKE DEFINE Fld1 Fld3

Figure 303. Using *LIKE DEFINE

DEFINE (Field Definition)

652 ILE RPG Reference

*DTAARA DEFINE
The “DEFINE (Field Definition)” on page 651 operation with *DTAARA in factor 1
associates a field, a data structure, a data-structure subfield, or a data-area data
structure (within your ILE RPG program) with an AS/400 data area (outside your
ILE RPG program).

Note: You cannot use *DTAARA DEFINE within a subprocedure or with a UCS-2
result field.

In factor 2, specify the external name of a data area. Use *LDA for the name of the
local data area or use *PDA for the Program Initialization Parameters (PIP) data
area. If you leave factor 2 blank, the result field entry is both the RPG IV name and
the external name of the data area.

In the result field, specify the name of one of the following that you have defined
in your program: a field, a data structure, a data structure subfield, or a data-area
data structure. You use this name with the IN and OUT operations to retrieve data
from and write data to the data area specified in factor 2. When you specify a
data-area data structure in the result field, the ILE RPG program implicitly
retrieves data from the data area at program start and writes data to the data area
when the program ends.

The result field entry must not be the name of a program-status data structure, a
file-information data structure (INFDS), a multiple-occurrence data structure, an
input record field, an array, an array element, or a table. It cannot be the name of a
subfield of a multiple-occurrence data structure, of a data area data structure, of a
program-status data structure, of a file-information data structure (INFDS), or of a
data structure that already appears on a *DTAARA DEFINE statement, or has
already been defined as a data area using the DTAARA keyword on a definition
specification.

You can create three kinds of data areas:
v *CHAR Character
v *DEC Numeric
v *LGL Logical

You can also create a DDM data area (type *DDM) that points to a data area on a
remote system of one of the three types above.

Only character and numeric types (excluding float numeric) are allowed to be
associated with data areas. The actual data area on the system must be of the same
type as the field in the program, with the same length and decimal positions.
Indicator fields can be associated with either a logical or character data area.

For numeric data areas, the maximum length is 24 digits with 9 decimal places.
Note that there is a maximum of 15 digits to the left of the decimal place, even if
the number of decimals is less than 9.

In positions 64 through 70, you can define the length and number of decimal
positions for the entry in the result field. These specifications must match those for
the external description of the data area specified in factor 2. The local data area is
character data of length 1024, but within your program you can access the local
data area as if it has a length of 1024 or less.

DEFINE (Field Definition)

Chapter 22. Operation Codes 653

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The attributes (length and decimal positions) of
* the data area (TOTGRS) must be the same as those for the
* external data area.
C
C *DTAARA DEFINE TOTGRS 10 2
C
*
* The result field entry (TOTNET) is the name of the data area to
* be used within the ILE RPG program. The factor 2 entry (TOTAL)
* is the name of the data area as defined to the system.
C
C *DTAARA DEFINE TOTAL TOTNET
C
*
* The result field entry (SAVTOT) is the name of the data area to
* be used within the ILE RPG program. The factor 2 entry (*LDA)
* indicates the use of the local data area.
C
C *DTAARA DEFINE *LDA SAVTOT

Figure 304. DEFINE Operation with *DTAARA

DEFINE (Field Definition)

654 ILE RPG Reference

DELETE (Delete Record)

Free-Form Syntax DELETE{(EHMR)} {search-arg} name

Code Factor 1 Factor 2 Result Field Indicators

DELETE (E) search-arg name (file or record format) NR ER _

The DELETE operation deletes a record from a database file. The file must be an
update file (identified by a U in position 17 of the file description specifications)
The deleted record can never be retrieved.

If a search argument (search-arg) is not specified, the DELETE operation deletes the
current record (the last record retrieved). The record must have been locked by a
previous input operation (for example, CHAIN or READ).

The search argument, search-arg, must be the key or relative record number used to
retrieve the record to be deleted. If access is by key, search-arg can be a single key
in the form of a field name, a named constant, a figurative constant, or a literal.

If the file is an externally-described file, search-arg can also be a composite key in
the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields
must have the same CCSID as the key in the file. For an example of %KDS, see the
example at the end of “%KDS (Search Arguments in Data Structure)” on page 546.
If access is by relative record number, search-arg must be an integer literal or a
numeric field with zero decimal positions. For an example of using a list of values
to search for the record to be deleted, see Figure 289 on page 635.

The name operand must be the name of the update file or a record format in the
file from which a record is to be deleted. A record format name is valid only with
an externally described file. If search-arg is not specified, the record format name
must be the name of the last record read from the file; otherwise, an error occurs.

If search-arg is specified, positions 71 and 72 can contain an indicator that is set on
if the record to be deleted is not found in the file. If search-arg is not specified,
leave these positions blank. This information can also be obtained from the
%FOUND built-in function, which returns ’0’ if no record is found, and ’1’ if a
record is found.

To handle DELETE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

Under the i5/OS operating system, if a read operation is done on the file specified
in file-name after a successful DELETE operation to that file, the next record after
the deleted record is obtained.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

For more information, see “File Operations” on page 453.

Notes:

1. Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

DELETE (Delete Record)

Chapter 22. Operation Codes 655

2. Leave positions 75 and 76 blank.

DELETE (Delete Record)

656 ILE RPG Reference

DIV (Divide)

Free-Form Syntax (not allowed - use the / or /= operator, or the%DIV built-in function)

Code Factor 1 Factor 2 Result Field Indicators

DIV (H) Dividend Divisor Quotient + − Z

If factor 1 is specified, the DIV operation divides factor 1 by factor 2; otherwise, it
divides the result field by factor 2. The quotient (result) is placed in the result field.
If factor 1 is 0, the result of the divide operation is 0. Factor 2 cannot be 0. If it is,
an error occurs and the RPG IVexception/error handling routine receives control.
When factor 1 is not specified, the result field (dividend) is divided by factor 2
(divisor), and the result (quotient) is placed in the result field. Factor 1 and factor 2
must be numeric; each can contain one of: an array, array element, field, figurative
constant, literal, named constant, subfield, or table name.

Any remainder resulting from the divide operation is lost unless the move
remainder (MVR) operation is specified as the next operation. If you use
conditioning indicators, you must ensure that the DIV operation is processed
immediately before the MVR operation. If the MVR operation is processed before
the DIV operation, undesirable results occur. If move remainder is the next
operation, the result of the divide operation cannot be half-adjusted (rounded).

For further rules for the DIV operation, see “Arithmetic Operations” on page 434.

Figure 172 on page 437 shows examples of the DIV operation.

Note: The MVR operation cannot follow a DIV operation if any operand of the
DIV operation is of float format. A float variable can, however, be specified
as the result of operation code MVR.

DIV (Divide)

Chapter 22. Operation Codes 657

DO (Do)

Free-Form Syntax (not allowed - use the FOR operation code)

Code Factor 1 Factor 2 Result Field Indicators

DO Starting value Limit value Index value

The DO operation begins a group of operations and indicates the number of times
the group will be processed. To indicate the number of times the group of
operations is to be processed, specify an index field, a starting value, and a limit
value. An associated ENDDO statement marks the end of the group. For further
information on DO groups, see “Structured Programming Operations” on page
469.

In factor 1, specify a starting value with zero decimal positions, using a numeric
literal, named constant, or field name. If you do not specify factor 1, the starting
value is 1.

In factor 2, specify the limit value with zero decimal positions, using a numeric
field name, literal, or named constant. If you do not specify factor 2, the limit
value is 1.

In the result field, specify a numeric field name that will contain the current index
value. The result field must be large enough to contain the limit value plus the
increment. If you do not specify an index field, one is generated for internal use.
Any value in the index field is replaced by factor 1 when the DO operation begins.

Factor 2 of the associated ENDDO operation specifies the value to be added to the
index field. It can be a numeric literal or a numeric field with no decimal positions.
If it is blank, the value to be added to the index field is 1.

In addition to the DO operation itself, the conditioning indicators on the DO and
ENDDO statements control the DO group. The conditioning indicators on the DO
statement control whether or not the DO operation begins. These indicators are
checked only once, at the beginning of the DO loop. The conditioning indicators on
the associated ENDDO statement control whether or not the DO group is repeated
another time. These indicators are checked at the end of each loop.

The DO operation follows these 7 steps:
1. If the conditioning indicators on the DO statement line are satisfied, the DO

operation is processed (step 2). If the indicators are not satisfied, control passes
to the next operation to be processed following the associated ENDDO
statement (step 7).

2. The starting value (factor 1) is moved to the index field (result field) when the
DO operation begins.

3. If the index value is greater than the limit value, control passes to the
calculation operation following the associated ENDDO statement (step 7).
Otherwise, control passes to the first operation after the DO statement (step 4).

4. Each of the operations in the DO group is processed.
5. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the calculation operation following the associated ENDDO
statement (step 7). Otherwise, the ENDDO operation is processed (step 6).

DO (Do)

658 ILE RPG Reference

6. The ENDDO operation is processed by adding the increment to the index field.
Control passes to step 3. (Note that the conditioning indicators on the DO
statement are not tested again (step 1) when control passes to step 3.)

7. The statement after the ENDDO statement is processed when the conditioning
indicators on the DO or ENDDO statements are not satisfied (step 1 or 5), or
when the index value is greater than the limit value (step 3).

Remember the following when specifying the DO operation:
v The index, increment, limit value, and indicators can be modified within the

loop to affect the ending of the DO group.
v A DO group cannot span both detail and total calculations.

See “LEAVE (Leave a Do/For Group)” on page 708 and “ITER (Iterate)” on page
703 for information on how those operations affect a DO operation.

See “FOR (For)” on page 692 for information on performing iterative loops with
free-form expressions for the initial, increment, and limit values.

For more information, see “Structured Programming Operations” on page 469.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The DO group is processed 10 times when indicator 17 is on;
* it stops running when the index value in field X, the result
* field, is greater than the limit value (10) in factor 2. When
* the DO group stops running, control passes to the operation
* immediately following the ENDDO operation. Because factor 1
* in the DO operation is not specified, the starting value is 1.
* Because factor 2 of the ENDDO operation is not specified, the
* incrementing value is 1.
C
C 17 DO 10 X 3 0
C :
C ENDDO
*
* The DO group can be processed 10 times. The DO group stops
* running when the index value in field X is greater than
* the limit value (20) in factor 2, or if indicator 50 is not on
* when the ENDDO operation is encountered. When indicator 50
* is not on, the ENDDO operation is not processed; therefore,
* control passes to the operation following the ENDDO operation.
* The starting value of 2 is specified in factor 1 of the DO
* operation, and the incrementing value of 2 is specified in
* factor 2 of the ENDDO operation.
*
C 2 DO 20 X 3 0
C :
C :
C :
C 50 ENDDO 2

Figure 305. DO Operation

DO (Do)

Chapter 22. Operation Codes 659

DOU (Do Until)

Free-Form Syntax DOU{(MR)} indicator-expression

Code Factor 1 Extended Factor 2

DOU (M/R) indicator-expression

The DOU operation code precedes a group of operations which you want to
execute at least once and possibly more than once. Its function is similar to that of
the DOUxx operation code. An associated ENDDO statement marks the end of the
group. It differs in that the logical condition is expressed by an indicator valued
expression (indicator-expression). The operations controlled by the DOU operation
are performed until the expression in indicator-expression is true. For information on
how operation extenders M and R are used, see “Precision Rules for Numeric
Operations” on page 486.

For fixed-format syntax, level and conditioning indicators are valid. Factor 1 must
be blank. Extended factor 2 contains the expression to be evaluated.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/FREE

// In this example, the do loop will be repeated until the F3
// is pressed.
dou *inkc;

do_something();
enddo;

// The following do loop will be repeated until *In01 is on
// or until FIELD2 is greater than FIELD3
dou *in01 or (Field2 > Field3);

do_something_else ();
enddo;

// The following loop will be repeated until X is greater than
// the number of elements in Array
dou X > %elem (Array);

Total = Total + Array(x);
X = X + 1;

enddo;
/END-FREE

Figure 306. DOU Operation

DOU (Do Until)

660 ILE RPG Reference

DOUxx (Do Until)

Free-Form Syntax (not allowed - use the DOU operation code)

Code Factor 1 Factor 2 Result Field Indicators

DOUxx Comparand Comparand

The DOUxx operation code precedes a group of operations which you want to
execute at least once and possibly more than once. An associated ENDDO
statement marks the end of the group. For further information on DO groups and
the meaning of xx, see “Structured Programming Operations” on page 469.

Factor 1 and factor 2 must contain a literal, a named constant, a field name, a table
name, an array element, a figurative constant, or a data structure name. Factor 1
and factor 2 must be the same data type.

On the DOUxx statement, you indicate a relationship xx. To specify a more
complex condition, immediately follow the DOUxx statement with ANDxx or
ORxx statements. The operations in the DOUxx group are processed once, and
then the group is repeated until either:
v the relationship exists between factor 1 and factor 2
v the condition specified by a combined DOUxx, ANDxx, or ORxx operation exists

The group is always processed at least once even if the condition is true at the
start of the group.

In addition to the DOUxx operation itself, the conditioning indicators on the
DOUxx and ENDDO statements control the DOUxx group. The conditioning
indicators on the DOUxx statement control whether or not the DOUxx operation
begins. The conditioning indicators on the associated ENDDO statement can cause
a DO loop to end prematurely.

The DOUxx operation follows these steps:
1. If the conditioning indicators on the DOUxx statement line are satisfied, the

DOUxx operation is processed (step 2). If the indicators are not satisfied,
control passes to the next operation that can be processed following the
associated ENDDO statement (step 6).

2. The DOUxx operation is processed by passing control to the next operation that
can be processed (step 3). The DOUxx operation does not compare factor 1 and
factor 2 or test the specified condition at this point.

3. Each of the operations in the DO group is processed.
4. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the next calculation operation following the associated
ENDDO statement (step 6). Otherwise, the ENDDO operation is processed (step
5).

5. The ENDDO operation is processed by comparing factor 1 and factor 2 of the
DOUxx operation or testing the condition specified by a combined operation. If
the relationship xx exists between factor 1 and factor 2 or the specified
condition exists, the DO group is finished and control passes to the next
calculation operation after the ENDDO statement (step 6). If the relationship xx
does not exist between factor 1 and factor 2 or the specified condition does not
exist, the operations in the DO group are repeated (step 3).

DOUxx (Do Until)

Chapter 22. Operation Codes 661

6. The statement after the ENDDO statement is processed when the conditioning
indicators on the DOUxx or ENDDO statements are not satisfied (steps 1 or 4),
or when the relationship xx between factor 1 and factor 2 or the specified
condition exists at step 5.

See “LEAVE (Leave a Do/For Group)” on page 708 and “ITER (Iterate)” on page
703 for information on how those operations affect a DOUxx operation.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The DOUEQ operation runs the operation within the DO group at
* least once.
C
C FLDA DOUEQ FLDB
C
*
* At the ENDDO operation, a test is processed to determine whether
* FLDA is equal to FLDB. If FLDA does not equal FLDB, the
* preceding operations are processed again. This loop continues
* processing until FLDA is equal to FLDB. When FLDA is equal to
* FLDB, the program branches to the operation immediately
* following the ENDDO operation.
C
C SUB 1 FLDA
C ENDDO
C
*
* The combined DOUEQ ANDEQ OREQ operation processes the operation
* within the DO group at least once.
C
C FLDA DOUEQ FLDB
C FLDC ANDEQ FLDD
C FLDE OREQ 100
C
*
* At the ENDDO operation, a test is processed to determine whether
* the specified condition, FLDA equal to FLDB and FLDC equal to
* FLDD, exists. If the condition exists, the program branches to
* the operation immediately following the ENDDO operation. There
* is no need to test the OREQ condition, FLDE equal to 100, if the
* DOUEQ and ANDEQ conditions are met. If the specified condition
* does not exist, the OREQ condition is tested. If the OREQ
* condition is met, the program branches to the operation
* immediately following the ENDDO. Otherwise, the operations
* following the OREQ operation are processed and then the program
* processes the conditional tests starting at the second DOUEQ
* operation. If neither the DOUEQ and ANDEQ condition nor the
* OREQ condition is met, the operations following the OREQ
* operation are processed again.
C
C SUB 1 FLDA
C ADD 1 FLDC
C ADD 5 FLDE
C ENDDO

Figure 307. DOUxx Operations

DOUxx (Do Until)

662 ILE RPG Reference

DOW (Do While)

Free-Form Syntax DOW{(MR)} indicator-expression

Code Factor 1 Extended Factor 2

DOW (M/R) indicator-expression

The DOW operation code precedes a group of operations which you want to
process when a given condition exists. Its function is similar to that of the DOWxx
operation code. An associated ENDDO statement marks the end of the group. It
differs in that the logical condition is expressed by an indicator valued expression
(indicator-expression). The operations controlled by the DOW operation are
performed while the expression in indicator-expression is true. See Chapter 20,
“Expressions,” on page 477 for details on expressions. For information on how
operation extenders M and R are used, see “Precision Rules for Numeric
Operations” on page 486.

For fixed-format syntax, level and conditioning indicators are valid. Factor 1 must
be blank. Factor 2 contains the expression to be evaluated.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* In this example, the do loop will be repeated until the condition
* is false. That is when A > 5 or B+C are not equal to zero.

/FREE
dow (a <= 5) and (b + c = 0);

do_something (a:b:c);
enddo;

/END-FREE

Figure 308. DOW Operation

DOW (Do While)

Chapter 22. Operation Codes 663

DOWxx (Do While)

Free-Form Syntax (not allowed - use the DOW operation code)

Code Factor 1 Factor 2 Result Field Indicators

DOWxx Comparand Comparand

The DOWxx operation code precedes a group of operations which you want to
process when a given condition exists. To specify a more complex condition,
immediately follow the DOWxx statement with ANDxx or ORxx statements. An
associated ENDDO statement marks the end of the group. For further information
on DO groups and the meaning of xx, see “Structured Programming Operations”
on page 469.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative
constant, a field name, a table name, an array element, or a data structure name.
Factor 1 and factor 2 must be of the same data type. The comparison of factor 1
and factor 2 follows the same rules as those given for the compare operations. See
“Compare Operations” on page 445.

In addition to the DOWxx operation itself, the conditioning indicators on the
DOWxx and ENDDO statements control the DO group. The conditioning
indicators on the DOWxx statement control whether or not the DOWxx operation
is begun. The conditioning indicators on the associated ENDDO statement control
whether the DOW group is repeated another time.

The DOWxx operation follows these steps:
1. If the conditioning indicators on the DOWxx statement line are satisfied, the

DOWxx operation is processed (step 2). If the indicators are not satisfied,
control passes to the next operation to be processed following the associated
ENDDO statement (step 6).

2. The DOWxx operation is processed by comparing factor 1 and factor 2 or
testing the condition specified by a combined DOWxx, ANDxx, or ORxx
operation. If the relationship xx between factor 1 and factor 2 or the condition
specified by a combined operation does not exist, the DO group is finished and
control passes to the next calculation operation after the ENDDO statement
(step 6). If the relationship xx between factor 1 and factor 2 or the condition
specified by a combined operation exists, the operations in the DO group are
repeated (step 3).

3. Each of the operations in the DO group is processed.
4. If the conditioning indicators on the ENDDO statement are not satisfied,

control passes to the next operation to run following the associated ENDDO
statement (step 6). Otherwise, the ENDDO operation is processed (step 5).

5. The ENDDO operation is processed by passing control to the DOWxx operation
(step 2). (Note that the conditioning indicators on the DOWxx statement are not
tested again at step 1.)

6. The statement after the ENDDO statement is processed when the conditioning
indicators on the DOWxx or ENDDO statements are not satisfied (steps 1 or 4),
or when the relationship xx between factor 1 and factor 2 of the specified
condition does not exist at step 2.

DOWxx (Do While)

664 ILE RPG Reference

See “LEAVE (Leave a Do/For Group)” on page 708 and “ITER (Iterate)” on page
703 for information on how those operations affect a DOWxx operation.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The DOWLT operation allows the operation within the DO group
* to be processed only if FLDA is less than FLDB. If FLDA is
* not less than FLDB, the program branches to the operation
* immediately following the ENDDO operation. If FLDA is less
* than FLDB, the operation within the DO group is processed.
C
C FLDA DOWLT FLDB
C
*
* The ENDDO operation causes the program to branch to the first
* DOWLT operation where a test is made to determine whether FLDA
* is less than FLDB. This loop continues processing until FLDA
* is equal to or greater than FLDB; then the program branches
* to the operation immediately following the ENDDO operation.
C
C MULT 2.08 FLDA
C ENDDO
C
* In this example, multiple conditions are tested. The combined
* DOWLT ORLT operation allows the operation within the DO group
* to be processed only while FLDA is less than FLDB or FLDC. If
* neither specified condition exists, the program branches to
* the operation immediately following the ENDDO operation. If
* either of the specified conditions exists, the operation after
* the ORLT operation is processed.
C
C FLDA DOWLT FLDB
C FLDA ORLT FLDC
C
* The ENDDO operation causes the program to branch to the second
* DOWLT operation where a test determines whether specified
* conditions exist. This loop continues until FLDA is equal to
* or greater than FLDB and FLDC; then the program branches to the
* operation immediately following the ENDDO operation.
C
C MULT 2.08 FLDA
C ENDDO

Figure 309. DOWxx Operations

DOWxx (Do While)

Chapter 22. Operation Codes 665

DSPLY (Display Message)

Free-Form Syntax DSPLY{(E)} {message {message-queue {response}}}

Code Factor 1 Factor 2 Result Field Indicators

DSPLY (E) message message-queue response _ ER _

The DSPLY operation allows the program to communicate with the display work
station that requested the program. Either message, response, or both operands must
be specified. The operation can display a message and accept a response.

The value in the message operand and possibly the response operand are used to
create the message to be displayed. message can be a field name, a literal, a named
constant, a table name, or an array element whose value is used to create the
message to be displayed. Within free-form calculations, the message operand can
be an expression, provided the expression is enclosed by parentheses. The message
operand can also be *M, followed by a message identifier that identifies the
message to be retrieved from the message file, QUSERMSG. Use the OVRMSGF CL
command to use a different message file. QUSERMSG must be in a library in the
library list of the job receiving the message.

The message identifier must be 7 characters in length consisting 3 alphabetic
characters and four numeric characters (for example, *MUSR0001, this means
message USR0001 is used).

If specified, the message-queue operand can be a character field, a literal, a named
constant, a table name, or an array element whose value is the symbolic name of
the object meant to receive the message and from which the optional response can
be sent. Any queue name, except a program message queue name, can be the value
contained in the message-queue operand. The queue must be declared to the
operating system before it can be used during program execution. (For information
on how to create a queue, see the CL Programming). There are two predefined
queues:

Queue Value

QSYSOPR The message is sent to the system operator. Note that the
QSYSOPR message queue severity level must be zero (00) to enable
the DSPLY operation to immediately display a message to the
system operator.

*EXT The message is sent to the external message queue.

Note: For a batch job, if no message-queue value is specified, the default is
QSYSOPR. For an interactive job, the default value is *EXT.

The response operand is optional. If it is specified, the response is placed in it.
response can be a field name, a table name, or an array element in which the
response is placed. If no data is entered, response is unchanged. To specify a
response but no message queue in a free-form specification, specify ' ' for
message-queue.

Fully qualified names may be specified as the Result-Field operand, and
expressions are allowed as Factor 1 and Factor 2 operands, when coded in

DSPLY (Display Message)

666 ILE RPG Reference

#
#
#
#
#

free-form calculation specifications. However, if the operand is more complex than
a fully qualified name, the expression must be enclosed in parentheses.

To handle DSPLY exceptions (program status code 333), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. The exception
is handled by the specified method if an error occurs on the operation. For more
information on error handling, see “Program Exception/Errors” on page 96.

When you specify the DSPLY operation with no message identifier in the message
operand, the operation functions as follows:
v If the message operand is specified but the response operand is not, the contents

of the message operand are displayed. The program does not wait for a response
unless a display file with the parameter RSTDSP (*NO) specified was used to
display a format at the workstation. Then the program waits for the user to
press Enter.

v If the message operand is not specified but the response operand is, the contents
of the response operand are displayed and the program waits for the user to
enter data for the response. The reply is placed in the response operand.

v When both message and response operands are specified,, their contents are
combined and displayed. The program waits for the user to enter data for the
response. The response is placed in the result field.

v If you request help on the message, you can find the type and attributes of the
data that is expected and the number of unsuccessful attempts that have been
made.
The maximum length of information that can be displayed is 52 bytes.

The format of the record written by the DSPLY operation with no message
identifier specified by the message operand follows:

When you specify the DSPLY operation with a message identifier in the message
operand, the operation functions as follows: the message identified in the message
operand is retrieved from QUSERMSG, the message is displayed, and the program
waits for the user to respond by entering data if the response operand is specified.
The response is placed in the result field.

When replying to a message, remember the following:

Variable Length 1 Variable Length 1

blank blankContents of
factor 1 if it
is specified

or
contents of
the result field
if factor 1 is
not specified.

Contents of the
result field if both
factor 1 and the
result field are
specified.

DSPLY

Figure 310. DSPLY Operation Record Format. 1The maximum length of information that can
be displayed is 52 bytes.

DSPLY (Display Message)

Chapter 22. Operation Codes 667

v Non-float numeric fields sent to the display are right-adjusted and
zero-suppressed.

v If a non-float numeric field is entered with a length greater than the number of
digits in the result field and the rightmost character is not a minus sign (-), an
error is detected and a second wait occurs. The user must key in the field again.

v A float value is entered in the external display representation. It can be no
longer than 14 characters for 4-byte float fields, and no longer than 23 characters
for 8-byte float fields.

v If graphic, UCS-2, or character data is entered, the length must be equal or less
than the receiving field length.

v If the result field is variable-length, its length will be set to the length of the
value that you enter.

v If a date, time, or timestamp field is entered, the format and separator must
match the format and separator of the result field. If the format or separator do
not match, or the value is not valid (for example a date of 1999/99/99), an error
is detected and a second wait occurs. The user must key in the field again.

v The DSPLY operation allows the workstation user up to 5 attempts to respond to
the message. After the fifth unsuccessful attemp, the DSPLY operation fails. If
the DSPLY operation does not have a message identifier specified in the message
operand, the user can request help on the message to find the type and
attributes of the expected response.

v To enter a null response to the system operator queue (QSYSOPR), the user must
enter the characters *N and then press Enter.

v Graphic, UCS-2, or character fields are padded on the right with blanks after all
characters are entered.

v UCS-2 fields are displayed and entered as single-byte characters.
v Numeric fields are right-adjusted and padded on the left with zeros after all

characters are entered.
v Lowercase characters are not converted to uppercase.
v If factor 1 or the result field is of graphic data type, they will be bracketed by

SO/SI when displayed. The SO/SI will be stripped from the value to be
assigned to the graphic result field on input.

v Float fields are displayed in the external display representation. Float values can
be entered as numeric literals or float literals. When entering a response, the
float value does not have to be normalized.

For more information, see “Message Operation” on page 460.

/free
// Display prompt and wait for response:
dsply prompt '' result;
// Display string constructed in an expression:
dsply ('Length of name is ' + %char(%len(str)) + ' bytes.');

/end-free

Figure 311. DSPLY Operation Code Examples

DSPLY (Display Message)

668 ILE RPG Reference

DUMP (Program Dump)

Free-Form Syntax DUMP{(A)} {identifier}

Code Factor 1 Factor 2 Result Field Indicators

DUMP (A) identifier

The DUMP operation provides a dump (all fields, all files, indicators, data
structures, arrays, and tables defined) of the module. It can be used independently
or in combination with the i5/OS testing and debugging functions. When the
OPTIMIZE(*FULL) compiler option is selected on either the CRTBNDRPG or
CRTRPGMOD command or as a keyword on a control specification, the field
values shown in the dump may not reflect the actual content due to the effects of
optimization.

If the DBGVIEW(*NONE) compiler option is specified, the dump will only show
the program status data structure, the file information data structures, and the *IN
indicators. Other variables will not have their contents shown because the object
does not contain the necessary observability information.

If the DEBUG(*NO) control-specification keyword is specified, no dump is
performed. You can override this keyword by specifying operation extender A.
This operation extender means that a dump is always performed, regardless of the
value of the DEBUG keyword.

The contents of the optional identifier operand identify the DUMP operation. It will
replace the default heading on the dump listing if specified. It must contain a
character or graphic entry that can be one of: a field name, literal, named constant,
table name, or array element whose contents identify the dump. If the identifier
operand is a graphic entry, it is limited to 64 double byte characters. identifier
cannot be a figurative constant.

The program continues processing the next calculation statement following the
DUMP operation.

The DUMP operation is performed if the DEBUG keyword is specified on the
control specification, or the A operation extender is coded for the DUMP operation.
Otherwise, the DUMP operation is checked for errors and the statement is printed
on the listing, but the DUMP operation is not processed.

When dumping files, the DUMP will dump the File Feedback Information section
of the INFDS, but not the Open Feedback Information or the Input/Output
Feedback Information sections of the INFDS. DUMP will instead dump the actual
Open Feedback, and Device Feedback Information for the file.

Note that if the INFDS you have declared is not large enough to contain the Open
Feedback, or Input/Output Feedback Information, then you do not have to worry
about doing a POST before DUMP since the File Feedback Information in the
INFDS is always up to date.

The values of variables in subprocedures may not be valid if the subprocedure is
not active. If a subprocedure has been called recursively, the values from the most
recent invocation are shown.

DUMP (Program Dump)

Chapter 22. Operation Codes 669

#
#
#
#
#
#
#

Java object variables may not show the expected value. The RPG module may
retain the reference to an object after the object no longer exists; it is possible for
an object reference to be reused, and refer to a different object that is unrelated to
the RPG module being dumped. That different object is the one that will appear in
the formatted dump.

For an sample dump listing, see the chapter on obtaining dumps in the IBM
Rational Development Studio for i: ILE RPG Programmer’s Guide.

For more information, see “Information Operations” on page 457.

DUMP (Program Dump)

670 ILE RPG Reference

ELSE (Else)

Free-Form Syntax ELSE

Code Factor 1 Factor 2 Result Field Indicators

ELSE

The ELSE operation is an optional part of the IFxx and IF operations. If the IFxx
comparison is met, the calculations before ELSE are processed; otherwise, the
calculations after ELSE are processed.

Within total calculations, the control level entry (positions 7 and 8) can be blank or
can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to group
the statement within the appropriate section of the program. The control level
entry is for documentation purposes only. Conditioning indicator entries (positions
9 through 11) are not permitted. To close the IFxx/ELSE group use an ENDIF
operation.

Figure 326 on page 700 shows an example of an ELSE operation with an IFxx
operation.

For more information, see “Structured Programming Operations” on page 469.

ELSE (Else)

Chapter 22. Operation Codes 671

ELSEIF (Else If)

Free-Form Syntax ELSEIF{(MR)} indicator-expression

Code Factor 1 Extended Factor 2

ELSEIF (M/R) Blank indicator-expression

The ELSEIF operation is the combination of an ELSE operation and an IF
operation. It avoids the need for an additional level of nesting.

The IF operation code allows a series of operation codes to be processed if a
condition is met. Its function is similar to that of the IFxx operation code. It differs
in that the logical condition is expressed by an indicator valued expression
(indicator-expression). The operations controlled by the ELSEIF operation are
performed when the expression in the indicator-expression operand is true (and the
expression for the previous IF or ELSEIF statement was false).

For information on how operation extenders M and R are used, see “Precision
Rules for Numeric Operations” on page 486.

For more information, see “Structured Programming Operations” on page 469.

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/free

IF keyPressed = HELPKEY;
displayHelp();

ELSEIF keyPressed = EXITKEY;
return;

ELSEIF keyPressed = ROLLUP OR keyPressed = ROLLDOWN;
scroll (keyPressed);

ELSE;
signalError ('Key not defined');

ENDIF;

/end-free

Figure 312. ELSEIF Operation

ELSEIF (Else If)

672 ILE RPG Reference

ENDyy (End a Structured Group)

Free-Form Syntax ENDDO
ENDFOR
ENDIF
ENDMON
ENDSL
(END and ENDCS not allowed)

Code Factor 1 Factor 2 Result Field Indicators

END increment-value

ENDCS

ENDDO increment-value

ENDFOR

ENDIF

ENDMON

ENDSL

The ENDyy operation ends a CASxx, DO, DOU, DOW, DOUxx, DOWxx, FOR, IF,
IFxx, MONITOR, or SELECT group of operations.

The ENDyy operations are listed below:

END End a CASxx, DO, DOU, DOUxx, DOW, DOWxx, FOR, IF, IFxx, or
SELECT group

ENDCS End a CASxx group

ENDDO End a DO, DOU, DOUxx, DOW, or DOWxx group

ENDFOR End a FOR group

ENDIF End an IF or IFxx group

ENDMON End a MONITOR group

ENDSL End a SELECT group

The increment-value operand is allowed only on an ENDyy operation that delimits
a DO group. It contains the incrementing value of the DO group. It can be positive
or negative, must have zero decimal positions, and can be one of: an array
element, table name, data structure, field, named constant, or numeric literal. If
increment-value is not specified on the ENDDO, the increment defaults to 1. If
increment-value is negative, the DO group will never end.

Conditioning indicators are optional for ENDDO or ENDFOR and not allowed for
ENDCS, ENDIF, ENDMON, and ENDSL.

Resulting indicators are not allowed. No operands are allowed for ENDCS, ENDIF,
ENDMON, and ENDSL.

If one ENDyy form is used with a different operation group (for example, ENDIF
with a structured group), an error results at compilation time.

See the CASxx, DO, DOUxx, DOWxx, FOR, IFxx, and DOU, DOW, IF, MONITOR,
and SELECT operations for examples that use the ENDyy operation.

ENDyy (End a Structured Group)

Chapter 22. Operation Codes 673

For more information, see “Error-Handling Operations” on page 452 or “Structured
Programming Operations” on page 469.

ENDyy (End a Structured Group)

674 ILE RPG Reference

ENDSR (End of Subroutine)

Free-Form Syntax ENDSR {return-point}

Code Factor 1 Factor 2 Result Field Indicators

ENDSR label return-point

The ENDSR operation defines the end of an RPG IV subroutine and the return
point (return-point) to the cycle-main program. ENDSR must be the last statement
in the subroutine. In traditional syntax, the label operand can be specified as a
point to which a GOTO operation within the subroutine can branch. (You cannot
specify a label in free-form syntax.) The control level entry (positions 7 and 8) can
be SR or blank. Conditioning indicator entries are not allowed.

The ENDSR operation ends a subroutine and causes a branch back to the
statement immediately following the EXSR or CASxx operation unless the
subroutine is a program exception/error subroutine (*PSSR) or a file
exception/error subroutine (INFSR). For these subroutines, the return-point operand
of the ENDSR operation can contain an entry that specifies where control is to be
returned following processing of the subroutine. This entry can be a field name
that contains a reserved keyword or a literal or named constant that is a reserved
keyword. If a return point that is not valid is specified, the RPG IV error handler
receives control.

Note: The return-point operand cannot be specified for an ENDSR operation that
occurs within a subprocedure (including a linear-main procedure).

See “File Exception/Error Subroutine (INFSR)” on page 93 for more detail on
return points.

See Figure 183 on page 474 for an example of coding an RPG IV subroutine.

For more information, see “Subroutine Operations” on page 472.

ENDSR (End of Subroutine)

Chapter 22. Operation Codes 675

#
#

EVAL (Evaluate expression)

Free-Form Syntax {EVAL{(HMR)}} result = expression

{EVAL{(HMR)}} result += expression

{EVAL{(HMR)}} result -= expression

{EVAL{(HMR)}} result *= expression

{EVAL{(HMR)}} result /= expression

{EVAL{(HMR)}} result **= expression

Code Factor 1 Extended Factor 2

EVAL (H M/R) Assignment Statement

The EVAL operation code evaluates an assignment statement of the form "result =
expression" or "result op = expression". The expression is evaluated and the
result placed in result. Therefore, result cannot be a literal or constant but must be
a field name, array name, array element, data structure, data structure subfield, or
a string using the %SUBST built-in function.

The expression may yield any of the RPG data types. The type of the expression
must be the same as the type of the result. A character, graphic, or UCS-2 result
will be left justified and padded with blanks on the right or truncated as required.
If result is a variable-length field, its length will be set to the length of the result of
the expression.

If the result represents an unindexed array or an array specified as array(*), the
value of the expression is assigned to each element of the result, according to the
rules described in “Specifying an Array in Calculations” on page 171. Otherwise,
the expression is evaluated once and the value is placed into each element of the
array or sub-array. For numeric expressions, the half-adjust operation code
extender is allowed. The rules for half adjusting are equivalent to those for the
arithmetic operations.

On a free-form calculation specification, the operation code name may be omitted
if no extenders are needed, and if the variable does not have the same name as an
operation code.

For the assignment operators +=, -=, *=, /=, and **=, the appropriate operation is
applied to the result and the expression, and the result is assigned to the result.
For example, statement X+=Y is roughly equivalent to X=X+Y. The difference
between the two statements is that for these assignment operators, the result
operand is evaluated only once. This difference is significant when the evaluation
of the result operation involves a call to a subprocedure which has side-effects, for
example:

warnings(getNextCustId(OVERDRAWN)) += 1;

See Chapter 20, “Expressions,” on page 477 for general information on expressions.
See “Precision Rules for Numeric Operations” on page 486 for information on
precision rules for numeric expressions. This is especially important if the
expression contains any divide operations, or if the EVAL uses any of the operation
extenders.

EVAL (Evaluate expression)

676 ILE RPG Reference

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* Assume FIELD1 = 10
* FIELD2 = 9
* FIELD3 = 8
* FIELD4 = 7
* ARR is defined with DIM(10)
* *IN01 = *ON
* A = 'abcdefghijklmno' (define as 15 long)
* CHARFIELD1 = 'There' (define as 5 long)

/FREE
// The content of RESULT after the operation is 20
eval RESULT=FIELD1 + FIELD2+(FIELD3-FIELD4);
// The indicator *IN03 will be set to *ON
*IN03 = *IN01 OR (FIELD2 > FIELD3);
// Each element of array ARR will be assigned the value 72
ARR(*) = FIELD2 * FIELD3;
// After the operation, the content of A = 'Hello There '
A = 'Hello ' + CHARFIELD1;
// After the operation the content of A = 'HelloThere '
A = %TRIMR('Hello ') + %TRIML(CHARFIELD1);
// Date in assignment
ISODATE = DMYDATE;
// Relational expression
// After the operation the value of *IN03 = *ON
*IN03 = FIELD3 < FIELD2;
// Date in Relational expression
// After the operation, *IN05 will be set to *ON if Date1 represents
// a date that is later that the date in Date2
*IN05 = Date1 > Date2;
// After the EVAL the original value of A contains 'ab****ghijklmno'
%SUBST(A(3:4))= '****';
// After the EVAL PTR has the address of variable CHARFIELD1
PTR = %ADDR(CHARFIELD1);
// An example to show that the result of a logical expression is
// compatible with the character data type.
// The following EVAL statement consisting of 3 logical expressions
// whose results are concatenated using the '+' operator
// The resulting value of the character field RES is '010'
RES = (FIELD1<10) + *in01 + (field2 >= 17);
// An example of calling a user-defined function using EVAL.
// The procedure FormatDate converts a date field into a character
// string, and returns that string. In this EVAL statement, the
// field DateStrng1 is assigned the output of formatdate.
DateStrng1 = FormatDate(Date1);
// Subtract value in complex data structure.
cust(custno).account(accnum).balance -= purchase_amount;
// Add days and months to a date
DATE += %DAYS(12) + %MONTHS(3);
// Append characters to varying length character variable
line += '
';

/END-FREE

Figure 313. EVAL Operations

EVAL (Evaluate expression)

Chapter 22. Operation Codes 677

EVALR (Evaluate expression, right adjust)

Free-Form Syntax EVALR{(MR)} result = expression

Code Factor 1 Extended Factor 2

EVALR (M/R) Assignment Statement

The EVALR operation code evaluates an assignment statement of the form
result=expression. The expression is evaluated and the result is placed
right-adjusted in the result. Therefore, the result cannot be a literal or constant, but
must be a fixed-length character, graphic, or UCS-2 field name, array name, array
element, data structure, data structure subfield, or a string using the %SUBST
built-in function. The type of the expression must be the same as the type of the
result. The result will be right justified and padded with blanks on the left, or
truncated on the left as required.

Note: Unlike the EVAL operation, the result of EVALR can only be of type
character, graphic, or UCS-2. In addition, only fixed length result fields are
allowed, although %SUBST can contain a variable length field if this built-in
function forms the lefthand part of the expression.

If the result represents an unindexed array or an array specified as array(*), the
value of the expression is assigned to each element of the result, according to the
rules described in “Specifying an Array in Calculations” on page 171. Otherwise,
the expression is evaluated once and the value is placed into each element of the
array or sub-array.

See Chapter 20, “Expressions,” on page 477 for general information on expressions.
See “Precision Rules for Numeric Operations” on page 486 for information on
precision rules for numeric expressions. This is especially important if the
expression contains any divide operations, or if the EVALR uses any of the
operation extenders.

EVAL-CORR (Assign corresponding subfields)

Free-Form Syntax EVAL-CORR{(HMR)} target = source;

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
D*Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D Name S 20A

/FREE
eval Name = 'Kurt Weill';
// Name is now 'Kurt Weill '
evalr Name = 'Johann Strauss';
// Name is now ' Johann Strauss'
evalr %SUBST(Name:1:12) = 'Richard';
// Name is now ' Richard Strauss'
eval Name = 'Wolfgang Amadeus Mozart';
// Name is now 'Wolfgang Amadeus Moz'
evalr Name = 'Wolfgang Amadeus Mozart';
// Name is now 'fgang Amadeus Mozart'

/END-FREE

Figure 314. EVALR Operations

EVALR (Evaluate expression, right adjust)

678 ILE RPG Reference

Code Factor 1 Extended Factor 2

EVAL-CORR target = source

The EVAL-CORR operation assigns data and null-indicators from the
corresponding subfields of the source data structure to the subfields of the target
data structure. The subfields that are assigned are the subfields that have the same
name and compatible data type in both data structures. For example, if data
structure DS1 has character subfields A, B, and C, and data structure DS2 has
character subfields B, C, and D, statement
EVAL-CORR DS1 = DS2

will assign data from subfields DS2.B and DS2.C to DS1.B and DS1.C. Null-capable
subfields in the target data structure that are affected by the EVAL-CORR
operation will also have their null-indicators set from the null-indicator from the
source data structure’s subfield, or to *OFF, if the source subfield is not
null-capable.

If an operation code extender H is specified, the half-adjust function applies on all
numeric assignments. Extenders for EVAL-CORR can be specified only in
Free-form calculations.

If operation code extender M or R is specified, it applies to the arguments of any
procedure call specified as part of the source or target expression. Extenders for
EVAL-CORR can be specified only in Free-form calculations.

The EVAL-CORR Summary section in the compiler listing can be used to determine
v which subfields were selected to be affected by the EVAL-CORR operation
v for subfields not selected, the reason the subfield was not selected
v for subfields that are selected, any additional information about the subfields

such as a difference in the dimension or null-capability of the subfields.

See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide for more
information about the EVAL-CORR Summary section.

Remember the following when using the EVAL-CORR operation:
v Operation code EVAL-CORR may be coded either in free-form calculations or in

fixed-form calculations. When coded in fixed-form calculations, the assignment
expression is coded in the Extended Factor 2 entry, with the Factor 1 entry left
blank.

v The source and target operands must both be data structure variables, including
data structure subfields defined with LIKEDS or LIKEREC.

v The operands may be qualified or unqualified data structures. However, for the
operation to be successful, at least one of the operands must be a qualified data
structure; otherwise, it would not be possible for the two data structures to have
any subfields with the same name.

v The subfields involved in the assignment are those that have the same name in
both data structures and have data types that are compatible for assignment
using EVAL.

v When comparing the subfield names to find corresponding subfieds, the names
used are the internal program names; the internal program names may be
different from the external names in the case of fields from externally-described

EVAL-CORR (Assign corresponding subfields)

Chapter 22. Operation Codes 679

files or data structures. For fields defined externally and renamed or prefixed,
the name used is the name after applying the rename or prefix.

v For subfields in the source and target that correspond by name and are both
data structures defined with LIKEDS or LIKEREC, the subfields that are
assigned are the corresponding subfields of the subfield data structures. If two
subfields in the source and target have the same name but one is a data
structure defined with LIKEDS or LIKEREC, and the other is not a data
structure, the subfield is not assigned by the EVAL-CORR operation.

v The assignment of data from the source subfields to the target subfields follows
the same rules as for operation code EVAL. For example, character values are
assigned left adjusted with truncation or padding with blanks for unequal
lengths.

v Data is assigned subfield by subfield by the order of subfields in the source data
structure. If there are overlapping subfields in the target data structure, either
due to overlapping from-and-to positions or due to the OVERLAY keyword,
later assignment may overwrite earlier moves.

v When the source and target data structures or corresponding source and target
subfields which are both data structures are defined the same way with LIKEDS
or LIKEREC, that is, both data structures are defined like the same data
structure, the compiler will optimize the assignment and assign the data
structure as a whole, and not as a series of individual subfield assignments.

v If either the source or target operand is a multiple occurrence data structure, the
current occurrence is used.

v If you are working with arrays:
– If the source operand is an unindexed array data structure, the target data

structure must also be an array data structure.
– If the target operand is an unindexed array data structure, the operation

works on each element of the array data structure, following the same rules
as EVAL with an array result. %SUBARR may be used to restrict the number
of elements used in either the source or target data structure array.

– If one subfield is an array, both subfields must be arrays. If the dimension of
one array subfield is smaller than the other, only the smaller number of array
elements is assigned. If the target subfield has more elements, the additional
elements are unchanged by the EVAL-CORR operation.

v If you are working with null-capable subfields:
– EVAL-CORR automatically handles assignment of null-indicators for

null-capable subfields that are not data structure subfields.
- If both the source and target subfields are null-capable, the source

subfield’s null-indicator is copied to the target subfield’s null-indicator.
- If the target subfield is null-capable and the source subfield is not

null-capable, the target subfield’s null-indicator is set to *OFF.
- If the source subfield is null-capable and the target subfield is not

null-capable, the source subfield’s null-indicator is ignored.
- The EVAL-CORR operation sets the null-indicators for scalar and array

subfields only. If a null-capable subfield is a data structure, its
null-indicator will not be set by the EVAL-CORR operation; similarly, if the
target data structure itself is null-capable, its null-indicator will not be set
by the EVAL-CORR operation..

– If the subfield is a data structure and a null-indicator is assigned to the data
structure itself, the null-indicator is not affected by the EVAL-CORR
operation.

EVAL-CORR (Assign corresponding subfields)

680 ILE RPG Reference

Examples of the EVAL-CORR operation

* Physical file EVALCORRPF
A R PFREC
A NAME 25A
A IDNO 10P 0
A CITY 20A
* Display file EVALCORRDF
A R DSPFREC
A 3 2'Name'
A NAME 25A O 3 15
A 4 2'City'
A CITY 20A B 4 15CHECK(LC)
* RPG program
Fevalcorrpfuf e disk
Fevalcorrdfcf e workstn

D pf_ds e ds extname(evalcorrpf : *input)
D qualified
D pf_save_ds ds likeds(pf_ds)
D dspf_ds e ds extname(evalcorrdf : *all)
D qualified
/free

read pfrec pf_ds;
dow not %eof;

// Assign all subfields with the same name and type
// to the data structure for the EXFMT operation
// to the display file (NAME and CITY)
eval-corr dspf_ds = pf_ds;

// Show the screen to the user
exfmt dspfrec dspf_ds;
// Save the original physical file record
// and assign the display file subfields to the
// physical file data structure. Then compare
// the physical file data structure to the saved
// version to see if any fields have changed.
eval pf_save_ds = pf_ds;
eval-corr pf_ds = dspf_ds;
if pf_ds <> pf_save_ds;

// Some of the fields have changed
update pfrec pf_ds;

endif;
read pfrec pf_ds;

enddo;
*inlr = '1';

Figure 315. EVAL-CORR with externally-described data structure I/O

EVAL-CORR (Assign corresponding subfields)

Chapter 22. Operation Codes 681

#
#
#
#
#
#
#
#
#
#
#

* The two data structures ds1 and ds2 have several
* subfields, some having the same names and
* compatible types:
* num - appears in both, has compatible type
* extra - appears only in ds1
* char - appears in both, has identical type
* other - appears only in ds1
* diff - appears in both, types are not compatible
* another - appears only in ds2
D ds1 ds qualified
D num 10i 0
D extra d
D char 20a
D otherfld 1a
D diff 5p 0
D ds2 ds qualified
D char 20a
D diff 5a
D another 5a
D num 15p 5

/free
// assign corresponding fields from DS1 to DS2
EVAL-CORR ds2 = ds1;
// this EVAL-CORR is equivalent to these EVAL operations
// between all the subfields which have the same name
// in both data structures and which have a compatible
// data type
// EVAL ds2.num = ds1.num;
// EVAL ds2.char = ds1.char;
// - Subfields "extra" and "another" are not affected
// because there is no subfield of the same name in
// the other data structure.
// - Subfield "diff" is not selected because the
// subfields do not a compatible type

Figure 316. EVAL-CORR between program-described data structures

EVAL-CORR (Assign corresponding subfields)

682 ILE RPG Reference

* DDS for file EVALCORRN1
A R REC1
A FLD1 10A ALWNULL
A FLD2 10A ALWNULL
A FLD3 10A
A FLD4 10A
A FLD5 5P 0 ALWNULL
* DDS for file EVALCORRN2
A R REC2
A FLD1 10A ALWNULL
A FLD2 10A
A FLD3 10A ALWNULL
A FLD4 10A
A FLD5 5A ALWNULL
* In the following example, data structure "ds1"
* is defined from REC1 in file EVALCORRN1 and
* data structure "ds2" is defined from REC2 in
* file EVALCORRN2 above. The EVAL-CORR operation
* does the following:
* 1. DS2.FLD1 is assigned the value of DS1.FLD1
* and %NULLIND(DS2.FLD1) is assigned the value of
* %NULLIND(DS1.FLD1)
* 2. DS2.FLD2 is assigned the value of DS1.FLD2
* 3. DS2.FLD3 is assigned the value of DS1.FLD3
* and %NULLIND(DS2.FLD3) is assigned *OFF
* 4. DS2.FLD4 is assigned the value of DS1.FLD4
* The null-indicator for DS1.FLD2 is ignored because
* the target subfield DS2.FLD2 is not null-capable.
* DS2.FLD5 is ignored because DS1.FLD5 has a different
* data type, so the subfields do not correspond.
H ALWNULL(*USRCTL)
FEVALCORRN1IF E DISK
FEVALCORRN2O E DISK
D ds1 DS LIKEREC(REC1:*INPUT)
D ds2 DS LIKEREC(REC2:*OUTPUT)
C READ REC1 ds1
C EVAL-CORR ds2 = ds1
C WRITE REC2 ds2

Figure 317. EVAL-CORR with null-capable subfields

EVAL-CORR (Assign corresponding subfields)

Chapter 22. Operation Codes 683

EXCEPT (Calculation Time Output)

Free-Form Syntax EXCEPT {except-name}

Code Factor 1 Factor 2 Result Field Indicators

EXCEPT except-name

The EXCEPT operation allows one or more records to be written during either
detail calculations or total calculations. See Figure 319 on page 685 for examples of
the EXCEPT operation.

When specifying the EXCEPT operation remember:
v The exception records that are to be written during calculation time are

indicated by an E in position 17 of the output specifications. An EXCEPT name,
which is the same name as specified by the except-name operand of an EXCEPT
operation, can be specified in positions 30 through 39 of the output
specifications of the exception records.

v Only exception records, not heading, detail, or total records, can contain an
EXCEPT name.

v When the EXCEPT operation with a name specified in the except-name operand
is processed, only those exception records with the same EXCEPT name are
checked and written if the conditioning indicators are satisfied.

D ds0 ds qualified
D num 10i 0
D char 20a varying
* A data structure with a nested subfield data structure
D ds1 ds qualified
D a likeds(ds0)
D b likeds(ds0)
D char 20a varying
D otherfld 1a
* A data structure with a nested subfield data structure
D ds2 ds qualified
D char 20a
D another 5a
D b likeds(ds0)

/free
// assign corresponding fields from DS1 to DS2
EVAL-CORR ds2 = ds1;
// this EVAL-CORR is equivalent to these EVAL operations
// EVAL ds2.b.num = ds1.b.num;
// EVAL ds2.b.char = ds1.b.char;
// EVAL ds2.char = ds1.char;
// assign corresponding fields from DS1.A to DS0
EVAL-CORR(H) ds0 = ds1.a;
// this EVAL-CORR is equivalent to these EVAL operations
// EVAL(H) ds0.num = ds1.a.num;
// EVAL ds0.char = ds1.a.char;
// assign corresponding fields from DS1.A to DS2.B
EVAL-CORR ds2.b = ds1.a;
// this EVAL-CORR is equivalent to these EVAL operations
// EVAL ds2.b.num = ds1.a.num;
// EVAL ds2.b.char = ds1.a.char;

Figure 318. EVAL-CORR with nested subfield data structures

EXCEPT (Calculation Time Output)

684 ILE RPG Reference

v When no except-name is specified, only those exception records with no name in
positions 30 through 39 of the output specifications are checked and written if
the conditioning indicators are satisfied.

v If an exception record is conditioned by an overflow indicator on the output
specification, the record is written only during the overflow portion of the RPG
IV cycle or during fetch overflow. The record is not written at the time the
EXCEPT operation is processed.

v If an exception output is specified to a format that contains no fields, the
following occurs:
– If an output file is specified, a record is written with default values.
– If a record is locked, the system treats the operation as a request to unlock the

record. This is the alternative form of requesting an unlock. The preferred
method is with the UNLOCK operation.

For more information, see “File Operations” on page 453.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* When the EXCEPT operation with HDG specified in factor 2 is
* processed, all exception records with the EXCEPT name HDG are
* written. In this example, UDATE and PAGE would be printed
* and then the printer would space 2 lines.
* The second HDG record would print a line of dots and then the
* printer would space 3 lines.
*
C EXCEPT HDG
*
* When the EXCEPT operation with no entry in factor 2 is
* processed, all exception records that do not have an EXCEPT
* name specified in positions 30 through 39 are written if the
* conditioning indicators are satisfied. Any exception records
* without conditioning indicators and without an EXCEPT name
* are always written by an EXCEPT operation with no entry in
* factor 2. In this example, if indicator 10 is on, TITLE and
* AUTH would be printed and then the printer would space 1 line.
*
C EXCEPT
O*
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O
O E 10 1
O TITLE
O AUTH
O E HDG 2
O UDATE
O PAGE
O E HDG 3
O '...............'
O '...............'
O E DETAIL 1
O AUTH
O VERSNO

Figure 319. EXCEPT Operation with/without Factor 2 Specified

EXCEPT (Calculation Time Output)

Chapter 22. Operation Codes 685

EXFMT (Write/Then Read Format)

Free-Form Syntax EXFMT{(E)} format-name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

EXFMT (E) format-name data-structure _ ER _

The EXFMT operation is a combination of a WRITE followed by a READ to the
same record format. EXFMT is valid only for a WORKSTN file defined as a full
procedural (F in position 18 of the file description specifications) combined file (C
in position 17 of the file description specifications) that is externally described (E in
position 22 of the file description specifications)

The format-name operand must be the name of the record format to be written and
then read.

If the data-structure operand is specified, the record is written from and read into
the data structure. The data structure must be a data structure defined with
EXTNAME(...:*ALL) or LIKEREC(...:*ALL). See “File Operations” on page 453 for
information on how to define the data structure and how data is transferred
between the file and the data structure.

To handle EXFMT exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
When an error occurs, the read portion of the operation is not processed
(record-identifying indicators and fields are not modified). For more information
on error handling, see “File Exception/Errors” on page 79.

Positions 71, 72, 75, and 76 must be blank.

For the use of EXFMT with multiple device files, see the descriptions of the READ
(by format name) and WRITE operations.

For more information, see “File Operations” on page 453.

EXFMT (Write/Then Read Format)

686 ILE RPG Reference

#

#

#
#
#
#
#

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
F*Flename++IPEASFRLen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++
*
* PROMTD is a WORKSTN file which prompts the user for an option.
* Based on what user enters, this program executes different
* subroutines to add, delete, or change a record.
*
FPROMTD CF E WORKSTN

/free
// If user enters F3 function key, indicator *IN03 is set
// on and the do while loop is exited.
dow not *in03;

// EXFMT writes out the prompt to the screen and expects user to
// enter an option. SCR1 is a record format name defined in the
// WORKSTN file and OPT is a field defined in the record.
exfmt SCR1;
select;
when opt = 'A';

exsr AddRec;
when opt = 'D';

exsr DelRec;
when opt = 'C';

exsr ChgRec;
endsl;

enddo;
do_something ();
do_more_stuff ();

/end-free

Figure 320. EXFMT Operation

* DDS for display file MYDSPF
A R REC
A QUESTION 40A O 5 2
A NAME 20A I 7 5
A CITY 20A B 8 5
* RPG program using MYDSPF
Fmydspf cf e workstn
* Define a data structure for use with EXFMT REC
D recDs ds likerec(rec : *all)
/free

// Set the output-capable fields
recDs.question = 'What is your name?';
recDs.city = 'Toronto';
// Show the screen to the user
exfmt rec recDs;
// Use the input-capable fields
// Since the "city" field is both input and output
// capable, its value may have changed during EXFMT
dsply ('Hello ' + recDs.name + ' in ' + recDs.city);

Figure 321. Using a result data structure with EXFMT

EXFMT (Write/Then Read Format)

Chapter 22. Operation Codes 687

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##
#
#

EXSR (Invoke Subroutine)

Free-Form Syntax EXSR subroutine-name

Code Factor 1 Factor 2 Result Field Indicators

EXSR subroutine-name

The EXSR operation causes the RPG IV subroutine named in the subroutine-name
operand to be processed. The subroutine name must be a unique symbolic name
and must appear as the subroutine-name operand of a BEGSR operation. The EXSR
operation can appear anywhere in the calculation specifications. Whenever it
appears, the subroutine that is named is processed. After operations in the
subroutine are processed, the statement following the EXSR operation is processed,
except when a GOTO within the subroutine is given to a label outside the
subroutine or when the subroutine is an exception/error subroutine specified by
the return-point operand of the ENDSR operation.

*PSSR used in the subroutine-name operand specifies that the program
exception/error subroutine is to be processed. *INZSR used in the subroutine-name
operand specifies that the program initialization subroutine is to be processed.

See “Coding Subroutines” on page 472, “Subroutine Operations” on page 472, or
“Compare Operations” on page 445 for more information.

EXSR (Invoke Subroutine)

688 ILE RPG Reference

EXTRCT (Extract Date/Time/Timestamp)

Free-Form Syntax (not allowed - use the %SUBDT built-in function)

Code Factor 1 Factor 2 Result Field Indicators

EXTRCT (E) Date/Time: Duration Code Target _ ER _

The EXTRCT operation code will return one of:
v The year, month or day part of a date or timestamp field
v The hours, minutes or seconds part of a time or timestamp field
v The microseconds part of the timestamp field

to the field specified in the result field.

The Date, Time or Timestamp from which the information is required, is specified
in factor 2, followed by the duration code. The entry specified in factor 2 can be a
field, subfield, table element, or array element. The duration code must be
consistent with the Data type of factor 2. See “Date Operations” on page 449 for
valid duration codes.

Factor 1 must be blank.

The result field can be any numeric or character field, subfield, array/table
element. The result field is cleared before the extracted data is assigned. For a
character result field, the data is put left adjusted into the result field.

Note: When using the EXTRCT operation with a Julian Date (format *JUL),
specifying a duration code of *D will return the day of the month,
specifying *M will return the month of the year. If you require the day and
month to be in the 3-digit format, you can use a basing pointer to obtain it.
See Figure 99 on page 215 for an example of obtaining the Julian format.

To handle EXTRCT exceptions (program status code 112), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

For more information, see “Date Operations” on page 449.

EXTRCT (Extract Date/Time/Timestamp)

Chapter 22. Operation Codes 689

D LOGONDATE S D
D DATE_STR S 15
D MONTHS S 8 DIM(12) CTDATA
C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* Move the job date to LOGONDATE. By default, LOGONDATE has an *ISO
* date format, which contains a 4-digit year. *DATE also contains a
* 4-digit year, but in a different format, *USA.
C *USA MOVE *DATE LOGONDATE
*
* Extract the month from a date field to a 2-digit field
* that is used as an index into a character array containing
* the names of the months. Then extract the day from the
* timestamp to a 2-byte character field which can be used in
* an EVAL concatenation expression to form a string.
* For example, if LOGONDATE is March 17, 1996, LOGMONTH will
* contain 03, LOGDAY will contain 17, and DATE_STR will contain
* 'March 17'.
C EXTRCT LOGONDATE:*M LOGMONTH 2 0
C EXTRCT LOGONDATE:*D LOGDAY 2
C EVAL DATE_STR = %TRIMR(MONTHS(LOGMONTH))
C + ' ' + LOGDAY
C SETON LR

** CTDATA MONTHS
January
February
March
April
May
June
July
August
September
October
November
December

Figure 322. EXTRCT Operation

EXTRCT (Extract Date/Time/Timestamp)

690 ILE RPG Reference

FEOD (Force End of Data)

Free-Form Syntax FEOD{(EN)} file-name

Code Factor 1 Factor 2 Result Field Indicators

FEOD (EN) file-name _ ER _

The FEOD operation signals the logical end of data for a primary, secondary, or
full procedural file. The FEOD function differs, depending on the file type and
device. (For an explanation of how FEOD differs per file type and device, see the
iSeries Information Center database and file systems category).

FEOD differs from the CLOSE operation: the program is not disconnected from the
device or file; the file can be used again for subsequent file operations without an
explicit OPEN operation being specified to the file.

You can specify conditioning indicators. The file-name operand names the file to
which FEOD is specified.

Operation extender N may be specified for an FEOD to an output-capable DISK or
SEQ file that uses blocking (see “Blocking Considerations” on page 91). If
operation extender N is specified, any unwritten records in the block will be
written out to the database, but they will not necessarily be written to non-volatile
storage. Using the N extender can improve performance.

To handle FEOD exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

To process any further sequential operations to the file after the FEOD operation
(for example, READ or READP), you must reposition the file.

For more information, see “File Operations” on page 453.

FEOD (Force End of Data)

Chapter 22. Operation Codes 691

FOR (For)

Free-Form Syntax FOR{(MR)} index-name {= start-value} {BY increment} {TO|DOWNTO limit}

Code Factor 1 Extended Factor 2

FOR index-name = start-value BY increment TO | DOWNTO limit

The FOR operation begins a group of operations and controls the number of times
the group will be processed. To indicate the number of times the group of
operations is to be processed, specify an index name, a starting value, an increment
value, and a limit value. The optional starting, increment, and limit values can be a
free-form expressions. An associated END or ENDFOR statement marks the end of
the group. For further information on FOR groups, see “Structured Programming
Operations” on page 469.

The syntax of the FOR operation is as follows:
FOR index-name { = starting-value }

{ BY increment-value }
{ TO | DOWNTO limit-value }

{ loop body }
ENDFOR | END

The starting-value, increment-value, and limit-value can be numeric values or
expressions with zero decimal positions. The increment value, if specified, cannot
be zero.

The BY and TO (or DOWNTO) clauses can be specified in either order. Both ″BY 2
TO 10″ and ″TO 10 BY 2″ are allowed.

In addition to the FOR operation itself, the conditioning indicators on the FOR and
ENDFOR (or END) statements control the FOR group. The conditioning indicators
on the FOR statement control whether or not the FOR operation begins. These
indicators are checked only once, at the beginning of the for loop. The conditioning
indicators on the associated END or ENDFOR statement control whether or not the
FOR group is repeated another time. These indicators are checked at the end of
each loop.

The FOR operation is performed as follows:
1. If the conditioning indicators on the FOR statement line are satisfied, the FOR

operation is processed (step 2). If the indicators are not satisfied, control passes
to the next operation to be processed following the associated END or
ENDFOR statement (step 8).

2. If specified, the initial value is assigned to the index name. Otherwise, the
index name retains the same value it had before the start of the loop.

3. If specified, the limit value is evaluated and compared to the index name. If no
limit value is specified, the loop repeats indefinitely until it encounters a
statement that exits the loop (such as a LEAVE or GOTO) or that ends the
program or procedure (such as a RETURN).
If the TO clause is specified and the index name value is greater than the limit
value, control passes to the first statement following the ENDFOR statement. If
DOWNTO is specified and the index name is less than the limit value, control
passes to the first statement after the ENDFOR.

4. The operations in the FOR group are processed.

FOR (For)

692 ILE RPG Reference

5. If the conditioning indicators on the END or ENDFOR statement are not
satisfied, control passes to the statement after the associated END or ENDFOR
and the loop ends.

6. If the increment value is specified, it is evaluated. Otherwise, it defaults to 1.
7. The increment value is either added to (for TO) or subtracted from (for

DOWNTO) the index name. Control passes to step 3. (Note that the
conditioning indicators on the FOR statement are not tested again (step 1)
when control passes to step 3.)

8. The statement after the END or ENDFOR statement is processed when the
conditioning indicators on the FOR, END, or ENDFOR statements are not
satisfied (step 1 or 5), or when the index value is greater than (for TO) or less
than (for DOWNTO) the limit value (step 3), or when the index value
overflows.

Note: If the FOR loop is performed n times, the limit value is evaluated n+1 times
and the increment value is evaluated n times. This can be important if the
limit value or increment value is complex and time-consuming to evaluate,
or if the limit value or increment value contains calls to subprocedures with
side-effects. If multiple evaluation of the limit or increment is not desired,
calculate the values in temporaries before the FOR loop and use the
temporaries in the FOR loop.

Remember the following when specifying the FOR operation:
v The index name cannot be declared on the FOR operation. Variables should be

declared in the Definition specifications.
v The index-name can be any fully-qualified name, including an indexed array

element.

See “LEAVE (Leave a Do/For Group)” on page 708 and “ITER (Iterate)” on page
703 for information on how those operations affect a FOR operation.

For more information, see “Structured Programming Operations” on page 469.

FOR (For)

Chapter 22. Operation Codes 693

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
/free

// Example 1
// Compute n!

factorial = 1;
for i = 1 to n;

factorial = factorial * i;
endfor;

// Example 2
// Search for the last nonblank character in a field.
// If the field is all blanks, "i" will be zero.
// Otherwise, "i" will be the position of nonblank.

for i = %len (field) downto 1;
if %subst(field: i: 1) <> ' ';

leave;
endif;

endfor;

// Example 3
// Extract all blank-delimited words from a sentence.

WordCnt = 0;
for i = 1 by WordIncr to %len (Sentence);

// Is there a blank?
if %subst(Sentence: i: 1) = ' ';

WordIncr = 1;
iter;

endif;

// We've found a word - determine its length:
for j = i+1 to %len(Sentence);

if %subst (Sentence: j: 1) = ' ';
leave;

endif;
endfor;

// Store the word:
WordIncr = j - i;
WordCnt = WordCnt + 1;
Word (WordCnt) = %subst (Sentence: i: WordIncr);

endfor;

/end-free

Figure 323. Examples of the FOR Operation

FOR (For)

694 ILE RPG Reference

FORCE (Force a Certain File to Be Read Next Cycle)

Free-Form Syntax FORCE file-name

Code Factor 1 Factor 2 Result Field Indicators

FORCE file-name

The FORCE operation allows selection of the file from which the next record is to
be read. It can be used only for primary or secondary files.

The file-name operand must be the name of a file from which the next record is to
be selected.

If the FORCE operation is processed, the record is read at the start of the next
program cycle. If more than one FORCE operation is processed during the same
program cycle, all but the last is ignored. FORCE must be issued at detail time, not
total time.

FORCE operations override the multi-file processing method by which the
program normally selects records. However, the first record to be processed is
always selected by the normal method. The remaining records can be selected by
FORCE operations. For information on how the FORCE operation affects
match-field processing, see Figure 8 on page 33.

If FORCE is specified for a file that is at end of file, no record is retrieved from the
file. The program cycle determines the next record to be read.

For more information, see “File Operations” on page 453.

FORCE (Force a Certain File to Be Read Next Cycle)

Chapter 22. Operation Codes 695

GOTO (Go To)

Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, LEAVESR, ITER, and
RETURN)

Code Factor 1 Factor 2 Result Field Indicators

GOTO Label

The GOTO operation allows calculation operations to be skipped by instructing the
program to go to (or branch to) another calculation operation in the program. A
“TAG (Tag)” on page 828 operation names the destination of a GOTO operation.
The TAG can either precede or follow the GOTO. Use a GOTO operation to specify
a branch:
v From a detail calculation line to another detail calculation line
v From a total calculation line to another total calculation line
v From a detail calculation line to a total calculation line
v From a subroutine to a TAG or ENDSR within the same subroutine
v From a subroutine to a detail calculation line or to a total calculation line.

A GOTO within a subroutine in the cycle-main procedure can be issued to a TAG
within the same subroutine, detail calculations or total calculations. A GOTO
within a subroutine in a subprocedure can be issued to a TAG within the same
subroutine, or within the body of the subprocedure.

Branching from one part of the RPG IV logic cycle to another may result in an
endless loop. You are responsible for ensuring that the logic of your program does
not produce undesirable results.

Factor 2 must contain the label to which the program is to branch. This label is
entered in factor 1 of a TAG or ENDSR operation. The label must be a unique
symbolic name.

For more information, see “Branching Operations” on page 439.

GOTO (Go To)

696 ILE RPG Reference

#
#
#
#

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* If indicator 10, 15, or 20 is on, the program branches to
* the TAG label specified in the GOTO operations.
* A branch within detail calculations.
C 10 GOTO RTN1
*
* A branch from detail to total calculations.
C 15 GOTO RTN2
*
C RTN1 TAG
*
C :
C :
C:
C 20 GOTO END
*
C :
C :
C :
C END TAG
* A branch within total calculations.
CL1 GOTO RTN2
CL1 :
CL1 RTN2 TAG

Figure 324. GOTO and TAG Operations

GOTO (Go To)

Chapter 22. Operation Codes 697

IF (If)

Free-Form Syntax IF{(MR)} indicator-expression

Code Factor 1 Extended Factor 2

IF (M/R) Blank indicator-expression

The IF operation code allows a series of operation codes to be processed if a
condition is met. Its function is similar to that of the IFxx operation code. It differs
in that the logical condition is expressed by an indicator valued expression
(indicator-expression). The operations controlled by the IF operation are performed
when the expression in the indicator-expression operand is true. For information on
how operation extenders M and R are used, see “Precision Rules for Numeric
Operations” on page 486.

For more information, see “Structured Programming Operations” on page 469.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++..
C Extended-factor2-continuation+++++++++++++++
* The operations controlled by the IF operation are performed
* when the expression is true. That is A is greater than 10 and
* indicator 20 is on.
C
C IF A>10 AND *IN(20)
C :
C ENDIF
*
* The operations controlled by the IF operation are performed
* when Date1 represents a later date then Date2
C
C IF Date1 > Date2
C :
C ENDIF
*

Figure 325. IF Operation

IF (If)

698 ILE RPG Reference

IFxx (If)

Free-Form Syntax (not allowed - use the IF operation code)

Code Factor 1 Factor 2 Result Field Indicators

IFxx Comparand Comparand

The IFxx operation allows a group of calculations to be processed if a certain
relationship, specified by xx, exists between factor 1 and factor 2. When “ANDxx
(And)” on page 613 and “ORxx (Or)” on page 761 operations are used with IFxx,
the group of calculations is performed if the condition specified by the combined
operations exists. (For the meaning of xx, see “Structured Programming
Operations” on page 469.)

You can use conditioning indicators. Factor 1 and factor 2 must contain a literal, a
named constant, a figurative constant, a table name, an array element, a data
structure name, or a field name. Both the factor 1 and factor 2 entries must be of
the same data type.

If the relationship specified by the IFxx and any associated ANDxx or ORxx
operations does not exist, control passes to the calculation operation immediately
following the associated ENDIF operation. If an “ELSE (Else)” on page 671
operation is specified as well, control passes to the first calculation operation that
can be processed following the ELSE operation.

Conditioning indicator entries on the ENDIF operation associated with IFxx must
be blank.

An ENDIF statement must be used to close an IFxx group. If an IFxx statement is
followed by an ELSE statement, an ENDIF statement is required after the ELSE
statement but not after the IFxx statement.

You have the option of indenting DO statements, IF-ELSE clauses, and
SELECT-WHENxx-OTHER clauses in the compiler listing for readability. See the
section on compiler listings in the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide for an explanation of how to indent statements in the source
listing.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

IFxx (If)

Chapter 22. Operation Codes 699

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* If FLDA equals FLDB, the calculation after the IFEQ operation
* is processed. If FLDA does not equal FLDB, the program
* branches to the operation immediately following the ENDIF.
C
C FLDA IFEQ FLDB
C :
C :
C :
C ENDIF
C
* If FLDA equals FLDB, the calculation after the IFEQ operation
* is processed and control passes to the operation immediately
* following the ENDIF statement. If FLDA does not equal FLDB,
* control passes to the ELSE statement and the calculation
* immediately following is processed.
C
C FLDA IFEQ FLDB
C :
C :
C :
C ELSE
C :
C :
C :
C ENDIF

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* If FLDA is equal to FLDB and greater than FLDC, or if FLDD
* is equal to FLDE and greater than FLDF, the calculation
* after the ANDGT operation is processed. If neither of the
* specified conditions exists, the program branches to the
* operation immediately following the ENDIF statement.
C
C FLDA IFEQ FLDB
C FLDA ANDGT FLDC
C FLDD OREQ FLDE
C FLDD ANDGT FLDF
C :
C :
C :
C ENDIF

Figure 326. IFxx/ENDIF and IFxx/ELSE/ENDIF Operations

IFxx (If)

700 ILE RPG Reference

IN (Retrieve a Data Area)

Free-Form Syntax IN{(E)} {*LOCK} data-area-name

Code Factor 1 Factor 2 Result Field Indicators

IN (E) *LOCK data-area-name _ ER _

The IN operation retrieves a data area and optionally allows you to specify
whether the data area is to be locked from update by another program. For a data
area to be retrieved by the IN operation, it must be specified in the result field of
an *DTAARA DEFINE statement or using the DTAARA keyword on the Definition
specification. (See “DEFINE (Field Definition)” on page 651 for information on
*DTAARA DEFINE operation and the Definition Specification for information on
the DTAARA keyword).

If name of the data area is determined at runtime because DTAARA(*VAR) was
specified on the definition of the field, then the variable containing the name of the
data area must be set before the IN operation. However, if the data area is already
locked due to a prior *LOCK IN operation, the variable containing the name will
not be consulted; instead, the previously locked data area will be used.

The reserved word *LOCK can be specified in Factor 1 to indicate that the data
area cannot be updated or locked by another program until (1) an UNLOCK
operation is processed, (2) an OUT operation with no data-area-name operand
specified, or (3) the RPG IV program implicitly unlocks the data area when the
program ends

*LOCK cannot be specified when the data-area-name operand is the name of the
local data area or the Program Initialization Parameters (PIP) data area.

You can specify a *LOCK IN statement for a data area that the program has
locked. When data-area-name is not specified, the lock status is the same as it was
before the data area was retrieved: If it was locked, it remains locked; if unlocked,
it remains unlocked.

data-area-name must be the name of a definition defined with the DTAARA
keyword, the result field of a *DTAARA DEFINE operation, or the reserved word
*DTAARA.. When *DTAARA is specified, all data areas defined in the program are
retrieved. If an error occurs on the retrieval of a data area (for example, a data area
can be retrieved but cannot be locked), an error occurs on the IN operation and the
RPG IV exception/error handling routine receives control. If a message is issued to
the requester, the message identifies the data area in error.

To handle IN exceptions (program status codes 401-421, 431, or 432), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “Program Exception/Errors” on page
96.

On a fixed-form calculation, positions 71-72 and 75-76 must be blank.

For further rules for the IN operation, see “Data-Area Operations” on page 448.

IN (Retrieve a Data Area)

Chapter 22. Operation Codes 701

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....
* Define Data areas
D TotAmt s 8p 2 dtaara
D TotGrs s 10p 2 dtaara
D TotNet s 10p 2 dtaara

* TOTAMT, TOTGRS, and TOTNET are defined as data areas. The IN
* operation retrieves all the data areas defined in the program
* and locks them. The program processes calculations, and at
* LR time it writes and unlocks all the data areas.
* The data areas can then be used by other programs.

/free

in *lock *dtaara;
TotAmt = TotAmt + Amount;
TotGrs = TotGrs + Gross;
TotNet = TotNet + Net;

/end-free
* To start total calcs, code a fixed format calc statement with a
* level entry specified.
CL0 total_calcs tag
/free

if *inlr
out *dtaara

endif
/end-free

Figure 327. IN and OUT Operations

IN (Retrieve a Data Area)

702 ILE RPG Reference

ITER (Iterate)

Free-Form Syntax ITER

Code Factor 1 Factor 2 Result Field Indicators

ITER

The ITER operation transfers control from within a DO or FOR group to the
ENDDO or ENDFOR statement of the group. It can be used in DO, DOU, DOUxx,
DOW, DOWxx, and FOR loops to transfer control immediately to a loop’s ENDDO
or ENDFOR statement. It causes the next iteration of the loop to be executed
immediately. ITER affects the innermost loop.

If conditioning indicators are present on the ENDDO or ENDFOR statement to
which control is passed, and the condition is not satisfied, processing continues
with the statement following the ENDDO or ENDFOR operation.

The “LEAVE (Leave a Do/For Group)” on page 708 operation is similar to the
ITER operation; however, LEAVE transfers control to the statement following the
ENDDO or ENDFOR operation.

For more information, see “Branching Operations” on page 439 or “Structured
Programming Operations” on page 469.

ITER (Iterate)

Chapter 22. Operation Codes 703

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following example uses a DOU loop containing a DOW loop.
* The IF statement checks indicator 01. If indicator 01 is ON,
* the LEAVE operation is executed, transferring control out of
* the innermost DOW loop to the Z-ADD instruction. If indicator
* 01 is not ON, subroutine PROC1 is processed. Then indicator
* 12 is checked. If it is OFF, ITER transfers control to the
* innermost ENDDO and the condition on the DOW is evaluated
* again. If indicator 12 is ON, subroutine PROC2 is processed.
C
C DOU FLDA = FLDB
C :
C NUM DOWLT 10
C IF *IN01
C LEAVE
C ENDIF
C EXSR PROC1
C *IN12 IFEQ *OFF
C ITER
C ENDIF
C EXSR PROC2
C ENDDO
C Z-ADD 20 RSLT 2 0
C :
C ENDDO
C :

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following example uses a DOU loop containing a DOW loop.
* The IF statement checks indicator 1. If indicator 1 is ON, the
* MOVE operation is executed, followed by the LEAVE operation,
* transferring control from the innermost DOW loop to the Z-ADD
* instruction. If indicator 1 is not ON, ITER transfers control
* to the innermost ENDDO and the condition on the DOW is
* evaluated again.
C :
C FLDA DOUEQ FLDB
C :
C NUM DOWLT 10
C *IN01 IFEQ *ON
C MOVE 'UPDATE' FIELD 20
C LEAVE
C ELSE
C ITER
C ENDIF
C ENDDO
C Z-ADD 20 RSLT 2 0
C :
C ENDDO
C :

Figure 328. ITER Operation

ITER (Iterate)

704 ILE RPG Reference

KFLD (Define Parts of a Key)

Free-Form Syntax (not allowed - use %KDS)

Code Factor 1 Factor 2 Result Field Indicators

KFLD Indicator Key field

The KFLD operation is a declarative operation that indicates that a field is part of a
search argument identified by a KLIST name.

The KFLD operation can be specified anywhere within calculations, including total
calculations. The control level entry (positions 7 and 8) can be blank or can contain
an L1 through L9 indicator, an LR indicator, or an L0 entry to group the statement
within the appropriate section of the program. Conditioning indicator entries
(positions 9 through 11) are not permitted.

KFLDs can be global or local. A KLIST in a cycle-main procedure can have only
global KFLDs associated with it. A KLIST in a subprocedure can have local and
global KFLDs. For more information, see “Scope of Definitions” on page 24.

Factor 2 can contain an indicator for a null-capable key field if
ALWNULL(*USRCTL) is specified as a keyword on a control specification or as a
command parameter.

If the indicator is on, the key fields with null values are selected. If the indicator is
off or not specified, the key fields with null values are not selected. See “Keyed
Operations” on page 223 for information on how to access null-capable keys.

The result field must contain the name of a field that is to be part of the search
argument. The result field cannot contain an array name. Each KFLD field must
agree in length, data type, and decimal position with the corresponding field in the
composite key of the record or file. However, if the record has a variable-length
KFLD field, the corresponding field in the composite key must be varying but does
not need to be the same length. Each KFLD field need not have the same name as
the corresponding field in the composite key. The order the KFLD fields are
specified in the KLIST determines which KFLD is associated with a particular field
in the composite key. For example, the first KFLD field following a KLIST
operation is associated with the leftmost (high-order) field of the composite key.

Graphic and UCS-2 key fields must have the same CCSID as the key in the file.

Figure 329 on page 707 shows an example of the KLIST operation with KFLD
operations.

Figure 105 on page 225 illustrates how keyed operations are used to position and
retrieve records with null keys.

For more information, see “Declarative Operations” on page 452.

KFLD (Define Parts of a Key)

Chapter 22. Operation Codes 705

KLIST (Define a Composite Key)

Free-Form Syntax (not allowed - use %KDS)

Code Factor 1 Factor 2 Result Field Indicators

KLIST KLIST name

The KLIST operation is a declarative operation that gives a name to a list of
KFLDs. This list can be used as a search argument to retrieve records from files
that have a composite key.

You can specify a KLIST anywhere within calculations. The control level entry
(positions 7 and 8) can be blank or can contain an L1 through L9 indicator, an LR
indicator, or an L0 entry to group the statement within the appropriate section of
the program. Conditioning indicator entries (positions 9 through 11) are not
permitted. Factor 1 must contain a unique name.

Remember the following when specifying a KLIST operation:
v If a search argument is composed of more than one field (a composite key), you

must specify a KLIST with multiple KFLDs.
v A KLIST name can be specified as a search argument only for externally

described files.
v A KLIST and its associated KFLD fields can appear anywhere in calculations.
v A KLIST must be followed immediately by at least one KFLD.
v A KLIST is ended when a non-KFLD operation is encountered.
v A KLIST name can appear in factor 1 of a CHAIN, DELETE, READE, READPE,

SETGT, or SETLL operation.
v The same KLIST name can be used as the search argument for multiple files, or

it can be used multiple times as the search argument for the same file.
v A KLIST in a cycle-main procedure can have only global KFLDs associated with

it. A KLIST in a subprocedure can have local and global KFLDs. For more
information, see “Scope of Definitions” on page 24.

For more information, see “Declarative Operations” on page 452.

KLIST (Define a Composite Key)

706 ILE RPG Reference

#
#
#

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
A* DDS source
A R RECORD
A FLDA 4
A SHIFT 1 0
A FLDB 10
A CLOCK# 5 0
A FLDC 10
A DEPT 4
A FLDD 8
A K DEPT
A K SHIFT
A K CLOCK#
A*
A* End of DDS source
A*
A***
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The KLIST operation indicates the name, FILEKY, by which the
* search argument can be specified.
*
C FILEKY KLIST
C KFLD DEPT
C KFLD SHIFT
C KFLD CLOCK#

The following diagram shows what the search argument looks like. The fields DEPT, SHIFT, and CLOCK# are key
fields in this record.

Figure 329. KLIST and KFLD Operations

KLIST (Define a Composite Key)

Chapter 22. Operation Codes 707

LEAVE (Leave a Do/For Group)

Free-Form Syntax LEAVE

Code Factor 1 Factor 2 Result Field Indicators

LEAVE

The LEAVE operation transfers control from within a DO or FOR group to the
statement following the ENDDO or ENDFOR operation.

You can use LEAVE within a DO, DOU, DOUxx, DOW, DOWxx, or FOR loop to
transfer control immediately from the innermost loop to the statement following
the innermost loop’s ENDDO or ENDFOR operation. Using LEAVE to leave a DO
or FOR group does not increment the index.

In nested loops, LEAVE causes control to transfer “outwards” by one level only.
LEAVE is not allowed outside a DO or FOR group.

The “ITER (Iterate)” on page 703 operation is similar to the LEAVE operation;
however, ITER transfers control to the ENDDO or ENDFOR statement.

For more information, see “Branching Operations” on page 439 or “Structured
Programming Operations” on page 469.

LEAVE (Leave a Do/For Group)

708 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following example uses an infinite loop. When the user
* types 'q', control transfers to the LEAVE operation, which in
* turn transfers control out of the loop to the Z-ADD operation.
*
C 2 DOWNE 1
C :
C IF ANSWER = 'q'
C LEAVE
C ENDIF
C :
C ENDDO
C Z-ADD A B
*
* The following example uses a DOUxx loop containing a DOWxx.
* The IF statement checks indicator 1. If it is ON, indicator
* 99 is turned ON, control passes to the LEAVE operation and
* out of the inner DOWxx loop.
*
* A second LEAVE instruction is then executed because indicator 99
* is ON, which in turn transfers control out of the DOUxx loop.
*
C :
C FLDA DOUEQ FLDB
C NUM DOWLT 10
C *IN01 IFEQ *ON
C SETON 99
C LEAVE
C :
C ENDIF
C ENDDO
C 99 LEAVE
C :
C ENDDO
C :

Figure 330. LEAVE Operation

LEAVE (Leave a Do/For Group)

Chapter 22. Operation Codes 709

LEAVESR (Leave a Subroutine)

Free-Form Syntax LEAVESR

Code Factor 1 Factor 2 Result Field Indicators

LEAVESR

The LEAVESR operation exits a subroutine from any point within the subroutine.
Control passes to the ENDSR operation for the subroutine. LEAVESR is allowed
only from within a subroutine.

The control level entry (positions 7 and 8) can be SR or blank. Conditioning
indicator entries (positions 9 to 11) can be specified.

For more information, see “Subroutine Operations” on page 472.

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
*
C CheckCustName BEGSR
C Name CHAIN CustFile
*
* Check if the name identifies a valid customer
*
C IF not %found(CustFile)
C EVAL Result = CustNotFound
C LEAVESR
C ENDIF
*
* Check if the customer qualifies for discount program
C IF Qualified = *OFF
C EVAL Result = CustNotQualified
C LEAVESR
C ENDIF
*
* If we get here, customer can use the discount program
C EVAL Result = CustOK
C ENDSR

Figure 331. LEAVESR Operations

LEAVESR (Leave a Subroutine)

710 ILE RPG Reference

LOOKUP (Look Up a Table or Array Element)

Free-Form Syntax (not allowed - use the %LOOKUP or %TLOOKUP built-in function)

Code Factor 1 Factor 2 Result Field Indicators

LOOKUP

(array) Search argument Array name HI LO EQ

(table) Search argument Table name Table name HI LO EQ

The LOOKUP operation causes a search to be made for a particular element in an
array or table. Factor 1 is the search argument (data for which you want to find a
match in the array or table named). It can be: a literal, a field name, an array
element, a table name, a named constant, or a figurative constant. The nature of
the comparison depends on the data type:

Character data
If ALTSEQ(*EXT) is specified on the control specification, the alternate
collating sequence is used for character LOOKUP, unless either factor 1 or
factor 2 was defined with ALTSEQ(*NONE) on the definition specification.
If ALTSEQ(*SRC) or no alternate sequence is specified, character LOOKUP
does not use the alternate sequence.

Graphic and UCS-2 data
The comparison is hexadecimal; the alternate collating sequence is not used
in any circumstance.

Numeric data
The decimal point is ignored in numeric data, except when the array or
table in Factor 2 is of type float.

Other data types
The considerations for comparison described in “Compare Operations” on
page 445 apply to other types.

If a table is named in factor 1, the search argument used is the element of the table
last selected in a LOOKUP operation, or it is the first element of the table if a
previous LOOKUP has not been processed. The array or table to be searched is
specified in factor 2.

For a table LOOKUP, the result field can contain the name of a second table from
which an element (corresponding positionally with that of the first table) can be
retrieved. The name of the second table can be used to reference the element
retrieved. The result field must be blank if factor 2 contains an array name.

Resulting indicators specify the search condition for LOOKUP. One must be
specified in positions 71 through 76 first to determine the search to be done and
then to reflect the result of the search. Any specified indicator is set on only if the
search is successful. No more than two indicators can be used. Resulting indicators
can be assigned to equal and high or to equal and low. The program searches for
an entry that satisfies either condition with equal given precedence; that is, if no
equal entry is found, the nearest lower or nearest higher entry is selected.

If an indicator is specified in positions 75-76, the %EQUAL built-in function returns
’1’ if an element is found that exactly matches the search argument. The %FOUND
built-in function returns ’1’ if any specified search is successful.

LOOKUP (Look Up a Table or Array Element)

Chapter 22. Operation Codes 711

Resulting indicators can be assigned to equal and low, or equal and high. High
and low cannot be specified on the same LOOKUP operation. The compiler
assumes a sorted, sequenced array or table when a high or low indicator is
specified for the LOOKUP operation. The LOOKUP operation searches for an entry
that satisfies the low/equal or high/equal condition with equal given priority.
v High (71-72): Instructs the program to find the entry that is nearest to, yet higher

in sequence than, the search argument. If such a higher entry is found, the high
indicator is set on. For example, if an ascending array contains the values A B C
C C D E, and the search argument is B, then the first C will satisfy the search. If
a descending array contains E D C C C B A, and the search argument is B, then
the last C will satisfy the search. If an entry higher than the search argument is
not found in the array or table, then the search is unsuccessful.

v Low (73-74): Instructs the program to find the entry that is nearest to, yet lower
in sequence than, the search argument. If such a lower entry is found, the low
indicator is set on. For example, if an ascending array contains the values A B C
C C D E, and the search argument is D, then the last C will satisfy the search. If
a descending array contains E D C C C B A, and the search argument is D, then
the first C will satisfy the search. If an entry lower than the search argument is
not found in the array or table, then the search is unsuccessful.

v Equal (75-76): Instructs the program to find the entry equal to the search
argument. The first equal entry found sets the equal indicator on. If an entry
equal to the search argument is not found, then the search is unsuccessful.

When you use the LOOKUP operation, remember:
v The search argument and array or table must have the same type and length

(except Time and Date fields which can have a different length). If the array or
table is fixed-length character, graphic, or UCS-2, the search argument must also
be fixed-length. For variable length, the length of the search argument can have
a different length from the array or table.

v When LOOKUP is processed on an array and an index is used, the LOOKUP
begins with the element specified by the index. The index value is set to the
position number of the element located. An error occurs if the index is equal to
zero or is higher than the number of elements in the array when the search
begins. The index is set equal to one if the search is unsuccessful. If the index is
a named constant, the index value will not change.

v A search can be made for high, low, high and equal, or low and equal only if a
sequence is specified for the array or table on the definition specifications with
the ASCEND or DESCEND keywords.

v No resulting indicator is set on if the search is not successful.
v If only an equal indicator (positions 75-76) is used, the LOOKUP operation will

search the entire array or table. If your array or table is in ascending sequence
and you want only an equal comparison, you can avoid searching the entire
array or table by specifying a high indicator.

v The LOOKUP operation can produce unexpected results when the array is not in
ascending or descending sequence.

v A LOOKUP operation to a dynamically allocated array without all defined
elements allocated may cause errors to occur.

For more information, see “Array Operations” on page 438.

LOOKUP (Look Up a Table or Array Element)

712 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In this example, the programmer wants to know which element in
* ARY the LOOKUP operation locates. The Z-ADD operation sets the
* field X to 1. The LOOKUP starts at the element ARY that is
* indicated by field X and continues running until it finds the
* first element equal to SRCHWD. The index value, X, is set to
* the position number of the element located.
C
C Z-ADD 1 X 3 0
C SRCHWD LOOKUP ARY(X) 26
C
* In this example, the programmer wants to know if an element
* is found that is equal to SRCHWD. LOOKUP searches ARY until it
* finds the first element equal to SRCHWD. When this occurs,
* indicator 26 is set on and %EQUAL is set to return '1'.
C
C SRCHWD LOOKUP ARY 26
C
* The LOOKUP starts at a variable index number specified by
* field X. Field X does not have to be set to 1 before the
* LOOKUP operation. When LOOKUP locates the first element in
* ARY equal to SRCHWD, indicator 26 is set on and %EQUAL is set
* to return '1'. The index value, X, is set to the position
* number of the element located.
*
C
C SRCHWD LOOKUP ARY(X) 26

Figure 332. LOOKUP Operation with Arrays

* In this example, an array of customer information actually consists
* of several subarrays. You can search either the main array or the
* subarrays overlaying the main array.
D custInfo DS
D cust DIM(100)
D name 30A OVERLAY(cust : *NEXT)
D id_number 10I 0 OVERLAY(cust : *NEXT)
D amount 15P 3 OVERLAY(cust : *NEXT)

* You can search for a particular set of customer information
* by doing a search on the "cust" array
C custData LOOKUP cust(i) 10

* You can search on a particular field of the customer information
* by doing a search on one of the overlay arrays
C custName LOOKUP name(i) 11
* After the search, the array index can be used with any of the
* overlaying arrays. If the search on name(i) is successful,
* the id_number and amount for that customer are available
* in id_number(i) and amount(i).

Figure 333. LOOKUP Operation with Subarrays

LOOKUP (Look Up a Table or Array Element)

Chapter 22. Operation Codes 713

MHHZO (Move High to High Zone)

Free-Form Syntax (not allowed - use the %BITAND and %BITOR built-in functions. See Figure 197 on
page 504.)

Code Factor 1 Factor 2 Result Field Indicators

MHHZO Source field Target field

The MHHZO operation moves the zone portion of a character from the leftmost
zone in factor 2 to the leftmost zone in the result field. Factor 2 and the result field
must both be defined as character fields. For further information on the MHHZO
operation, see “Move Zone Operations” on page 466.

The function of the MHHZO operation is shown in Figure 180 on page 467.

MHHZO (Move High to High Zone)

714 ILE RPG Reference

MHLZO (Move High to Low Zone)

Free-Form Syntax (not allowed - use the %BITAND and %BITOR built-in functions. See Figure 197 on
page 504.)

Code Factor 1 Factor 2 Result Field Indicators

MHLZO Source field Target field

The MHLZO operation moves the zone portion of a character from the leftmost
zone in factor 2 to the rightmost zone in the result field. Factor 2 must be defined
as a character field. The result field can be character or numeric data. For further
information on the MHLZO operation, see “Move Zone Operations” on page 466.

The function of the MHLZO operation is shown in Figure 180 on page 467.

MHLZO (Move High to Low Zone)

Chapter 22. Operation Codes 715

MLHZO (Move Low to High Zone)

Free-Form Syntax (not allowed - use the %BITAND and %BITOR built-in functions. See Figure 197 on
page 504.)

Code Factor 1 Factor 2 Result Field Indicators

MLHZO Source field Target field

The MLHZO operation moves the zone portion of a character from the rightmost
zone in factor 2 to the leftmost zone in the result field. Factor 2 can be defined as a
numeric field or as a character field, but the result field must be a character field.
For further information on the MLHZO operation, see “Move Zone Operations” on
page 466.

The function of the MLHZO operation is shown in Figure 180 on page 467.

MLHZO (Move Low to High Zone)

716 ILE RPG Reference

MLLZO (Move Low to Low Zone)

Free-Form Syntax (not allowed - use the %BITAND and %BITOR built-in functions. See Figure 197 on
page 504.)

Code Factor 1 Factor 2 Result Field Indicators

MLLZO Source field Target field

The MLLZO operation moves the zone portion of a character from the rightmost
zone in factor 2 to the rightmost zone in the result field. Factor 2 and the result
field can be either character data or numeric data. For further information on the
MLLZO, see “Move Zone Operations” on page 466.

The function of the MLLZO operation is shown in Figure 180 on page 467.

MLLZO (Move Low to Low Zone)

Chapter 22. Operation Codes 717

MONITOR (Begin a Monitor Group)

Free-Form Syntax MONITOR

Code Factor 1 Factor 2 Result Field Indicators

MONITOR

The monitor group performs conditional error handling based on the status code.
It consists of:
v A MONITOR statement
v One or more ON-ERROR groups
v An ENDMON statement.

After the MONITOR statement, control passes to the next statement. The monitor
block consists of all the statements from the MONITOR statement to the first
ON-ERROR statement. If an error occurs when the monitor block is processed,
control is passed to the appropriate ON-ERROR group.

If all the statements in the MONITOR block are processed without errors, control
passes to the statement following the ENDMON statement.

The monitor group can be specified anywhere in calculations. It can be nested
within IF, DO, SELECT, or other monitor groups. The IF, DO, and SELECT groups
can be nested within monitor groups.

If a monitor group is nested within another monitor group, the innermost group is
considered first when an error occurs. If that monitor group does not handle the
error condition, the next group is considered.

Level indicators can be used on the MONITOR operation, to indicate that the
MONITOR group is part of total calculations. For documentation purposes, you
can also specify a level indicator on an ON-ERROR or ENDMON operation but
this level indicator will be ignored.

Conditioning indicators can be used on the MONITOR statement. If they are not
satisfied, control passes immediately to the statement following the ENDMON
statement of the monitor group. Conditioning indicators cannot be used on
ON-ERROR operations individually.

If a monitor block contains a call to a subprocedure, and the subprocedure has an
error, the subprocedure’s error handling will take precedence. For example, if the
subprocedure has a *PSSR subroutine, it will get called. The MONITOR group
containing the call will only be considered if the subprocedure fails to handle the
error and the call fails with the error-in-call status of 00202.

The monitor group does handle errors that occur in a subroutine. If the subroutine
contains its own monitor groups, they are considered first.

Branching operations are not allowed within a monitor block, but are allowed
within an ON-ERROR block.

MONITOR (Begin a Monitor Group)

718 ILE RPG Reference

A LEAVE or ITER operation within a monitor block applies to any active DO
group that contains the monitor block. A LEAVESR or RETURN operation within a
monitor block applies to any subroutine, subprocedure, or procedure that contains
the monitor block.

For more information, see “Error-Handling Operations” on page 452.

* The MONITOR block consists of the READ statement and the IF
* group.
* - The first ON-ERROR block handles status 1211 which
* is issued for the READ operation if the file is not open.
* - The second ON-ERROR block handles all other file errors.
* - The third ON-ERROR block handles the string-operation status
* code 00100 and array index status code 00121.
* - The fourth ON-ERROR block (which could have had a factor 2
* of *ALL) handles errors not handled by the specific ON-ERROR
* operations.
*
* If no error occurs in the MONITOR block, control passes from the
* ENDIF to the ENDMON.
C MONITOR
C READ FILE1
C IF NOT %EOF
C EVAL Line = %SUBST(Line(i) :
C %SCAN('***': Line(i)) + 1)
C ENDIF
C ON-ERROR 1211
C ... handle file-not-open
C ON-ERROR *FILE
C ... handle other file errors
C ON-ERROR 00100 : 00121
C ... handle string error and array-index error
C ON-ERROR
C ... handle all other errors
C ENDMON

Figure 334. MONITOR Operation

MONITOR (Begin a Monitor Group)

Chapter 22. Operation Codes 719

MOVE (Move)

Free-Form Syntax (not allowed - use the EVAL or EVALR operations, or built-in functions such as
%CHAR, %DATE, %DEC , %DECH, %GRAPH, %INT, %INTH, %TIME,
%TIMESTAMP , %UCS2, %UNS, or %UNSH)

Code Factor 1 Factor 2 Result Field Indicators

MOVE (P) Data Attributes Source field Target field + − ZB

The MOVE operation transfers characters from factor 2 to the result field. Moving
starts with the rightmost character of factor 2.

When moving Date, Time or Timestamp data, factor 1 must be blank unless either
the source or the target is a character or numeric field.

Otherwise, factor 1 contains the date or time format compatible with the character
or numeric field that is the source or target of the operation. For information on
the formats that can be used see “Date Data Type” on page 206, “Time Data Type”
on page 208, and “Timestamp Data Type” on page 210.

If the source or target is a character field, you may optionally indicate the
separator following the format in factor 1. Only separators that are valid for that
format are allowed.

If factor 2 is *DATE or UDATE and the result is a Date field, factor 1 is not
required. If factor 1 contains a date format it must be compatible with the format
of *DATE or UDATE as specified by the DATEDIT keyword on the control
specification.

When moving character, graphic, UCS-2, or numeric data, if factor 2 is longer
than the result field, the excess leftmost characters or digits of factor 2 are not
moved. If the result field is longer than factor 2, the excess leftmost characters or
digits in the result field are unchanged, unless padding is specified.

You cannot specify resulting indicators if the result field is an array; you can
specify them if it is an array element, or a non-array field.

If factor 2 is shorter than the length of the result field, a P specified in the
operation extender position causes the result field to be padded on the left after
the move occurs.

Float numeric fields and literals are not allowed as Factor 2 or Result-Field entries.

If CCSID(*GRAPH : IGNORE) is specified or assumed for the module, MOVE
operations between UCS-2 and graphic data are not allowed.

When moving variable-length character, graphic, or UCS-2 data, the
variable-length field works in exactly the same way as a fixed-length field with the
same current length. A MOVE operation does not change the length of a
variable-length result field. For examples, see Figures 339 to 344. The graphic
literals in this examples are not valid graphic literals. See “Graphic Format” on
page 183 for more information.

MOVE (Move)

720 ILE RPG Reference

The tables which appear following the examples, show how data is moved from
factor 2 to the result field. For further information on the MOVE operation, see
“Move Operations” on page 460 or “Conversion Operations” on page 447.

MOVE (Move)

Chapter 22. Operation Codes 721

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
* Control specification date format
H DATFMT(*ISO)
*
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++
D DATE_ISO S D
D DATE_YMD S D DATFMT(*YMD)
D INZ(D'1992-03-24')
D DATE_EUR S D DATFMT(*EUR)
D INZ(D'2197-08-26')
D DATE_JIS S D DATFMT(*JIS)
D NUM_DATE1 S 6P 0 INZ(210991)
D NUM_DATE2 S 7P 0
D CHAR_DATE S 8 INZ('02/01/53')
D CHAR_LONGJUL S 8A INZ('2039/166')
D DATE_USA S D DATFMT(*USA)
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+H1LoEq..
* Move between Date fields. DATE_EUR will contain 24.03.1992
*
C MOVE DATE_YMD DATE_EUR
*
* Convert numeric value in ddmmyy format into a *ISO Date.
* DATE_ISO will contain 1991-09-21 after each of the 2 moves.
C *DMY MOVE 210991 DATE_ISO
C *DMY MOVE NUM_DATE1 DATE_ISO
*
* Move a character value representing a *MDY date to a *JIS Date.
* DATE_JIS will contain 1953-02-01 after each of the 2 moves.
C *MDY/ MOVE '02/01/53' DATE_JIS
C *MDY/ MOVE CHAR_DATE DATE_JIS
*
* Move a date field to a character field, using the
* date format and separators based on the job attributes
C *JOBRUN MOVE (P) DATE_JIS CHAR_DATE
*
* Move a date field to a numeric field, using the
* date format based on the job attributes
*
* Note: If the job format happens to be *JUL, the date will
* be placed in the rightmost 5 digits of NUM_DATE1.
* The MOVEL operation might be a better choice.
*
C *JOBRUN MOVE (P) DATE_JIS NUM_DATE1
*
* DATE_USA will contain 12-31-9999
C MOVE *HIVAL DATE_USA
*
* Execution error, resulting in error code 114. Year is not in
* 1940-2039 date range. DATE_YMD will be unchanged.
C MOVE DATE_USA DATE_YMD
*
* Move a *EUR date field to a numeric field that will
* represent a *CMDY date. NUM_DATE2 will contain 2082697
* after the move.
C *CMDY MOVE DATE_EUR NUM_DATE2
*
* Move a character value representing a *LONGJUL date to
* a *YMD date. DATE_YMD will be 39/06/15 after the move.
C *LONGJUL MOVE CHAR_LONGJUL DATE_YMD

Figure 335. MOVE Operation with Date

MOVE (Move)

722 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
* Specify default format for date fields
H DATFMT(*ISO)
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++
D date_USA S D DATFMT(*USA)
D datefld S D
D timefld S T INZ(T'14.23.10')
D chr_dateA S 6 INZ('041596')
D chr_dateB S 7 INZ('0610807')
D chr_time S 6
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+H1LoEq..
* Move a character value representing a *MDY date to a D(Date) value.
* *MDY0 indicates that the character date in Factor 2 does not
* contain separators.
* datefld will contain 1996-04-15 after the move.
C *MDY0 MOVE chr_dateA datefld
* Move a field containing a T(Time) value to a character value in the
* *EUR format. *EUR0 indicates that the result field should not
* contain separators.
* chr_time will contain '142310' after the move.
C *EUR0 MOVE timefld chr_time
* Move a character value representing a *CYMD date to a *USA
* Date. Date_USA will contain 08/07/1961 after the move.
* 0 in *CYMD indicates that the character value does not
* contain separators.
C *CYMD0 MOVE chr_dateB date_USA

Figure 336. MOVE Operation with Date and Time without Separators

MOVE (Move)

Chapter 22. Operation Codes 723

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
* Control specification DATEDIT format
*
H DATEDIT(*MDY)
*
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++
D Jobstart S Z
D Datestart S D
D Timestart S T
D Timebegin S T inz(T'05.02.23')
D Datebegin S D inz(D'1991-09-24')
D TmStamp S Z inz
*
* Set the timestamp Jobstart with the job start Date and Time
*
* Factor 1 of the MOVE *DATE (*USA = MMDDYYYY) is consistent
* with the value specified for the DATEDIT keyword on the
* control specification, since DATEDIT(*MDY) indicates that
* *DATE is formatted as MMDDYYYY.
*
* Note: It is not necessary to specify factor 1 with *DATE or
* UDATE.
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C *USA MOVE *DATE Datestart
C TIME StrTime 6 0
C *HMS MOVE StrTime Timestart
C MOVE Datestart Jobstart
C MOVE Timestart Jobstart
*
* After the following C specifications are performed, the field
* stampchar will contain '1991-10-24-05.17.23.000000'.
*
* First assign a timestamp the value of a given time+15 minutes and
* given date + 30 days. Move tmstamp to a character field.
* stampchar will contain '1991-10-24-05.17.23.000000'.
*
C ADDDUR 15:*minutes Timebegin
C ADDDUR 30:*days Datebegin
C MOVE Timebegin TmStamp
C MOVE Datebegin TmStamp
C MOVE TmStamp stampchar 26
* Move the timestamp to a character field without separators. After
* the move, STAMPCHAR will contain ' 19911024051723000000'.
C *ISO0 MOVE(P) TMSTAMP STAMPCHAR0

Figure 337. MOVE Operation with Timestamp

MOVE (Move)

724 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE between graphic and character fields
*
D char_fld1 S 10A inz('oK1K2K3 i')
D dbcs_fld1 S 4G
D char_fld2 S 10A inz(*ALL'Z')
D dbcs_fld2 S 3G inz(G'oK1K2K3i')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
* Value of dbcs_fld1 after MOVE operation is 'K1K2K3 '
* Value of char_fld2 after MOVE oepration is 'ZZoK1K2K3i'
*
C MOVE char_fld1 dbcs_fld1
C MOVE dbcs_fld2 char_fld2

Figure 338. MOVE between character and graphic fields

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE from variable to variable length
* for character fields
*
D var5a S 5A INZ('ABCDE') VARYING
D var5b S 5A INZ('ABCDE') VARYING
D var5c S 5A INZ('ABCDE') VARYING
D var10a S 10A INZ('0123456789') VARYING
D var10b S 10A INZ('ZXCVBNM') VARYING
D var15a S 15A INZ('FGH') VARYING
D var15b S 15A INZ('FGH') VARYING
D var15c S 15A INZ('QWERTYUIOPAS') VARYING
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE var15a var5a
* var5a = 'ABFGH' (length=5)
C MOVE var10a var5b
* var5b = '56789' (length=5)
C MOVE var5c var15a
* var15a = 'CDE' (length=3)
C MOVE var10b var15b
* var15b = 'BNM' (length=3)
C MOVE var15c var10b
* var10b = 'YUIOPAS' (length=7)

Figure 339. MOVE from a variable-length field to variable-length field

MOVE (Move)

Chapter 22. Operation Codes 725

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE from variable to fixed length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15 S 15A INZ('FGH') VARYING
D fix5a S 5A INZ('MNOPQ')
D fix5b S 5A INZ('MNOPQ')
D fix5c S 5A INZ('MNOPQ')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE var5 fix5a
* fix5a = 'ABCDE'
C MOVE var10 fix5b
* fix5b = '56789'
C MOVE var15 fix5c
* fix5c = 'MNFGH'

Figure 340. MOVE from a variable-length field to a fixed-length field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE from fixed to variable length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15 S 15A INZ('FGHIJKL') VARYING
D fix5 S 5A INZ('.....')
D fix10 S 10A INZ('PQRSTUVWXY')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE fix10 var5
* var5 = 'UVWXY' (length=5)
C MOVE fix5 var10
* var10 = '01234.....' (length=10)
C MOVE fix10 var15
* var15 = 'STUVWXY' (length=7)

Figure 341. MOVE from a fixed-length field to a variable-length field

MOVE (Move)

726 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE(P) from variable to variable length
* for character fields
*
D var5a S 5A INZ('ABCDE') VARYING
D var5b S 5A INZ('ABCDE') VARYING
D var5c S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGH') VARYING
D var15b S 15A INZ('FGH') VARYING
D var15c S 15A INZ('FGH') VARYING
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE(P) var15a var5a
* var5a = ' FGH' (length=5)
C MOVE(P) var10 var5b
* var5b = '56789' (length=5)
C MOVE(P) var5c var15b
* var15b = 'CDE' (length=3)
C MOVE(P) var10 var15c
* var15c = '789' (length=3)

Figure 342. MOVE(P) from a variable-length field to a variable-length field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE(P) from variable to fixed length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15 S 15A INZ('FGH') VARYING
D fix5a S 5A INZ('MNOPQ')
D fix5b S 5A INZ('MNOPQ')
D fix5c S 5A INZ('MNOPQ')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE(P) var5 fix5a
* fix5a = 'ABCDE'
C MOVE(P) var10 fix5b
* fix5b = '56789'
C MOVE(P) var15 fix5c
* fix5c = ' FGH'

Figure 343. MOVE(P) from a variable-length field to a fixed-length field

MOVE (Move)

Chapter 22. Operation Codes 727

Table 76. Moving a Character Field to a Date-Time Field. Factor 1 specifies the format of the Factor 2 entry

Factor 1
Entry

Factor 2
(Character)

Result Field

Value DTZ Type

*MDY- 11-19-75 75/323 D(*JUL)

*JUL 92/114 23/04/92 D(*DMY)

*YMD 14/01/28 01/28/2014 D(*USA)

*YMD0 140128 01/28/2014 D(*USA)

*USA 12/31/9999 31.12.9999 D(*EUR)

*ISO 2036-05-21 21/05/36 D(*DMY)

*JUL 45/333 11/29/1945 D(*USA)

*MDY/ 03/05/33 03.05.33 D(*MDY.)

*CYMD& 121 07 08 08.07.2021 D(*EUR)

*CYMD0 1210708 07,08,21 D(*MDY,)

*CMDY. 107.08.21 21-07-08 D(*YMD-)

*CDMY0 1080721 07/08/2021 D(*USA)

*LONGJUL- 2021-189 08/07/2021 D(*EUR)

*HMS& 23 12 56 23.12.56 T(*ISO)

*USA 1:00 PM 13.00.00 T(*EUR)

*EUR 11.10.07 11:10:07 T(*JIS)

*JIS 14:16:18 14.16.18 T(*HMS.)

*ISO 24.00.00 12:00 AM T(*USA)

Blank 1991-09-14-13.12.56.123456 1991-09-14-13.12.56.123456 Z(*ISO)

*ISO 1991-09-14-13.12.56.123456 1991-09-14-13.12.56.123456 Z(*ISO)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVE(P) from fixed to variable length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGHIJKLMNOPQR') VARYING
D var15b S 15A INZ('FGHIJ') VARYING
D fix5 S 5A INZ('')
D fix10 S 10A INZ('PQRSTUVWXY')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVE(P) fix10 var5
* var5 = 'UVWXY' (length=5 before and after)
C MOVE(P) fix10 var10
* var10 = 'PQRSTUVWXY' (length=10 before and after)
C MOVE(P) fix10 var15a
* var15a = ' PQRSTUVWXY' (length=13 before and after)
C MOVE(P) fix10 var15b
* var15b = 'UVWXY' (length=5 before and after)

Figure 344. MOVE(P) from a fixed-length field to a variable-length field

MOVE (Move)

728 ILE RPG Reference

Table 77. Moving a Numeric Field to a Date-Time Field. Factor 1 specifies the format of the Factor 2 entry

Factor 1
Entry1

Factor 2
(Numeric)

Result Field

Value DTZ Type

*MDY 111975 75/323 D(*JUL)

*JUL 92114 23/04/92 D(*DMY)

*YMD 140128 01/28/2014 D(*USA)

*USA2 12319999 31.12.9999 D(*EUR)

*ISO 20360521 21/05/36 D(*DMY)

*JUL 45333 11/29/1945 D(*USA)

*MDY 030533 03.05.33 D(*MDY.)

*CYMD 1210708 08.07.2021 D(*EUR)

*CMDY 1070821 21-07-08 D(*YMD-)

*CDMY 1080721 07/08/2021 D(*USA)

*LONGJUL 2021189 08/07/2021 D(*EUR)

*USA *DATE (092195)3 1995-09-21 D(*JIS)

Blank *DATE (092195)3 1995-09-21 D(*JIS)

*MDY UDATE (092195)3 21.09.1995 D(*EUR)

*HMS 231256 23.12.56 T(*ISO)

*EUR 111007 11:10:07 T(*JIS)

*JIS 141618 14.16.18 T(*HMS.)

*ISO 240000 12:00 AM T(*USA)

Blank4 19910914131256123456 1991-09-14-13.12.56.123456 Z(*ISO)

Notes:

1. A separator of zero (0) is not allowed in factor 1 for movement between date, time or timestamp fields and
numeric classes.

2. Time format *USA is not allowed for movement between time and numeric classes.

3. For *DATE and UDATE, assume that the job date in the job description is of *MDY format and contains 092195.
Factor 1 is optional and will default to the correct format. If factor 2 is *DATE, and factor 1 is coded, it must be
a 4-digit year date format. If factor 2 is UDATE, and factor 1 is coded, it must be a 2-digit year date format.

4. For moves of timestamp fields, factor 1 is optional. If it is coded it must be *ISO or *ISO0.

Table 78. Moving a Date-Time Field to a Character Field

Factor 1
Entry

Factor 2 Result Field
(Character)Value DTZ Type

*JUL 11-19-75 D(*MDY-) 75/323

*DMY- 92/114 D(*JUL) 23-04-92

*USA 14/01/28 D(*YMD) 01/28/2014

*EUR 12/31/9999 D(*USA) 31.12.9999

*DMY, 2036-05-21 D(*ISO) 21,05,36

*USA 45/333 D(*JUL) 11/29/1945

*USA0 45/333 D(*JUL) 11291945

*MDY& 03/05/33 D(*MDY) 03 05 33

*CYMD, 03 07 08 D(*MDY&); 108,03,07

MOVE (Move)

Chapter 22. Operation Codes 729

Table 78. Moving a Date-Time Field to a Character Field (continued)

Factor 1
Entry

Factor 2 Result Field
(Character)Value DTZ Type

*CYMD0 21/07/08 D(*DMY) 1080721

*CMDY 21-07-08 D(*YMD-) 107/08/21

*CDMY- 07/08/2021 D(*USA) 108-07-21

*LONGJUL& 08/07/2021 D(*EUR) 2021 189

*ISO 23 12 56 T(*HMS&); 23.12.56

*EUR 11:00 AM T(*USA) 11.00.00

*JIS 11.10.07 T(*EUR) 11:10:07

*HMS, 14:16:18 T(*JIS) 14,16,18

*USA 24.00.00 T(*ISO) 12:00 AM

Blank 2045-10-27-23.34.59.123456 Z(*ISO) 2045-10-27-23.34.59.123456

Table 79. Moving a Date-Time Field to a Numeric Field

Factor 1
Entry

Factor 2 Result Field
(Numeric)Value DTZ Type

*JUL 11-19-75 D(*MDY-) 75323

*DMY- 92/114 D(*JUL) 230492

*USA 14/01/28 D(*YMD) 01282014

*EUR 12/31/9999 D(*USA) 31129999

*DMY, 2036-05-21 D(*ISO) 210536

*USA 45/333 D(*JUL) 11291945

*MDY& 03/05/33 D(*MDY) 030533

*CYMD, 03 07 08 D(*MDY&); 1080307

*CMDY 21-07-08 D(*YMD-) 1070821

*CDMY- 07/08/2021 D(*USA) 1080721

*LONGJUL& 08/07/2021 D(*EUR) 2021189

*ISO 23 12 56 T(*HMS&); 231256

*EUR 11:00 AM T(*USA) 110000

*JIS 11.10.07 T(*EUR) 111007

*HMS, 14:16:18 T(*JIS) 141618

*ISO 2045-10-27-23.34.59.123456 Z(*ISO) 20451027233459123456

Table 80. Moving Date-Time Fields to Date-Time Fields. Assume that the initial value of the timestamp is
1985-12-03-14.23.34.123456.

Factor 1 Factor 2 Result Field

Value DTZ Type Value DTZ Type

N/A 1986-06-24 D(*ISO) 86/06/24 D(*YMD)

N/A 23 07 12 D(*DMY&); 23.07.2012 D(*EUR)

N/A 11:53 PM T(USA) 23.53.00 T(*EUR)

N/A 19.59.59 T(*HMS.) 19:59:59 T(*JIS)

MOVE (Move)

730 ILE RPG Reference

Table 80. Moving Date-Time Fields to Date-Time Fields (continued). Assume that the initial value of the timestamp is
1985-12-03-14.23.34.123456.

Factor 1 Factor 2 Result Field

Value DTZ Type Value DTZ Type

N/A 1985-12-03-14.23.34.123456 Z(*ISO.) 1985-12-03-14.23.34.123456 Z(*ISO)

N/A 75.06.30 D(*YMD.) 1975-06-30-14.23.34.123456 Z(*ISO)

N/A 09/23/2234 D(*USA) 2234-09-23-14.23.34.123456 Z(*ISO)

N/A 18,45,59 T(*HMS,) 1985-12-03-18.45.59.000000 Z(*ISO)

N/A 2:00 PM T(*USA) 1985-12-03-14.00.00.000000 Z(*ISO)

N/A 1985-12-03-14.23.34.123456 Z(*ISO.) 12/03/85 D(*MDY)

N/A 1985-12-03-14.23.34.123456 Z(*ISO.) 12/03/1985 D(*USA)

N/A 1985-12-03-14.23.34.123456 Z(*ISO.) 14:23:34 T(*HMS)

N/A 1985-12-03-14.23.34.123456 Z(*ISO.) 02:23 PM T(*USA)

Table 81. Moving a Date field to a Character field. The result field is larger than factor 2. Assume that Factor 1
contains *ISO and that the result field is defined as

D Result_Fld 20A INZ('ABCDEFGHIJabcdefghij')

Operation
Code

Factor 2 Value of Result Field
after move operationValue DTZ Type

MOVE 11 19 75 D(*MDY&); ’ABCDEFGHIJ1975-11-19’

MOVE(P) 11 19 75 D(*MDY&); ’ 1975-11-19’

MOVEL 11 19 75 D(*MDY&); ’1975-11-19abcdefghij’

MOVEL(P) 11 19 75 D(MDY&); ’1975-11-19 ’

Table 82. Moving a Time field to a Numeric field. The result field is larger than factor 2. Assume that Factor 1
contains *ISO and that the result field is defined as

D Result_Fld 20S INZ(11111111111111111111)

Operation
Code

Factor 2 Value of Result Field
after move operationValue DTZ Type

MOVE 9:42 PM T(*USA) 11111111111111214200

MOVE(P) 9:42 PM T(*USA) 00000000000000214200

MOVEL 9:42 PM T(*USA) 21420011111111111111

MOVEL(P) 9:42 PM T(*USA) 21420000000000000000

Table 83. Moving a Numeric field to a Time field. Factor 2 is larger than the result field. The highlighted portion
shows the part of the factor 2 field that is moved.

Operation
Code

Factor 2 Result Field

DTZ Type Value

MOVE 11:12:13:14 T(*EUR) 12.13.14

MOVEL 11:12:13:14 T(*EUR) 11.12.13

MOVE (Move)

Chapter 22. Operation Codes 731

Table 84. Moving a Numeric field to a Timestamp field. Factor 2 is larger than the result field. The highlighted portion
shows the part of the factor 2 field that is moved.

Operation
Code

Factor 2 Result Field

DTZ Type Value

MOVE 12340618230323123420123456 Z(*ISO) 1823-03-23-12.34.20.123456

MOVEL 12340618230323123420123456 Z(*ISO) 1234-06-18-23.03.23.123420

P

P

P

P

H

H

H

H

4

4

4

4

S

S

S

S

N

N

P H 4 S N

P H 4 S N

5

5

5

7

7

7

6

6

6

8

8

8

7

7

7

4

4

4

8

8

8

2

2

2

4

4
+

4

5

5

5

-

N

N

+

+

-

1

1

1

1

1

1

A

A

2

2

2

2

2

C

C

2

3

3

3

3

1

1

1

1

1

1

F

3

4

4

4

4

2

2

2

2

2

2

G

P

5

5

7

5

7

7

7

7

7

7

P

H

6

6

8

6

8

8

8

8

8

8

H

4

7

7

4

7

4

4

4

4

4

4

4

S

8

8

2

8

2

2

2

2

2

2

S

N

4

4

5

9

5

5

5

1

1

1

1

2

2

2

2

7

7

7

7

8

8

8

8

4

4

4

4

2

2

2

2

5

5

5

5

5

5

5

N

4

A

A

A

A

C

C

C

C

E

E

E

E

G

G

G

G

P

P

P

P

H

H

H

H

4

4

4

4

S

S

S

S

N

N

N

N

Before MOVE

After MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

Factor 2 Shorter Than Result Field

Factor 2
Result Field

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

a.

b.

c.

d.

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Longer Than Result Field

Factor 2 Result Field

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

a.

b.

c.

d.

Figure 345. MOVE Operation (Part 1 of 2)

MOVE (Move)

732 ILE RPG Reference

Before MOVE

Before MOVE

Before MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

After MOVE

Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Factor 2 Result Field

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

a.

b.

c.

d.

Before MOVE

Before MOVE

Before MOVE

After MOVE

Before MOVE

After MOVE

After MOVE

After MOVE

Factor 2 and Result Field Same Length

Factor 2 Result Field

Character
to

Character

Character
to

Numeric

Numeric
to

Numeric

Numeric
to

Character

a.

b.

c.

d.

+
4 = letter D , and 5 = letter N.Note:

5 6 7 8 4

5 6 7 8 4

7 8 4 2 5
-

7 8 4 2 5
-

A

A

L

L

T

T

5

5

F

F7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

P

PP

P

P

H

HH

H

H

4

44

4

4

S

SS

S

S

N

N

P H 4 S N

P H 4 S N

P H 4 S N

P H 4 S N

P H 4 S N

N

N

N

+

+

-

1

1

0. . . .

2

2

0

3

3

0

4

4

0

5

5

7

6

6

8

7

7

4

8

8

2

4

4

5

A C F G P H 4 S N

1 2 3 4 5 6 7 8 9

11

1

1

1

22

2

2

2

77

7

7

7

88

8

8

8

44

4

4

4

22

2

2

2

55

5

5

5

10. . 20 7 8 4 2 5

Figure 345. MOVE Operation (Part 2 of 2)

MOVE (Move)

Chapter 22. Operation Codes 733

MOVEA (Move Array)

Free-Form Syntax (not allowed — use %SUBARR or one or more String Operations)

Code Factor 1 Factor 2 Result Field Indicators

MOVEA (P) Source Target + − ZB

The MOVEA operation transfers character, graphic, UCS-2, or numeric values from
factor 2 to the result field. (Certain restrictions apply when moving numeric
values.) Factor 2 or the result field must contain an array. Factor 2 and the result
field cannot specify the same array even if the array is indexed. You can:
v Move several contiguous array elements to a single field
v Move a single field to several contiguous array elements
v Move contiguous array elements to contiguous elements of another array.

Movement of data starts with the first element of an array if the array is not
indexed or with the element specified if the array is indexed. The movement of
data ends when the last array element is moved or filled. When the result field
contains the indicator array, all indicators affected by the MOVEA operation are
noted in the cross-reference listing.

The coding for and results of MOVEA operations are shown in Figure 346 on page
735.

For more information, see “Array Operations” on page 438, “Move Operations” on
page 460, or “Date Operations” on page 449.

Character, graphic, and UCS-2 MOVEA Operations
Both factor 2 and the result field must be the same type - either character, graphic,
or UCS-2. Graphic or UCS-2 CCSIDs must be the same, unless one of the CCSIDs
is 65535, or in the case of graphic fields, CCSID(*GRAPH: *IGNORE) was specified
on the control specification.

On a character, graphic, or UCS-2 MOVEA operation, movement of data ends
when the number of characters moved equals the shorter length of the fields
specified by factor 2 and the result field; therefore, the MOVEA operation could
end in the middle of an array element. Variable-length arrays are not allowed.

Numeric MOVEA Operations
Moves are only valid between fields and array elements with the same numeric
length defined. Factor 2 and the result field entries can specify numeric fields,
numeric array elements, or numeric arrays; at least one must be an array or array
element. The numeric types can be binary, packed decimal, or zoned decimal but
need not be the same between factor 2 and the result field.

Factor 2 can contain a numeric literal if the result field entry specifies a numeric
array or numeric array-element:
v The numeric literal cannot contain a decimal point.
v The length of the numeric literal cannot be greater than the element length of

the array or array element specified in the result field.

MOVEA (Move Array)

734 ILE RPG Reference

Decimal positions are ignored during the move and need not correspond. Numeric
values are not converted to account for the differences in the defined number of
decimal places.

The figurative constants *BLANK, *ALL, *ON and *OFF are not valid in factor 2 of
a MOVEA operation on a numeric array.

General MOVEA Operations
If you need to use a MOVEA operation in your application, but restrictions on
numeric MOVEA operations prevent you, you might be able to use character
MOVEA operations. If the numeric array is in zoned decimal format:
v Define the numeric array as a subfield of a data structure
v Redefine the numeric array in the data structure as a character array.

If a figurative constant is specified with MOVEA, the length of the constant
generated is equal to the portion of the array specified. For figurative constants in
numeric arrays, the element boundaries are ignored except for the sign that is put
in each array element. Examples are:
v MOVEA *BLANK ARR(X)

Beginning with element X, the remainder of ARR will contain blanks.
v MOVEA *ALL‘XYZ’ ARR(X)

ARR has 4-byte character elements. Element boundaries are ignored, as is always
the case with character MOVEA. Beginning with element X, the remainder of the
array will contain ‘XYZXYZXYZXYZ. . .’.

For character, graphic, UCS-2, and numeric MOVEA operations, you can specify a
P operation extender to pad the result from the right.

For further information on the MOVEA operation, see “Move Operations” on page
460.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA ARRX ARRY
* Array-to-array move. No indexing; different length array,
* same element length.

1

1 1

A A2

2 2

B B3

3 3

CC4

4 4

5

5 5

D D6

6 6

7

7 7 F F

E E8

8 8

9

9 9

F F0

0 0

.

. .

ARRX ARRY

One Element One Element

Before
MOVEA

After
MOVEA

Figure 346. MOVEA Operation (Part 1 of 10)

MOVEA (Move Array)

Chapter 22. Operation Codes 735

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA ARRX ARRY(3)
* Array-to-array move with index result field.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E

A A B B

1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6

Figure 346. MOVEA Operation (Part 2 of 10)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA ARRX ARRY
* Array-to-array move, no indexing and different length array
* elements.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A A B BB C C C D D D1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6 7 D D8 9 0.

Figure 346. MOVEA Operation (Part 3 of 10)

MOVEA (Move Array)

736 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA ARRX(4) ARRY
* Array-to-array move, index factor 2 with different length array
* elements.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A

B B C CC D D D

A A B B B C CC D D D1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 7 8 9 0.

Figure 346. MOVEA Operation (Part 4 of 10)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA FIELDA ARRY
* Field-to-array move, no indexing on array.

FIELDA
Before
MOVEA

After
MOVEA

ARRY

One Element

A

A

B

B C

C

1 2 3 4 5 6 7

1 2 3 4 5 6 7 1

1

12

2

3

3

4

4

5

5

6

6

7

89

0

0

.

.

Figure 346. MOVEA Operation (Part 5 of 10)

MOVEA (Move Array)

Chapter 22. Operation Codes 737

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In the following example, N=3. Array-to-field move with variable
* indexing.
C MOVEA ARRX(N) FIELD
*

FIELD
Before
MOVEA

After
MOVEA

ARRY

One Element

A A

A

B

BB

C

C

1 1

1

2

22

3

3

0 0

0

0

00

0

0

0

0

0

00

0 0

0

. .

.

.

..

.

.

.

.

.

..

. .

.

Figure 346. MOVEA Operation (Part 6 of 10)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA ARRB ARRZ
*
* An array-to-array move showing numeric elements.

One Element One Element

Before MOVEA

After MOVEA1.0 1.0

2.0 3.0 4.0 5.0 6.0

6.0

1.0

1.0 1.0

1.0

1.1 1.1

1.1

1.2 1.2

1.2

. .

.

.

.

. .

.

Figure 346. MOVEA Operation (Part 7 of 10)

MOVEA (Move Array)

738 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA(P) ARRX ARRY
* Array-to-array move with padding. No indexing; different length
* array with same element length.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E F F1 2 3 4 5 6 7 8 9 0.

1 2 3 4 5 6 7 8 9 0. 1 2 3 4 5 6 7 8 9 0.

Figure 346. MOVEA Operation (Part 8 of 10)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA(P) ARRB ARRZ
*
* An array-to-array move showing numeric elements with padding.

One Element One Element

Before MOVEA

After MOVEA

1.1

1.1 1.1

2.0.3.0 4.0 5.0 6.0

1.3

1.2

1.2 1.2 0.0

1.0

1.0 1.0

1.0

1.0

.

. .

.

. . .

Figure 346. MOVEA Operation (Part 9 of 10)

MOVEA (Move Array)

Chapter 22. Operation Codes 739

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVEA(P) ARRX(3) ARRY
* Array-to-array move with padding. No indexing; different length
* array with different element length.

One Element

ARRX
Before
MOVEA

After
MOVEA

ARRY

One Element

A A B B CC D D E E F FP

P

P

P

P

P

Q

Q

Q

Q

Q

Q

R

R R

R

R R

R

R R

Figure 346. MOVEA Operation (Part 10 of 10)

MOVEA (Move Array)

740 ILE RPG Reference

MOVEL (Move Left)

Free-Form Syntax not allowed - use EVAL, or built-in functions such as %CHAR, %DATE, %DEC ,
%DECH, %GRAPH, %INT, %INTH, %TIME, %TIMESTAMP , %UCS2, %UNS, or
%UNSH

Code Factor 1 Factor 2 Result Field Indicators

MOVEL (P) Data Attributes Source field Target field + − ZB

The MOVEL operation transfers characters from factor 2 to the result field. Moving
begins with the leftmost character in factor 2. You cannot specify resulting
indicators if the result field is an array. You can specify them if the result field is
an array element, or a non-array field.

When data is moved to a numeric field, the sign (+ or -) of the result field is
retained except when factor 2 is as long as or longer than the result field. In this
case, the sign of factor 2 is used as the sign of the result field.

Factor 1 can contain a date or time format to specify the format of a character or
numeric field that is the source or target of the operation.For information on the
formats that can be used see “Date Data Type” on page 206, “Time Data Type” on
page 208, and “Timestamp Data Type” on page 210.

If the source or target is a character field, you may optionally indicate the
separator following the format in factor 1. Only separators that are valid for that
format are allowed.

If factor 2 is *DATE or UDATE and the result is a Date field, factor 1 is not
required. If factor 1 contains a date format it must be compatible with the format
of *DATE or UDATE in factor 2 as specified by the DATEDIT keyword on the
control specification.

If factor 2 is longer than the result field, the excess rightmost characters of factor 2
are not moved. If the result field is longer than factor 2, the excess rightmost
characters in the result field are unchanged, unless padding is specified.

Float numeric fields and literals are not allowed as Factor 2 or Result-Field entries.

If factor 2 is UCS-2 and the result field is character, or if factor 2 is character and
the result field is UCS-2, the number of characters moved is variable since the
character data may or may not contain shift characters and graphic characters. For
example, five UCS-2 characters can convert to:
v Five single-byte characters
v Five double-byte characters
v A combination of single-byte and double-byte characters with shift characters

separating the modes

If the resulting data is too long to fit the result field, the data will be truncated. If
the result is single-byte character, it is the responsibility of the user to ensure that
the result contains complete characters, and contains matched SO/SI pairs.

The MOVEL operation is summarized in Figure 347 on page 744.

MOVEL (Move Left)

Chapter 22. Operation Codes 741

A summary of the rules for MOVEL operation for four conditions based on field
lengths:
1. Factor 2 is the same length as the result field:

a. If factor 2 and the result field are numeric, the sign is moved into the
rightmost position.

b. If factor 2 is numeric and the result field is character, the sign is moved into
the rightmost position.

c. If factor 2 is character and the result field is numeric, a minus zone is
moved into the rightmost position of the result field if the zone from the
rightmost position of factor 2 is a hexadecimal D (minus zone). However, if
the zone from the rightmost position of factor 2 is not a hexadecimal D, a
positive zone is moved into the rightmost position of the result field. Digit
portions are converted to their corresponding numeric characters. If the
digit portions are not valid digits, a data exception error occurs.

d. If factor 2 and the result field are character, all characters are moved.
e. If factor 2 and the result field are both graphic or UCS-2, all graphic or

UCS-2 characters are moved.
f. If factor 2 is graphic and the result field is character, one graphic character

will be lost, because 2 positions (bytes) in the character result field will be
used to hold the SO/SI inserted by the compiler.

g. If factor 2 is character and the result field is graphic, the factor 2 character
data must be completely enclosed by one single pair of SO/SI. The SO/SI
will be removed by the compiler before moving the data to the graphic
result field.

2. Factor 2 is longer than the result field:
a. If factor 2 and the result field are numeric, the sign from the rightmost

position of factor 2 is moved into the rightmost position of the result field.
b. If factor 2 is numeric and the result field is character, the result field

contains only numeric characters.
c. If factor 2 is character and the result field is numeric, a minus zone is

moved into the rightmost position of the result field if the zone from the
rightmost position of factor 2 is a hexadecimal D (minus zone). However, if
the zone from the rightmost position of factor 2 is not a hexadecimal D, a
positive zone is moved into the rightmost position of the result field. Other
result field positions contain only numeric characters.

d. If factor 2 and the result field are character, only the number of characters
needed to fill the result field are moved.

e. If factor 2 and the result field are graphic or UCS-2, only the number of
graphic or UCS-2 characters needed to fill the result field are moved.

f. If factor 2 is graphic and the result field is character, the graphic data will be
truncated and SO/SI will be inserted by the compiler.

g. If factor 2 is character and the result is graphic, the character data will be
truncated. The character data must be completely enclosed by one single
pair of SO/SI.

3. Factor 2 is shorter than the result field:
a. If factor 2 is either numeric or character and the result field is numeric, the

digit portion of factor 2 replaces the contents of the leftmost positions of the
result field. The sign in the rightmost position of the result field is not
changed.

MOVEL (Move Left)

742 ILE RPG Reference

b. If factor 2 is either numeric or character and the result field is character
data, the characters in factor 2 replace the equivalent number of leftmost
positions in the result field. No change is made in the zone of the rightmost
position of the result field.

c. If factor 2 is graphic and the result field is character, the SO/SI are added
immediately before and after the graphic data. This may cause unbalanced
SO/SI in the character field due to residual data in the field, but this is
users’ responsibility.

d. Notice that when moving from a character to graphic field, the entire
character field should be enclosed in SO/SI. For example, if the character
field length is 8, the character data in the field should be ″oAABB��i″ and
not ″oAABBi��″.

4. Factor 2 is shorter than the result field and P is specified in the operation
extender field:
a. The move is performed as described above.
b. The result field is padded from the right. See “Move Operations” on page

460 for more information on the rules for padding.

When moving variable-length character, graphic, or UCS-2 data, the
variable-length field works in exactly the same way as a fixed-length field with the
same current length. A MOVEL operation does not change the length of a
variable-length result field. For examples, see Figures 350 to 355.

For further information on the MOVEL operation, see “Move Operations” on page
460, “Date Operations” on page 449, or “Conversion Operations” on page 447.

MOVEL (Move Left)

Chapter 22. Operation Codes 743

Before MOVEL

Before MOVEL

Before MOVEL

Before MOVEL

After MOVEL

After MOVEL

After MOVEL

After MOVEL

Factor 2 and Result Field Same Length

Factor 2 Result Field

Numeric
to

Numeric

Numeric
to

Character

Character
to

Numeric

Character
to

Character

a.

b.

c.

d.

Before MOVEL

Before MOVEL

Before MOVEL

Before MOVEL

After MOVEL

After MOVEL

After MOVEL

After MOVEL

Factor 2 Longer Than Result Field

Factor 2 Result Field

Numeric
to

Numeric

Numeric
to

Character

Character
to

Numeric

Character
to

Character

a.

b.

c.

d.

5 6 7 8 4
+

7 8 4 2 5
-

7 8 4 2 5

7

7

A

A

7

8

8

K

K

8

4

4

T

T

4

2

2

4

4

2

5

5

D

D

A K T 4 D

A K T 4 D

N

-

-

5 6 7 8 4
+

5 6 7 8 4
+

2 9 6 3 7
-

9 0 3 1. 7

5 6 7 8 4
+

. .. 00 0 2 5

7 8 4 2 5
-

7 8 4 2 5
-

P H 4 S N

P H 4 S N

P H 4 S N

P H 4 S N P H 4 S N

-

-

-

-
0

9

B

9

0

.

.

.

.

.

.

.

.

0

0

R

0

0

0

3

W

3

0

2

1

C

1

2

5

7

X

7

5

8

8

H

8

8

4

4

4

4

4

2

2

S

2

2

5

5

N

B R W C X H 4 S N

B

B

R

R

W

W

C

C

X

X

H 4 S N

B R W C X H 4 S N

5

5

Figure 347. MOVEL Operation (Part 1 of 2)

MOVEL (Move Left)

744 ILE RPG Reference

Numeric
to

Numeric

Character
to

Numeric

Numeric
to

Character

Character
to

Character

Before MOVEL

Before MOVEL

Before MOVEL

Before MOVEL

After MOVEL

After MOVEL

After MOVEL

After MOVEL

Factor 2 Shorter Than Result Field

Factor 2 Result Field

a.

b.

+
4 = letter D , and 5 = letter N; arrow is decimal point.Note:

+

+

+

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

C

C

C

C

P

P

P

P

T

T

T

T

5

5

5

5

N

N

N

N

+
7 8 4 2 5 3 2 1 0

1

1

3

7

B

B

C

.

.

.

.

.

.

3

3

7

8

R

R

P

0

0

3

4

W

W

T

9

9

5

2

C

C

5

4

4

5

N

X

X

N

3

3

3

H

H

H

H

2

2

2

4

4

4

4

1

1

1

S

S

S

S

0

0

0

A

A

A

A

Numeric
to

Numeric

Character
to

Numeric

Numeric
to

Character

Character
to

Character

Before MOVEL

Before MOVEL

Before MOVEL

Before MOVEL

After MOVEL

After MOVEL

After MOVEL

After MOVEL

Factor 2 Shorter Than Result Field
With P in Operation Extender Field

Factor 2 Result Field

a.

b.

+
4 = letter D , and 5 = letter N; arrow is decimal point.Note:

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

7 8 4 2 5
-

C

C

C

C

P

P

P

P

T

T

T

T

5

5

5

5

N

N

N

N

+

+

+

+

7 8 4 2 5 0

0

1

1

3

7

B

B

C

.

.

.

.

.

.

.

.

.

.

.

.

3

3

7

8

R

R

P

0

0

3

4

W

W

T

9

9

5

2

C

C

5

4

4

5

N

X

X

N

3

3

H

H

H

2

2

4

4

4

1

1

S

S

S

0

0

0

0

0

0

0

0

A

A

A

Figure 347. MOVEL Operation (Part 2 of 2)

MOVEL (Move Left)

Chapter 22. Operation Codes 745

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++
D
*
* Example of MOVEL between graphic and character fields
*
D char_fld1 S 8A inz(' ')
D dbcs_fld1 S 4G inz('oAABBCCDDi')
D char_fld2 S 4A inz(' ')
D dbcs_fld2 S 3G inz(G'oAABBCCi')
D char_fld3 S 10A inz(*ALL'X')
D dbcs_fld3 S 3G inz(G'oAABBCCi')
D char_fld4 S 10A inz('oAABBCC i')
D dbcs_fld4 S 2G
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* The result field length is equal to the factor 2 length in bytes.
* One DBCS character is lost due to insertion of SO/SI.
* Value of char_fld1 after MOVEL operation is 'oAABBCCi'
*
C MOVEL dbcs_fld1 char_fld1
*
* Result field length shorter than factor 2 length. Truncation occurs.
* Value of char_fld2 after MOVEL operation is 'oAAi'
*
C MOVEL dbcs_fld2 char_fld2
*
* Result field length longer than factor 2 length. Example shows
* SO/SI are added immediately before and after graphic data.
* Before the MOVEL, Result Field contains 'XXXXXXXXXX'
* Value of char_fld3 after MOVEL operation is 'oAABBCCiXX'
*
C MOVEL dbcs_fld3 char_fld3
*
* Character to Graphic MOVEL
* Result Field shorter than Factor 2. Truncation occurs.
* Value of dbcs_fld4 after MOVEL operation is 'AABB'
*
C MOVEL char_fld4 dbcs_fld4

Figure 348. MOVEL between character and graphic fields

MOVEL (Move Left)

746 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
HKeywords+++
*
* Example of MOVEL between character and date fields
*
* Control specification date format
H DATFMT(*MDY)
*
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++
D datefld S D INZ(D'04/15/96')
D char_fld1 S 8A
D char_fld2 S 10A INZ('XXXXXXXXXX')
D char_fld3 S 10A INZ('04/15/96XX')
D date_fld3 S D
D char_fld4 S 10A INZ('XXXXXXXXXX')
D char_fld5 S 9A INZ('015/04/50')
D date_fld2 S D INZ(D'11/16/10')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+H1LoEq..
* Date to Character MOVEL
* The result field length is equal to the factor 2 length. Value of
* char_fld1 after the MOVEL operation is '04/15/96'.
C *MDY MOVEL datefld char_fld1
* Date to Character MOVEL
* The result field length is longer than the factor 2 length.
* Before MOVEL, result field contains 'XXXXXXXXXX'
* Value of char_fld2 after the MOVEL operation is '04/15/96XX'.
C *MDY MOVEL datefld char_fld2
* Character to Date MOVEL
* The result field length is shorter than the factor 2 length.
* Value of date_fld3 after the MOVEL operation is '04/15/96'.
C *MDY MOVEL char_fld3 date_fld3
* Date to Character MOVEL (no separators)
* The result field length is longer than the factor 2 length.
* Before MOVEL, result field contains 'XXXXXXXXXX'
* Value of char_fld4 after the MOVEL operation is '041596XXXX'.
C *MDY0 MOVEL datefld char_fld4
* Character to date MOVEL
* The result field length is equal to the factor 2 length.
* The value of date_fld3 after the move is 04/15/50.
C *CDMY MOVEL char_fld5 date_fld3
* Date to character MOVEL (no separators)
* The result field length is longer than the factor 2 length.
* The value of char_fld4 after the move is '2010320XXX'.
C *LONGJUL0 MOVEL date_fld2 char_fld4

Figure 349. MOVEL between character and date fields

MOVEL (Move Left)

Chapter 22. Operation Codes 747

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL from variable to variable length
* for character fields
*
D var5a S 5A INZ('ABCDE') VARYING
D var5b S 5A INZ('ABCDE') VARYING
D var5c S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGH') VARYING
D var15b S 15A INZ('FGH') VARYING
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL var15a var5a
* var5a = 'FGHDE' (length=5)
C MOVEL var10 var5b
* var5b = '01234' (length=5)
C MOVEL var5c var15a
* var15a = 'ABC' (length=3)
C MOVEL var10 var15b
* var15b = '012' (length=3)

Figure 350. MOVEL from a variable-length field to a variable-length field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL from variable to fixed length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15 S 15A INZ('FGH') VARYING
D fix5a S 5A INZ('MNOPQ')
D fix5b S 5A INZ('MNOPQ')
D fix5c S 5A INZ('MNOPQ')
D fix10 S 10A INZ('')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL var5 fix5a
* fix5a = 'ABCDE'
C MOVEL var10 fix5b
* fix5b = '01234'
C MOVEL var15 fix5c
* fix5c = 'FGHPQ'

Figure 351. MOVEL from a variable-length field to fixed-length field

MOVEL (Move Left)

748 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL from fixed to variable length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGHIJKLMNOPQR') VARYING
D var15b S 15A INZ('WXYZ') VARYING
D fix10 S 10A INZ('PQRSTUVWXY')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL fix10 var5
* var5 = 'PQRST' (length=5)
C MOVEL fix10 var10
* var10 = 'PQRSTUVWXY' (length=10)
C MOVEL fix10 var15a
* var15a = 'PQRSTUVWXYPQR' (length=13)
C MOVEL fix10 var15b
* var15b = 'PQRS' (length=4)

Figure 352. MOVEL from a fixed-length field to variable-length field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL(P) from variable to variable length
* for character fields
*
D var5a S 5A INZ('ABCDE') VARYING
D var5b S 5A INZ('ABCDE') VARYING
D var5c S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGH') VARYING
D var15b S 15A INZ('FGH') VARYING
D var15c S 15A INZ('FGHIJKLMN') VARYING
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL(P) var15a var5a
* var5a = 'FGH ' (length=5)
C MOVEL(P) var10 var5b
* var5b = '01234' (length=5)
C MOVEL(P) var5c var15b
* var15b = 'ABC' (length=3)
C MOVEL(P) var15a var15c
* var15c = 'FGH ' (length=9)

Figure 353. MOVEL(P) from a variable-length field to a variable-length field

MOVEL (Move Left)

Chapter 22. Operation Codes 749

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL(P) from variable to fixed length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15 S 15A INZ('FGH') VARYING
D fix5a S 5A INZ('MNOPQ')
D fix5b S 5A INZ('MNOPQ')
D fix5c S 5A INZ('MNOPQ')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL(P) var5 fix5a
* fix5a = 'ABCDE'
C MOVEL(P) var10 fix5b
* fix5b = '01234'
C MOVEL(P) var15 fix5c
* fix5c = 'FGH '

Figure 354. MOVEL(P) from a variable-length field to fixed-length field

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++
*
* Example of MOVEL(P) from fixed to variable length
* for character fields
*
D var5 S 5A INZ('ABCDE') VARYING
D var10 S 10A INZ('0123456789') VARYING
D var15a S 15A INZ('FGHIJKLMNOPQR') VARYING
D var15b S 15A INZ('FGH') VARYING
D fix5 S 10A INZ('.....')
D fix10 S 10A INZ('PQRSTUVWXY')
*
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiL
*
C MOVEL(P) fix10 var5
* var5 = 'PQRST' (length=5)
C MOVEL(P) fix5 var10
* var10 = '..... ' (length=10)
C MOVEL(P) fix10 var15a
* var15a = 'PQRSTUVWXY ' (length=13)
C MOVEL(P) fix10 var15b
* var15b = 'PQR' (length=3)

Figure 355. MOVEL(P) from a fixed-length field to variable-length field

MOVEL (Move Left)

750 ILE RPG Reference

MULT (Multiply)

Free-Form Syntax (not allowed - use the * or *= operator)

Code Factor 1 Factor 2 Result Field Indicators

MULT (H) Multiplicand Multiplier Product + − Z

If factor 1 is specified, factor 1 is multiplied by factor 2 and the product is placed
in the result field. Be sure that the result field is large enough to hold it. Use the
following rule to determine the maximum result field length: result field length
equals the length of factor 1 plus the length of factor 2. If factor 1 is not specified,
factor 2 is multiplied by the result field and the product is placed in the result
field. Factor 1 and factor 2 must be numeric, and each can contain one of: an array,
array element, field, figurative constant, literal, named constant, subfield, or table
name. The result field must be numeric, but cannot be a named constant or literal.
You can specify half adjust to have the result rounded.

For further information on the MULT operation, see “Arithmetic Operations” on
page 434.

See Figure 172 on page 437 for examples of the MULT operation.

MULT (Multiply)

Chapter 22. Operation Codes 751

MVR (Move Remainder)

Free-Form Syntax (not allowed - use the %REM built-in function)

Code Factor 1 Factor 2 Result Field Indicators

MVR Remainder + − Z

The MVR operation moves the remainder from the previous DIV operation to a
separate field named in the result field. Factor 1 and factor 2 must be blank. The
MVR operation must immediately follow the DIV operation. If you use
conditioning indicators, ensure that the MVR operation is processed immediately
after the DIV operation. If the MVR operation is processed before the DIV
operation, undesirable results occur. The result field must be numeric and can
contain one of: an array, array element, subfield, or table name.

Leave sufficient room in the result field if the DIV operation uses factors with
decimal positions. The number of significant decimal positions is the greater of:
v The number of decimal positions in factor 1 of the previous divide operation
v The sum of the decimal positions in factor 2 and the result field of the previous

divide operation.

The sign (+ or -) of the remainder is the same as the dividend (factor 1).

You cannot specify half adjust on a DIV operation that is immediately followed by
an MVR operation.

The maximum number of whole number positions in the remainder is equal to the
whole number of positions in factor 2 of the previous divide operation.

The MVR operation cannot be used if the previous divide operation has an array
specified in the result field. Also, the MVR operation cannot be used if the
previous DIV operation has at least one float operand.

For further information on the MVR operation, see “Arithmetic Operations” on
page 434.

See Figure 172 on page 437 for an example of the MVR operation.

MVR (Move Remainder)

752 ILE RPG Reference

NEXT (Next)

Free-Form Syntax NEXT{(E)} program-device file-name

Code Factor 1 Factor 2 Result Field Indicators

NEXT (E) program-device file-name _ ER _

The NEXT operation code forces the next input for a multiple device file to come
from the program device specified by the program-device operand, providing the
input operation is a cycle read or a READ-by-file-name. Any read operation,
including CHAIN, EXFMT, READ, and READC, ends the effect of the previous
NEXT operation. If NEXT is specified more than once between input operations,
only the last operation is processed. The NEXT operation code can be used only
for a multiple device file.

For the program-device operand, enter the name of a 10-character field that contains
the program device name, a character literal, or named constant that is the
program device name. The file-name operand is the name of the multiple device
WORKSTN file for which the operation is requested.

To handle NEXT exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

For more information, see “File Operations” on page 453.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C
* Assume devices Dev1 and Dev2 are connected to the WORKSTN file
* DEVICEFILE. The first READ reads data from DEV1, the second READ
* reads data from DEV2. The NEXT operation will direct the program
* to wait for data from the device specified in factor 1 (i.e. DEV1)
* for the third READ.
C
C READ (E) Devicefile
C :
C READ (E) Devicefile
C :
C 'DEV1' NEXT
C :
C READ (E) Devicefile

Figure 356. NEXT Operations

NEXT (Next)

Chapter 22. Operation Codes 753

OCCUR (Set/Get Occurrence of a Data Structure)

Free-Form Syntax (not allowed - use the %OCCUR built-in function)

Code Factor 1 Factor 2 Result Field Indicators

OCCUR (E) Occurrence value Data structure Occurrence
value

_ ER _

The OCCUR operation code specifies the occurrence of the data structure that is to
be used next within an RPG IV program.

The OCCUR operation establishes which occurrence of a multiple occurrence data
structure is used next in a program. Only one occurrence can be used at a time. If
a data structure with multiple occurrences or a subfield of that data structure is
specified in an operation, the first occurrence of the data structure is used until an
OCCUR operation is specified. After an OCCUR operation is specified, the
occurrence of the data structure that was established by the OCCUR operation is
used.

Factor 1 is optional; if specified, it can contain a numeric, zero decimal position
literal, field name, named constant, or a data structure name. Factor 1 is used
during the OCCUR operation to set the occurrence of the data structure specified
in factor 2. If factor 1 is blank, the value of the current occurrence of the data
structure in factor 2 is placed in the result field during the OCCUR operation.

If factor 1 is a data structure name, it must be a multiple occurrence data structure.
The current occurrence of the data structure in factor 1 is used to set the
occurrence of the data structure in factor 2.

Factor 2 is required and must be the name of a multiple occurrence data structure.

The result field is optional; if specified, it must be a numeric field name with no
decimal positions. During the OCCUR operation, the value of the current
occurrence of the data structure specified in factor 2, after being set by any value
or data structure that is optionally specified in factor 1, is placed in the result field.

At least one of factor 1 or the result field must be specified.

If the occurrence is outside the valid range set for the data structure, an error
occurs, and the occurrence of the data structure in factor 2 remains the same as
before the OCCUR operation was processed.

To handle OCCUR exceptions (program status code 122), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

When a multiple-occurrence data structure is imported or exported, the
information about the current occurrence is not imported or exported. See the
“EXPORT{(external_name)}” on page 329 and “IMPORT{(external_name)}” on page
337 keywords for more information.

OCCUR (Set/Get Occurrence of a Data Structure)

754 ILE RPG Reference

FLDA FLDB FLDC FLDD

FLDA FLDB FLDC FLDD

FLDA FLDB

50th
Occurrence

49th
Occurrence FLDC FLDD

FLDA FLDB FLDC FLDD

FLDA

DS1 DS2

FLDCFLDB FLDD

3rd
Occurrence

2nd
Occurrence

1st
Occurrence

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
*
* DS1 and DS2 are multiple occurrence data structures.
* Each data structure has 50 occurrences.
D DS1 DS OCCURS(50)
D FLDA 1 5
D FLDB 6 80
*
D DS2 DS OCCURS(50)
D FLDC 1 6
D FLDD 7 11

Figure 357. Uses of the OCCUR Operation (Part 1 of 2)

OCCUR (Set/Get Occurrence of a Data Structure)

Chapter 22. Operation Codes 755

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* DS1 is set to the third occurrence. The subfields FLDA
* and FLDB of the third occurrence can now be used. The MOVE
* and Z-ADD operations change the contents of FLDA and FLDB,
* respectively, in the third occurrence of DS1.
C
C 3 OCCUR DS1
C MOVE 'ABCDE' FLDA
C Z-ADD 22 FLDB
*
* DS1 is set to the fourth occurrence. Using the values in
* FLDA and FLDB of the fourth occurrence of DS1, the MOVE
* operation places the contents of FLDA in the result field,
* FLDX, and the Z-ADD operation places the contents of FLDB
* in the result field, FLDY.
C
C 4 OCCUR DS1
C MOVE FLDA FLDX
C Z-ADD FLDB FLDY
*
* DS1 is set to the occurrence specified in field X.
* For example, if X = 10, DS1 is set to the tenth occurrence.
C X OCCUR DS1
*
* DS1 is set to the current occurrence of DS2. For example, if
* the current occurrence of DS2 is the twelfth occurrence, DSI
* is set to the twelfth occurrence.
C DS2 OCCUR DS1
*
* The value of the current occurrence of DS1 is placed in the
* result field, Z. Field Z must be numeric with zero decimal
* positions. For example, if the current occurrence of DS1
* is 15, field Z contains the value 15.
C OCCUR DS1 Z
C
* DS1 is set to the current occurrence of DS2. The value of the
* current occurrence of DS1 is then moved to the result field,
* Z. For example, if the current occurrence of DS2 is the fifth
* occurrence, DS1 is set to the fifth occurrence. The result
* field, Z, contains the value 5.
C
C DS2 OCCUR DS1 Z
*
* DS1 is set to the current occurrence of X. For example, if
* X = 15, DS1 is set to the fifteenth occurrence.
* If X is less than 1 or is greater than 50,
* an error occurs and %ERROR is set to return '1'.
* If %ERROR returns '1', the LR indicator is set on.
C
C X OCCUR (E) DS1
C IF %ERROR
C SETON LR
C ENDIF

Figure 357. Uses of the OCCUR Operation (Part 2 of 2)

OCCUR (Set/Get Occurrence of a Data Structure)

756 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
*
* Procedure P1 exports a multiple occurrence data structure.
* Since the information about the current occurrence is
* not exported, P1 can communicate this information to
* other procedures using parameters, but in this case it
* communicates this information by exporting the current
* occurrence.
*
D EXP_DS DS OCCURS(50) EXPORT
D FLDA 1 5
D NUM_OCCUR C %ELEM(EXP_DS)
D EXP_DS_CUR S 5P 0 EXPORT
*
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.
*
* Loop through the occurrences. For each occurrence, call
* procedure P2 to process the occurrence. Since the occurrence
* number EXP_DS_CUR is exported, P2 will know which occurrence
* to process.
*
C DO NUM_OCCUR EXP_DS_CUR
C EXP_DS_CUR OCCUR EXP_DS
C :
C CALLB 'P2'
C ENDDO
C :

Figure 358. Exporting a Multiple Occurrence DS (Part 1 of 2)

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
*
* Procedure P2 imports the multiple occurrence data structure.
* The current occurrence is also imported.
*
D EXP_DS DS OCCURS(50) IMPORT
D FLDA 1 5
D EXP_DS_CUR S 5P 0 IMPORT
*
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq.
*
* Set the imported multiple-occurrence data structure using
* the imported current occurrence.
*
C EXP_DS_CUR OCCUR EXP_DS
*
* Process the current occurrence.
C :

Figure 358. Exporting a Multiple Occurrence DS (Part 2 of 2)

OCCUR (Set/Get Occurrence of a Data Structure)

Chapter 22. Operation Codes 757

ON-ERROR (On Error)

Free-Form Syntax ON-ERROR {exception-id1 {:exception-id2...}}

Code Factor 1 Extended Factor 2

ON-ERROR List of exception IDs

You specify which error conditions the on-error block handles in the list of
exception IDs (exception-id1:exception-id2...). You can specify any combination of the
following, separated by colons:

nnnnn A status code

*PROGRAM Handles all program-error status codes, from 00100 to 00999

*FILE Handles all file-error status codes, from 01000 to 09999

*ALL Handles both program-error and file-error codes, from 00100 to
09999. This is the default.

Status codes outside the range of 00100 to 09999, for example codes from 0 to 99,
are not monitored for. You cannot specify these values for an on-error group. You
also cannot specify any status codes that are not valid for the particular version of
the compiler being used.

If the same status code is covered by more than one on-error group, only the first
one is used. For this reason, you should specify special values such as *ALL after
the specific status codes.

Any errors that occur within an on-error group are not handled by the monitor
group. To handle errors, you can specify a monitor group within an on-error
group.

When all the statements in an on-error block have been processed, control passes
to the statement following the ENDMON statement.

For an example of the ON-ERROR statement, see “MONITOR (Begin a Monitor
Group)” on page 718.

For more information, see “Error-Handling Operations” on page 452.

ON-ERROR (On Error)

758 ILE RPG Reference

OPEN (Open File for Processing)

Free-Form Syntax OPEN{(E)} file-name

Code Factor 1 Factor 2 Result Field Indicators

OPEN (E) file-name _ ER _

The explicit OPEN operation opens the file named in the file-name operand. The
file named cannot be designated as a primary, secondary, or table file.

To handle OPEN exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

To open the file specified in the file-name operand for the first time in a module or
subprocedure with an explicit OPEN operation, specify the USROPN keyword on
the file description specifications. (See Chapter 13, “File Description Specifications,”
on page 279 for restrictions when using the USROPN keyword.)

If a file is opened and later closed by the CLOSE operation in the module or
subprocedure, the programmer can reopen the file with the OPEN operation and
the USROPN keyword on the file description specification is not required. When
the USROPN keyword is not specified on the file description specification, the file
is opened at module initialization for global files, or subprocedure initialization for
local files. If an OPEN operation is specified for a file that is already open, an error
occurs.

Multiple OPEN operations in a program to the same file are valid as long as the
file is closed when the OPEN operation is issued to it.

When you open a file with the DEVID keyword specified (on the file description
specifications), the fieldname specified as a parameter on the DEVID keyword is
set to blanks. See the description of the DEVID keyword, in Chapter 13, “File
Description Specifications,” on page 279.

For more information, see “File Operations” on page 453.

OPEN (Open File for Processing)

Chapter 22. Operation Codes 759

#
#
#
#

#
#
#
#
#
#
#

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
F
FEXCEPTN O E DISK USROPN
FFILEX F E DISK
F
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++..
*
* The explicit OPEN operation opens the EXCEPTN file for
* processing if indicator 97 is on and indicator 98 is off.
* Note that the EXCEPTN file on the file description
* specifications has the USROPN keyword specified.
* %ERROR is set to return '1' if the OPEN operation fails.
*
C IF *in97 and not *in98
C OPEN(E) EXCEPTN
C IF not %ERROR
C WRITE ERREC
C ENDIF
C ENDIF
*
* FILEX is opened at program initialization. The explicit
* CLOSE operation closes FILEX before control is passed to RTNX.
* RTNX or another program can open and use FILEX. Upon return,
* the OPEN operation reopens the file. Because the USROPN
* keyword is not specified for FILEX, the file is opened at
* program initialization
*
C CLOSE FILEX
C CALL 'RTNX'
C OPEN FILEX

Figure 359. OPEN Operation with CLOSE Operation

OPEN (Open File for Processing)

760 ILE RPG Reference

ORxx (Or)

Free-Form Syntax (not allowed - use the OR operator)

Code Factor 1 Factor 2 Result Field Indicators

ORxx Comparand Comparand

The ORxx operation is optional with the DOUxx, DOWxx, IFxx, WHENxx, and
ANDxx operations. ORxx is specified immediately following a DOUxx, DOWxx,
IFxx, WHENxx, ANDxx or ORxx statement. Use ORxx to specify a more complex
condition for the DOUxx, DOWxx, IFxx, and WHENxx operations.

The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, an LR indicator, or an L0 entry to group the statement within
the appropriate section of the program. The control level entry must be the same
as the entry for the associated DOUxx, DOWxx, IFxx, or WHENxx operation.
Conditioning indicator entries (positions 9 through 11) are not allowed.

Factor 1 and factor 2 must contain a literal, a named constant, a figurative
constant, a table name, an array element, a data structure name, or a field name.
Factor 1 and factor 2 must be of the same type. The comparison of factor 1 and
factor 2 follows the same rules as those given for the compare operations. See
“Compare Operations” on page 445.

Figure 307 on page 662 shows an example of ORxx and ANDxx operations with a
DOUxx operation.

For more information, see “Structured Programming Operations” on page 469.

ORxx (Or)

Chapter 22. Operation Codes 761

OTHER (Otherwise Select)

Free-Form Syntax OTHER

Code Factor 1 Factor 2 Result Field Indicators

OTHER

The OTHER operation begins the sequence of operations to be processed if no
WHENxx or “WHEN (When True Then Select)” on page 843 condition is satisfied
in a SELECT group. The sequence ends with the ENDSL or END operation.

Rules to remember when using the OTHER operation:
v The OTHER operation is optional in a SELECT group.
v Only one OTHER operation can be specified in a SELECT group.
v No WHENxx or WHEN operation can be specified after an OTHER operation in

the same SELECT group.
v The sequence of calculation operations in the OTHER group can be empty; the

effect is the same as not specifying an OTHER statement.
v Within total calculations, the control level entry (positions 7 and 8) can be blank

or can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to
group the statement within the appropriate section of the program. The control
level entry is for documentation purposes only. Conditioning indicator entries
(positions 9 through 11) are not allowed.

For more information, see “Structured Programming Operations” on page 469.

OTHER (Otherwise Select)

762 ILE RPG Reference

For more details and examples, see the SELECT and WHENxx operations.

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Example of a SELECT group with WHENxx and OTHER. If X equals 1,
* do the operations in sequence 1; if X does not equal 1 and Y
* equals 2, do the operations in sequence 2. If neither
* condition is true, do the operations in sequence 3.
*
C SELECT
C X WHENEQ 1
*
* Sequence 1
*
C :
C :
C Y WHENEQ 2
*
* Sequence 2
*
C :
C :
C OTHER
*
* Sequence 3
*
C :
C :
C ENDSL

Figure 360. OTHER Operation

OTHER (Otherwise Select)

Chapter 22. Operation Codes 763

OUT (Write a Data Area)

Free-Form Syntax OUT{(E)} {*LOCK} data-area-name

Code Factor 1 Factor 2 Result Field Indicators

OUT (E) *LOCK data-area-name _ ER _

The OUT operation updates the data area specified in the data-area-name operand.
To specify a data area as the data-area-name operand of an OUT operation, you
must ensure two things:
v The data area must also be specified in the result field of a *DTAARA DEFINE

statement, or defined using the DTAARA keyword on the Definition
specification.

v The data area must have been locked previously by a *LOCK IN statement or it
must have been specified as a data area data structure by a U in position 23 of
the definition specifications. (The RPG IV language implicitly retrieves and locks
data area data structures at program initialization.)

You can specify the optional reserved word *LOCK. When *LOCK is specified, the
data area remains locked after it is updated. When *LOCK is not specified, the
data area is unlocked after it is updated.

*LOCK cannot be specified when the data-area-name operand is the name of the
local data area or the Program Initialization Parameters (PIP) data area.

The data-area-name operand must be either the name of the data area or the
reserved word *DTAARA. When *DTAARA is specified, all data areas defined in
the program are updated. If an error occurs when one or more data areas are
updated (for example, if you specify an OUT operation to a data area that has not
been locked by the program), an error occurs on the OUT operation and the RPG
IV exception/error handling routine receives control. If a message is issued to the
requester, the message identifies the data area in error.

To handle OUT exceptions (program status codes 401-421, 431, or 432), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “Program Exception/Errors” on page
96.

Positions 71-72 and 75-76 must be blank.

For further rules for the OUT operation, see “Data-Area Operations” on page 448.

See Figure 327 on page 702 for an example of the OUT operation.

OUT (Write a Data Area)

764 ILE RPG Reference

PARM (Identify Parameters)

Free-Form Syntax (not allowed - use “Prototypes and Parameters” on page 153 and CALLP)

Code Factor 1 Factor 2 Result Field Indicators

PARM Target field Source field Parameter

The declarative PARM operation defines the parameters that compose a parameter
list (PLIST). PARM operations can appear anywhere in calculations as long as they
immediately follow the PLIST, CALL, or CALLB operation they refer to. PARM
statements must be in the order expected by the called program or procedure. One
PARM statement, or as many as 255 for a CALL or 399 for a CALLB or PLIST are
allowed.

The PARM operation can be specified anywhere within calculations, including total
calculations. The control level entry (positions 7 and 8) can be blank or can contain
an L1 through L9 indicator, an LR indicator, or an L0 entry to group the statement
in the appropriate section of the program. Conditioning indicator entries (positions
9 through 11) are not allowed.

Factor 1 and factor 2 entries are optional. If specified, the entries must be the same
type as specified in the result field. If the target field is variable-length, its length
will be set to the length of the value of the source field. A literal or named constant
cannot be specified in factor 1. Factor 1 and factor 2 must be blank if the result
field contains the name of a multiple-occurrence data structure or *OMIT.

TIP
If parameter type-checking is important for the application, you should define
a prototype and procedure interface definition for the call interface, rather
than use the PLIST and PARM operations.

The result field must contain the name of a:
v For all PARM statements:

– Field
– Data structure
– Array

v For non-*ENTRY PLIST PARM statements it can also contain:
– Array element
– *OMIT (CALLB only)

The Result-Field entry of a PARM operation cannot contain:
v *IN, *INxx, *IN(xx)
v A literal
v A named constant
v A table name

In addition, the following are not allowed in the Result-Field entry of a PARM
operation in the *ENTRY PLIST:
v *OMIT

PARM (Identify Parameters)

Chapter 22. Operation Codes 765

v A globally initialized data structure
v A data structure with initialized subfields
v A data structure with a compile time array as a subfield
v Fields or data structures defined with the keywords BASED, IMPORT, or

EXPORT
v An array element
v A data-area name
v A data-area data structure name
v A data-structure subfield
v A compile-time array
v A program status (PSDS) or file information data structure (INFDS)

A field name can be specified only once in an *ENTRY PLIST.

If an array is specified in the result field, the area defined for the array is passed to
the called program or procedure. When a data structure with multiple occurrences
is passed to the called program or procedure, all occurrences of the data structure
are passed as a single field. However, if a subfield of a multiple occurrence data
structure is specified in the result field, only the current occurrence of the subfield
is passed to the called program or procedure.

Each parameter field has only one storage location; it is in the calling program or
procedure. The address of the storage location of the result field is passed to the
called program or procedure on a PARM operation. If the called program or
procedure changes the value of a parameter, it changes the data at that storage
location. When control returns to the calling program or procedure, the parameter
in the calling program or procedure (that is, the result field) has changed. Even if
the called program or procedure ends in error after it changes the value of a
parameter, the changed value exists in the calling program or procedure. To
preserve the information passed to the called program or procedure for later use,
specify in factor 2 the name of the field that contains the information you want to
pass to the called program or procedure. Factor 2 is copied into the result field,
and the storage address of the result field is passed to the called program or
procedure.

Because the parameter fields are accessed by address, not field name, the calling
and called parameters do not have to use the same field names for fields that are
passed. The attributes of the corresponding parameter fields in the calling and
called programs or procedures should be the same. If they are not, undesirable
results may occur.

When a CALL or CALLB operation runs, the following occurs:
1. In the calling procedure, the contents of the factor 2 field of a PARM operation

are copied into the result field (receiver field) of the same PARM operation.
2. In the case of a CALLB when the result field is *OMIT, a null address will be

passed to the called procedure.
3. In the called procedure, after it receives control and after any normal program

initialization, the contents of the result field of a PARM operation are copied
into the factor 1 field (receiver field) of the same PARM operation.

4. In the called procedure, when control is returned to the calling procedure, the
contents of the factor 2 field of a PARM operation are copied into the result

PARM (Identify Parameters)

766 ILE RPG Reference

field (receiver field) of the same PARM operation. This move does not occur if
the called procedure ends abnormally. The result of the move is unpredictable
if an error occurs on the move.

5. Upon return to the calling procedure, the contents of the result field of a PARM
operation in the calling procedure are copied into the factor 1 field (receiver
field) of the same PARM operation. This move does not occur if the called
procedure ends abnormally or if an error occurs on the call operation.

Note: The data is moved in the same way as data is moved using the EVAL
operation code. Strict type compatibility is enforced. For a discussion of how
to call and pass parameters to a program through CL, see the CL
Programming manual.

For more information, see “Call Operations” on page 440 or “Declarative
Operations” on page 452.

Figure 361 on page 769 illustrates the PARM operation.

PARM (Identify Parameters)

Chapter 22. Operation Codes 767

PLIST (Identify a Parameter List)

Free-Form Syntax (not allowed - use “Prototypes and Parameters” on page 153 and CALLP)

Code Factor 1 Factor 2 Result Field Indicators

PLIST PLIST name

The declarative PLIST operation defines a unique symbolic name for a parameter
list to be specified in a CALL or CALLB operation.

You can specify a PLIST operation anywhere within calculations, including within
total calculations and between subroutines. The control level entry (positions 7 and
8) can be blank or can contain an L1 through L9 indicator, an LR indicator, or an
L0 entry to group the statement in the appropriate section of the program. The
PLIST operation must be immediately followed by at least one PARM operation.
Conditioning indicator entries (positions 9 through 11) are not allowed.

Factor 1 must contain the name of the parameter list. If the parameter list is the
entry parameter list, factor 1 must contain *ENTRY. Only one *ENTRY parameter
list can be specified in a program or procedure. A parameter list is ended when an
operation other than PARM is encountered.

TIP
If parameter type-checking is important for the application, you should define
a prototype and procedure inter- face definition for the call interface, rather
than use the PLIST and PARM operations.

For more information, see “Call Operations” on page 440 or “Declarative
Operations” on page 452.

PLIST (Identify a Parameter List)

768 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In the calling program, the CALL operation calls PROG1 and
* allows PROG1 to access the data in the parameter list fields.
C CALL 'PROG1' PLIST1
*
* In the second PARM statement, when CALL is processed, the
* contents of factor 2, *IN27, are placed in the result field,
* BYTE. When PROG1 returns control, the contents of the result
* field, BYTE, are placed in the factor 1 field, *IN30. Note
* that factor 1 and factor 2 entries on a PARM are optional.
*
C PLIST1 PLIST
C PARM Amount 5 2
C *IN30 PARM *IN27 Byte 1
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C CALLB 'PROG2'
* In this example, the PARM operations immediately follow a
* CALLB operation instead of a PLIST operation.
C PARM Amount 5 2
C *IN30 PARM *IN27 Byte 1
*...1....+....2....+....3....+....4....+....5....+....6....+....7....+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* In the called procedure, PROG2, *ENTRY in factor 1 of the
* PLIST statement identifies it as the entry parameter list.
* When control transfers to PROG2, the contents of the result
* fields (FieldC and FieldG) of the parameter list are placed in
* the factor 1 fields (FieldA and FieldD). When the called procedure
* returns, the contents of the factor 2 fields of the parameter
* list (FieldB and FieldE) are placed in the result fields (FieldC
* and FieldG). All of the fields are defined elsewhere in the
* procedure.
C *ENTRY PLIST
C FieldA PARM FieldB FieldC
C FieldD PARM FieldE FieldG

Figure 361. PLIST/PARM Operations

PLIST (Identify a Parameter List)

Chapter 22. Operation Codes 769

POST (Post)

Free-Form Syntax POST{(E)} {program-device} file-name

Code Factor 1 Factor 2 Result Field Indicators

POST (E) program-device file-name INFDS name _ ER _

The POST operation puts information in an INFDS (file information data
structure). This information contains the following:
v File Feedback Information specific to RPG I/O for the file
v Open Feedback Information for the file
v Input/Output Feedback Information and Device Dependent Feedback

Information for the file OR Get Attribute Information

The program-device operand specifies a program device name to get information
about that specific program device. If you specify a program device, the file must
be defined as a WORKSTN file. If program-device is specified, then the INFDS will
contain Get Attribute Information following the Open Feedback Information. Use
either a character field of length 10 or less, a character literal, or a character named
constant. If program-device is not specified, then the INFDS will contain
Input/Output Feedback Information and Device Dependent Feedback Information
following the Open Feedback Information.

Specify the name of a file in the file-name operand. Information for this file is
posted in the INFDS associated with this file.

In free-form syntax, you must specify a file-name and cannot specify an INFDS
name. In traditional syntax, you can specify a file-name, an INFDS name, or both.
v If you do not specify an INFDS name, the INFDS associated with this file using

the INFDS keyword in the file specification will be used.
v If you do not specify an INFDS name in traditional syntax, you must specify the

data structure name that has been used in the INFDS keyword for the file
specification in the result field; information from the associated file in the file
specification will be posted.

To handle POST exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

Even when a POST operation code is not processed, its existence in your program
can affect the way the RPG IV language operates. The presence of a POST
operation with no program-device specified can affect the posting of feedback to
one or more files.
v The presence of a POST operation with no program-device specified for a file

defined on a global File specification will affect the implicit posting of feedback
to the INFDS for all global files in the module.

v The presence of a POST operation with no program-device specified for a global
file will have no effect on the implicit posting of feedback to the INFDS for files
defined in subprocedures.

POST (Post)

770 ILE RPG Reference

#
#
#
#

#
#
#

#
#
#

v The presence of a POST operation with no program-device specified for a
locally-defined file will only affect the implicit posting of feedback to the INFDS
for that file; it will have no effect for global files, or for other files defined in that
subprocedure.

v The implicit posting of feedback to the INFDS for a file that is passed as a
parameter is determined by the module in which the file is defined. A POST
operation with no program-device specified to a file parameter may be
redundant if the feedback information is always posted to that file’s INFDS.

v If a global file is passed as a parameter to another procedure in the same
module, and that procedure does a POST operation to its parameter, that POST
operation will not be considered to be a POST operation to a global file.

Usually, the INFDS is updated at each input and output operation or block of
operations. However, if the presence of a POST operation affects the posting of
feedback to the INFDS of a file, then RPG IV updates the I/O Feedback
Information area and the Device Dependent Feedback Information area in the
INFDS of the file only when you process a POST operation for the file. The File
Dependent Information in the INFDS is updated on all Input/Output operations. If
you have opened a file for multiple-member processing, the Open Feedback
Information in the INFDS will be updated when an input operation (READ,
READP, READE READPE) causes a new member to be opened.

Note that DUMP retrieves its information directly from the Open Data Path and
not from the INFDS, so the file information sections of the DUMP do not depend
on POST.

If a program has no POST operation code, or if it has only POST operation codes
with program-device specified, the Input/Output Feedback and Device Dependent
Feedback section is updated with each input/output operation or block of
operations. If RPG is blocking records, most of the information in the INFDS will
be valid only for the last complete block of records processed. When doing blocked
input, from a data base file, RPG will update the relative record number and key
information in the INFDS for each read, not just the last block of records
processed. If you require more accurate information, do not use record blocking.
See “File Information Data Structure” on page 79 for more information on record
blocking. If you do not require feedback information after every input/output
operation, you may be able to improve performance by using the POST operation
only when you require the feedback information.

When a POST operation is processed, the associated file must be open. If you
specify a program device on the POST operation, it does not have to be acquired
by the file.

For more information, see “File Operations” on page 453.

POST (Post)

Chapter 22. Operation Codes 771

#
#
#
#

#
#
#
#

#
#
#

#
#
#
#
#
#
#
#
#

READ (Read a Record)

Free-Form Syntax READ{(EN)} name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

READ (E N) name (file or record format) data-structure _ ER EOF

The READ operation reads the record, currently pointed to, from a full procedural
file (identified by an F in position 18 of the file description specifications).

The name operand is required and must be the name of a file or record format. A
record format name is allowed only with an externally described file (E in position
22 of the file description specifications). It may be the case that a
READ-by-format-name operation will receive a different format from the one you
specified in the name operand. If so, your READ operation ends in error.

If the data-structure operand is specified, the record is read directly into the data
structure. If name refers to a program-described file (identified by an F in position
22 of the file description specification), the data structure can be any data structure
of the same length as the file’s declared record length. If name refers to an
externally-described file or a record format from an externally described file, the
data structure must be a data structure defined with EXTNAME(...:*INPUT) or
LIKEREC(...:*INPUT). See “File Operations” on page 453 for information on how to
define the data structure and how data is transferred between the file and the data
structure.

If a READ operation is successful, the file is positioned at the next record that
satisfies the read. If there is a record-lock error (status 1218), the file is still
positioned at the locked record and the next read operation will attempt to read
that record again. Otherwise, if there is any other error or an end of file condition,
you must reposition the file (using a CHAIN, SETLL, or SETGT operation).

If the file from which you are reading is an update disk file, you can specify an N
operation extender to indicate that no lock should be placed on the record when it
is read. See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide
for more information.

To handle READ exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 to signal whether an end of file
occurred on the READ operation. The indicator is either set on (an EOF condition)
or off every time the READ operation is performed. This information can also be
obtained from the %EOF built-in function, which returns ’1’ if an EOF condition
occurs and ’0’ otherwise. The file must be repositioned after an EOF condition, in
order to process any further successful sequential operations (for example, READ
or READP) to the file.

Figure 362 on page 774 illustrates the READ operation.

When name specifies a multiple device file, the READ operation does one of the
following:

READ (Read a Record)

772 ILE RPG Reference

#
#
#
#
#

v Reads data from the device specified in the most recent NEXT operation (if such
a NEXT operation has been processed).

v Accepts the first response from any device that has been acquired for the file,
and that was specified for “invite status” with the DDS keyword INVITE. If
there are no invited devices, the operation receives an end of file. The input is
processed according to the corresponding format. If the device is a workstation,
the last format written to it is used. If the device is a communications device,
you can select the format.
Refer to ICF Programming, SC41-5442-00 for more information on format selection
processing for an ICF file.
The READ operation will stop waiting after a period of time in which no input
is provided, or when one of the following CL commands has been entered with
the controlled option specified:
– ENDJOB (End Job)
– ENDSBS (End Subsystem)
– PWRDWNSYS (Power Down System)
– ENDSYS (End System).
This results in a file exception/error that is handled by the method specified in
your program (see “File Exception/Errors” on page 79). See ICF Programming,
SC41-5442-00 for a discussion of the WAITRCD parameter on the commands to
create or modify a file. This parameter controls the length of time the READ
operation waits for input.

When name specifies a format name and the format name is associated with a
multiple device file, data is read from the device identified by the field specified in
the DEVID keyword in file specifications. If there is no such entry, data is read
from the device used in the last successful input operation.

See “Database Null Value Support” on page 219 for information on reading records
with null-capable fields.

For more information, see “File Operations” on page 453.

READ (Read a Record)

Chapter 22. Operation Codes 773

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* READ retrieves the next record from the file FILEA, which must
* be a full procedural file.
* %EOF is set to return '1' if an end of file occurs on READ,
* or if an end of file has occurred previously and the file
* has not been repositioned. When %EOF returns '1',
* the program will leave the loop.
*
C DOW '1'
C READ FILEA
C IF %EOF
C LEAVE
C ENDIF
*
* READ retrieves the next record of the type REC1 (factor 2)
* from an externally described file. (REC1 is a record format
* name.) Indicator 64 is set on if an end of file occurs on READ,
* or if it has occurred previously and the file has not been
* repositioned. When indicator 64 is set on, the program
* will leave the loop. The N operation code extender
* indicates that the record is not locked.
*
C READ(N) REC1 64
C 64 LEAVE
C ENDDO

Figure 362. READ Operation

READ (Read a Record)

774 ILE RPG Reference

READC (Read Next Changed Record)

Free-Form Syntax READC{(E)} record-name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

READC (E) record-name data structure _ ER EOF

The READC operation can be used only with an externally described WORKSTN
file to obtain the next changed record in a subfile. The record-name operand is
required and must be the name of a record format defined as a subfile by the
SFILE keyword on the file description specifications. (See
“SFILE(recformat:rrnfield)” on page 309 for information on the SFILE keyword.)

For a multiple device file, data is read from the subfile record associated with a
program device; the program device is identified by the field specified in the
DEVID keyword on the file specifications. If there is no such entry, data is read
from the program device used for the last successful input operation.

To handle READC exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 that will be set on when there are
no more changed records in the subfile. This information can also be obtained from
the %EOF built-in function, which returns ’1’ if there are no more changed records
in the subfile and ’0’ otherwise.

If the data-structure operand is specified, the record is read directly into the data
structure. The data structure must be a data structure defined with
EXTNAME(...:*INPUT) or LIKEREC(...:*INPUT). See “File Operations” on page 453
for information on how to define the data structure and how data is transferred
between the file and the data structure.

READC (Read Next Changed Record)

Chapter 22. Operation Codes 775

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
* CUSSCR is a WORKSTN file which displays a list of records from
* the CUSINFO file. SFCUSR is the subfile name.
*
FCUSINFO UF E DISK
FCUSSCR CF E WORKSTN SFILE(SFCUSR:RRN)
F
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* After the subfile has been loaded with the records from the
* CUSINFO file. It is written out to the screen using EXFMT with
* the subfile control record, CTLCUS. If there are any changes in
* any one of the records listed on the screen, the READC operation
* will read the changed records one by one in the do while loop.
* The corresponding record in the CUSINFO file will be located
* with the CHAIN operation and will be updated with the changed
* field.
C :
C EXFMT CTLCUS
C :
* SCUSNO, SCUSNAM, SCUSADR, and SCUSTEL are fields defined in the
* subfile. CUSNAM, CUSADR, and CUSTEL are fields defined in a
* record, CUSREC which is defined in the file CUSINFO.
*
C READC SFCUSR
C DOW %EOF = *OFF
C SCUSNO CHAIN (E) CUSINFO
* Update the record only if the record is found in the file.
C :
C IF NOT %ERROR
C EVAL CUSNAM = SCUSNAM
C EVAL CUSADR = SCUSADR
C EVAL CUSTEL = SCUSTEL
C UPDATE CUSREC
C ENDIF
C READC (E) SFCUSR
C ENDDO

Figure 363. READC example

READC (Read Next Changed Record)

776 ILE RPG Reference

READE (Read Equal Key)

Free-Form Syntax READE{(ENHMR)} search-arg|*KEY name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

READE (E N) search-arg name (file or record format) data-structure _ ER EOF

The READE operation retrieves the next sequential record from a full procedural
file (identified by an F in position 18 of the file description specifications) if the key
of the record matches the search argument. If the key of the record does not match
the search argument, an EOF condition occurs, and the record is not returned to
the program. An EOF condition also applies when end of file occurs.

The search argument, search-arg, identifies the record to be retrieved. The search-arg
operand is optional in traditional syntax but is required in free-form syntax.
search-arg can be:
v A field name, a literal, a named constant, or a figurative constant.
v A KLIST name for an externally described file.
v A list of key values enclosed in parentheses. See Figure 289 on page 635 for an

example of searching using a list of key values.
v %KDS to indicate that the search arguments are the subfields of a data structure.

See the example at the end of “%KDS (Search Arguments in Data Structure)” on
page 546 for an illustration of search arguments in a data structure.

v *KEY or (in traditional syntax only) no value. If the full key of the next record is
equal to that of the current record, the next record in the file is retrieved. The
full key is defined by the record format or file specified in name.

Note: Note: If a file is defined as update and the N operation extender is not
specified, occasionally a READE operation will be forced to wait for a
temporary record lock for a record whose key value does not match the
search argument. Once the temporary lock has been obtained, if the key
value does not match the search argument, the temporary lock is released.

In most cases, RPG can perform READE by using system support that does
not require obtaining a temporary record lock to determine whether there is
a matching record. However, in other cases, RPG cannot use this support,
and must request the next record before it can determine whether the record
matches the READE request.

Some of the reasons that would require RPG to obtain a temporary lock on
the next record for a READE operation are:
v the key of the current record is not the same as the search argument
v the current record is not the same as the requested record
v there are null-capable fields in the file
v the file has end-of-file delay

Note:

Graphic and UCS-2 keys must have the same CCSID.

READE (Read Equal Key)

Chapter 22. Operation Codes 777

The name operand must be the name of the file or record format to be retrieved. A
record format name is allowed only with an externally described file (identified by
an E in position 22 of the file description specifications).

If the data-structure operand is specified, the record is read directly into the data
structure. If name refers to a program-described file (identified by an F in position
22 of the file description specification), the data structure can be any data structure
of the same length as the file’s declared record length. If name refers to an
externally-described file or a record format from an externally described file, the
data structure must be a data structure defined with EXTNAME(...:*INPUT) or
LIKEREC(...:*INPUT). See “File Operations” on page 453 for information on how to
define the data structure and how data is transferred between the file and the data
structure.

If the file you are reading is an update disk file, you can specify an N operation
extender to indicate that no lock should be placed on the record when it is read.
See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide for more
information.

To handle READE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 that will be set on if an EOF
condition occurs: that is, if a record is not found with a key equal to the search
argument or if an end of file is encountered. This information can also be obtained
from the %EOF built-in function, which returns ’1’ if an EOF condition occurs and
’0’ otherwise.

If a READE operation is successful, the file is positioned at the next record that
satisfies the operation. If there is a record-lock error (status 1218), the file is still
positioned at the locked record and the next read operation will attempt to read
that record again. Otherwise, if there is any other error or an end of file condition,
you must reposition the file (using a CHAIN, SETLL, or SETGT operation). See
“CHAIN (Random Retrieval from a File)” on page 633, “SETGT (Set Greater
Than)” on page 804, or “SETLL (Set Lower Limit)” on page 808.

Normally, the comparison between the specified key and the actual key in the file
is done by data management. In some cases this is impossible, causing the
comparison to be done using the hexadecimal collating sequence. This can give
different results than expected. For more information, see the section ″Unexpected
Results Using Keyed Files″ in IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

A READE with the search-arg operand specified that immediately follows an OPEN
operation or an EOF condition retrieves the first record in the file if the key of the
record matches the search argument. A READE with no search-arg specified that
immediately follows an OPEN operation or an EOF condition results in an error
condition. The error indicator in positions 73 and 74, if specified, is set on or the
’E’ extender, checked with %ERROR, if specified, is set on. No further I/O
operations can be issued against the file until it is successfully closed and
reopened.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

READE (Read Equal Key)

778 ILE RPG Reference

#
#
#
#
#
#
#

For more information, see “File Operations” on page 453.

Note: Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* With Factor 1 Specified...
*
* The READE operation retrieves the next record from the file
* FILEA and compares its key to the search argument, KEYFLD.
*
* The %EOF built-in function is set to return '1' if KEYFLD is
* not equal to the key of the record read or if end of file
* is encountered.
*
C KEYFLD READE FILEA
*
* The READE operation retrieves the next record of the type REC1
* from an externally described file and compares the key of the
* record read to the search argument, KEYFLD. (REC1 is a record
* format name.) Indicator 56 is set on if KEYFLD is not equal to
* the key of the record read or if end of file is encountered.
C KEYFLD READE REC1 56
*
* With No Factor 1 Specified...
*
* The READE operation retrieves the next record in the access
* path from the file FILEA if the key value is equal to
* the key value of the record at the current cursor position.
*
* If the key values are not equal, %EOF is set to return '1'.
C READE FILEA
*
* The READE operation retrieves the next record in the access
* path from the file FILEA if the key value equals the key value
* of the record at the current position. REC1 is a record format
* name. Indicator 56 is set on if the key values are unequal.
* N indicates that the record is not locked.
C READE(N) REC1 56

Figure 364. READE Operation

READE (Read Equal Key)

Chapter 22. Operation Codes 779

READP (Read Prior Record)

Free-Form Syntax READP{(EN)} name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

READP (E N) name (file or record format) data-structure _ ER BOF

The READP operation reads the prior record from a full procedural file (identified
by an F in position 18 of the file description specifications).

The name operand must be the name of a file or record format to be read. A record
format name is allowed only with an externally described file. If a record format
name is specified in name, the record retrieved is the first prior record of the
specified type. Intervening records are bypassed.

If the data-structure operand is specified, the record is read directly into the data
structure. If name refers to a program-described file (identified by an F in position
22 of the file description specification), the data structure can be any data structure
of the same length as the file’s declared record length. If name refers to an
externally-described file or a record format from an externally described file, the
data structure must be a data structure defined with EXTNAME(...:*INPUT) or
LIKEREC(...:*INPUT). See “File Operations” on page 453 for information on how to
define the data structure and how data is transferred between the file and the data
structure.

If a READP operation is successful, the file is positioned at the previous record
that satisfies the read.

If the file from which you are reading is an update disk file, you can specify an N
operation extender to indicate that no lock should be placed on the record when it
is read. See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide
for more information.

To handle READP exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 that will be set on when no prior
records exist in the file (beginning of file condition). This information can also be
obtained from the %EOF built-in function, which returns ’1’ if a BOF condition
occurs and ’0’ otherwise.

If there is a record-lock error (status 1218), the file is still positioned at the locked
record and the next read operation will attempt to read that record again.
Otherwise, if there is any other error or a beginning of file condition, you must
reposition the file (using a CHAIN, SETLL, or SETGT operation).

See “Database Null Value Support” on page 219 for information on reading records
with null-capable fields.

For more information, see “File Operations” on page 453.

READP (Read Prior Record)

780 ILE RPG Reference

#
#
#
#

Figure 365 shows READP operations with a file name and record format name
specified in factor 2.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The READP operation reads the prior record from FILEA.
*
* The %EOF built-in function is set to return '1' if beginning
* of file is encountered. When %EOF returns '1', the program
* branches to the label BOF specified in the GOTO operation.
C READP FILEA
C IF %EOF
C GOTO BOF
C ENDIF
*
* The READP operation reads the next prior record of the type
* REC1 from an externally described file. (REC1 is a record
* format name.) Indicator 72 is set on if beginning of file is
* encountered during processing of the READP operation. When
* indicator 72 is set on, the program branches to the label BOF
* specified in the GOTO operation.
C READP PREC1 72
C 72 GOTO BOF
*
C BOF TAG

Figure 365. READP Operation

READP (Read Prior Record)

Chapter 22. Operation Codes 781

READPE (Read Prior Equal)

Free-Form Syntax READPE{(ENHMR)} search-arg|*KEY name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

READPE (E N) search-arg name (file or record format) data-structure _ ER BOF

The READPE operation retrieves the next prior sequential record from a full
procedural file if the key of the record matches the search argument. If the key of
the record does not match the search argument, a BOF condition occurs, and the
record is not returned to the program. A BOF condition also applies when
beginning of file occurs.

The search argument, search-arg, identifies the record to be retrieved. The search-arg
operand is optional in traditional syntax but required in free-form syntax. search-arg
can be:
v A field name, a literal, a named constant, or a figurative constant.
v A KLIST name for an externally described file.
v A list of key values enclosed in parentheses. See Figure 289 on page 635 for an

example of searching using a list of key values.
v %KDS to indicate that the search arguments are the subfields of a data structure.

See the example at the end of “%KDS (Search Arguments in Data Structure)” on
page 546 for an illustration of search arguments in a data structure.

v *KEY or (in traditional syntax only) no value. If the full key of the next prior
record is equal to that of the current record, the next prior record in the file is
retrieved. The full key is defined by the record format or file used in factor 2.

Graphic and UCS-2 keys must have the same CCSID.

The name operand must be the name of the file or record format to be retrieved. A
record format name is allowed only with an externally described file (identified by
an E in position 22 of the file description specifications).

If the data-structure operand is specified, the record is read directly into the data
structure. If name refers to a program-described file (identified by an F in position
22 of the file description specification), the data structure can be any data structure
of the same length as the file’s declared record length. If name refers to an
externally-described file or a record format from an externally described file, the
data structure must be a data structure defined with EXTNAME(...:*INPUT) or
LIKEREC(...:*INPUT). See “File Operations” on page 453 for information on how to
define the data structure and how data is transferred between the file and the data
structure.

If the file from which you are reading is an update disk file, you can specify an N
operation extender to indicate that no lock should be placed on the record when it
is read. See the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide
for more information.

To handle READPE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

READPE (Read Prior Equal)

782 ILE RPG Reference

You can specify an indicator in positions 75-76 that will be set on if a BOF
condition occurs: that is, if a record is not found with a key equal to the search
argument or if a beginning of file is encountered. This information can also be
obtained from the %EOF built-in function, which returns ’1’ if a BOF condition
occurs and ’0’ otherwise.

If there is a record-lock error (status 1218), the file is still positioned at the locked
record and the next read operation will attempt to read that record again.
Otherwise, if there is any other error or a beginning of file condition, you must
reposition the file (using a CHAIN, SETLL, or SETGT operation). See “CHAIN
(Random Retrieval from a File)” on page 633, “SETGT (Set Greater Than)” on page
804, or “SETLL (Set Lower Limit)” on page 808.

Note: Note: If a file is defined as update and the N operation extender is not
specified , occasionally a READPE operation will be forced to wait for a
temporary record lock for a record whose key value does not match the
search argument. Once the temporary lock has been obtained, if the key
value does not match the search argument, the temporary lock is released.

In most cases, RPG can perform READPE by using system support that does
not require obtaining a temporary record lock to determine whether there is
a matching record. However, in other cases, RPG cannot use this support,
and must request the next record before it can determine whether the record
matches the READPE request.

Some of the reasons that would require RPG to obtain a temporary lock on
the next record for a READPE operation are:
v the key of the current record is not the same as the search argument
v the current record is not the same as the requested record
v there are null-capable fields in the file
v the file has end-of-file delay

Normally, the comparison between the specified key and the actual key in the file
is done by data management. In some cases this is impossible, causing the
comparison to be done using the hexadecimal collating sequence. This can give
different results than expected. For more information, see the section ″Unexpected
Results Using Keyed Files″ in IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

A READPE with the search-arg operand specified that immediately follows an
OPEN operation or a BOF condition returns BOF. A READPE with no search-arg
specified that immediately follows an OPEN operation or a BOF condition results
in an error condition. The error indicator in positions 73 and 74, if specified, is set
on or the ’E’ extender, checked with %ERROR, if specified, is set on. The file must
be repositioned using a CHAIN, SETLL, READ, READE or READP with search-arg
specified, prior to issuing a READPE operation with factor 1 blank. A SETGT
operation code should not be used to position the file prior to issuing a READPE
(with no search-arg specified) as this results in a record-not-found condition
(because the record previous to the current record never has the same key as the
current record after a SETGT is issued). If search-arg is specified with the same key
for both operation codes, then this error condition will not occur.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

READPE (Read Prior Equal)

Chapter 22. Operation Codes 783

#
#
#
#
#
#

For more information, see “File Operations” on page 453.

Note: Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* With Factor 1 Specified...
*
* The previous record is read and the key compared to FieldA.
* Indicator 99 is set on if the record's key does not match
* FieldA.
C FieldA READPE FileA 99
*
* The previous record is read from FileB and the key compared
* to FieldB. The record is placed in data structure Ds1. If
* the record key does not match FieldB, indicator 99 is set on.
C FieldB READPE FileB Ds1 99
*
* The previous record from record format RecA is read, and
* the key compared to FieldC. Indicator 88 is set on if the
* operation is not completed successfully, and 99 is set on if
* the record key does not match FieldC.
C FieldC READPE RecA 8899
*
* With No Factor 1 Specified...
*
* The previous record in the access path is retrieved if its
* key value equals the key value of the current record.
* Indicator 99 is set on if the key values are not equal.
C READPE FileA 99
*
* The previous record is retrieved from FileB if its key value
* matches the key value of the record at the current position
* in the file. The record is placed in data structure Ds1.
* Indicator 99 is set on if the key values are not equal.
C READPE FileB Ds1 99
*
* The previous record from record format RecA is retrieved if
* its key value matches the key value of the current record in
* the access path. Indicator 88 is set on if the operation is
* not successful; 99 is set on if the key values are unequal.
C READPE RecA 8899

Figure 366. READPE Operation

READPE (Read Prior Equal)

784 ILE RPG Reference

REALLOC (Reallocate Storage with New Length)

Free-Form Syntax (not allowed - use the %REALLOC built-in function)

Code Factor 1 Factor 2 Result Field Indicators

REALLOC (E) Length Pointer _ ER _

The REALLOC operation changes the length of the heap storage pointed to by the
result-field pointer to the length specified in factor 2. The result field of REALLOC
contains a basing pointer variable. The result field pointer must contain the value
previously set by a heap-storage allocation operation (either an ALLOC or
REALLOC operation in RPG or some other heap-storage function such as
CEEGTST). It is not sufficient to simply point to heap storage; the pointer must be
set to the beginning of an allocation.

New storage is allocated of the specified size and the value of the old storage is
copied to the new storage. Then the old storage is deallocated. If the new length is
shorter, the value is truncated on the right. If the new length is longer, the new
storage to the right of the copied data is uninitialized.

The result field pointer is set to point to the new storage.

If the operation does not succeed, an error condition occurs, but the result field
pointer will not be changed. If the original pointer was valid and the operation
failed because there was insufficient new storage available (status 425), the original
storage is not deallocated, so the result field pointer is still valid with its original
value.

If the pointer is valid but it does not point to storage that can be deallocated, then
status 426 (error in storage management operation) will be set.

To handle exceptions with program status codes 425 or 426, either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

Factor 2 contains a numeric variable or constant that indicates the new size of the
storage (in bytes) to be allocated. Factor 2 must be numeric with zero decimal
positions. The value must be between 1 and the maximum size allowed.

The maximum size allowed depends on the type of heap storage used for memory
management operations due to the ALLOC keyword on the Control specification.
If it is known at compile time that the module uses the teraspace storage model for
memory management operations, the maximum size allowed is 4294967295 bytes.
Otherwise, the maximum size allowed is 16776704 bytes.

The maximum size available at runtime may be less than the maximum size
allowed by RPG.

When RPG memory management operations for the module are using single-level
heap storage due to the ALLOC keyword on the Control specification, the
REALLOC operation can only handle pointers to single-level heap storage. When
RPG memory management operations for the module are using teraspace heap
storage, the REALLOC operation can handle pointers to both single-level and
teraspace heap storage.

REALLOC (Reallocate Storage with New Length)

Chapter 22. Operation Codes 785

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

For more information, see “Memory Management Operations” on page 458.

D Ptr1 S *
D Fld S 32767A BASED(Ptr1)
* The ALLOC operation allocates 7 bytes to the pointer Ptr1.
* After the ALLOC operation, only the first 7 bytes of variable
* Fld can be used.
C ALLOC 7 Ptr1
C EVAL %SUBST(Fld : 1 : 7) = '1234567'
C REALLOC 10 Ptr1
* Now 10 bytes of Fld can be used.
C EVAL %SUBST(Fld : 1 : 10) = '123456789A'

Figure 367. REALLOC Operation

REALLOC (Reallocate Storage with New Length)

786 ILE RPG Reference

REL (Release)

Free-Form Syntax REL{(E)} program-device file-name

Code Factor 1 Factor 2 Result Field Indicators

REL (E) program-device file-name _ ER _

The REL operation releases the program device specified in program-device from the
WORKSTN file specified in file-name.

Specify the program device name in the program-device operand. Use either a
character field of length 10 or less, a character literal, or a named constant. Specify
the file name in file-name operand.

To handle REL exceptions (file status codes greater than 1000), either the operation
code extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “File Exception/Errors” on page 79.

When there are no program devices acquired to a WORKSTN file, the next
READ-by-file-name or cycle-read gets an end-of-file condition. You must decide
what the program does next. The REL operation may be used with a multiple
device file or, for error recovery purpose, with a single device file.

Note: To release a record lock, use the UNLOCK operation. See the UNLOCK
operation for more information about releasing record locks for update disk
files.

For more information, see “File Operations” on page 453.

REL (Release)

Chapter 22. Operation Codes 787

RESET (Reset)

Free-Form Syntax RESET{(E)} {*NOKEY} {*ALL} name

Code Factor 1 Factor 2 Result Field Indicators

RESET (E) *NOKEY *ALL name (variable
or record
format)

_ ER _

The RESET operation is used to restore a variable to the value held at the end of
the *INIT phase. This value is called the reset value. If there is no *INZSR
subroutine, the reset value is the same as the initial value (either the value
specified by the “INZ{(initial value)}” on page 338, or the default value). If there is
a *INZSR subroutine, the reset value is the value the variable holds when the
*INZSR subroutine has completed.

The RESET operation can also be used to restore all the fields in a record format to
their reset values.

See Figure 8 on page 33 for more information on the *INIT phase.

Note: For local variables in subprocedures, the reset value is the value of the
variable when the subprocedure is first called, but before the calculations
begin.

To handle RESET exceptions (program status code 123), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

For more information, see “Initialization Operations” on page 457.

Resetting Variables
*ALL is optional. If *ALL is specified and the name operand is a multiple
occurrence data structure or a table name, all occurrences or table elements are
reset and the occurrence level or table index is set to 1.

The name operand specifies the variable to be reset. The particular value for this
operand determines the reset action as follows:

Single occurrence data structure
All fields are reset in the order in which they are declared within the
structure.

Multiple-occurrence data structure
If *ALL is not specified, then all fields in the current occurrence are reset. If
*ALL is specified, then all fields in all occurrences are reset.

Table name
If *ALL is not specified, then the current table element is reset. If *ALL is
specified, then all table elements are reset.

Array name
Entire array is reset

Array element (including indicators)
Only the element specified is reset.

RESET (Reset)

788 ILE RPG Reference

Resetting Record Formats
*NOKEY is optional. If *NOKEY is specified, then key fields are not reset to their
reset values.

*ALL is optional. If *ALL is specified and *NOKEY is not, all fields in the record
format are reset. If *ALL is not specified, only those fields that are output in that
record format are affected. If *NOKEY is specified, then key fields are not reset,
even if *ALL is specified.

The result field contains the record format to be reset. For WORKSTN file record
formats (positions 36-42 on a file-description specification), if *ALL is not specified,
only those fields with a usage of output or both are affected. All field-conditioning
indicators of the record format are affected by the operation. When the RESET
operation is applied to a record format name, and INDARA has been specified in
the DDS, the indicators in the record format are not reset.

Fields in DISK, SEQ, or PRINTER file record formats are affected only if the record
format is output in the program. Input-only fields are not affected by the RESET
operation, except when *ALL is specified.

A RESET operation of a record format with *ALL specified is not valid when:
v A field is defined externally as input-only, and the record was not used for

input.
v A field is defined externally as output-only, and the record was not used for

output.
v A field is defined externally as both input and output capable, and the record

was not used for either input or output.

Note: Input-only fields in logical files will appear in the output specifications,
although they are not actually written to the file. When a CLEAR or RESET
without *ALL specified is done to a record containing these fields, then
these fields will be cleared or reset because they appear in the output
specifications.

Additional Considerations
Keep in mind the following when coding a RESET operation:
v RESET is not allowed for based variables and IMPORTed variables, or for

parameters in a subprocedure.
v The RESET operation results in an increase in the amount of storage required by

the program. For any variable that is reset, the storage requirement is doubled.
Note that for multiple occurrence data structures, tables and arrays, the reset
value of every occurrence or element is saved.

v If a RESET occurs during the initialization routine of the program, an error
message will be issued at run time. If a GOTO or CABxx is used to leave
subroutine calculations during processing of the *INZSR, or if control passes to
another part of the cycle as the result of error processing, the part of the
initialization step which initializes the save areas will never be reached. In this
case, an error message will be issued for all RESET operations in the program at
run time.

v A RESET operation within a subprocedure to a global variable or structure is
valid in the following circumstances:
– If there is no *INZSR, it is always valid

RESET (Reset)

Chapter 22. Operation Codes 789

– If there is a *INZSR, it is not valid until the *INZSR has completed at least
once. After that, it is always valid, even if the cycle-main procedure is not
active.

v Performing a RESET operation on a parameter of a *ENTRY PLIST that does not
get passed when the program is called may cause unpredictable results. An
alternative would be to save the parameter value into a variable defined LIKE
the parameter if the value returned by %PARMS() indicates that the parameter is
passed.

Attention!
When the RESET values are saved, a pointer-not-set error will occur if the
following are all true in a cycle module:
v There is no *INZSR
v An entry parameter to the cycle-main procedure is RESET anywhere in the

module
v A subprocedure is called before the cycle-main procedure has ever been

called

For more information, see “CLEAR (Clear)” on page 642.

RESET Examples
Except for the actual operation performed on the fields, the considerations shown
in the following examples also apply to the CLEAR operation. Figure 368 on page
791 shows an example of the RESET operation with *NOKEY.

RESET (Reset)

790 ILE RPG Reference

#
#
#

#
#
#
#
#

#
#

#

#
#

#
#

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
EXTFILE O E DISK
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++++
* The file EXTFILE contains one record format RECFMT containing
* the character fields CHAR1 and CHAR2 and the numeric fields
* NUM1 and NUM2. It has keyfields CHAR2 and NUM1.
D
D DS1 DS
D DAY1 1 8 INZ('MONDAY')
D DAY2 9 16 INZ('THURSDAY')
D JDATE 17 22
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq...
*
* The following operation sets DAY1, DAY2, and JDATE to blanks.
C
C CLEAR DS1
C
* The following operation will set DAY1, DAY2, and JDATE to their
* reset values of 'MONDAY', 'THURSDAY', and UDATE respectively.
* The reset value of UDATE for JDATE is set in the *INZSR.
C
C RESET DS1
C
* The following operation will set CHAR1 and CHAR2 to blanks and
* NUM1 and NUM2 to zero.
C CLEAR RECFMT
* The following operation will set CHAR1, CHAR2, NUM1, and
* NUM2 to their reset values of 'NAME', 'ADDRESS', 1, and 2
* respectively. These reset values are set in the *INZSR.
*
C RESET RECFMT
* The following operation sets all fields in the record format
* to blanks, except the key fields CHAR2 and NUM1.
*
C *NOKEY RESET *ALL RECFMT
C RETURN
C
C *INZSR BEGSR
C MOVEL UDATE JDATE
C MOVEL 'NAME ' CHAR1
C MOVEL 'ADDRESS ' CHAR2
C Z-ADD 1 NUM1
C Z-ADD 2 NUM2
C ENDSR
ORCDNAME+++D...N01N02N03EXCNAM++++..
O..............N01N02N03FIELD+++++++++.B..................................
ORECFMT T
O CHAR1
O CHAR2
O NUM1
O NUM2

Figure 368. RESET Operation with *NOKEY

RESET (Reset)

Chapter 22. Operation Codes 791

Figure 370 on page 793 shows an excerpt of a source listing for a program that
uses two externally described files, RESETIB and RESETON. Each has two record
formats, and each record format contains an input field FLDIN, an output field
FLDOUT, and a field FLDBOTH, that is input-output capable. The DDS are shown
in Figure 371 on page 794 and Figure 372 on page 794.

Because RESETIB is defined as a combined file, the fields for RECBOTH, which are
defined as input-output capable, are available on both input and output
specifications. On the other hand, the fields for RECIN are on input specifications
only.

A R RECFMT
A CHAR1 10A
A CHAR2 10A
A NUM1 5P 0
A NUM2 7S 2

Figure 369. DDS for EXTFILE

RESET (Reset)

792 ILE RPG Reference

When the source is compiled, several errors are identified. Both RECNONE and
RECIN are identified as having no output fields. The RESET *ALL is disallowed
for all but the RECBOTH record, since it is the only record format for which all
fields appear on either input or output specifications.

1 * The file RESETIB contains 2 record formats RECIN and RECBOTH.
2 FRESETIB CF E WORKSTN
3 * The file RESETON contains 2 record formats RECOUT and RECNONE.
4 FRESETON O E WORKSTN
5
6=IRECIN
7=I A 1 1 *IN02
8=I A 2 11 FLDIN
9=I A 12 21 FLDBOTH
10=IRECBOTH
11=I A 1 1 *IN04
12=I A 2 11 FLDIN
13=I A 12 21 FLDBOTH
14 C WRITE RECOUT
15 C WRITE RECBOTH
16 C READ RECIN ----99
17 C READ RECBOTH ----99
18
19 * RESET without factor 2 means to reset only those fields which
20 * appear on the output specifications for the record format.
21 * Since only RECOUT and RECBOTH have write operations, the
22 * RESET operations for RECNONE and RECIN will have no effect.
23 * The RESET operations for RECOUT and RECBOTH will reset fields
24 * FLDOUT and FLDBOTH. FLDIN will not be affected.
25 C RESET RECNONE
26 C RESET RECIN
27 C RESET RECOUT
28 C RESET RECBOTH
29
30 * RESET with *ALL in factor 2 means to reset all fields. Note
31 * that this can only be done when all fields are used in at least
32 * one of the ways they are defined (for example, an output-capable
33 * field must be used for output by the record format)
34 * Since RECNONE does not have either input or output operations,
35 * the RESET *ALL for RECNONE will fail at compile time.
36 * Since RECIN does not have any output operations, RESET *ALL RECIN
37 * will fail because FLDOUT is not output.
38 * Since RECOUT does not have any input operations, and is not defined
39 * as input capable on the file specification, RESET *ALL RECOUT
40 * will fail because FLDIN is not input.
41 * The RESET *ALL for RECBOTH will reset all fields: FLDIN, FLDOUT
42 * and FLDBOTH.
43 C RESET *ALL RECNONE
44 C RESET *ALL RECIN
45 C RESET *ALL RECOUT
46 C RESET *ALL RECBOTH
47
48 C SETON LR----
49=ORECBOTH
50=O *IN14 1A CHAR 1
51=O FLDOUT 11A CHAR 10
52=O FLDBOTH 21A CHAR 10
53=ORECOUT
54=O *IN13 1A CHAR 1
55=O FLDOUT 11A CHAR 10
56=O FLDBOTH 21A CHAR 10

Figure 370. RESET with *ALL – Source Listing Excerpt. The input and output specifications
with ’=’ after the listing line number are generated by the compiler.

RESET (Reset)

Chapter 22. Operation Codes 793

A R RECIN CF02(02)
A FLDIN 10A I 2 2
A FLDOUT 10A O 3 2
A 12 FLDBOTH 10A B 4 2
A R RECBOTH CF04(04)
A FLDIN 10A I 2 2
A FLDOUT 10A O 3 2
A 14 FLDBOTH 10A B 4 2

Figure 371. DDS for RESETIB

A R RECNONE CF01(01)
A FLDIN 10A I 2 2
A FLDOUT 10A O 3 2
A 11 FLDBOTH 10A B 4 2
A R RECOUT CF03(03)
A FLDIN 10A I 2 2
A FLDOUT 10A O 3 2
A 13 FLDBOTH 10A B 4 2

Figure 372. DDS for RESETON

RESET (Reset)

794 ILE RPG Reference

RETURN (Return to Caller)

Free-Form Syntax RETURN{(HMR)} expression

Code Factor 1 Extended Factor 2

RETURN (H
M/R)

expression

The RETURN operation causes a return to the caller. If a value is returned to the
caller, the return value is specified in the expression operand.

The actions which occur as a result of the RETURN operation differ depending on
whether the operation is in a cycle-main procedure or subprocedure. When a
cycle-main procedure returns, the following occurs:
1. The halt indicators are checked. If a halt indicator is on, the procedure ends

abnormally. (All open files are closed, an error return code is set to indicate to
the calling routine that the procedure has ended abnormally, and control
returns to the calling routine.)

2. If no halt indicators are on, the LR indicator is checked. If LR is on, the
program ends normally. (Locked data area structures, arrays, and tables are
written, and external indicators are reset.)

3. If no halt indicator is on and LR is not on, the procedure returns to the calling
routine. Data is preserved for the next time the procedure is run. Files and data
areas are not written out. See the chapter on calling programs and procedures
in the IBM Rational Development Studio for i: ILE RPG Programmer’s Guide for
information on how running in a *NEW activation group affects the operation
of RETURN.

When a subprocedure returns, the return value, if specified on the prototype of the
called program or procedure, is passed to the caller. Automatic files are closed.
Nothing else occurs automatically. All static or global files and data areas must be
closed manually. You can set on indicators such as LR, but this will not cause
program termination to occur.

For information on how operation extenders H, M, and R are used, see “Precision
Rules for Numeric Operations” on page 486.

In a subprocedure that returns a value, a RETURN operation must be coded within
the subprocedure. The actual returned value has the same role as the left-hand side
of the EVAL expression, while the extended factor 2 of the RETURN operation has
the same role as the right-hand side. An array may be returned only if the
prototype has defined the return value as an array.

Attention!
If the subprocedure returns a value, you should ensure that a RETURN
operation is performed before reaching the end of the procedure. If the
subprocedure ends without encountering a RETURN operation, an exception
is signalled to the caller.

RETURN (Return to Caller)

Chapter 22. Operation Codes 795

#
#

|
|
|
|
|

Performance tip
Specifying the RTNPARM keyword on your prototype may significantly
improve the performance for returning large values. See “RTNPARM” on
page 363 for more information.

For more information, see “Call Operations” on page 440.

* This is the prototype for subprocedure RETNONE. Since the
* prototype specification does not have a data type, this
* subprocedure does not return a value.
D RetNone PR
* This is the prototype for subprocedure RETFLD. Since the
* prototype specification has the type 5P 2, this subprocedure
* returns a packed value with 5 digits and 2 decimals.
* The subprocedure has a 5-digit integer parameter, PARM,
* passed by reference.
D RetFld PR 5P 2
D Parm 5I 0
* This is the prototype for subprocedure RETARR. The data
* type entries for the prototype specification show that
* this subprocedure returns a date array with 3 elements.
* The dates are in *YMD/ format.
D RetArr PR D DIM(3) DATFMT(*YMD/)
* This procedure (P) specification indicates the beginning of
* subprocedure RETNONE. The data specification (D) specification
* immediately following is the procedure-interface
* specification for this subprocedure. Note that the
* procedure interface is the same as the prototype except for
* the definition type (PI vs PR).
P RetNone B
D RetNone PI
* RetNone does not return a value, so the RETURN
* operation does not have factor 2 specified.
C RETURN
P RetNone E
* The following 3 specifications contain the beginning of
* the subprocedure RETFLD as well as its procedure interface.
P RetFld B
D RetFld PI 5P 2
D Parm 5I 0
D Fld S 12S 1 INZ(13.8)
* RetFld returns a numeric value. The following RETURN
* operations show returning a literal, an expression and a
* variable. Note that the variable is not exactly the same
* format or length as the actual return value.
C RETURN 7
C RETURN Parm * 15
C RETURN Fld
P RetFld E

Figure 373. Examples of the RETURN Operation (Part 1 of 2)

RETURN (Return to Caller)

796 ILE RPG Reference

|
|
|

* The following 3 specifications contain the beginning of the
* subprocedure RETARR as well as its procedure interface.
P RetArr B
D RetArr PI D DIM(3)
D SmallArr S D DIM(2) DATFMT(*ISO)
D BigArr S D DIM(4) DATFMT(*USA)
* RetArr returns a date array. Note that the date
* format of the value specified on the RETURN operation
* does not have to be the same as the defined return
* value.
* The following RETURN operation specifies a literal.
* The caller receives an array with the value of the
* literal in every element of the array.
C RETURN D'1995-06-27'
* The following return operation returns an array
* with a smaller dimension than the actual return value.
* In this case, the third element would be set to the
* default value for the array.
C RETURN SmallArr
* The following return operation returns an array
* with a larger dimension than the actual return
* value. In this case, the fourth element of BigArr
* would be ignored.
C RETURN BigArr
P RetArr E

Figure 373. Examples of the RETURN Operation (Part 2 of 2)

RETURN (Return to Caller)

Chapter 22. Operation Codes 797

ROLBK (Roll Back)

Free-Form Syntax ROLBK{(E)}

Code Factor 1 Factor 2 Result Field Indicators

ROLBK (E) _ ER _

The ROLBK operation:
v Eliminates all the changes to your files that have been specified in output

operations since the previous COMMIT or ROLBK operation (or since the
beginning of operations under commitment control if there has been no previous
COMMIT or ROLBK operation).

v Releases all the record locks for the files you have under commitment control.
v Repositions the file to its position at the time of the previous COMMIT

operation (or at the time of the file OPEN, if there has been no previous
COMMIT operation.)

Commitment control starts when the CL command STRCMTCTL is executed. See
the chapter on “Commitment Control” in the IBM Rational Development Studio for i:
ILE RPG Programmer’s Guide for more information.

The file changes and the record-lock releases apply to all the files under
commitment control in your activation group or job, whether the changes have
been requested by the program issuing the ROLBK operation or by another
program in the same activation group or job. The program issuing the ROLBK
operation does not need to have any files under commitment control. For example,
suppose program A calls program B and program C. Program B has files under
commitment control, and program C does not. A ROLBK operation in program C
still affects the files changed by program B.

To handle ROLBK exceptions (program status codes 802 to 805), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “Program Exception/Errors” on page
96.

For information on how the rollback function is performed by the system, refer to
Recovering your system, SC41-5304-10.

For more information, see “File Operations” on page 453.

ROLBK (Roll Back)

798 ILE RPG Reference

SCAN (Scan String)

Free-Form Syntax (not allowed - use the %SCAN built-in function)

Code Factor 1 Factor 2 Result Field Indicators

SCAN (E) Compare string:length Base string:start Left-most
position

_ ER FD

The SCAN operation scans a string (base string) contained in factor 2 for a
substring (compare string) contained in factor 1. The scan begins at a specified
location contained in factor 2 and continues for the length of the compare string
which is specified in factor 1. The compare string and base string must both be of
the same type, either both character, both graphic, or both UCS-2.

Factor 1 must contain either the compare string or the compare string, followed by
a colon, followed by the length. The compare string portion of factor 1 can contain
one of: a field name, array element, named constant, data structure name, literal, or
table name. The length portion must be numeric with no decimal positions and can
contain one of: a named constant, array element, field name, literal, or table name.
If no length is specified, it is that of the compare string.

Factor 2 must contain either the base string or the base string, followed by a colon,
followed by the start location of the SCAN. The base string portion of factor 2 can
contain one of: a field name, array element, named constant, data structure name,
literal, or table name. The start location portion of factor 2 must be numeric with
no decimal positions and can be a named constant, array element, field name,
literal, or table name. If graphic or UCS-2 strings are used, the start position and
length are measured in double bytes. If no start location is specified, a value of 1 is
used.

The result field contains the numeric value of the leftmost position of the compare
string in the base string, if found. It must be numeric with no decimal positions
and can contain one of: a field name, array element, array name, or table name.
The result field is set to 0 if the string is not found. If the result field contains an
array, each occurrence of the compare string is placed in the array with the
leftmost occurrence in element 1. The array elements following the element
containing the rightmost occurrence are all zero. The result array should be as
large as the field length of the base string specified in factor 2.

Notes:

1. The strings are indexed from position 1.
2. If the start position is greater than 1, the result field contains the position of the

compare string relative to the beginning of the source string, not relative to the
start position.

3. Figurative constants cannot be used in the factor 1, factor 2, or result fields.
4. No overlapping within data structures is allowed for factor 1 and the result

field or factor 2 and the result field.

To handle SCAN exceptions (program status code 100), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. An error
occurs if the start position is greater than the length of factor 2 or if the value of
factor 1 is too large. For more information on error handling, see “Program
Exception/Errors” on page 96.

SCAN (Scan String)

Chapter 22. Operation Codes 799

You can specify an indicator in positions 75-76 that is set on if the string being
scanned for is found. This information can also be obtained from the %FOUND
built-in function, which returns ’1’ if a match is found.

The SCAN begins at the leftmost character of factor 2 (as specified by the start
location) and continues character by character, from left to right, comparing the
characters in factor 2 to those in factor 1. If the result field is not an array, the
SCAN operation will locate only the first occurrence of the compare string. To
continue scanning beyond the first occurrence, use the result field from the
previous SCAN operation to calculate the starting position of the next SCAN. If the
result field is a numeric array, as many occurrences as there are elements in the
array are noted. If no occurrences are found, the result field is set to zero; if the
result field is an array, all its elements are set to zero.

Leading, trailing, or embedded blanks specified in the compare string are included
in the SCAN operation.

The SCAN operation is case-sensitive. A compare string specified in lowercase will
not be found in a base string specified in uppercase.

For more information, see “String Operations” on page 467.

SCAN (Scan String)

800 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The SCAN operation finds the substring 'ABC' starting in
* position 3 in factor 2; 3 is placed in the result field.
* Indicator 90 is set on because the string is found. Because
* no starting position is specified, the default of 1 is used.
C 'ABC' SCAN 'XCABCD' RESULT 90
*
* This SCAN operation scans the string in factor 2 for an
* occurrence of the string in factor 1 starting at position 3.
* The 'Y' in position 1 of the base string is ignored because
* the scan operation starts from position 3.
* The operation places the values 5 and 6 in the first and
* second elements of the array. Indicator 90 is set on.
C
C MOVE 'YARRYY' FIELD1 6
C MOVE 'Y' FIELD2 1
C FIELD2 SCAN FIELD1:3 ARRAY 90
*
* This SCAN operation scans the string in factor 2, starting
* at position 2, for an occurrence of the string in factor 1
* for a length of 4. Because 'TOOL' is not found in FIELD1,
* INT is set to zero and indicator 90 is set off.
C
C MOVE 'TESTING' FIELD1 7
C Z-ADD 2 X 1 0
C MOVEL 'TOOL' FIELD2 5
C FIELD2:4 SCAN FIELD1:X INT90 20
C
*
* The SCAN operation is searching for a name. When the name
* is found, %FOUND returns '1' so HandleLine is called.
C SrchName SCAN Line
C IF %FOUND
C EXSR HandleLine
C ENDIF

Figure 374. SCAN Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++
*
* A Graphic SCAN example
*
* Value of Graffld is graphic 'AACCBBGG'.
* Value of Number after the scan is 3 as the 3rd graphic
* character matches the value in factor 1
D Graffld S 4G inz(G'oAACCBBGGi')
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
* The SCAN operation scans the graphic string in factor 2 for
* an occurrence of the graphic literal in factor 1. As this is a
* graphic operation, the SCAN will operate on 2 bytes at a time
C
C G'oBBi' SCAN Graffld:2 Number 5 0 90
C

Figure 375. SCAN Operation using graphic

SCAN (Scan String)

Chapter 22. Operation Codes 801

SELECT (Begin a Select Group)

Free-Form Syntax SELECT

Code Factor 1 Factor 2 Result Field Indicators

SELECT

The select group conditionally processes one of several alternative sequences of
operations. It consists of:
v A SELECT statement
v Zero or more WHENxx or WHEN groups
v An optional OTHER group
v ENDSL or END statement.

After the SELECT operation, control passes to the statement following the first
WHENxx condition that is satisfied. All statements are then executed until the next
WHENxx operation. Control passes to the ENDSL statement (only one WHENxx is
executed). If no WHENxx condition is satisfied and an OTHER operation is
specified, control passes to the statement following the OTHER operation. If no
WHENxx condition is satisfied and no OTHER operation is specified, control
transfers to the statement following the ENDSL operation of the select group.

Conditioning indicators can be used on the SELECT operation. If they are not
satisfied, control passes immediately to the statement following the ENDSL
operation of the select group. Conditioning indicators cannot be used on WHENxx,
WHEN, OTHER and ENDSL operation individually.

The select group can be specified anywhere in calculations. It can be nested within
IF, DO, or other select groups. The IF and DO groups can be nested within select
groups.

If a SELECT operation is specified inside a select group, the WHENxx and OTHER
operations apply to the new select group until an ENDSL is specified.

For more information, see “Structured Programming Operations” on page 469.

SELECT (Begin a Select Group)

802 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* In the following example, if X equals 1, do the operations in
* sequence 1 (note that no END operation is needed before the
* next WHENxx); if X does NOT equal 1, and if Y=2 and X<10, do the
* operations in sequence 2. If neither condition is true, do
* the operations in sequence 3.
*
C SELECT
C WHEN X = 1
C Z-ADD A B
C MOVE C D
* Sequence 1
C :
C WHEN ((Y = 2) AND (X < 10))
* Sequence 2
C :
C OTHER
* Sequence 3
C :
C ENDSL
*
* The following example shows a select group with conditioning
* indicators. After the CHAIN operation, if indicator 10 is on,
* then control passes to the ADD operation. If indicator 10 is
* off, then the select group is processed.
*
C KEY CHAIN FILE 10
C N10 SELECT
C WHEN X = 1
* Sequence 1
C :
C WHEN Y = 2
* Sequence 2
C :
C ENDSL
C ADD 1 N

Figure 376. SELECT Operation

SELECT (Begin a Select Group)

Chapter 22. Operation Codes 803

SETGT (Set Greater Than)

Free-Form Syntax SETGT{(EHMR)} search-arg name

Code Factor 1 Factor 2 Result Field Indicators

SETGT (E) search-arg name (file or record format) NR ER _

The SETGT operation positions a file at the next record with a key or relative
record number that is greater than the key or relative record number specified in
factor 1. The file must be a full procedural file (identified by an F in position 18 of
the file description specifications).

The search argument, search-arg, must be the key or relative record number used to
retrieve the record. If access is by key, search-arg can be a a single key in the form
of a field name, a named constant, a figurative constant, or a literal. See Figure 289
on page 635 for an example of searching key fields.

If the file is an externally-described file, search-arg can also be a composite key in
the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields
must have the same CCSID as the key in the file. See the example at the end of
“%KDS (Search Arguments in Data Structure)” on page 546 for an illustration of
search arguments in a data structure. If access is by relative record number,
search-arg must be an integer literal or a numeric field with zero decimal positions.

The name operand is required and must be either a file name or a record format
name. A record format name is allowed only with an externally described file.

You can specify an indicator in positions 71-72 that is set on if no record is found
with a key or relative record number that is greater than the search argument
specified (search-arg). This information can also be obtained from the %FOUND
built-in function, which returns ’0’ if no record is found, and ’1’ if a record is
found..

To handle SETGT exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

If the SETGT operation is not successful (no-record-found condition), the file is
positioned to the end of the file.

Figurative constants can also be used to position the file.

Note: The discussion and examples of using figurative constants which follow,
assume that *LOVAL and *HIVAL are not used as actual keys in the file.

When used with a file with a composite key, figurative constants are treated as
though each field of the key contained the figurative constant value. In most cases,
*LOVAL positions the file so that the first read retrieves the record with the lowest
key. In most cases, *HIVAL positions the file so that a READ receives an end-of-file
indication; a subsequent READP retrieves the last record in the file. However, note
the following cases for using *LOVAL and *HIVAL:
v With an externally described file that has a key in descending order, *HIVAL

positions the file so that the first read operation retrieves the first record in the

SETGT (Set Greater Than)

804 ILE RPG Reference

file (the record with the highest key), and *LOVAL positions the file so that a
READP operation retrieves the last record in the file (the record with the lowest
key).

v If a record is added or a key field is altered after a SETGT operation with either
*LOVAL or *HIVAL, the file may no longer be positioned to the record with the
lowest or highest key. key value X‘99...9D’ and *HIVAL for numeric keys
represents a key value X‘99...9F’. If the keys are float numeric, *LOVAL and
*HIVAL are defined differently. See “Figurative Constants” on page 134. When a
program described file has a packed decimal key specified in the file
specifications but the actual file key field contains character data, records may
have keys that are less than *LOVAL or greater than *HIVAL. When a key field
contains unsigned binary data, *LOVAL may not be the lowest key.

When *LOVAL or *HIVAL are used with key fields with a Date or Time data type,
the values are dependent of the Date-Time format used. For details on these values
please see Chapter 9, “Data Types and Data Formats,” on page 179.

Following the SETGT operation, a file is positioned so that it is immediately before
the first record whose key or relative record number is greater than the search
argument specified (search-arg). You retrieve this record by reading the file. Before
you read the file, however, records may be deleted from the file by another job or
through another file in your job. Thus, you may not get the record you expected.
For information on preventing unexpected modification of your files, see the
discussion of allocating objects in the iSeries Information Center Programming
topic at URL http://www.ibm.com/systems/i/infocenter/.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

For more information, see “File Operations” on page 453.

Note: Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

SETGT (Set Greater Than)

Chapter 22. Operation Codes 805

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* This example shows how to position the file so READ will read
* the next record. The search argument, KEY, specified for the
* SETGT operation has a value of 98; therefore, SETGT positions
* the file before the first record of file format FILEA that
* has a key field value greater than 98. The file is positioned
* before the first record with a key value of 100. The READ
* operation reads the record that has a value of 100 in its key
* field.
C
C KEY SETGT FILEA
C READ FILEA 64
*
* This example shows how to read the last record of a group of
* records with the same key value and format from a program
* described file. The search argument, KEY, specified for the
* SETGT operation positions the file before the first record of
* file FILEB that has a key field value greater than 70.
* The file is positioned before the first record with a key
* value of 80. The READP operation reads the last record that
* has a value of 70 in its key field.
C
C KEY SETGT FILEB
C READP FILEB 64

Figure 377. SETGT Operation (Part 1 of 4)

Key Field
Values

Key Field
Values

97 50

97 70

97 60

97 70

98 80

100 80

100 80

100 90

101 90

101 91

(SETGT)

(SETGT)FILEA FILEB

(READ)

(READ)

Figure 377. SETGT Operation (Part 2 of 4)

SETGT (Set Greater Than)

806 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* This example shows the use of *LOVAL. The SETLL operation
* positions the file before the first record of a file in
* ascending order. The READ operation reads the first record
* (key value 97).
C
C *LOVAL SETLL RECDA
C READ RECDA 64
C
* This example shows the use of *HIVAL. The SETGT operation
* positions the file after the last record of a file in ascending
* order. The READP operation reads the last record (key value 91).
C
C *HIVAL SETGT RECDB
C READP RECDB 64

Figure 377. SETGT Operation (Part 3 of 4)

Key Field
Values

Key Field
Values

97 50

97 70

97 60

97 70

98 80

100 80

100 80

100 90

101 90

101 91

(SETLL)

(SETGT)

RECDA
Record
Format

RECDB
Record
Format

(READ)

(READP)

Figure 377. SETGT Operation (Part 4 of 4)

SETGT (Set Greater Than)

Chapter 22. Operation Codes 807

SETLL (Set Lower Limit)

Free-Form Syntax SETLL{(EHMR)} search-arg name

Code Factor 1 Factor 2 Result Field Indicators

SETLL (E) search-arg name (file or record format) NR ER EQ

The SETLL operation positions a file at the next record that has a key or relative
record number that is greater than or equal to the search argument (key or relative
record number) operand specified (search-arg). The file must be a full procedural
file (identified by an F in position 18 of the file description specifications).

The search argument, search-arg, must be the key or relative record number used to
retrieve the record. If access is by key, search-arg can be a a single key in the form
of a field name, a named constant, a figurative constant, or a literal. See Figure 289
on page 635 for an example of searching key fields.

If the file is an externally-described file, search-arg can also be a composite key in
the form of a KLIST name, a list of values, or %KDS. Graphic and UCS-2 key fields
must have the same CCSID as the key in the file. See the example at the end of
“%KDS (Search Arguments in Data Structure)” on page 546 for an illustration of
search arguments in a data structure. If access is by relative record number,
search-arg must be an integer literal or a numeric field with zero decimal positions.

The name operand is required and can contain either a file name or a record format
name. A record format name is allowed only with an externally described file.

The resulting indicators reflect the status of the operation. You can specify an
indicator in positions 71-72 that is set on when the search argument is greater than
the highest key or relative record number in the file. This information can also be
obtained from the %FOUND built-in function, which returns ’0’ if no record is
found, and ’1’ if a record is found.

To handle SETLL exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 that is set on when a record is
present whose key or relative record number is equal to the search argument. This
information can also be obtained from the %EQUAL built-in function, which
returns ’1’ if an exact match is found.

When using SETLL with an indicator in positions 75 and 76 or with %EQUAL, the
comparison between the specified key and the actual key in the file is normally
done by data management. In some cases this is impossible, causing the
comparison to be done using the hexadecimal collating sequence. This can give
different results than expected. For more information, see the section ″Unexpected
Results Using Keyed Files″ in IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

If name is a file name for which the lower limit is to be set, the file is positioned at
the first record with a key or relative record number equal to or greater than the
search argument specified (search-arg).

SETLL (Set Lower Limit)

808 ILE RPG Reference

If name is a record format name for which the lower limit is to be set, the file is
positioned at the first record of the specified type that has a key equal to or greater
than the search argument specified (search-arg).

Figurative constants can be used to position the file.

Note: The discussion and examples of using figurative constants which follow,
assume that *LOVAL and *HIVAL are not used as actual keys in the file.

When used with a file with a composite key, figurative constants are treated as
though each field of the key contained the figurative constant value. Using SETLL
with *LOVAL positions the file so that the first read retrieves the record with the
lowest key. In most cases (when duplicate keys are not allowed), *HIVAL positions
the file so that a READP retrieves the last record in the file, or a READ receives an
end-of-file indication. However, note the following cases for using *LOVAL and
*HIVAL:
v With an externally described file that has a key in descending order, *HIVAL

positions the file so that the first read operation retrieves the first record in the
file (the record with the highest key), and *LOVAL positions the file so that a
READP operation retrieves the last record in the file (the record with the lowest
key).

v If a record is added or a key field altered after a SETLL operation with either
*LOVAL or *HIVAL, the file may no longer be positioned to the record with the
lowest or highest key.

v *LOVAL for numeric keys represents a key value X‘99...9D’ and *HIVAL
represents a key value X‘99...9F’. If the keys are float numeric, *HIVAL and
*LOVAL are defined differently. See “Figurative Constants” on page 134. When a
program described file has a packed decimal key specified in the file
specifications but the actual file key field contains character data, records may
have keys that are less than *LOVAL or greater than *HIVAL. When a key field
contains unsigned binary data, *LOVAL may not be the lowest key.

When *LOVAL or *HIVAL are used with key fields with a Date or Time data type,
the values are dependent of the Date-Time format used. For details on these values
please see Chapter 9, “Data Types and Data Formats,” on page 179.

You can use the special values *START and *END for search-arg. *START positions
to the beginning of the file and *END positions to the end of the file. Both
positionings are independent of the collating sequence used for keyed files. If you
specify either *START or *END for search-arg, note the following:
v The name of the file must be specified as the name operand.
v Either an error indicator (positions 73-74) or the ’E’ extender may be specified.

Figure 377 on page 806 (part 3 of 4)shows the use of figurative constants with the
SETGT operation. Figurative constants are used the same way with the SETLL
operation.

Remember the following when using the SETLL operation:
v If the SETLL operation is not successful (no records found condition), the file is

positioned to the end of the file.
v When end of file is reached on a file being processed by SETLL, another SETLL

can be issued to reposition the file.
v After a SETLL operation successfully positions the file at a record, you retrieve

this record by reading the file. Before you read the file, however, records may be

SETLL (Set Lower Limit)

Chapter 22. Operation Codes 809

|

deleted from the file by another job or through another file in your job. Thus,
you may not get the record you expected. Even if the %EQUAL built-in function
is also set on or the resulting indicator in positions 75 and 76 is set on to
indicate you found a matching record, you may not get that record. For
information on preventing unexpected modification of your files, see the
discussion of allocating objects in the iSeries Information Center Programming
topic at URL http://www.ibm.com/systems/i/infocenter/..

v SETLL does not cause the system to access a data record. If you are only
interested in verifying that a key actually exists, SETLL with an equal indicator
(positions 75-76) or the %EQUAL built-in function is a better performing
solution than the CHAIN operation in most cases. Under special cases of a
multiple format logical file with sparse keys, CHAIN can be a faster solution
than SETLL.

See “Database Null Value Support” on page 219 for information on handling
records with null-capable fields and keys.

For more information, see “File Operations” on page 453.

Note: Operation code extenders H, M, and R are allowed only when the search
argument is a list or is %KDS().

In the following example, the file ORDFIL contains order records. The key field is
the order number (ORDER) field. There are multiple records for each order.
ORDFIL looks like this in the calculation specifications:

SETLL (Set Lower Limit)

810 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* All the 101 records in ORDFIL are to be printed. The value 101
* has previously been placed in ORDER. The SETLL operation
* positions the file at the first record with the key value 101
* and %EQUAL will return '1'.
C
C ORDER SETLL ORDFIL
C
* The following DO loop processes all the records that have the
* same key value.
C
C IF %EQUAL
C DOU %EOF
C ORDER READE ORDFIL
C IF NOT %EOF
C EXCEPT DETAIL
C ENDIF
C ENDDO
C ENDIF
C
* The READE operation reads the second, third, and fourth 101
* records in the same manner as the first 101 record was read.
* After the fourth 101 record is read, the READE operation is
* attempted. Because the 102 record is not of the same group,
* %EOF will return '1', the EXCEPT operation is bypassed, and
* the DOU loop ends.

100

100

100

101

101

101

101

102

ORDER

(SETLL)

Other Fields

ORDFIL

1st record of 100

2nd record of 100

3rd record of 100

1st record of 101

2nd record of 101

3rd record of 101

4th record of 101

1st record of 102

Figure 378. SETLL Operation

SETLL (Set Lower Limit)

Chapter 22. Operation Codes 811

SETOFF (Set Indicator Off)

Free-Form Syntax (not allowed - use EVAL *INxx = *OFF)

Code Factor 1 Factor 2 Result Field Indicators

SETOFF OF OF OF

The SETOFF operation sets off any indicators specified in positions 71 through 76.
You must specify at least one resulting indicator in positions 71 through 76. Entries
of 1P and MR are not valid. Setting off L1 through L9 indicators does not
automatically set off any lower control-level indicators.

Figure 379 on page 813 illustrates the SETOFF operation.

For more information, see “Indicator-Setting Operations” on page 456.

SETOFF (Set Indicator Off)

812 ILE RPG Reference

SETON (Set Indicator On)

Free-Form Syntax (not allowed - use EVAL *INxx = *ON)

Code Factor 1 Factor 2 Result Field Indicators

SETON ON ON ON

The SETON operation sets on any indicators specified in positions 71 through 76.
You must specify at least one resulting indicator in positions 71 through 76. Entries
of 1P, MR, KA through KN, and KP through KY are not valid. Setting on L1
through L9 indicators does not automatically set on any lower control-level
indicators.

For more information, see “Indicator-Setting Operations” on page 456.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The SETON and SETOFF operations set from one to three indicators
* specified in positions 71 through 76 on and off.
* The SETON operation sets indicator 17 on.
C
C SETON 17
C
* The SETON operation sets indicators 17 and 18 on.
C
C SETON 1718
C
* The SETOFF operation sets indicator 21 off.
C
C SETOFF 21

Figure 379. SETON and SETOFF Operations

SETON (Set Indicator On)

Chapter 22. Operation Codes 813

SHTDN (Shut Down)

Free-Form Syntax (not allowed - use the %SHUT built-in function)

Code Factor 1 Factor 2 Result Field Indicators

SHTDN ON _ _

The SHTDN operation allows the programmer to determine whether the system
operator has requested shutdown. If the system operator has requested shutdown,
the resulting indicator specified in positions 71 and 72 is set on. Positions 71 and
72 must contain one of the following indicators: 01 through 99, L1 through L9, U1
through U8, H1 through H9, LR, or RT.

The system operator can request shutdown by specifying the *CNTRLD option on
the following CL commands: ENDJOB (End Job), PWRDWNSYS (Power Down
System), ENDSYS (End System), and ENDSBS (End Subsystem). For information
on these commands, see the iSeries Information Center programming category.

Positions 73 through 76 must be blank.

For more information, see “Information Operations” on page 457.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* When the SHTDN operation is run, a test is made to determine
* whether the system operator has requested shutdown. If so,
* indicator 27 is set on.
C
C SHTDN 27
C 27 EXSR Term_appl
C :
C :
C Term_appl BEGSR
C CLOSE *ALL
C :
C ENDSR

Figure 380. SHTDN Operation

SHTDN (Shut Down)

814 ILE RPG Reference

SORTA (Sort an Array)

Free-Form Syntax SORTA{(A/D)} array-name | keyed-ds-array

SORTA{(A/D)} %SUBARR(array-name | keyed-ds-array: start-element { :
number-of-elements })

Code Factor 1 Extended Factor 2

SORTA(A/D) Array or keyed-ds-array

%SUBARR(Array or keyed-ds-array : start-element
{:number-of-elements})

For a scalar array, the array-name operand is the name of an array to be sorted. The
array *IN cannot be specified. If the array is defined as a compile-time or
prerun-time array with data in alternating form, the alternate array is not sorted.
Only the array specified as array-name is sorted.

For an array data structure, the keyed-ds-array operand is a qualified name
consisting of the array to be sorted followed by the subfield to be used as a key for
the sort. The array data structure to be sorted is indicated by specifying * as the
index for the array. For example, if array data structure INFO has subfields NAME
and SALARY, then to sort array INFO using subfield NAME as a key, specify
INFO(*).NAME as the operand for SORTA. To sort the INFO array by SALARY,
specify INFO(*).SALARY as the operand for SORTA.

If the sequence for the array is defined by the ASCEND or DESCEND keyword on
the definition specification for the array, then the array is always sorted in that
sequence. If no sequence is specified for the array, then the sequence defaults to
ascending sequence. If the ’A’ operation extender is specified, then the array is
sorted in ascending sequence. If the ’D’ operation extender is specified, then the
array is sorted in descending sequence.

Note: The ASCEND and DESCEND keywords cannot be specified for an array
data structure.

If the array is defined with the OVERLAY keyword and the ’A’ or ’D’ operation
extender is not specified, the base array will be sorted in the sequence defined by
the OVERLAY array.

Graphic and UCS-2 arrays will be sorted by the hexadecimal values of the array
elements, disregarding the alternate collating sequence, in the order specified on
the definition specification.

To sort a portion of an array, use the %SUBARR built-in function.

Notes:

1. Sorting an array does not preserve any previous order. For example, if you sort
an array twice, using different overlay arrays, the final sequence will be that of
the last sort. Elements that are equal in the sort sequence but have different
hexadecimal values (for example, due to alternate collating sequence or the use
of an overlay array to determine sequence), may not be in the same order after
sorting as they were before.

SORTA (Sort an Array)

Chapter 22. Operation Codes 815

|||

|
|
|

||||

|||

|||
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

2. When sorting arrays of basing pointers, you must ensure that all values in the
arrays are addresses within the same space. Otherwise, inconsistent results may
occur. See “Compare Operations” on page 445 for more information.

3. If a null-capable array is sorted, the sorting will not take the settings of the null
flags into consideration.

4. Sorting a dynamically allocated array without all defined elements allocated
may cause errors to occur. Use the %SUBARR built-in function to limit the sort
to only the allocated elements.

5. The ’A’ operation extender is not allowed when sorting an array that is defined
with the DESCEND keyword and the ’D’ operation extender is not allowed
when sorting an array that is defined with the ASCEND keyword.

6. When sorting an array data structure:
a. The part of the qualified name preceding the (*) index must represent an

array, and the part of the qualified name after the (*) must represent a scalar
subfield or an indexed scalar array.

b. If there is more than one array subfield in a complex qualified name, only
one array subfield can be sorted. All other arrays in the qualified name
must have an index specified. For example, if array data structure FAMILY
has an array subfield CHILD and the CHILD elements have an array
subfield PET, and the PET subfield has a subfield NAME, then only one of
the FAMILY, CHILD and PET arrays can be sorted in one SORTA operation.
If the CHILD array is to be sorted, then the FAMILY and PET arrays must
have explicit indexes. One valid operand for SORTA would be
FAMILY(i).CHILD(*).PET(1).NAME. That SORTA operation would sort the
CHILD array of FAMILY(i) by the NAME subfield of PET(1).

c. An array data structure is sorted in the ascending sequence of the key
unless the ’D’ operation extender is specified.

d. If the sort key is an element of a sequenced array, its sequence is not
considered when sorting the array data structure.

For more information, see “Array Operations” on page 438.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
DARRY S 1A DIM(8) ASCEND
DARRY2 S 1A DIM(8)
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The SORTA operation sorts ARRY into ascending sequence because
* the ASCEND keyword is specified.
* If the unsorted ARRY contents were GT1BA2L0, the sorted ARRY
* contents would be ABGLT012.
C SORTA ARRY

* The SORTA operation sorts ARRY2 into descending ascending sequence
* the (D) operation extender is specified.
* If the unsorted ARRY2 contents were GT1BA2L0, the sorted ARRY2
* contents would be 210TLGBA.
C SORTA(D) ARRY2

Figure 381. SORTA Operation

SORTA (Sort an Array)

816 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++
* In this example, the base array has the values aa44 bb33 cc22 dd11
* so the overlaid array ARRO has the values 44 33 22 11.
D DS
D ARR 4 DIM(4) ASCEND
D ARRO 2 OVERLAY(ARR:3)
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C
* After the SORTA operation, the base array has the values
* dd11 cc22 bb33 aa44
C
C SORTA ARRO

Figure 382. SORTA Operation with OVERLAY

* The names array does not have a sequence keyword
* (ASCEND or DESCEND) specified.
D info DS QUALIFIED
D names 10A DIM(2)

/free

// Initialize the array
info.names(1) = 'Bart';
info.names(2) = 'Lisa';

// Sort the info.names in descending order
SORTA(D) info.names;
// info.names(1) = 'Lisa'
// info.names(2) = 'Bart'

// Sort the info.names in ascending order
SORTA(A) info.names;
// info.names(1) = 'Bart'
// info.names(2) = 'Lisa'

// With no operation extender, it defaults to ascending order
SORTA info.names;
// info.names(1) = 'Bart'
// info.names(2) = 'Lisa'

Figure 383. SORTA Operation Ascending or Descending

SORTA (Sort an Array)

Chapter 22. Operation Codes 817

D emp DS QUALIFIED DIM(25)
D name 25A VARYING
D salary 9P 2
D numEmp S 10I 0

// Initialize the data structure
emp(1).name = 'Maria';
emp(1).salary = 1100;
emp(2).name = 'Pablo';
emp(2).salary = 1200;
emp(3).name = 'Bill';
emp(3).salary = 1000;
emp(4).name = 'Alex';
emp(4).salary = 1300;
numEmp = 4;

// Sort the EMP array using the NAME subfield as a key
SORTA %subarr(emp(*).name : 1 : numEmp);
// emp(1).name = 'Alex' <-----
// emp(1).salary = 1300
// emp(2).name = 'Bill' <-----
// emp(2).salary = 1000
// emp(3).name = 'Maria' <-----
// emp(3).salary = 1100
// emp(4).name = 'Pablo' <-----
// emp(4).salary = 1200

// Sort the EMP array using the SALARY subfield as a key
SORTA %subarr(emp(*).salary : 1 : numEmp);
// emp(1).name = 'Bill'
// emp(1).salary = 1000 <-----
// emp(2).name = 'Maria'
// emp(2).salary = 1100 <-----
// emp(3).name = 'Pablo'
// emp(3).salary = 1200 <-----
// emp(4).name = 'Alex'
// emp(4).salary = 1300 <-----

// Sort the EMP array descending using the SALARY subfield
SORTA(D) %subarr(emp(*).salary : 1 : numEmp);
// emp(1).name = 'Alex'
// emp(1).salary = 1300 <-----
// emp(2).name = 'Pablo'
// emp(2).salary = 1200 <-----
// emp(3).name = 'Maria'
// emp(3).salary = 1100 <-----
// emp(4).name = 'Bill'
// emp(4).salary = 1000 <-----

Figure 384. SORTA Operation with an Array Data Structure

SORTA (Sort an Array)

818 ILE RPG Reference

D emp_t DS QUALIFIED TEMPLATE
D name 25A VARYING
D teams DS QUALIFIED DIM(2)
D manager 25A VARYING
D emps LIKEDS(emp_t) DIM(2)

// Initialize the data structure
teams(1).manager = 'Jack';
teams(1).emps(1).name = 'Yvonne';
teams(1).emps(2).name = 'Mary';
teams(2).manager = 'Ann';
teams(2).emps(1).name = 'Wendy';
teams(2).emps(2).name = 'Thomas';

// Sort the TEAMS array using the MANAGER subfield as a key
SORTA teams(*).manager;
// teams(1).manager = 'Ann' <-----
// teams(1).emps(1).name = 'Wendy'
// teams(1).emps(2).name = 'Thomas'
// teams(2).manager = 'Jack' <-----
// teams(2).emps(1).name = 'Yvonne'
// teams(2).emps(2).name = 'Mary'

// Sort the TEAMS array using the EMPS(2).NAME subfield as a key
SORTA teams(*).emps(2).name;
// teams(1).manager = 'Jack'
// teams(1).emps(1).name = 'Yvonne'
// teams(1).emps(2).name = 'Mary' <-----
// teams(2).manager = 'Ann'
// teams(2).emps(1).name = 'Wendy'
// teams(2).emps(2).name = 'Thomas' <-----

// Sort the TEAMS(1).EMPS array using the NAME subfield as a key
SORTA teams(1).emps(*).name;
// teams(1).manager = 'Jack'
// teams(1).emps(1).name = 'Mary' <-----
// teams(1).emps(2).name = 'Yvonne' <-----
// teams(2).manager = 'Ann'
// teams(2).emps(1).name = 'Wendy'
// teams(2).emps(2).name = 'Thomas'

// Sort the TEAMS array first by the MANAGER subfield
// and then by the EMPS.NAME subfields
SORTA teams(*).manager;
for i = 1 to %ELEM(TEAMS);

SORTA teams(i).emps(*).name;
endfor;
// After the first sort, by MANAGER:
// teams(1).manager = 'Ann' <-----
// teams(1).emps(1).name = 'Wendy'
// teams(1).emps(2).name = 'Thomas'
// teams(2).manager = 'Jack' <-----
// teams(2).emps(1).name = 'Mary'
// teams(2).emps(2).name = 'Yvonne'
// After loop with the second sort, by EMPS.NAME:
// teams(1).manager = 'Ann'
// teams(1).emps(1).name = 'Thomas' <----- 1
// teams(1).emps(2).name = 'Wendy' <----- 1
// teams(2).manager = 'Jack'
// teams(2).emps(1).name = 'Mary' <----- 2
// teams(2).emps(2).name = 'Yvonne' <----- 2

Figure 385. SORTA Operation with a Complex Array Data Structure

SORTA (Sort an Array)

Chapter 22. Operation Codes 819

SQRT (Square Root)

Free-Form Syntax (not allowed - use the %SQRT built-in function)

Code Factor 1 Factor 2 Result Field Indicators

SQRT (H) Value Root

The SQRT operation derives the square root of the field named in factor 2. The
square root of factor 2 is placed in the result field.

Factor 2 must be numeric, and can contain one of: an array, array element, field,
figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain one of: an array, array element,
subfield, or table element.

An entire array can be used in a SQRT operation if factor 2 and the result field
contain array names.

The number of decimal positions in the result field can be either less than or
greater than the number of decimal positions in factor 2. However, the result field
should not have fewer than half the number of decimal positions in factor 2.

If the value of the factor 2 field is zero, the result field value is also zero. If the
value of the factor 2 field is negative, the RPG IV exception/error handling routine
receives control.

For further rules on the SQRT operation, see “Arithmetic Operations” on page 434.

See Figure 172 on page 437 for an example of the SQRT operation.

SQRT (Square Root)

820 ILE RPG Reference

SUB (Subtract)

Free-Form Syntax (not allowed - use the - or -= operators)

Code Factor 1 Factor 2 Result Field Indicators

SUB (H) Minuend Subtrahend Difference + − Z

If factor 1 is specified, factor 2 is subtracted from factor 1 and the difference is
placed in the result field. If factor 1 is not specified, the contents of factor 2 are
subtracted from the contents of the result field.

Factor 1 and factor 2 must be numeric, and each can contain one of: an array, array
element, field, figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain one of: an array, array element,
subfield, or table name.

For rules for the SUB operation, see “Arithmetic Operations” on page 434.

See Figure 172 on page 437 for examples of the SUB operation.

SUB (Subtract)

Chapter 22. Operation Codes 821

SUBDUR (Subtract Duration)

Free-Form Syntax not allowed - use the - or -= operators with duration functions such as %YEARS and
%MONTHS, or the %DIFF built-in function)

Code Factor 1 Factor 2 Result Field Indicators

SUBDUR (E)
(duration)

Date/Time/ Timestamp Date/Time/ Timestamp Duration:
Duration code

_ ER _

SUBDUR (E)
(new date)

Date/Time/ Timestamp Duration:Duration Code Date/Time/
Timestamp

_ ER _

The SUBDUR operation has been provided to:
v Subtract a duration to establish a new Date, Time or Timestamp
v Calculate a duration

Subtract a duration
The SUBDUR operation can be used to subtract a duration specified in factor 2
from a field or constant specified in factor 1 and place the resulting Date, Time or
Timestamp in the field specified in the result field.

Factor 1 is optional and may contain a Date, Time or Timestamp field, array, array
element, literal or constant. If factor 1 contains a field name, array or array element
then its data type must be the same type as the field specified in the result field. If
factor 1 is not specified then the duration is subtracted from the field specified in
the result field.

Factor 2 is required and contains two subfactors. The first is a numeric field, array
or constant with zero decimal positions. If the field is negative then the duration is
added to the field. The second subfactor must be a valid duration code indicating
the type of duration. The duration code must be consistent with the result field
data type. For example, you can subtract a year, month or day duration but not a
minute duration from a date field. For list of duration codes and their short forms
see “Date Operations” on page 449.

The result field must be a date, time or timestamp data type field, array or array
element. If factor 1 is blank, the duration is subtracted from the value in the result
field. If the result field is an array, the value in factor 2 is subtracted from each
element in the array. If the result field is a time field, the result will always be a
valid Time. For example, subtracting 59 minutes from 00:58:59 would give
-00:00:01. Since this time is not valid, the compiler adjusts it to 23:59:59.

When subtracting a duration in months from a date, the general rule is that the
month portion is decreased by the number of months in the duration, and the day
portion is unchanged. The exception to this is when the resulting day portion
would exceed the actual number of days in the resulting month. In this case, the
resulting day portion is adjusted to the actual month end date. The following
examples (which assume a *YMD format) illustrate this point.
v '95/05/30' SUBDUR 1:*MONTH results in ’95/04/30’

The resulting month portion has been decreased by 1; the day portion is
unchanged.

v '95/05/31' SUBDUR 1:*MONTH results in ’95/04/30’

SUBDUR (Subtract Duration)

822 ILE RPG Reference

The resulting month portion has been decreased by 1; the resulting day portion
has been adjusted because April has only 30 days.

Similar results occur when subtracting a year duration. For example, subtracting
one year from ’92/02/29’ results in ’91/02/28’, an adjusted value since the
resulting year is not a leap year.

Note: The system places a 15 digit limit on durations. Subtracting a Duration with
more than 15 significant digits will cause errors or truncation. These
problems can be avoided by limiting the first subfactor in Factor 2 to 15
digits.

Calculate a duration
The SUBDUR operation can also be used to calculate a duration between:
1. Two dates
2. A date and a timestamp
3. Two times
4. A time and a timestamp
5. Two timestamps

The data types in factor 1 and factor 2 must be compatible types as specified
above.

Factor 1 is required and must contain a Date, Time or Timestamp field, subfield,
array, array element, constant or literal.

Factor 2 is required and must also contain a Date, Time or Timestamp field, array,
array element, literal or constant.

The following duration codes are valid:
v For two dates or a date and a timestamp: *DAYS (*D), *MONTHS (*M), and

*YEARS (*Y)
v For two times or a time and a timestamp: *SECONDS (*S), *MINUTES (*MN),

and *HOURS (*H)
v For two timestamps: *MSECONDS (*MS), *SECONDS (*S), *MINUTES (*MN),

*HOURS (*H), *DAYS (*D), *MONTHS (*M), and *YEARS (*Y).

The result is a number of whole units, with any remainder discarded. For example,
61 minutes is equal to 1 hour and 59 minutes is equal to 0 hours.

The result field consists of two subfactors. The first is the name of a zero decimal
numeric field, array or array element in which the result of the operation will be
placed. The second subfactor contains a duration code denoting the type of
duration. The result field will be negative if the date in factor 1 is earlier than the
date in factor 2.

For more information on working with date-time fields see “Date Operations” on
page 449.

Note: Calculating a micro-second Duration (*mseconds) can exceed the 15 digit
system limit for Durations and cause errors or truncation. This situation will
occur when there is more than a 32 year and 9 month difference between
the factor 1 and factor 2 entries.

SUBDUR (Subtract Duration)

Chapter 22. Operation Codes 823

Possible error situations
1. For subtracting durations:

v If the value of the Date, Time or Timestamp field in factor 1 is invalid
v If factor 1 is blank and the value of the result field before the operation is

invalid
v or if the result of the operation is greater than *HIVAL or less than *LOVAL.

2. For calculating durations:
v If the value of the Date, Time or Timestamp field in factor 1 or factor 2 is

invalid
v or if the result field is not large enough to hold the resulting duration.

In each of these cases an error will be signalled.

If an error is detected, an error will be generated with one of the following
program status codes:
v 00103: Result field not large enough to hold result
v 00112: Date, Time or Timestamp value not valid
v 00113: A Date overflow or underflow occurred (that is, the resulting Date is

greater than *HIVAL or less than *LOVAL).

The value of the result field remains unchanged. To handle exceptions with
program status codes 103, 112 or 113, either the operation code extender ’E’ or an
error indicator ER can be specified, but not both. For more information on error
handling, see “Program Exception/Errors” on page 96.

SUBDUR Examples

CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* Determine a LOANDATE which is xx years, yy months, zz days prior to
* the DUEDATE.
C DUEDATE SUBDUR XX:*YEARS LOANDATE
C SUBDUR YY:*MONTHS LOANDATE
C SUBDUR ZZ:*DAYS LOANDATE
* Add 30 days to a loan due date
*
C SUBDUR -30:*D LOANDUE
* Calculate the number of days between LOANDATE and DUEDATE.
* If DUEDATE is after LOANDATE, the value of NUM_DAYS will be positive.
C DUEDATE SUBDUR LOANDATE NUM_DAYS:*D 5 0
* Determine the number of months between LOANDATE and DUEDATE.
C DUEDATE SUBDUR LOANDATE NUM_MONTHS:*M 5 0

Figure 386. SUBDUR Operations

SUBDUR (Subtract Duration)

824 ILE RPG Reference

SUBST (Substring)

Free-Form Syntax (not allowed - use %SUBST)

Code Factor 1 Factor 2 Result Field Indicators

SUBST (E P) Length to extract Base string:start Target string _ ER _

The SUBST operation returns a substring from factor 2, starting at the location
specified in factor 2 for the length specified in factor 1, and places this substring in
the result field. If factor 1 is not specified, the length of the string from the start
position is used. For graphic or UCS-2 strings, the start position is measured in
double bytes. The base and target strings must both be of the same type, either
both character, both graphic, or both UCS-2.

Factor 1 can contain the length value of the string to be extracted from the string
specified in factor 2. It must be numeric with no decimal positions and can contain
one of: a field name, array element, table name, literal, or named constant.

Factor 2 must contain either the base string, or the base string followed by ':',
followed by the start location. The base string portion can contain one of: a field
name, array element, named constant, data structure name, table name, or literal.
The start position must be numeric with zero decimal positions, and can contain
one of the following: a field name, array element, table name, literal or named
constant. If it is not specified, SUBST starts in position 1 of the base string. For
graphic or UCS-2 strings, the start position is measured in double bytes.

The start location and the length of the substring to be extracted must be positive
integers. The start location must not be greater than the length of the base string,
and the length must not be greater than the length of the base string from the start
location. If either or both of these conditions is not satisfied, the operation will not
be performed.

To handle SUBST exceptions (program status code 100), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

The result field must be character, graphic, or UCS-2 and can contain one of the
following: a field name, array element, data structure, or table name. The result is
left-justified. The result field’s length should be at least as large as the length
specified in factor 1. If the substring is longer than the field specified in the result
field, the substring will be truncated from the right. If the result field is
variable-length, its length does not change.

For more information, see “String Operations” on page 467.

Note: You cannot use figurative constants in the factor 1, factor 2, or result fields.
Overlapping is allowed for factor 1 and the result field or factor 2 and the
result field. If factor 1 is shorter than the length of the result field, a P
specified in the operation extender position indicates that the result field
should be padded on the right with blanks after the substring occurs.

SUBST (Substring)

Chapter 22. Operation Codes 825

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The SUBST operation extracts the substring from factor 2 starting
* at position 3 for a length of 2. The value 'CD' is placed in the
* result field TARGET. Indicator 90 is not set on because no error
* occurred.
C
C Z-ADD 3 T 2 0
C MOVEL 'ABCDEF' String 10
C 2 SUBST String:T Target 90
*
* In this SUBST operation, the length is greater than the length
* of the string minus the start position plus 1. As a result,
* indicator 90 is set on and the result field is not changed.
C
C MOVE 'ABCDEF' String 6
C Z-ADD 4 T 1 0
C 5 SUBST String:T Result 90
C
* In this SUBST operation, 3 characters are substringed starting
* at the fifth position of the base string. Because P is not
* specified, only the first 3 characters of TARGET are
* changed. TARGET contains '123XXXXX'.
C
C Z-ADD 3 Length 2 0
C Z-ADD 5 T 2 0
C MOVE 'TEST123' String 8
C MOVE *ALL'X' Target
C Length SUBST String:T Target 8

Figure 387. SUBST Operation (Part 1 of 2)

SUBST (Substring)

826 ILE RPG Reference

*
* This example is the same as the previous one except P
* specified, and the result is padded with blanks.
* TARGET equals '123�����'.

C
C Z-ADD 3 Length 2 0
C Z-ADD5 T 2 0
C MOVE 'TEST123' String 8
C MOVE *ALL'X' Target
C Length SUBST(P) String:T Target 8
C
C
*
* In the following example, CITY contains the string
* 'Toronto, Ontario'. The SCAN operation is used to locate the
* separating blank, position 9 in this illustration. SUBST
* without factor 1 places the string starting at position 10 and
* continuing for the length of the string in field TCNTRE.
* TCNTRE contains 'Ontario'.
C ' ' SCAN City C
C ADD 1 C
C SUBST City:C TCntre
*
* Before the operations STRING='���John���&
* RESULT is a 10 character field which contains 'ABCDEFGHIJ'.
* The CHECK operation locates the first nonblank character
* and sets on indicator 10 if such a character exists. If *IN10
* is on, the SUBST operation substrings STRING starting from the
* first non-blank to the end of STRING. Padding is used to ensure
* that nothing is left from the previous contents of the result
* field. If STRING contains the value ' HELLO ' then RESULT
* will contain the value 'HELLO ' after the SUBST(P) operation.
* After the operations RESULT='John������'.
C
C ' ' CHECK STRING ST 10
C 10 SUBST(P) STRING:ST RESULT

Figure 387. SUBST Operation (Part 2 of 2)

SUBST (Substring)

Chapter 22. Operation Codes 827

TAG (Tag)

Free-Form Syntax (not allowed - use other operation codes, such as LEAVE, ITER, and RETURN)

Code Factor 1 Factor 2 Result Field Indicators

TAG Label

The declarative TAG operation names the label that identifies the destination of a
“GOTO (Go To)” on page 696 or “CABxx (Compare and Branch)” on page 619
operation. It can be specified anywhere within calculations, including within total
calculations.

A GOTO within a subroutine in the cycle-main procedure can be issued to a TAG
within the same subroutine, detail calculations or total calculations. A GOTO
within a subroutine in a subprocedure can be issued to a TAG within the same
subroutine, or within the body of the subprocedure.

The control level entry (positions 7 and 8) can be blank or can contain an L1
through L9 indicator, the LR indicator, or the L0 entry to group the statement
within the appropriate section of the program. Conditioning indicator entries
(positions 9 through 11) are not allowed.

Factor 1 must contain the name of the destination of a GOTO or CABxx operation.
This name must be a unique symbolic name, which is specified in factor 2 of a
GOTO operation or in the result field of a CABxx operation. The name can be used
as a common point for multiple GOTO or CABxx operations.

Branching to the TAG from a different part of the RPG IV logic cycle may result in
an endless loop. For example, if a detail calculation line specifies a GOTO
operation to a total calculation TAG operation, an endless loop may occur.

See Figure 324 on page 697 for examples of the TAG operation.

For more information, see “Branching Operations” on page 439 or “Declarative
Operations” on page 452.

TAG (Tag)

828 ILE RPG Reference

#
#
#
#

TEST (Test Date/Time/Timestamp)

Free-Form Syntax TEST{(EDTZ)} {dtz-format} field-name

Code

Factor 1

(dtz-format) Factor 2

Result Field

(field-name) Indicators

TEST (E) Date/Time or
Timestamp
Field

_ ER _

TEST (D E) Date Format Character or
Numeric field

_ ER _

TEST (E T) Time Format Character or
Numeric field

_ ER _

TEST (E Z) Timestamp Format Character or
Numeric field

_ ER _

The TEST operation code allows users to test the validity of date, time, or
timestamp fields prior to using them.

For information on the formats that can be used see “Date Data Type” on page
206, “Time Data Type” on page 208, and “Timestamp Data Type” on page 210.
v If the field-name operand is a field declared as Date, Time, or Timestamp:

– The dtz-format operand cannot be specified
– Operation code extenders ’D’, ’T’, and ’Z’ are not allowed

v If the field-name operand is a field declared as character or numeric, then one of
the operation code extenders ’D’, ’T’, or ’Z’ must be specified.

Note: If the field-name operand is a character field with no separators, the
dtz-format operand must contain the date, time, or timestamp format
followed by a zero.

– If the operation code extender includes ’D’ (test Date),
- dtz-format is optional and may by any of the valid Date formats (See “Date

Data Type” on page 206).
- If dtz-format is not specified, the format specified on the control

specification with the DATFMT keyword is assumed. If this keyword is not
specified, *ISO is assumed.

– If the operation code extender includes ’T’ (test Time),
- dtz-format is optional and may be any of the valid Time formats (See “Time

Data Type” on page 208).
- If dtz-format is not specified, the format specified on the control

specification with the TIMFMT keyword is assumed. If this keyword is not
specified, *ISO is assumed.

Note: The *USA date format is not allowed with the operation code extender
(T). The *USA date format has an AM/PM restriction that cannot be
converted to numeric when a numeric result field is used.

– If the operation code extender includes ’Z’ (test Timestamp),
- dtz-format is optional and may be *ISO or *ISO0 (See “Timestamp Data

Type” on page 210).

TEST (Test Date/Time/Timestamp)

Chapter 22. Operation Codes 829

Numeric fields and character fields without separators are tested for valid digit
portions of a Date, Time, or Timestamp value. Character fields are tested for both
valid digits and separators.

If the character or numeric field specified as the field-name operand is longer than
required by the format being tested, extra data is ignored. For character data, only
the leftmost data is used; for numeric data, only the rightmost data is used. For
example, if the dtz-format operand is *MDY for a test of a numeric date, only the
rightmost 6 digits of the field-name operand are examined.

For the test operation, either the operation code extender ’E’ or an error indicator
ER must be specified, but not both. If the content of the field-name operand is not
valid, program status code 112 is signaled. Then, the error indicator is set on or the
%ERROR built-in function is set to return ’1’ depending on the error handling
method specified. For more information on error handling, see “Program
Exception/Errors” on page 96.

For more information, see “Date Operations” on page 449 or “Test Operations” on
page 475.

TEST (Test Date/Time/Timestamp)

830 ILE RPG Reference

TESTB (Test Bit)

Free-Form Syntax (not allowed - use the %BITAND built-in function. See Figure 195 on page 502.)

Code Factor 1 Factor 2 Result Field Indicators

TESTB Bit numbers Character field OF ON EQ

The TESTB operation compares the bits identified in factor 2 with the
corresponding bits in the field named as the result field. The result field must be a
one-position character field. Resulting indicators in positions 71 through 76 reflect
the status of the result field bits. Factor 2 is always a source of bits for the result
field.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D
D Datefield S D DATFMT(*JIS)
D Num_Date S 6P 0 INZ(910921)
D Char_Time S 8 INZ('13:05 PM')
D Char_Date S 6 INZ('041596')
D Char_Tstmp S 20 INZ('19960723140856834000')
D Char_Date2 S 9A INZ('402/10/66')
D Char_Date3 S 8A INZ('2120/115')
D
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Indicator 18 will not be set on, since the character field is a
* valid *ISO timestamp field, without separators.
C *ISO0 TEST (Z) Char_Tstmp 18
* Indicator 19 will not be set on, since the character field is a
* valid *MDY date, without separators.
C *MDY0 TEST (D) Char_Date 19
*
* %ERROR will return '1', since Num_Date is not *DMY.
*
C *DMY TEST (DE) Num_Date
*
* No Factor 1 since result is a D data type field
* %ERROR will return '0', since the field
* contains a valid date
C
C TEST (E) Datefield
C
* In the following test, %ERROR will return '1' since the
* Timefield does not contain a valid USA time.
C
C *USA TEST (ET) Char_Time
C
* In the following test, indicator 20 will be set on since the
* character field is a valid *CMDY, but there are separators.
C
C *CMDY0 TEST (D) char_date2 20
C
* In the following test, %ERROR will return '0' since
* the character field is a valid *LONGJUL date.
C
C *LONGJUL TEST (DE) char_date3

Figure 388. TEST (E D/T/Z) Example

TESTB (Test Bit)

Chapter 22. Operation Codes 831

Factor 2 can contain:
v Bit numbers 0-7: From 1 to 8 bits can be tested per operation. The bits to be

tested are identified by the numbers 0 through 7. (0 is the leftmost bit.) The bit
numbers must be enclosed in apostrophes. For example, to test bits 0, 2, and 5,
enter ‘025’ in factor 2.

v Field name: You can specify the name of a one-position character field, table
name, or array element in factor 2. The bits that are on in the field, table name,
or array element are compared with the corresponding bits in the result field;
bits that are off are not considered. The field specified in the result field can be
an array element if each element of the array is a one-position character field.

v Hexadecimal literal or named constant: You can specify a 1-byte hexadecimal literal
or hexadecimal named constant. Bits that are on in factor 2 are compared with
the corresponding bits in the result field; bits that are off are not considered.

Figure 389 on page 833 illustrates uses of the TESTB operation.

Indicators assigned in positions 71 through 76 reflect the status of the result field
bits. At least one indicator must be assigned, and as many as three can be assigned
for one operation. For TESTB operations, the resulting indicators are set on as
follows:
v Positions 71 and 72: An indicator in these positions is set on if the bit numbers

specified in factor 2 or each bit that is on in the factor 2 field is off in the result
field. That is, all of the specified bits are equal to off.

v Positions 73 and 74: An indicator in these positions is set on if the bit numbers
specified in factor 2 or the bits that are on in the factor 2 field are of mixed
status (some on, some off) in the result field. That is, at least one the specified
bits is on.

Note: If only one bit is to be tested, these positions must be blank. If a field
name is specified in factor 2 and it has only one bit on, an indicator in
positions 73 and 74 is not set on.

v Positions 75 and 76: An indicator in these positions is set on if the bit numbers
specified in the factor 2 or each bit that is on in factor 2 field is on in the result
field. That is, all of the specified bits are equal to on.

Note: If the field in factor 2 has no bits on, then no indicators are set on.

For more information, see “Bit Operations” on page 439 or “Test Operations” on
page 475.

TESTB (Test Bit)

832 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The field bit settings are FieldF = 00000001, and FieldG = 11110001.
*
* Indicator 16 is set on because bit 3 is off (0) in FieldF.
* Indicator 17 is set off.
C TESTB '3' FieldF 16 17
*
* Indicator 16 is set on because both bits 3 and 6 are off (0) in
* FieldF. Indicators 17 and 18 are set off.
C TESTB '36' FieldF 161718
*
* Indicator 17 is set on because bit 3 is off (0) and bit 7 is on
* (1) in FLDF. Indicators 16 and 18 are set off.
C TESTB '37' FieldF 161718
*
* Indicator 17 is set on because bit 7 is on (1) in FLDF.
* Indicator 16 is set off.
C TESTB '7' FieldF 16 17
*
* Indicator 17 is set on because bits 0,1,2, and 3 are off (0) and
* bit 7 is on (1). Indicators 16 and 18 are set off.
C TESTB FieldG FieldF 161718
*
* The hexadecimal literal X'88' (10001000) is used in factor 2.
* Indicator 17 is set on because at least one bit (bit 0) is on
* Indicators 16 and 18 are set off.
C TESTB X'88' FieldG 161718

Figure 389. TESTB Operation

TESTB (Test Bit)

Chapter 22. Operation Codes 833

TESTN (Test Numeric)

Free-Form Syntax (not allowed - rather than testing the variable before using it, code the usage of the
variable in a MONITOR group and handle any errors with ON-ERROR. See
Error-Handling Operations.)

Code Factor 1 Factor 2 Result Field Indicators

TESTN Character field NU BN BL

The TESTN operation tests a character result field for the presence of zoned
decimal digits and blanks. The result field must be a character field. To be
considered numeric, each character in the field, except the low-order character,
must contain a hexadecimal F zone and a digit (0 through 9). The low-order
character is numeric if it contains a hexadecimal C, hexadecimal D, or hexadecimal
F zone, and a digit (0 through 9). Note that the alphabetic characters J through R,
should they appear in the low-order position of a field, are treated as negative
numbers by TESTN. As a result of the test, resulting indicators are set on as
follows:
v Positions 71 and 72: The result field contains numeric characters; the low-order

character may also be a letter from A to R, since these characters have a zone of
C, D, or F, and a digit of 0 to 9.

v Positions 73 and 74: The result field contains both numeric characters and at least
one leading blank. For example, the values �123 or ��123 set this indicator on.
However, the value �1�23 is not a valid numeric field because of the embedded
blanks, so this value does not set this indicator on.

Note: An indicator cannot be specified in positions 73 and 74 when a field of
length one is tested because the character field must contain at least one
numeric character and one leading blank.

v Positions 75 and 76: The result field contains all blanks.

The same indicator can be used for more than one condition. If any of the
conditions exist, the indicator is set on.

The TESTN operation may be used to validate fields before they are used in
operations where their use may cause undesirable results or exceptions (e.g.
arithmetic operations).

For more information, see “Test Operations” on page 475.

TESTN (Test Numeric)

834 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The field values are FieldA = 123, FieldB = 1X4, FieldC = 004,
* FieldD = ���, FieldE = �1�3, and FieldF = �12.
*
* Indicator 21 is set on because FieldA contains all numeric
* characters.
C TESTN FieldA 21
* Indicator 22 is set on because FieldA contains all numeric
* characters. Indicators 23 and 24 remain off.
C TESTN FieldA 222324
* All indicators are off because FieldB does not contain valid
* numeric data.
C TESTN FieldB 252627
* Indicator 28 is set on because FieldC contains valid numeric data.
* Indicators 29 and 30 remain off.
C TESTN FieldC 282930
* Indicator 33 is set on because FieldD contains all blanks.
* Indicators 31 and 32 remain off.
C TESTN FieldD 313233
* Indicators 34, 35, and 36 remain off. Indicator 35 remains off
* off because FieldE contains a blank after a digit.
C TESTN FieldE 343536
* Indicator 38 is set on because FieldF contains leading blanks and
* valid numeric characters. Indicators 37 and 39 remain off.
C TESTN FieldF 373839

Figure 390. TESTN Operation

TESTN (Test Numeric)

Chapter 22. Operation Codes 835

TESTZ (Test Zone)

Free-Form Syntax (not allowed - use the %BITAND built-in function with X’F0’ to isolate the zone part
of the character)

Code Factor 1 Factor 2 Result Field Indicators

TESTZ Character field AI JR XX

The TESTZ operation tests the zone of the leftmost character in the result field. The
result field must be a character field. Resulting indicators are set on according to
the results of the test. You must specify at least one resulting indicator positions 71
through 76. The characters &, A through I, and any character with the same zone
as the character A set on the indicator in positions 71 and 72. The characters -
(minus), J through R, and any character with the same zone as the character J set
on the indicator in positions 73 and 74. Characters with any other zone set on the
indicator in positions 75 and 76.

For more information, see “Test Operations” on page 475.

TESTZ (Test Zone)

836 ILE RPG Reference

TIME (Retrieve Time and Date)

Free-Form Syntax (not allowed – use the %DATE, %TIME, and %TIMESTAMP built-in functions)

Code Factor 1 Factor 2 Result Field Indicators

TIME Target field

The TIME operation accesses the system time of day and/or the system date at
any time during program processing. The system time is based on the 24-hour
clock.

The Result field can specify one of the following into which the time of day or the
time of day and the system date are written:

Result Field Value Returned Format

6-digit Numeric Time hhmmss

12-digit Numeric Time and Date hhmmssDDDDDD

14-digit Numeric Time and Date hhmmssDDDDDDDD

Time Time Format of Result

Date Date Format of Result

Timestamp Timestamp *ISO

If the Result field is a numeric field, to access the time of day only, specify the
result field as a 6-digit numeric field. To access both the time of day and the
system date, specify the result field as a 12- (2-digit year portion) or 14-digit
(4-digit year portion) numeric field. The time of day is always placed in the first
six positions of the result field in the following format:
v hhmmss (hh=hours, mm=minutes, and ss=seconds)

If the Result field is a numeric field, then if the system date is included, it is placed
in positions 7 through 12 or 7 through 14 of the result field. The date format
depends on the date format job attribute DATFMT and can be mmddyy, ddmmyy,
yymmdd, or Julian. The Julian format for 2-digit year portion contains the year in
positions 7 and 8, the day (1 through 366, right-adjusted, with zeros in the unused
high-order positions) in positions 9 through 11, and 0 in position 12. For 4-digit
year portion, it contains the year in positions 7 through 10, the day (1 through 366,
right-adjusted, with zeros in the unused high-order positions) in positions 11
through 13, and 0 in position 14.

If the Result field is a Timestamp field, the last 3 digits in the microseconds part is
always 000.

Note: The special fields UDATE and *DATE contain the job date. These values are
not updated when midnight is passed, or when the job date is changed
during the running of the program.

For more information, see “Information Operations” on page 457.

TIME (Retrieve Time and Date)

Chapter 22. Operation Codes 837

D Timeres S T TIMFMT(*EUR)
D Dateres S D DATFMT(*USA)
D Tstmpres S Z
*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* When the TIME operation is processed (with a 6-digit numeric
* field), the current time (in the form hhmmss) is placed in the
* result field CLOCK. The TIME operation is based on the 24-hour
* clock, for example, 132710. (In the 12-hour time system, 132710
* is 1:27:10 p.m.)
C TIME Clock 6 0
* When the TIME operation is processed (with a 12-digit numeric
* field), the current time and day is placed in the result field
* TIMSTP. The first 6 digits are the time, and the last 6 digits
* are the date; for example, 093315121579 is 9:33:15 a.m. on
* December 15, 1979.
C TIME TimStp 12 0
C MOVEL TimStp Time 6 0
C MOVE TimStp SysDat 6 0
* This example duplicates the 12-digit example above but uses a
* 14-digit field. The first 6 digits are the time, and the last
* 8 digits are the date; for example, 13120001101992
* is 1:12:00 p.m. on January 10, 1992.
C TIME TimStp 14 0
C MOVEL TimStp Time 6 0
C MOVE TimStp SysDat 8 0
* When the TIME operation is processed with a date field,
* the current date is placed in the result field DATERES.
* It will have the format of the date field. In this case
* it would be in *USA format ie: D'mm/dd/yyyy'.
C TIME Dateres
* When the TIME operation is processed with a time field,
* the current time is placed in the result field TIMERES.
* It will have the format of the time field. In this case
* it would be in *EUR format ie: T'hh.mm.ss'.
C TIME Timeres
* When the TIME operation is processed with a timestamp field,
* the current timestamp is placed in the result field TSTMPRES.
* It will be in *ISO format.
* ie: Z'yyyy-mm-dd-hh.mm.ss.mmmmmm'
C TIME Tstmpres

Figure 391. TIME Operation

TIME (Retrieve Time and Date)

838 ILE RPG Reference

UNLOCK (Unlock a Data Area or Release a Record)

Free-Form Syntax UNLOCK{(E)} name

Code Factor 1 Factor 2 Result Field Indicators

UNLOCK (E) name (file or data area) _ ER _

The UNLOCK operation is used to unlock data areas and release record locks.

To handle UNLOCK exceptions (program status codes 401-421, 431, and 432),
either the operation code extender ’E’ or an error indicator ER can be specified, but
not both. For more information on error handling, see “Program Exception/Errors”
on page 96.

Positions 71,72,75 and 76 must be blank.

For further rules for the UNLOCK operation, see “Data-Area Operations” on page
448.

Unlocking data areas
The name operand must be the name of the data area to be unlocked, or the
reserved word *DTAARA.

When *DTAARA is specified, all data areas in the program that are locked are
unlocked.

The data area must already be specified in the result field of a *DTAARA DEFINE
statement or with the DTAARA keyword on the definition specification. name must
not refer to the local data area or the Program Initialization Parameters (PIP) data
area. If the UNLOCK operation is specified to an already unlocked data area, an
error does not occur.

For more information, see “File Operations” on page 453.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* TOTAMT, TOTGRS, and TOTNET are defined as data areas in the
* system. The IN operation retrieves all the data areas defined in
* the program. The program processes calculations, and
* then unlocks the data areas. The data areas can them be used
* by other programs.
*
C *LOCK IN *DTAARA
C :
C :
C UNLOCK *DTAARA
C *DTAARA DEFINE TOTAMT 8 2
C *DTAARA DEFINE TOTGRS 10 2
C *DTAARA DEFINE TOTNET 10 2

Figure 392. Data area unlock operation

UNLOCK (Unlock a Data Area or Release a Record)

Chapter 22. Operation Codes 839

Releasing record locks
The UNLOCK operation also allows the most recently locked record to be
unlocked for an update disk file.

name must be the name of the UPDATE disk file.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords++++++++++++++++++++++++++++
*
FUPDATA UF E DISK
*
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* Assume that the file UPDATA contains record format vendor.
* A record is read from UPDATA. Since the file is an update
* file, the record is locked. *IN50 is set somewhere else in
* the program to control whether an UPDATE should take place.
* otherwise the record is unlocked using the UNLOCK operation.
* Note that factor 2 of the UNLOCK operation is the file name,
* UPDATA, not the record format, VENDOR
*
C READ VENDOR 12
C :
C *IN50 IFEQ *ON
C UPDATE VENDOR
C ELSE
C UNLOCK UPDATA 99
C ENDIF

Figure 393. Record unlock operation

UNLOCK (Unlock a Data Area or Release a Record)

840 ILE RPG Reference

UPDATE (Modify Existing Record)

Free-Form Syntax UPDATE{(E)} name {data-structure | %FIELDS(name{:name...})}

Code Factor 1 Factor 2 Result Field Indicators

UPDATE (E) name (file or record format) data-structure _ ER _

The UPDATE operation modifies the last locked record retrieved for processing
from an update disk file or subfile. No other operation should be performed on the
file between the input operation that retrieved the record and the UPDATE
operation.

The name operand must be the name of a file or record format to be updated. A
record format name is required with an externally described file. The record format
name must be the name of the last record read from the file; otherwise, an error
occurs. A file name as the name operand is required with a program described file.

If the data-structure operand is specified, the record is updated directly from the
data structure. The data structure must conform to the rules below:
1. If the data-structure operand is specified, the record is updated directly from the

data structure.
2. If name refers to a program-described file (identified by an F in Position 22 of

the file description specification), the data structure can be any data structure of
the same length as the file’s declared record length.

3. If name refers to an externally-described file or a record format from an
externally described database file, the data structure must be a data structure
defined from the same file or record format, with *INPUT or *OUTPUT
specified as the second parameter of the LIKEREC or EXTNAME keyword.

4. If name refers to a subfile record format from an externally described display
file, the data structure must be a data structure defined from the same file or
record format, with *OUTPUT specified as the second parameter of the
LIKEREC or EXTNAME keyword.

5. See “File Operations” on page 453 for information on how to define the data
structure and how data is transferred between the data structure and the file.

A list of the fields to update can be specified using %FIELDS. The parameter to
%FIELDS is a list of the field names to update. See the example at the end of
“%FIELDS (Fields to update)” on page 533 for an illustration of updating fields.

To handle UPDATE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
For more information on error handling, see “File Exception/Errors” on page 79.

Remember the following when using the UPDATE operation:
v When name is a record format name, the current values in the program for the

fields in the record definition are used to modify the record.
v If some but not all fields in a record are to be updated, either use the output

specifications without an UPDATE operation or use %FIELDS to identify which
fields to update.

v Before UPDATE is issued to a file or record, a valid input operation with lock
(READ, READC, READE, READP, READPE, CHAIN, or primary/secondary file)
must be issued to the same file or record. If the read operation returns with an

UPDATE (Modify Existing Record)

Chapter 22. Operation Codes 841

|
|
|
|

|
|
|
|

error condition or if it was read without locking, the record is not locked and
UPDATE cannot be issued. The record must be read again with the default of a
blank operation extender to specify a lock request.

v Consecutive UPDATE operations to the same file or record are not valid.
Intervening successful read operations must be issued to position to and lock the
record to be updated.

v Beware of using the UPDATE operation on primary or secondary files during
total calculations. At this stage in the RPG IV cycle, the fields from the current
record (the record that is about to be processed) have not yet been moved to the
processing area. Therefore, the UPDATE operation updates the current record
with the fields from the preceding record. Also, when the fields from the current
record are moved to the processing area, they are the fields that were updated
from the preceding record.

v For multiple device files, specify a subfile record format as the name operand.
The operation is processed for the program device identified in the fieldname
specified using the DEVID keyword in the file specification. If the program
device is not specified, the device used in the last successful input operation is
used. This device must be the same one you specified for the input operation
that must precede the UPDATE operation. You must not process input or output
operations to other devices in between the input and UPDATE operations. If you
do, your UPDATE operation will fail.

v For a display file which has multiple subfile record formats, you must not
process read-for-update operations to one subfile record in between the input
and UPDATE operations to another subfile in the same display file. If you do,
the UPDATE operation will fail.

v An UPDATE operation is valid to a subfile record format as long as at least one
successful input operation (READC, CHAIN) has occurred to that format name
without an intervening input operation to a different format name. The record
updated will be the record retrieved on the last successful input operation. This
means that if you read a record successfully, then read unsuccessfully to the
same format, an update will succeed, but will update the first record. This is
different from the behavior of DISK files.
To avoid updating the wrong record, check the resulting indicator or
record-identifying indicator to ensure that a successful input operation has
occurred before doing the update operation.

See “Database Null Value Support” on page 219 for information on updating
records with null-capable fields containing null values.

For more information, see “File Operations” on page 453.

UPDATE (Modify Existing Record)

842 ILE RPG Reference

|
|
|
|
|
|
|

|
|
|

WHEN (When True Then Select)

Free-Form Syntax WHEN{(MR)} indicator-expression

Code Factor 1 Extended Factor 2

WHEN (M/R) indicator-expression

The WHEN operation code is similar to the WHENxx operation code in that it
controls the processing of lines in a SELECT operation. It differs in that the
condition is specified by a logical expression in the indicator-expression operand.
The operations controlled by the WHEN operation are performed when the
expression in the indicator-expression operand is true. See Chapter 20, “Expressions,”
on page 477 for details on expressions. For information on how operation
extenders M and R are used, see “Precision Rules for Numeric Operations” on
page 486.

For more information, see “Compare Operations” on page 445 or “Structured
Programming Operations” on page 469.

CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++..
*
C SELECT
C WHEN *INKA
C :
C :
C :
C WHEN NOT(*IN01) AND (DAY = 'FRIDAY')
C :
C :
C :
C WHEN %SUBST(A:(X+4):3) = 'ABC'
C :
C :
C :
C OTHER
C :
C :
C :
C ENDSL

Figure 394. WHEN Operation

WHEN (When True Then Select)

Chapter 22. Operation Codes 843

WHENxx (When True Then Select)

Free-Form Syntax (not allowed - use the WHENoperation code)

Code Factor 1 Factor 2 Result Field Indicators

WHENxx Comparand Comparand

The WHENxx operations of a select group determine where control passes after
the “SELECT (Begin a Select Group)” on page 802 operation is processed.

The WHENxx conditional operation is true if factor 1 and factor 2 have the
relationship specified by xx If the condition is true, the operations following the
WHENxx are processed until the next WHENxx, OTHER, ENDSL, or END
operation.

When performing the WHENxx operation remember:
v After the operation group is processed, control passes to the statement following

the ENDSL operation.
v You can code complex WHENxx conditions using ANDxx and ORxx.

Calculations are processed when the condition specified by the combined
WHENxx, ANDxx, and ORxx operations is true.

v The WHENxx group can be empty.
v Within total calculations, the control level entry (positions 7 and 8) can be blank

or can contain an L1 through L9 indicator, an LR indicator, or an L0 entry to
group the statement within the appropriate section of the program. The control
level entry is for documentation purposes only. Conditioning indicator entries
(positions 9 through 11) are not allowed.

Refer to “Compare Operations” on page 445 for valid values for xx.

For more information, see “Structured Programming Operations” on page 469.

WHENxx (When True Then Select)

844 ILE RPG Reference

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following example shows nested SELECT groups. The employee
* type can be one of 'C' for casual, 'T' for retired, 'R' for
* regular, and 'S' for student. Depending on the employee type
* (EmpTyp), the number of days off per year (Days) will vary.
*
C SELECT
C EmpTyp WHENEQ 'C'
C EmpTyp OREQ 'T'
C Z-ADD 0 Days
C EmpTyp WHENEQ 'R'
*
* When the employee type is 'R', the days off depend also on the
* number of years of employment. The base number of days is 14.
* For less than 2 years, no extra days are added. Between 2 and
* 5 years, 5 extra days are added. Between 6 and 10 years, 10
* extra days are added, and over 10 years, 20 extra days are added.
*
C Z-ADD 14 Days
* Nested select group.
C SELECT
C Years WHENLT 2
C Years WHENLE 5
C ADD 5 Days
C Years WHENLE 10
C ADD 10 Days
C OTHER
C ADD 20 Days
C ENDSL
* End of nested select group.
C EmpTyp WHENEQ 'S'
C Z-ADD 5 Days
C ENDSL

Figure 395. WHENxx Operation (Part 1 of 2)

WHENxx (When True Then Select)

Chapter 22. Operation Codes 845

*--
* Example of a SELECT group with complex WHENxx expressions. Assume
* that a record and an action code have been entered by a user.
* Select one of the following:
* - When F3 has been pressed, do subroutine QUIT.
* - When action code(Acode) A (add) was entered and the record
* does not exist (*IN50=1), write the record.
* - When action code A is entered, the record exists, and the
* active record code for the record is D (deleted); update
* the record with active rec code=A. When action code D is
* entered, the record exists, and the action code in the
* record (AcRec) code is A; mark the record as deleted.
* - When action code is C (change), the record exists, and the
* action code in the record (AcRec) code is A; update the record.
* - Otherwise, do error processing.
*--
*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C RSCDE CHAIN FILE 50
C SELECT
C *INKC WHENEQ *ON
C EXSR QUIT
C Acode WHENEQ 'A'
C *IN50 ANDEQ *ON
C WRITE REC
C Acode WHENEQ 'A'
C *IN50 ANDEQ *OFF
C AcRec ANDEQ 'D'
C Acode OREQ 'D'
C *IN50 ANDEQ *OFF
C AcRec ANDEQ 'A'
C MOVE Acode AcRec
C UPDATE REC
C Acode WHENEQ 'C'
C *IN50 ANDEQ *OFF
C AcRec ANDEQ 'A'
C UPDATE REC
C OTHER
C EXSR ERROR
C ENDSL

Figure 395. WHENxx Operation (Part 2 of 2)

WHENxx (When True Then Select)

846 ILE RPG Reference

WRITE (Create New Records)

Free-Form Syntax WRITE{(E)} name {data-structure}

Code Factor 1 Factor 2 Result Field Indicators

WRITE (E) name (file or record format) data-structure _ ER EOF

The WRITE operation writes a new record to a file.

The name operand must be the name of a program-described file or a record
format from an externally-described file.

If the data-structure operand is specified, the record is written directly from the
data structure to the file. If name refers to a program described file (identified by
an F in position 22 of the file description specification), the data structure is
required and can be any data structure of the same length as the file’s declared
record length. If name refers to a record format from an externally described file,
the data structure must be a data structure defined with EXTNAME(...:*OUTPUT)
or LIKEREC(...:*OUTPUT). See “File Operations” on page 453 for information on
how to define the data structure and how data is transferred between the file and
the data structure.

To handle WRITE exceptions (file status codes greater than 1000), either the
operation code extender ’E’ or an error indicator ER can be specified, but not both.
An error occurs if overflow is reached to an externally described print file and no
overflow indicator has been specified on the File description specification. For
more information on error handling, see “File Exception/Errors” on page 79.

You can specify an indicator in positions 75-76 to signal whether an end of file
occurred (subfile is filled) on the WRITE operation. The indicator is set on (an EOF
condition) or off every time the WRITE operation is performed. This information
can also be obtained from the %EOF built-in function, which returns ’1’ if an EOF
condition occurs and ’0’ otherwise.

When using the WRITE operation remember:
v When name is a record format name, the current values in the program for all

the fields in the record definition are used to construct the record.
v When records that use relative record numbers are written to a file, you must

update the field name specified on the RECNO File specification keyword
(relative record number), so it contains the relative record number of the record
to be written.

v When you use the WRITE operation to add records to a DISK file, you must
specify an A in position 20 of the file description specifications. (See “Position 20
(File Addition)” on page 283.)

v Device dependent functions are limited. For example, if a ″WRITE″ is issued to a
″PRINTER″ device, the space after will be set to 1 if the keyword PRTCTL is not
specified on the file specification (normally spacing or skipping information are
specified in columns 41 through 51 of the output specifications). If the file is
externally described, these functions are part of the external description.

v For a multiple device file, data is written to the program device named in the
field name specified with the DEVID keyword on the file description

WRITE (Create New Records)

Chapter 22. Operation Codes 847

#
#

specifications. (See “DEVID(fieldname)” on page 293.) If the DEVID keyword is
not specified, data is written to the program device for which the last successful
input operation was processed.

See “Database Null Value Support” on page 219 for information on adding records
with null-capable fields containing null values.

For more information, see “File Operations” on page 453.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The WRITE operation writes the fields in the data structure
* DS1 to the file, FILE1.
*
C WRITE FILE1 DS1

Figure 396. WRITE Operation

WRITE (Create New Records)

848 ILE RPG Reference

XFOOT (Summing the Elements of an Array)

Free-Form Syntax (not allowed - use the %XFOOT built-in function)

Code Factor 1 Factor 2 Result Field Indicators

XFOOT (H) Array name Sum + − Z

XFOOT adds the elements of an array together and places the sum into the field
specified as the result field. Factor 2 contains the name of the array.

If half-adjust is specified, the rounding occurs after all elements are summed and
before the results are moved into the result field. If the result field is an element of
the array specified in factor 2, the value of the element before the XFOOT
operation is used to calculate the total of the array.

If the array is float, XFOOT will be performed as follows: When the array is in
descending sequence, the elements will be added together in reverse order.
Otherwise, the elements will be added together starting with the first elements of
the array.

For further rules for the XFOOT operation, see “Arithmetic Operations” on page
434 or “Array Operations” on page 438.

See Figure 172 on page 437 for an example of the XFOOT operation.

XFOOT (Summing the Elements of an Array)

Chapter 22. Operation Codes 849

XLATE (Translate)

Free-Form Syntax (not allowed - use the %XLATE built-in function)

Code Factor 1 Factor 2 Result Field Indicators

XLATE (E P) From:To Source-String:start Target String _ ER _

Characters in the source string (factor 2) are translated according to the From and
To strings (both in factor 1) and put into a receiver field (result field). Source
characters with a match in the From string are translated to corresponding
characters in the To string. The From, To, Source, and Target strings must be of the
same type, either all character, all graphic, or all UCS-2. As well, their CCSIDs
must be the same, unless one of the CCSIDs is 65535, or in the case of graphic
fields, CCSID(*GRAPH : *IGNORE) was specified on the Control Specification.

XLATE starts translating the source at the location specified in factor 2 and
continues character by character, from left to right. If a character of the source
string exists in the From string, the corresponding character in the To string is
placed in the result field. Any characters in the source field before the starting
position are placed unchanged in the result field.

Factor 1 must contain the From string, followed by a colon, followed by the To
string. The From and To strings can contain one of the following: a field name,
array element, named constant, data structure name, literal, or table name.

Factor 2 must contain either the source string or the source string followed by a
colon and the start location. The source string portion of factor 2 can contain one
of the following: a field name, array element, named constant, data structure name,
data structure subfield, literal, or table name. If the operation uses graphic or
UCS-2 data, the start position refers to double-byte characters. The start location
portion of factor 2 must be numeric with no decimal positions and can be a named
constant, array element, field name, literal, or table name. If no start location is
specified, a value of 1 is used.

The result field can be a field, array element, data structure, or table. The length of
the result field should be as large as the source string specified in factor 2. If the
result field is larger than the source string, the result will be left adjusted. If the
result field is shorter than the source string, the result field will contain the
leftmost part of the translated source. If the result field is variable-length, its length
does not change.

If a character in the From string is duplicated, the first occurrence (leftmost) is
used.

Note: Figurative constants cannot be used in factor 1, factor 2, or result fields. No
overlapping in a data structure is allowed for factor 1 and the result field, or
factor 2 and the result field.

If the From string is longer than the To string, the additional characters in the
From string are ignored.

Any valid indicator can be specified in columns 7 to 11.

XLATE (Translate)

850 ILE RPG Reference

|
|

If factor 2 is shorter than the result field, a P specified in the operation extender
position indicates that the result field should be padded on the right with blanks
after the translation. If the result field is graphic and P is specified, graphic blanks
will be used. If the result field is UCS-2 and P is specified, UCS-2 blanks will be
used.

To handle XLATE exceptions (program status code 100), either the operation code
extender ’E’ or an error indicator ER can be specified, but not both. For more
information on error handling, see “Program Exception/Errors” on page 96.

Columns 75-76 must be blank.

For more information, see “String Operations” on page 467.

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
*
* The following translates the blank in NUMBER to '-'. The result
* in RESULT will be '999-9999'.
*
C MOVE '999 9999' Number 8
C ' ':'-' XLATE Number Result 8

Figure 397. XLATE Operation

*...1....+....2....+....3....+....4....+....5....+....6....+....7...+....
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
D Up C 'ABCDEFGHIJKLMNOPQRS-
D 'TUVWXYZ'
D Lo C 'abcdefghijklmnopqrs-

'tuvwxyz'
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
*
* In the following example, all values in STRING are translated to
* uppercase. As a result, RESULT='RPG DEPT'.
*
C MOVE 'rpg dept' String 8
C Lo:Up XLATE String Result
*
* In the following example only part of the string is translated
* to lowercase. As a result, RESULT='RPG Dept'.
*
C Up:Lo XLATE String:6 Result

Figure 398. XLATE Operation With Named Constants

XLATE (Translate)

Chapter 22. Operation Codes 851

XML-INTO (Parse an XML Document into a Variable)

Free-Form Syntax XML-INTO{(EH)} receiver %XML(xmlDoc {: options });

XML-INTO{(EH)} %HANDLER(handlerProc : commArea) %XML(xmlDoc {: options });

Code Factor 1 Extended Factor 2

XML-INTO receiver %XML(xmlDoc {: options })

XML-INTO %HANDLER(handlerProc : commArea) %XML(xmlDoc {: options })

Tip: If you are not familiar with the basic concepts of XML and of processing XML
documents, you may find it helpful to read the ″Processing XML Documents″
section in IBM Rational Development Studio for i: ILE RPG Programmer’s Guide before
reading further in this section.

XML-INTO can operate in two different ways:
v Reading XML data directly into an RPG variable
v Reading XML data gradually into an array parameter that it passes to the

procedure specified by %HANDLER(handlerProc).

The first operand specifies the target of the parsed data. It can contain a variable
name or the %HANDLER built-in function.

The second operand must be the %XML built-in function, identifying the XML
document to be parsed and the options controlling the way the parsing is done.
See “%XML (xmlDocument {:options})” on page 604 for more information on
%XML.

If the first operand is a variable name:
v Parsing will be done directly into the variable.
v The name of the variable will be used to establish the name of the XML element

to parse; this can be overridden using the “path option” on page 858.
v If the variable is a data structure, some subfields may be set by the operation

even if the operation ends in error.
v If the variable is an array, the parsing will only search for as much data as will

fit in the array. The ″Number of XML Elements″ subfield in positions 372 - 379
of the PSDS will be set to the number of elements successfully set by the
operation. For an array of data structures, this value will not include the element
being set if a parsing error occurs while parsing the data for the subfields of the
element; however, this array element may have some of its subfields set by the
operation.

If the first operand is the %HANDLER built-in function:
v The procedure specified as the first operand of %HANDLER will be called when

the parser has parsed enough XML data to fill the specified number of RPG
array elements handled by the procedure. When the handler returns, the parser
will continue to parse the XML data until it has parsed enough XML data to
again fill the specified number of array elements to call the handling procedure.
This continues until the document is completely parsed, or until the procedure
returns a return code indicating that the parsing should halt.
The final call to the handling procedure may have fewer RPG array elements
than the handling procedure can handle. The handling procedure should always

XML-INTO (Parse an XML Document into a Variable)

852 ILE RPG Reference

refer to the ″number of elements″ parameter to ensure it does not access array
elements that do not have any XML data.
The communication-area variable specified as the second operand of
%HANDLER will be passed by the parser as the first parameter to the handling
procedure, allowing the procedure coding the XML-INTO operation to
communicate with the handling procedure, and allowing the handling procedure
to save information from one call to the next.

v Each element of the temporary variable used to hold the array parameter for the
procedure will be cleared to its default value before it is loaded from the XML
data.

v The path option must be used to specify the name of the XML element to search
for. See “%XML options for the XML-INTO operation code” on page 856 and
“Expected format of XML data” on page 877 and for information about the path
option.

v The array-handling procedure may be called several times during the
XML-INTO operaton. When the parser has found the number of elements
specified by the DIM keyword on the second parameter, the procedure will be
called. The final time the procedure is called may have fewer elements than
specified by the DIM keyword. If there are no elements found, the procedure
will not be called.
The handling procedure must have the following parameters and return type:

Parameter number or return
value Data type and passing mode Description

Return value 4-byte integer (10I 0) Returning a value of zero
indicates that parsing should
continue; returning any other
value indictes that parsing
should end.

1 Any type, passed by
reference

Used to communicate
between the XML-INTO
operation and the handler,
and between successive calls
to the handler.

2 Array, or array of data
structures, passed by
read-only reference (CONST
keyword)

The array elements contain
the data from the XML
elements specified by the
path option.

3 4-byte unsigned (10U 0),
passed by value

The number of array
elements in the second
parameter that represent
XML data.

v See “%HANDLER (handlingProcedure : communicationArea)” on page 539 for
more information on %HANDLER.

Subfields of a data structure will be set in the order they appear in the XML
document; the order could be important if subfields overlap within the data
structure.

%NULLIND is not updated for any field or subfield during an XML-INTO
operation.

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 853

Operation extender H can be specified to cause numeric data to be assigned
half-adjusted. Operation extender E can be specified to handle the following status
codes:

00351 Error in XML parsing

00352 Invalid XML option

00353 XML document does not match RPG variable

00354 Error preparing for XML parsing

Note: Operation extenders can be specified only when Free-form syntax is used.

For status 00351, the return code from the parser will be placed in the subfield
″External return code″ in positions 368-371 of the PSDS. This subfield will be set to
zero at the beginning of the operation and set to the value returned by the parser
at the end of the operation.

If an unknown, invalid or unrelated option is found in the options parameter of
the %XML built-in function, the operation will fail with status code 00352 (Error in
XML options). The External return code subfield in the PSDS will not be updated
from the initial value of zero, set when the operation begins.

The XML document is expected to match the RPG variable with respect to the
names of the XML elements or attributes.
v The XML data for an RPG data structure is expected to have an XML element

with the same name as the data structure and child elements and/or attributes
with the same names as the RPG subfields.

v The XML data for an RPG array is expected to have a series of elements with
the same name as the RPG array.

The path option can be used to set the name of the XML element matching the
name of the specified variable, but it cannot be used to set the names of the XML
elements and/or attributes matching a specified variable’s subfields. For example,
if variable DS1 has a subfield SF1, the XML element for DS1 can have any name,
but the XML element or attribute for SF1 must have the name ″sf1″ (or ″SF1″, ″Sf1″,
etc., depending on the case option).

When the RPG variable is an array or array of data structures, or when the
%HANDLER built-in function is specified, the XML elements corresponding to the
array elements are expected to be contained in another XML element. By default,
the XML elements will be expected to be child elements of the outermost XML
element in the document. The path option can be used to specify the exact path to
the XML elements corresponding to the array elements. For example, if the
outermost XML element is named ″transaction″, and it has a child element named

XML-INTO (Parse an XML Document into a Variable)

854 ILE RPG Reference

″parts″ which itself has several child elements named ″part″, then to read the
″part″ XML elements into an array, you would specify the option
’path=transaction/parts/part’.

<transaction>
<parts>

<part type = "bracket" size="15" num="100"/>
<part type="frame" size="2" num="500"/>

</parts>
<transaction>

When the XML document does not match the RPG variable, for example if the
XML document does not contain the default or specified path, or if it is missing
some XML elements or attributes to match the subfields of an RPG data structure,
the XML-INTO operation will fail with status 00353. The allowextra and
allowmissing options can be used to specify whether an XML element can have
more or less data than is required to fully set the RPG variable.

For some RPG data types, XML attributes can be specified to control how the XML
data is assigned to the RPG variable. See “Rules for transferring XML data to RPG
variables” on page 881 for more information on these attributes.

If an XML reference other than the predefined references &, &apos, <, >,
", or the hexadecimal unicode references &#xxxx is found, the result will
contain the reference itself, in the form ″&refname;″. If this value is not valid for
the data type, the operation will fail. For example, if an XML element has the value
<data>1&decpoint;50/data> the string ″1&decpoint;50″ would be built up from the
three pieces ″1″, ″&decpoint;″, and ″0″. This data is valid for a character or UCS-2
variable, but it would cause an error if converted to other types.

Tip: If XML data is known to contain such references, then following the
completion of the XML-INTO operation, character and UCS-2 data should be
inspected for the presence of references, and the correct value for the reference
substituted using string operations such as %SCANRPL, or %SCAN and
%REPLACE.

If XML data is not valid for the type of the RPG variable it matches, the operation
will fail with status 0353; the specific status code for the assignment error will
appear in the replacement text for message RNX0353.

Tip: To avoid the XML-INTO operation failing because the data cannot be
successfully assigned to RPG fields with types such as Date or Numeric, the
receiver variable can be defined with subfields that are all of type character or
UCS-2. Then the data can be converted to other data types by the RPG program
using the conversion built-in functions %DATE, %INT, and so on.

The XML-INTO operation ignores the DOCTYPE declaration. The DOCTYPE
declaration may contain the values of entity references that your program will
have to handle manually. If you want to have access to the DOCTYPE declaration
of the XML document, you can use the XML-SAX operation. Your XML-SAX
handling procedure can halt the parsing as soon as it has found the DOCTYPE
declaration value, or as soon as it knows that there will be no DOCTYPE
declaration.

The following links provide more information on XML-INTO.
v “%XML options for the XML-INTO operation code” on page 856
v “Expected format of XML data” on page 877

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 855

|
|
|
|
|

v “Rules for transferring XML data to RPG variables” on page 881
v “Examples of the XML-INTO operation” on page 882

%XML options for the XML-INTO operation code
Several options are available for customizing the XML-INTO operation. The
options are specified as the second parameter of the %XML built-in function. The
parameter can be a constant or a variable expression. The options are specified in
the form 'opt1=val1 opt2=val2'.

See “%XML (xmlDocument {:options})” on page 604 for more information on how
to specify the options.
v The path option specifies where to locate the desired XML element within the

XML document.
v The doc option specifies whether the first parameter of the %XML built-in

function has an XML document, or has the name of a file containing the XML
document.

v The ccsid option specifies the CCSID to be used to parse the XML document.
v The case option specifies whether the names within the XML document are in

lower case, upper case, or mixed case.
v The trim option specifies whether you want blanks, tabs and line-end characters

to be trimmed from the XML data before it is assigned to your RPG variables.
v The allow missing option specifies how the RPG runtime should handle the

situation when the XML document does not have enough XML elements or XML
attributes to provide data for all the RPG subfields of a data structure.

v The allow extra option specifies how the RPG runtime should handle the
situation when the XML document has additional XML elements or attributes
that are not needed to set the RPG variable.

v The data subfield option specifies the name of the extra subfield used to handle
the situation where there is text data for an XML element that matches an RPG
data structure.

v The count prefix option specifies the prefix for the names of the additional
subfields that receive the number of RPG array elements set by the XML-INTO
operation.

doc (default string)
The doc option indicates what the source operand of %XML contains.
v string indicates that the source operand contains XML data
v file indicates that the source operand contains the name of a file in the

Integrated File System

XML-INTO (Parse an XML Document into a Variable)

856 ILE RPG Reference

|
|
|

|
|
|

ccsid (default best)
The ccsid option specifies the CCSID to be used for processing the XML
document. Some CCSID conversions may be performed during the
XML-INTO operation:
v CCSID conversion may be required from the XML document to a

temporary copy of the XML document, if the CCSID of the XML
document differs from the CCSID used for parsing.

v CCSID conversion may be required when assigning XML data to an RPG
variable, if the CCSID used for parsing differs from the CCSID of the
RPG variable.

If the CCSID of the actual document is different from the CCSID to be
used for processing the document, CCSID conversion will be done on the
entire document before parsing begins. If the CCSID to be used for
processing the document is different from the CCSID of an RPG variable,
CCSID conversion will be done on the data when it is assigned to the RPG
variable.
v best indicates that the document should be processed in the CCSID that

will best preserve the data in the document. If the document is in the job
CCSID or an ASCII CCSID related to the job CCSID, the document will
be processed in the job CCSID. Otherwise, the document will be
processed in UCS-2 and the data will be converted to the job CCSID
before it is assigned to variables with a data type other than UCS-2.

v job indicates that the document should be processed in the job CCSID.
The data will be converted to UCS-2 when it is assigned to UCS-2
variables.

v ucs2 indicates that the document should be processed in UCS-2. The data
will be converted to the job CCSID when it is assigned to variables with
a data type other than UCS-2.

When the XML document is in a file, the contents of the entire file may be
converted to another CCSID before parsing begins.

// In the following example, the first parameter
// of %XML is the name of a file. Option
// "doc=file" must be specified.
ifsfile = 'myfile.xml';
opt = 'doc=file';
XML-INTO myfield %XML(ifsfile : opt);

// In the following example, the first parameter
// of %XML is an XML document. Since the "doc"
// option defaults to "string", no options are
// necessary.
xmldata = '<data><num>3</num></data>';
XML-INTO data %XML(xmldata);

// However, "doc=string" may still be specified.
xmldata = '<data><num>3</num></data>';
XML-INTO data %XML(xmldata : 'doc=string');

Figure 399. Example of the doc option:

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 857

The following table lists several files and their CCSIDs:

File File CCSID Related EBCDIC CCSID

file1.xml 37 37

file2.xml 1252 37

file3.xml 874 838

file4.xml 13488 (N/A, UCS-2)

file5.xml 1208 (N/A, UTF-8)

The following table shows the CCSID that would be used for processing
these files for each value of the ccsid option, assuming the job CCSID is 37.
An asterisk indicates that the file is converted to a different CCSID before
processing:

File CCSID Option Value

best job ucs2

file1.xml 37 37 13488*

file2.xml 37* 37* 13488*

file3.xml 13488* 37* 13488*

file4.xml 13488 37* 13488

file5.xml 13488* 37* 13488*

When the XML document is in a variable, the entire document may be
converted to a different CCSID before parsing begins.

Given the following variable definitions:
D chrXml S 100A
D ucs2Xml S 100C

The following table shows the CCSID that would be used for processing
these variables for each value of the ″ccsid″ option, assuming the job
CCSID is 37. An asterisk indicates that the data in the variable is converted
to a different CCSID before processing.

Variable CCSID Option Value

best job ucs2

chrXml 37 37 13488

ucs2Xml 13488 37* 13488

path The path option specifies the path to the element as it appears in the XML
document, with elements separated by forward slashes. For example, if this
option is path=main/info/name, the parser will expect the document
element to be ″main″, a child of ″main″ to be ″info″, and a child of ″info″
to be ″name″. If no element can be found, the operation will fail with
status 00353 (XML does not match RPG variable).

Note: The value of the ″allowmissing″ option has no effect on this
situation.

Note: The path option is required when %HANDLER is used to specify an
array-handling procedure.

XML-INTO (Parse an XML Document into a Variable)

858 ILE RPG Reference

Default: When the path option is not specified, the search for the XML
element matching the RPG variable depends on the type of the variable.
v For non-array variables, the outermost XML element is expected to have

the |same name as the RPG variable.
v For array variables, the outermost XML element is expected to have

child elements with the same name as the RPG array variable. The
outermost XML element can have any name.

Notes:

1. If the variable is a qualified subfield, only the name of the subfield is
used in determining the path to the XML variable. For example, if the
variable is DS.SUB1, the default is to expect the outermost XML
element to be called ″sub1″.

2. The path specified by this option is case sensitive. It must be in the
same case as the matching elements in the XML document unless the
case option is also specified.

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 859

D info DS
D num 5P 2

D xmlDoc S 1000A VARYING

D qualDs DS QUALIFIED
D subf 10A

/free
// 1. Specifying a different name for the XML element
xmlDoc = '<myinfo><num>123.45</num></myinfo>';
xml-into info %XML(xmlDoc : 'path=myinfo');
// num now has the value 123.45

// 2. Neglecting to specify a different name for the XML
// element causes the operation to fail
xmlDoc = '<myinfo><num>456.1</num></myinfo>';
xml-into info %XML(xmlDoc');
// The XML-INTO operation fails with status 00353 because the
// document does not contain the "info" element

// 3. Specifying that the XML element is not the outermost
// element in the document
xmlDoc = '<data><info><num>-789</num></info></data>';
xml-into info %XML(xmlDoc : 'path=data/info');
// num now has the value -789

// 4. Parsing into a subfield where the data structure is
// represented by the XML. The full path to the "num"
// XML element must be specified.
xmlDoc = '<data><info><num>.3</num></info></data>';
xml-into num %XML(xmlDoc :

'path=data/info/num');
// num now has the value .3

// 5. Specifying the "path" option with XML from a file
// Assume file myfile.xml contains the following lines:
// <?xml version='1.0' ?>
// <data>
// <val>17</val>
// </data>
xml-into num %XML('myfile.xml' : 'doc=file path=data/val');
// num now has the value 17

// 6. Specifying a qualified subfield without the "path"
// option.
xmlDoc = '<subf>-987.65</subf>';
xml-into qualDs.subf %XML(xmlDoc);
// qualDs.subf now has the value '-987.65'

// 7. Specifying a qualified subfield with the "path"
// option.
// Note that the default path for a qualified subfield
// is the subfield name; in this XML document, the
// XML element for the subfield is a child element
// of another XML element so the 'path' option must
// be specified, and it must include the names of all
// the ML elements in the path to the required XML
// element, including the XML element containing the
// data to set the variable.
xmlDoc = '<qualds><subf>-987.65</subf></qualds>';
xml-into qualDs.subf %XML(xmlDoc :

'path=qualds/subf);
// qualDs.subf now has the value '-987.65'

Figure 400. Examples of the path option with non-array variables:

XML-INTO (Parse an XML Document into a Variable)

860 ILE RPG Reference

case (default lower)
The case option specifies the case expected for element and attribute names
in the XML document when searching for XML data that matches the the
RPG field names and the names in the path option. If the XML elements
are not in the expected case, they will not be found, and the operation will

D loc DS DIM(2)
D city 20A VARYING
D prov 2A
D arr S 5I 0 DIM(3)
D xmlDoc S 1000A VARYING

/free
// 1. Parsing an array from a string where the
// string contains array elements. The XML
// elements matching the RPG array elements
// are children of an XML element "outer".
// The "path" option is not needed because
// XML elements with the name "arr" are
// expected to be child elements of the
// outermost XML element.
xmlDoc = '<outer>'

+ '<arr>3</arr>'
+ '<arr>4</arr>'
+ '<arr>-2</arr>'
+ '</outer> ;

xml-into arr %XML(xmlDoc);
// arr(1) = 3
// arr(2) = 4
// arr(3) = -2

// 2. Parsing a DS array from a file where the
// file contains array elements with a
// container XML element. The "path" option
// is not needed. The name of the outermost element
// does not matter.
// Assume file myarray.xml contains the following lines:
// <locations>
// <loc><city>Saskatoon</city><prov>SK</prov></loc>
// <loc><city>Regina</city><prov>SK</prov></loc>
// </locations>
xml-into loc %XML('myarray.xml' : 'doc=file');
// loc(1).city = 'Saskatoon' loc(2).city = 'Regina'
// loc(1).prov = 'SK' loc(2).prov = 'SK'

// 3. Parsing a DS array where the XML elements have
// a different name from the array name. The
// "path" option specifies the full path to the
// XML elements, including the container element
// "data".
// Assume file mydata.xml contains the following lines:
// <data>
// <where><city>Edmonton</city><prov>AB</prov></where>
// <where><city>Toronto</city><prov>ON</prov></where>
// </data>

xmlfile = 'mydata.xml';
xml-into loc %XML(xmlfile : 'path=data/where doc=file');
// loc(1).city = 'Edmonton' loc(2).city = 'Toronto'
// loc(1).prov = 'AB' loc(2).prov = 'ON'

Figure 401. Examples of the path option with array variables:

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 861

fail with status 00353 (XML document does not match RPG variable) unless
option ’allowmissing=yes’ is specified.
v lower indicates that the XML element and attribute names matching the

RPG variable names are in lower case.
v upper indicates that the XML element and attribute names matching the

RPG variable names are in upper case.
v any indicates that the element and attribute names matching the RPG

variable names are in unknown or mixed case. The XML element and
attribute names will be converted to upper case before comparison to
the upper-case RPG variable names.

trim (default all)
The trim option specifies whether whitespace (blanks, newlines, tabs etc.)
should be trimmed from text data before the data is assigned to RPG
variables
v all indicates that before text content is assigned to the RPG character or

UCS-2 variable, the following steps will be done:
1. Leading and trailing whitespace will be trimmed completely from

text content

D info DS QUALIFIED
D name 10A
D id_no 5A
D xmlDoc S 1000A VARYING

/free
// 1. The XML document uses lowercase for element names and
// attributes. The "case" option defaults to lowercase
// so it is not needed.
xmlDoc = '<info><name>Jim</name><id_no>103</id_no></info>';
xml-into info %XML(xmlDoc);
// info.name = 'Jim '
// info.id_no = '103'

// 2. The XML document uses uppercase for element names and
// attributes. Option "case=upper" must be specified.
xmlDoc = '<INFO><NAME>Bill</NAME><ID_NO>104</ID_NO></INFO>';
xml-into info %XML(xmlDoc : 'case=upper');
// info.name = 'Bill '
// info.id_no = '104'

// 3. The XML document uses mixed case for element names and
// attributes. Option "case=any" must be specified.
xmlDoc = '<INFO><name>Tom</name>'

+ '<ID_NO>105</ID_NO></INFO>';
xml-into info %XML(xmlDoc : 'case=any');
// info.name = 'Tom '
// info.id_no = '104'

// 4. The XML document uses mixed case for element names and
// attributes but the "case" option is not specified.
xmlDoc = '<INFO><name>Tom</name>'

+ '<ID_NO>105</ID_NO></INFO>';
xml-into info %XML(xmlDoc);
// The XML-INTO operation fails with status 00353 because
// it assumes the XML elements will have lowercase names.

Figure 402. Examples of the case option:

XML-INTO (Parse an XML Document into a Variable)

862 ILE RPG Reference

2. Strings of interior whitespace in the text content will be reduced to a
single blank

v none indicates that no whitespace will be trimmed from text content.
This option will have the best performance, but it should only be used if
the whitespace is wanted, or if the XML data is known to contain no
unwanted whitespace, or if the RPG program is going to handle the
removal of the whitespace itself.

Notes:

1. Whitespace includes blank, tab, end-of-line, carriage-return, and
line-feed.

2. This option applies only to XML data that is to be assigned to character
and UCS-2 RPG variables. Trimming of whitespace is always done for
other data types.

3. This option is mainly provided for XML data from files, but it also
applies to XML data from a variable.

4. Whitespace between XML elements is always ignored. The trim option
controls the whitespace within text content of elements and attributes.

allowmissing (default no)
For the situation where the XML document does not have sufficient XML
elements or attributes for the subfields of an RPG data structure, you can
use the allowmissing option to indicate whether this is considered an error.
XML data is considered to be missing in the following circumstances:

D data S 100A VARYING
// Assume file data.xml contains the following lines:
// <text>
// line1
// line2
// </text>
//
// Here is another view of this same file where
// '_' represents a blank
// 'T' represents a tab
// 'F' represents a line-feed
// <text>____F
// Tline1F
// ____line2F
// </text>F
/free
// 1. The default of "trim=all" is used. Leading and
// trailing whitespace is removed. Strings of
// internal whitespace is changed to a single blank.
xml-into data %XML('data.xml' : 'doc=file');
// data = 'line1 line2'

// 2. Option "trim=none" is specified. No whitespace
// is trimmed from text data.
xml-into data %XML('data.xml' : 'doc=file trim=none');
// The following line shows the value of data with the
// line-feed and tab characters shown as ?.
// data = ' ??line1? line2?'
// The following line shows the value of data with the
// blanks, line-feed and tab characters shown as in the
// second view of the document.
// data = '____FTline1F____line2F'

Figure 403. Examples of the trim option:

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 863

v For an XML element matching an RPG data structure (including a data
structure subfield), if the XML element does not have attributes or child
elements for all RPG subfields.

v For XML data matching an array subfield of an RPG data structure, if
the number of XML elements is less than the dimension of the RPG
subfield array.

If expected XML data is not found, and ’allowmissing=yes’ is not specified,
the operation will fail with status 00353 (XML does not match RPG
variable).

Tip: The countprefix option can also be used to handle the situation where
the XML document might not have sufficient XML data for every subfield
in the data structure.

To allow fewer array elements for the array specified on the XML-INTO
operation, it is not necessary to specify ’allowmissing=yes’. If the XML
document contains fewer elements than the RPG array, the operation will
not fail. The ″Number of XML Elements″ subfield in positions 372 - 379 of
the PSDS can be used to determine the number of elements successfully set
by the operation.
v no indicates that XML data must be present for every subfield of a data

structure (including subfields of data structure subfields), and XML data
must be present for every element of every subfield array.

v yes indicates that when XML data is not present for every subfield and
subfield array element, the operation will not fail. If a variable is
specified as the first operand of XML-INTO, the unset subfields will
hold the same value they held before the operation. If %HANDLER is
specified as the first operand of XML-INTO, the unset subfields of the
array passed to the handling procedure will have the default value for
the type (zero for numeric values, *LOVAL for date values and so on).

XML-INTO (Parse an XML Document into a Variable)

864 ILE RPG Reference

|
|
|

D employee DS QUALIFIED
D name 10A VARYING
D type 10A

D empInfo3 DS QUALIFIED
D emp LIKEDS(employee)
D DIM(3)

D empInfo2 DS QUALIFIED
D emp LIKEDS(employee)
D DIM(2)

D empInfo4 DS QUALIFIED
D emp LIKEDS(employee)
D DIM(4)

// Assume file emp.xml contains the following lines:
// <employees>
// <emp><name>Jack</name><type>Normal</type></emp>
// <emp><name>Mary</name><type>Manager</type></emp>
// <emp><name>Sally</name><type>Normal</type></emp>
// </employees>

/free
// 1. The "empInfo3" data structure has an array "emp"
// with a dimension of 3.
// The "allowmissing" option is not required.
// The default of "allowmissing=no" can be used, since
// the XML document exactly matches the data structure.
xml-into empInfo3 %XML('emp.xml' :

'doc=file path=employees');
// empInfo3.emp(1) .name = 'Jack' .type = 'Normal'
// empInfo3.emp(2) .name = 'Mary' .type = 'Manager'
// empInfo3.emp(3) .name = 'Sally' .type = 'Normal'

// 2. Option "allowmissing=no" may be specified, however.
xml-into empInfo3 %XML('emp.xml' :

'doc=file ' +
'allowmissing=no path=employees');

// empInfo3.emp(1) .name = 'Jack' .type = 'Normal'
// empInfo3.emp(2) .name = 'Mary' .type = 'Manager'
// empInfo3.emp(3) .name = 'Sally' .type = 'Normal'

// 3. Option "allowmissing=yes" must be specified with
// data structure "empInfo4", since the XML document
// has only three "emp" XML elements, and the RPG "emp"
// array has four elements.
xml-into empInfo4

%XML('emp.xml' : 'doc=file ' +
'allowmissing=yes path=employees');

// empInfo4.emp(1) .name = 'Jack' .type = 'Normal '
// empInfo4.emp(2) .name = 'Mary' .type = 'Manager '
// empInfo4.emp(3) .name = 'Sally' .type = 'Normal '
// empInfo4.emp(4) .name = '' .type = ' '

// 4. Option "allowmissing" is not specified for data
// structure "empInfo4"
xml-into empInfo4 %XML('emp.xml' :

'doc=file path=employees');
// The XML-INTO operation fails with status 00353 because
// the XML document does not have enough "emp" elements
// for the RPG array.

Figure 404. Examples of the allowmissing option with insufficient data for subfield arrays:

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 865

allowextra (default no)
For the situation where the XML document has XML elements or attributes
that are not needed for assignment to the subfields of an RPG data
structure, you can use the allowextra option to indicate whether this is
considered an error. XML data is considered to be extra in the following
circumstances:
v For XML data matching an RPG data structure, if non-whitespace text

content is found.

D qualName DS QUALIFIED
D name 10A
D lib 10A

D copyInfo DS QUALIFIED
D from LIKEDS(qualName)
D to LIKEDS(qualName)

// Assume file cpyA.xml contains the following lines:
// <?xml version='1.0' ?>
// <copyInfo>
// <to><name>MYFILE</name><lib>*LIBL</lib></to>
// <from name="MASTFILE" lib="CUSTLIB"></from>
// </copyInfo>

// Assume file cpyB.xml contains the following lines:
// <copyInfo>
// <from><name>MASTER</name><lib>PRODLIB</lib></from>
// <to><name>MYCOPY</name></to>
// </copyInfo>

/free
// 1. Data structure "copyInfo" has two subfields, "from"
// and "to". Each of these subfields has two subfields
// "name" and "lib". File "cpyA.xml" exactly matches
// the "copyInfo" structure, so the "allowmissing" option
// is not needed.
xml-into copyInfo %XML('cpyA.xml' : 'doc=file');
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = '*LIBL '

// 2. File "cpyB.xml" is missing the "lib" subfield from
// the XML element "copyinfo.to". Option
// "allowmissing=yes" must be specified to allow
// a subfield to be missing from the XML document.
// The copyInfo structure is cleared before the
// operation so the program can determine
// which subfields were not assigned any data.
clear copyInfo;
xml-into copyInfo %XML('cpyB.xml'

: 'doc=file allowmissing=yes');
// copyInfo.from .name = 'MASTER ' .lib = 'PRODLIB '
// copyInfo.to .name = 'MYCOPY ' .lib = ' '
//
// The RPG program inspects the data to see if any subfields
// have not been set.
if copyInfo.from.lib = *blanks;

copyInfo.from.lib = '*LIBL';
endif;
if copyInfo.to.lib = *blanks;

copyInfo.to.lib = '*LIBL';
endif;

Figure 405. Examples of the allowmissing option with insufficient data for all subfields:

XML-INTO (Parse an XML Document into a Variable)

866 ILE RPG Reference

v For XML data matching an array subfield of an RPG data structure, if
the number of XML elements is greater than the dimension of the RPG
subfield array.

v For XML data matching a RPG scalar variable (neither data structure nor
unindexed array), if the XML element contains child elements or
attributes, other than the special formatting attributes allowed for some
data types (see “Rules for transferring XML data to RPG variables” on
page 881).

If unexpected XML data is found, and ’allowextra=yes’ is not specified, the
operation will fail with status 00353 (XML does not match RPG variable).

Warning: At any time, XML attributes for non-data-structure XML elements
elements may be subject to interpretation by the RPG runtime. Currently,
″fmt″ and ″adjust″ are already being interpreted by the RPG runtime for
some target data types. Support for other attributes may be added at any
time, possibly even through PTFs. If an attribute is being ignored by option
’allowextra=yes’, and that attribute becomes meaningful for the RPG
runtime, it may affect the handling of the data.
v no indicates that the XML elements used to set the RPG variable or array

elements must contain only the data necessary to set the variable.
v yes indicates that additional XML data will be ignored.

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 867

D employee DS QUALIFIED
D name 10A VARYING
D type 10A

D empInfo2 DS QUALIFIED
D emp LIKEDS(employee)
D DIM(2)

D empInfoAway DS QUALIFIED
D emp LIKEDS(employee)
D DIM(2)
D away 10A DIM(2)

// Assume file emp.xml contains the following lines:
// <employees>
// <emp><name>Jack</name><type>Normal</type></emp>
// <emp><name>Mary</name><type>Manager</type></emp>
// <emp><name>Sally</name><type>Normal</type></emp>
// </employees>

/free

// 1. Option "allowextra=yes" must be specified with
// data structure "empInfo2", since the XML document
// has three "emp" XML elements, and the RPG "emp"
// array only has two elements.
xml-into empInfo2

%XML('emp.xml'
: 'doc=file allowextra=yes path=employees');

// empInfo2.emp(1) .name = 'Jack' .type = 'Normal'
// empInfo2.emp(2) .name = 'Mary' .type = 'Manager'

// 2. Option "allowextra" is not specified for data structure
// "empInfo2"
xml-into empInfo2

%XML('emp.xml' : 'doc=file path=employees');
// The XML-INTO operation fails with status 00353 because
// the XML document has too many "emp" elements for the
// RPG array.

// 3. Structure "empInfoAway" requires 2 "emp" elements and
// 2 "away" elements. The XML document contains
// 3 "emp" elements and zero "away" elements.
// Option "allowextra=yes allowmissing=yes" is specified,
// so the operation will succeed with any number of
// "emp" and "away" XML elements. The extra "emp"
// element and missing "away" elements will be ignored.
xml-into empInfoAway

%XML('emp.xml' : 'allowextra=yes ' +
'allowmissing=yes ' +
'path=employees ' +
'doc=file');

// empInfoSite.emp(1) .name = 'Jack' .type = 'Normal'
// empInfoSite.emp(2) .name = 'Mary' .type = 'Manager'
// empInfoSite.away(1) = ' '
// empInfoSite.away(2) = ' '

Figure 406. Examples of the allowextra option with extra elements for a subfield array:

XML-INTO (Parse an XML Document into a Variable)

868 ILE RPG Reference

D qualName DS QUALIFIED
D name 10A
D lib 10A

D copyInfo DS QUALIFIED
D from LIKEDS(qualName)
D to LIKEDS(qualName)

D copyInfo3 DS QUALIFIED
D from LIKEDS(qualName)
D to LIKEDS(qualName)
D create 1N

// Assume file cpyA.xml contains the following lines:
// <copyInfo>
// <to><name>MYFILE</name><lib>*LIBL</lib></to>
// <from name="MASTFILE" lib="CUSTLIB"></from>
// </copyInfo>

// Assume file cpyC.xml contains the following lines:
// <copyinfo errors="tolerate">
// <to><name>MYFILE</name><lib>MYLIB</lib></to>
// <from><name>MASTFILE</name><lib>CUSTLIB</lib></from>
// <to><name>MYFILE2</name></to>
// </copyinfo>

// Assume file cpyD.xml contains the following lines:
// <copyinfo to="MYLIB/MYFILE">
// <from><name>MASTFILE</name><lib>CUSTLIB</lib></from>
// </copyinfo>

/free
// 1. Data structure "copyInfo" has two subfields, "from"
// and "to". Each of these subfields has two subfields
// "name" and "lib". File "cpyA.xml" exactly matches
// the "copyInfo" structure, so the "allowextra" option
// is not needed, since "allowextra" defaults to "yes".

Figure 407. Examples of the allowextra option with XML data not corresponding to RPG
subfields: (Part 1 of 2)

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 869

xml-into copyInfo %XML('cpyA.xml' : 'doc=file');
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = '*LIBL '

// 2. File "cpyC.xml" has an XML attribute for the
// for the XML element "copyinfo" that does not
// match an RPG subfield. It also has the
// "to" subfield specified more than once. Option
// "allowextra=yes" must be specified to allow
// extra subfields in the XML document.
// The extra XML data will be ignored.
xml-into copyInfo

%XML('cpyC.xml' : 'doc=file allowextra=yes');
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = 'MYLIB '

// 3. Data structure copyInfo3 has a subfield
// "create" that does not appear file "cpyC.xml".
// "cpyC.xml" has both missing and extra subfields
// for data structure "copyInfo3".
// Options "allowextra=yes allowmissing=yes" must
// both be specified.
// The extra subfields will be ignored and the
// missing subfield will retain its original value.
clear copyInfo3;
xml-into copyInfo3

%XML('cpyC.xml' : 'allowextra=yes ' +
'allowmissing=yes ' +
'doc=file' +
'path=copyinfo');

// copyInfo3.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo3.to .name = 'MYFILE ' .lib = 'MYLIB '
// copyInfo3.create = '0' (from the CLEAR operation)

// 4. File "cpyD.xml" has an XML element "copyInfo"
// with an attribute "to". Subfields can be specified
// by attributes only when the subfield is neither
// an array nor a data structure.
xml-into copyInfo %XML('cpyC.xml' : 'doc=file');
// The XML-INTO operation fails because the "to" attribute
// is not expected, and because the "to" XML element is
// not found.

// 5. Options "allowextra=yes allowmissing=yes" are
// specified, allowing the extra "to" attribute to be
// ignored and the missing "to" element to be tolerated.
// The "to" subfield is not changed by the XML-INTO
// operation.
copyInfo.to.name = '*UNSET*';
copyInfo.to.lib = '*UNSET*';
xml-into copyInfo %XML('cpyD.xml' : 'doc=file ' +

'allowextra=yes allowmissing=yes');
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = '*UNSET* ' .lib = '*UNSET* '

Figure 407. Examples of the allowextra option with XML data not corresponding to RPG
subfields: (Part 2 of 2)

XML-INTO (Parse an XML Document into a Variable)

870 ILE RPG Reference

D part DS
D size 10A

// Assume file part.xml contains the following lines:
// <?xml version='1.0' ?>
// <part>light bulb<size>medium</size></part>

/free
// 1. "part" is a data structure. The XML file
// part.xml has an element called "part" with
// both element and text children
xml-into part %XML('part.xml' : 'doc=file');
// The XML-INTO operation fails because the "part" XML
// element has text content ("light bulb"),
// and the "allowextra" option defaults to "no".

// 2. "allowextra=yes" is specified, allowing the
// text content to be ignored
xml-into part %XML('part.xml' : 'doc=file allowextra=yes');
// size = 'medium'

Figure 408. Examples of the allowextra option with unexpected text content for a data
structure:

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 871

datasubf
The datasubf option specifies the name of the extra scalar subfield used to
handle the situation where there is text data for an XML element that
matches an RPG data structure.

For example, if this option is specified as datasubf=txt, and an RPG data
structure has a scalar subfield with name txt, then that subfield will receive
the text data for the XML element matching the data structure.

Default: When the datasubf option is not specified, XML elements matching
RPG data structures cannot have text data. Text data can only be associated
with the subfields of the data structure.

D text S 200A VARYING

D order DS QUALIFIED
D part 25A VARYING
D quantity 10I 0

// Assume file txt.xml contains the following lines:
// <?xml version='1.0' ?>
// <text><word>Hello</word><word>World</word></text>

// Assume file ord.xml contains the following lines:
// <?xml version='1.0' ?>
// <order>
// <part>Jack in a box<discount>yes</discount></part>
// <quantity multiplier="10">2</quantity>
// </order>

/free
// 1. "text" is a standalone variable. The XML file
// txt.xml has an element called "text" with two
// child elements called "word".
xml-into text %XML('txt.xml' : 'doc=file');
// The XML-INTO operation fails because the "text" XML
// element has child elements, and the "allowextra"
// option defaults to "no".

// 2. "allowextra=yes" is specified. The child elements
// are ignored.
xml-into text %XML('txt.xml' : 'allowextra=yes doc=file';
// The XML-INTO operation succeeds, but since the
// only content for the "text" XML element is the child
// XML elements, no data is available for RPG field "text".
// text = ''

// 3. "order" is a data structure with two subfields
// which are not themselves data structures.
// The XML elements representing the subfields
// should not have child elements or attributes, but the
// "part" XML element does have one child, "discount",
// and the "quantity" XML element has an attribute
// "multiplier". Option "allowextra=yes" is specified,
// so the "discount" element and "multiplier" attribute
// are ignored.

xml-into order %XML('ord.xml' : 'doc=file allowextra=yes');
// order.part = "Jack in a box"
// order.quantity = 2

Figure 409. Examples of the allowextra option with unexpected non-text content for a scalar
variable or subfield:

XML-INTO (Parse an XML Document into a Variable)

872 ILE RPG Reference

|
|
|
|

|
|
|

|
|
|

Notes:

1. When an RPG data structure has a scalar subfield whose name is
specified by the datasubf option, the following rules apply:
v If the matching XML element has text data, that text data will be

assigned to the scalar subfield.
v The values for all the other subfields of the data structure must be

set by XML attributes. Therefore, the XML element cannot have any
child elements, and the other subfields of the data structure must all
be scalar subfields.

v The XML element matching the data structure cannot have an XML
attribute or child XML element with the same name as the datasubf
option.

v If the XML element does not have any text data, the datasubf subfield
will be set to an empty value. If the datatype of the subfield does not
support the empty value, for example numeric and date types,
assigning the subfield will result in an exception.

2. When an RPG data structure does not have a scalar subfield whose
name is specified by the datasubf option, the datasubf option is ignored
for that data structure. The XML element matching the RPG data
structure cannot have text data.

3. When an RPG data structure has an array or data structure subfield
whose name is the same as the name specified by the datasubf option,
the datasubf option is ignored for that data structure. The XML element
matching the RPG data structure cannot have text data.

4. A complex RPG data structure may have many data structure subfields.
The datasubf option is considered separately for each data structure
subfield. The XML data for one data structure subfield might require
the datasubf option for the XML-INTO operation to complete
successfully, while another data structure subfield might not require it.

5. A datasubf subfield cannot be the same as a countprefix subfield. For
example, if countprefix=num_ was specified, and the data structure has
subfields arr and num_arr, then num_arr is a countprefix subfield.
Option datasubf=num_arr cannot also be specified for this data
structure.

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 873

|

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

D customer ds qualified
D id 10a
D value 100a varying

D order ds qualified
D id 10a
D type 10a

D customers ds qualified
D customer likeds(customer) dim(2)

D orderinfo ds qualified
D customer likeds(customer)
D order likeds(order)
/free

// 1. The datasubf option specifies the "value" subfield.
//
// Assume file customer1.xml contains the following
// <customer id="A34R27K">John Smith</customer>

// When XML-INTO encounters "John Smith", it is
// processing the "customer" data structure. It
// finds that the "customer" data structure has a
// subfield called "value", so it uses that subfield
// for the "John Smith" data.
xml-into customer %xml('customer1.xml'

: 'doc=file datasubf=value');
// customer.id = "A34R27K"
// customer.value = "John Smith"

// 2. The datasubf option is not specified.
//
// Assume file customer2.xml contains the following
// <customer id="A34R27K">John Smith</customer>

// When XML-INTO encounters "John Smith", it is
// processing the "customer" data structure. XML-INTO
// does not normally support having data for a data
// structure, so the XML-INTO operation fails due to
// extra XML data.
xml-into(e) customer %xml('customer2.xml'

: 'doc=file');
// %error = *on

// 3. The XML document has an ordinary XML element
// whose name is the same as the datasubf option.
//
// Assume file customer3.xml contains the following
// <customer id="A34R27K">
// <value>John Smith</value>
// </customer>

// The datasubf option is not specified.
// The XML document has an ordinary XML element called
// "value", so the "value" subfield of the "customer"
// data structure is filled in the usual way.
// The datasubf option is not needed.
xml-into customer %xml('customer3.xml' : 'doc=file');
// customer.id = "A34R27K"
// customer.value = "John Smith"

// The datasubf=value option is specified.
// The XML document has an ordinary XML element called
// "value". The XML-INTO operation fails because a
// scalar subfield with the name of the datasubf option
// cannot be filled by an XML attribute or an XML element.
xml-into(e) customer %xml('customer3.xml'

: 'doc=file datasubf=value');
// %error = *on

// 4. For a complex data structure, the datasubf option

XML-INTO (Parse an XML Document into a Variable)

874 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

countprefix
The countprefix option specifies the prefix for the subfields that can receive
the number of elements that were set by an XML-INTO operation for a
subfield array. The name of the count subfield is formed by adding the
array name to the countprefix value. For example, if a data structure has a
subfield array meeting.attendees, and countprefix=num was specified, the
XML-INTO operation would set meeting.numattendees to the actual
number of elements of the meeting.attendees array that were set by the
XML-INTO operation. In the subsequent discussion of the countprefix
option, subfield meeting.numattendees is referred to as the countprefix
subfield and meeting.attendees is referred to as the counted subfield.

The processing for the countprefix option is done after the XML data for a
data structure or data structure subfield has been parsed.

Notes:

1. A countprefix subfield must be numeric, and it must be scalar; that is,
it cannot be an array or a data structure. If a subfield has a countprefix
name, but is not numeric or scalar, that subfield will be processed
normally; it will not be considered to be a countprefix subfield.

2. A counted subfield can be any type of subfield; it is not required to be
an array. If a counted subfield is not an array, its countprefix subfield
will be set to 0 (zero) if there is no XML data to set the subfield, and it
will be set to 1 (one) if there is XML data to set it.

3. When a subfield is counted by a countprefix subfield, the allowmissing
option is not considered for that subfield. Option allowmissing=yes is
implied for all subfields that are counted by a countprefix subfield.

4. If there is too much XML data for a subfield, the countprefix subfield
will only reflect the number of array elements that were actually set by
the XML-INTO operation. For example, if array arr has ten elements,
and there is XML data for eleven elements, the countprefix subfield for
arr would have the value 10.

5. If the XML-INTO operation ends in error, the countprefix subfields may
not reflect the exact number of RPG subfields that were updated by the
XML-INTO operation. The countprefix processing is done after the
XML data for each data structure or data structure subfield has been
parsed; if an error occurs during parsing, or during the countprefix
processing, the countprefix processing would not be completed.

6. A countprefix subfield is not considered to be countable. For example,
if countprefix=num_ was specified, and the data structure has subfields
arr, num_arr and num_num_arr, then num_arr would be considered a
countprefix subfield for array arr, but num_num_arr would not be
considered a countprefix subfield for num_arr.

7. A countprefix subfield cannot be explicitly set by XML data. Any XML
attributes or XML elements that set a countprefix subfield are
considered to be extra.

8. A countprefix subfield cannot be the same as a datasubf subfield. For
example, if countprefix=num_ was specified, and the data structure has
subfields arr and num_arr, then num_arr is a countprefix subfield.
Option datasubf=num_arr cannot also be specified for this data
structure.

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 875

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

D attendee_type...
D DS qualified template
D name 20a varying
D phone 4s 0

D meeting DS qualified
D location 20a varying
D attendee likeds(attendee_type)
D dim(100)
D numAttendee...
D 10i 0

D email DS qualified
D to 40a varying
D cc 40a varying
D from 40a varying
D countCc 5i 0
D subject 100a varying
D countSubject 5i 0
D body 1000a varying

D order1 DS qualified
D numpart 10i 0
D part 20a varying dim(100)

D order2 DS qualified
D numpart 10i 0
D part 20a varying dim(100)
D countpart 10i 0

1. File meeting123.xml:
<meeting>

<location>Room 7a</location>
<attendee name="Jim" phone="1234"/>
<attendee name="Mary" phone="2345"/>
<attendee name="Abel" phone="6213"/>

</meeting>

// a. The countprefix option specifies the "num" prefix.
//
// The XML-INTO operation sets countprefix subfield
// "numAttendee" to 3, the number of "attendee" subfields
// set by the operation. It is not necessary to
// specify option allowmissing=yes, because the
// presence of the countprefix subfield for array
// attendee implictly allows missing XML data for
// that particular array.
xml-into meeting %xml('meeting123.xml'

: 'doc=file countprefix=num');
// meeting.attendee(1): name='Jim' phone=1234
// meeting.attendee(2): name='Mary' phone=2345
// meeting.attendee(3): name='Abel' phone=6213
// meeting.numAttendee = 3
for i = 1 to meeting.numAttendee;

// process meeting.attendee(i)
endfor;

// b. The countprefix subfield is not specified.
//
// The XML-INTO operation fails because there is
// insufficient XML data for array "attendee", and
// there is no XML data at all for "numAttendee"
xml-into(e) meeting %xml('meeting123.xml'

: 'doc=file');
// %error is set on

2. File email456.txt:
<email to="jack@anywhere.com" from="jill@anywhere.com">

<subject>The hill</subject>
<body>How are you feeling after your fall?</body>

</email>

XML-INTO (Parse an XML Document into a Variable)

876 ILE RPG Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Expected format of XML data
The structure of the XML elements is expected to match the structure of the RPG
variable.
v The XML element matching the RPG variable can be at any nesting level of the

XML document, but the path option must be specified if the XML element is not
at the assumed nesting level of the document. The following assumptions are
made when the path option is not specified.
– For non-array variables (including table names and multiple occurrence data

structures, the document element (the outermost XML element) is assumed to
be the XML element matching the RPG variable. If the name of the outermost
XML element is not the same as the name of the RPG variable, the path
option must be used to specify the XML element to be used.

– For array variables, direct children of the document element (the outermost
XML element) are assumed to be the XML elements matching the RPG
variable

v XML elements matching an RPG subfield can be
– XML attributes of the XML element matching the RPG subfield’s parent data

structure (only for subfields that are not themselves data structures)
– direct child XML elements of the XML element matching the data structure

containing the subfield
v XML elements matching RPG arrays must be children of the same XML parent.

It is not required that these child elements appear together in the XML
document; they may be interleaved with other elements.

Note: XML processing instructions are ignored by XML-INTO. Processing
instructions are in the form
<?targetname data value ?>

Scalar variable
D libname S 10A
/free

XML-INTO libname %XML(xmldoc : option)

Sample XML for XML-INTO libname path option

<libname>data</libname>

<library>data</library> ’path=library’

<info><library>data</library></info> ’path=info/library’

Array element
D sites S 25A DIM(3)
/free

XML-INTO sites(n) %XML(xmldoc : option)

Sample XML for XML-INTO sites path option

<sites>data</sites> blank

<custsites>data</custsites> ’path=custsites’

<info><sites>data</sites></info> ’path=info/sites’

Table name
D tabname S 10A DIM(5)
/free

XML-INTO tabname %XML(xmldoc : opts)

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 877

Sample XML for XML-INTO tabname path option

<tabname>data</tabname> blank

<library>data</library> ’path=library’

<info><library>data</library></info> ’path=info/library’

Simple data structure or multiple-occurrence data structure

Note: The XML data in the examples show line breaks and indentation for
clarity only. The XML data may be formatted in any convenient way.

OR

Sample XML for XML-INTO pgm path option

<pgm>
<name>data</name>
<lib>data</lib>

</pgm>

blank

<program>
<name>data</name>
<lib>data</lib>

</program>

’path=program’

<api>
<program>

<name>data</name>
<lib>data</lib>

</program>
</api>

’path=api/program’

Note: The subfield information can come from XML elements or XML
attributes. The following show other valid ways to specify the XML for the
subfields of the data structure. The designer of the XML document can use
either attributes or elements freely when representing the XML data for a
scalar subfield.
<pgm name="data" lib="data"/>
OR
<pgm name="data">

<lib>data</lib>
</pgm>

Array of scalar type
D sites S 25A DIM(3)
/free

XML-INTO sites %XML(xmldoc : option)

D pgm DS
D name 10A
D lib 10A

Figure 412.

D pgm DS OCCURS(5)
D name 10A
D lib 10A
/free

XML-INTO pgm %XML(xmldoc : option)

Figure 413.

XML-INTO (Parse an XML Document into a Variable)

878 ILE RPG Reference

Sample XML for XML-INTO sites path option

<anything>
<sites>data</sites>
<sites>data</sites>
<sites>data</sites>

</anything>

blank

<info>
<custsites>data</custsites>
<custsites>data</custsites>
<custsites>data</custsites>

</info>

’path=info/custsites’

Array of data structures
D pgm DS DIM(3) QUALIFIED
D name 10A
D lib 10A
/free

XML-INTO pgm %XML(xmldoc : option)

Sample XML for XML-INTO pgm path option

<anything>
<pgm name="name1" lib="lib1"/>
<pgm><name>name2</name>

<lib>lib2</lib></pgm>
<pgm lib="lib3"><name>name3</pgm>

</anything>

blank

<programs>
<pgm name="name1" lib="lib1"/>
<pgm><name>name2</name>

<lib>lib2</lib></pgm>
<pgm lib="lib3"><name>name3</pgm>

</programs>

’path=programs/pgm’

Note: The three ″pgm″ XML elements have the name and lib information
specified in various combinations of XML elements and XML attributes.
The designer of the XML document can use either attributes or elements
freely when representing the XML data for a scalar subfield.

Complex data structure
D qualname DS QUALIFIED
D name 10A
D lib 10A
D dtaaraInfo DS QUALIFIED
D dtaara LIKEDS(qualname)
D type 10I 0
D value 100a
/free

XML-INTO dtaaraInfo %XML(xmldoc : option)

Sample XML for XML-INTO
dtaaraInfo path option

<dtaarainfo>
<dtaara>

<name>data</name>
<lib>data</lib>

</dtaara>
<type>data</type>
<value>data</value>

</dtaarainfo>

blank

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 879

Sample XML for XML-INTO
dtaaraInfo path option

<sys>
<obj>

<dta>
<dtaara>

<name>data</name>
<lib>data</lib>

</dtaara>
<type>data</type>
<value>data</value>

</dta>
</obj>
</sys>

’path=sys/obj/dta’

Handler procedure with array of data structures
D myCommArea DS
D total 20u 0
D custType DS qualified
D name 50a varying
D id_no 10i 0
D city 20a
D custHdlr PR
D commArea likeds(myCommArea)
D custinfo likeds(custType) dim(5)
D numElems 10u 0 const
/free

XML-INTO %HANDLER(custHdlr : myCommArea) %XML(xmldoc : option)

Note: The path option is required when %HANDLER is specified.

Sample XML for XML-INTO
%HANDLER(custHdlr:x) path option

<info>
<cust>

<name>data</name>
<id_no>data</id_no>
<city>data</city>

</cust>
<cust>

<name>data</name>
<id_no>data</id_no>
<city>data</city>

</cust>
:
:
<cust>

<name>data</name>
<id_no>data</id_no>
<city>data</city>

</cust>
</info>

’path=info/cust’

Handler procedure with array of scalar types
D myCommArea DS
D total 20u 0
D nameHdlr PR
D commArea likeds(myCommArea)
D names 10a dim(5)
D numNames 10u 0 const
/free

XML-INTO %HANDLER(nameHdlr : myCommArea) %XML(xmldoc : option)

XML-INTO (Parse an XML Document into a Variable)

880 ILE RPG Reference

Note: The path option is required when %HANDLER is specified.

Sample XML for XML-INTO
%HANDLER(nameHdlr:x) path option

<info>
<name>data</name>
<name>data</name>
<name>data</name>
<name>data</name>
:
:
<name>data</name>
<name>data</name>

</info>

’path=info/names’

Rules for transferring XML data to RPG variables
v For integer, unsigned, decimal (packed, zoned, binary) and float fields , the data

will be transferred using the same rules as RPG uses for %INT, %UNS, %DEC,
%FLOAT for respectively. %INTH, %UNSH and %DECH will be used if the
Half-Adjust operation extender is specified on the XML-INTO operation code.

v For date, time and timestamp fields, the data will be transferred using the same
rules as RPG uses for %DATE, %TIME and %TIMESTAMP respectively. The
format defaults to *ISO with separators. The format may be specified by an
attribute fmt in the element. The value of the attribute must be one of the valid
formats for the respective built-in function; the leading asterisk is optional. For
formats that allow more than one separator in RPG, the separator defaults to the
RPG default separator for the format. For example, for a date field, the following
XML fragments are valid:
<myDate fmt="DMY/">25/12/04</myDate> <!-- 2004-12-25 -->
<myDate fmt="Dmy">25.12.04</myDate> <!-- 2004-12-25 -->
<myDate fmt="*cymd0">0971123</myDate> <!-- 1997-11-23 -->

v For indicator, character and UCS-2 fields, data will be transferred with
appropriate CCSID conversion if necessary. Fixed-length fields will be assigned
left-adjusted by default. The adjustment can be specified by an attribute adjust in
the element, with a value of either ″left″ or ″right″. For example, if the RPG
variable data is 10 bytes long, the following XML data will cause the value of
DATA to be set to ’�����abcde’.
<data adjust="right">abcde</data>

v For graphic fields, data will be transferred using the same rules as the %GRAPH
built-in function, with appropriate CCSID conversion if necessary. Fixed-length
fields will be assigned left-adjusted by default. The adjustment can be specified
by an attribute adjust in the element, with a value of either ″left″ or ″right″.

v Pointer and procedure-pointer subfields are not supported, and are ignored by
the XML-INTO operation.

v The special attributes fmt and adjust will be treated as ordinary attributes if they
are not relevant to the assignment of the matching variable, or if the value of the
attribute is not valid. For example, the following XML attributes would be
treated as ordinary XML attributes:

’fmt=″abc″’
″abc″ is not a valid format

’adjust=yes’
″yes″ is not a valid value for the ″adjust″ attribute

’fmt=″mdy/″’, if specified for a numeric field

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 881

’adjust=right’, if specified for a varying-length field

v The attributes fmt and adjust and their values must be specified in the case
specified by the case option. The following table shows valid examples of the
attributes for each value of the case option.

case option fmt, example ″*MDY/″ adjust, example ″right″

not specified fmt="mdy/"
fmt="*mdy/"

adjust=″right″

’case=lower’ fmt="mdy/"
fmt="*mdy/"

adjust=″right″

’case=upper’ fmt="MDY/"
fmt="*MDY/"

ADJUST=″RIGHT″

’case=any’ Fmt="Mdy/"
FMT="*mDY/"
and so on

Adjust="Right"
adjust="RIGHT"
and so on

Examples of the XML-INTO operation

D qualName DS QUALIFIED
D name 10A
D lib 10A

D copyInfo DS QUALIFIED
D from LIKEDS(qualName)
D to LIKEDS(qualName)

D toName S 10A VARYING

// Assume file cpyA.xml contains the following lines:
// <copyinfo>
// <to><name>MYFILE</name><lib>*LIBL</lib></to>
// <from name="MASTFILE" lib="CUSTLIB"></from>
// </copyinfo>
/free

// Data structure "copyInfo" has two subfields, "from"
// and "to". Each of these subfields has two subfields
// "name" and "lib".
xml-into copyInfo %XML('cpyA.xml' : 'doc=file');
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = '*LIBL '

// Parse the "copyinfo/to/name" information into variable
// "toName". Use the "path" option to specify the location
// of this information in the XML document.
xml-into toName %XML('cpyA.xml'

: 'doc=file path=copyinfo/to/name';
// toName = 'MYFILE'

Figure 414. Parsing directly into a variable from a file

XML-INTO (Parse an XML Document into a Variable)

882 ILE RPG Reference

D info DS
D name 10A
D val 5I 0 DIM(2)
D xmlFragment S 1000A VARYING
D opts S 20A INZ('doc=string')
D dateVal S 10A INZ('12/25/04')
D format S 4A INZ('mdy/')
D mydate S D DATFMT(*ISO)

/free

// 1. Parsing into a data structure containing an array
xmlFragment = '<info><name>Jill</name>'

+ '<val>10</val><val>-5</val></info>';
xml-into info %XML(xmlFragment);
// info now has the value
// name = 'Jill'
// val(1) = 10
// val(2) = -5

// 2. Parsing into a date. The "fmt" XML attribute indicates the
// format of the XML date.
xmlFragment = '<mydate fmt="' + format + '">'

+ dateVal + '</mydate>';
xml-into mydate %XML(xmlFragment);
// xmlFragment = '<mydate fmt="mdy">12/25/04</mydate>'
// mydate = 2004-12-25

Figure 415. Parsing directly into a variable from a string variable

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 883

// DDS for "MYFILE"
// A R PARTREC
// A ID 10P 0
// A QTY 10P 0
// A COST 7P 2

// XML data in "partData.xml"
// <parts>
// <part><qty>100</qty><id>13</id><cost>12.03</cost></part>
// <part><qty>9</qty><id>14</id><cost>3.50</cost></part>
// ...
// <part><qty>0</qty><id>254</id><cost>1.98</cost></part>
// </records>

Fmyfile if e disk
D options S 100A
D allOk S N

D partHandler PR 10I 0
D ok N
D parts LIKEREC(partrec) DIM(10)
D numRecs 10U 0 VALUE

:
:
/free

// Initiating the parsing
options = 'doc=file path=parts/part';
allOk = *ON;
xml-into %HANDLER(partHandler : allOk)

%XML('partData.xml' : options);
// Check if the operation wrote the data
// successfully
if not allOk;

// some output error occurred
endif;

/end-free

:
:
// The procedure to receive the data from up to 10
// XML elements at a time. The first call to the
// this procedure would be passed the following data
// in the "parts" parameter:
// parts(1) .id = 13 .qty = 100 .cost = 12.03
// parts(2) .id = 14 .qty = 9 .cost = 3.50
// ...
// If there were more than 10 "part" child elements in
// the XML file, this procedure would be called more
// than once.

P partHandler B
D PI 10I 0
D ok 1N
D parts LIKEREC(partrec) DIM(10)
D numRecs 10U 0 VALUE

D i S 10I 0
* xmlRecNum is a static variable, so it will hold its
* value across calls to this procedure.
* Note: Another way of storing this information would be to
* pass it as part of the first parameter; in that
* case the first parameter would be a data structure
* with two subfields: ok and xmlRecNum

Figure 416. Parsing an unknown number of XML elements using a handling procedure (Part
1 of 2)

XML-INTO (Parse an XML Document into a Variable)

884 ILE RPG Reference

For more information about XML operations, see “XML Operations” on page 475.

D xmlRecNum S 10I 0 STATIC INZ(0)
/free

for i = 1 to numRecs;
xmlRecNum = xmlRecNum + 1;
write(e) partRec parts(i);
// Parameter "ok" was passed as the second parameter
// for the %HANDLER built-in function for the XML-INTO
// operation. The procedure doing the XML-INTO
// operation can check this after the operation to
// see if all the data was written successfully.
if %error;

// log information about the error
logOutputError (xmlRecNum : parts(i));
ok = *OFF;

endif;
endfor;

// continue parsing
return 0;

/end-free
P E

Figure 416. Parsing an unknown number of XML elements using a handling procedure (Part
2 of 2)

XML-INTO (Parse an XML Document into a Variable)

Chapter 22. Operation Codes 885

XML-SAX (Parse an XML Document)

Free-Form Syntax XML-SAX{(E)} %HANDLER(handlerProc : commArea) %XML(xmlDoc {: options });

Code Factor 1 Extended Factor 2

XML-SAX{(E)} %HANDLER(handlerProc : commArea) %XML(xmlDoc {: options })

Tip: If you are not familiar with the basic concepts of XML and of processing XML
documents, you may find it helpful to read the ″Processing XML Documents″
section in IBM Rational Development Studio for i: ILE RPG Programmer’s Guide before
reading further in this section.

XML-SAX initiates a SAX parse for an XML document. The XML-SAX operation
code begins by calling an XML parser which begins to parse the document. When
an event occurs such as the parser finding the start of an element, finding an
attribute name, finding the end of an element and so on, the parser calls the
handling procedure handlerProc with parameters describing the event. When the
handling procedure returns, the parser continues to parse until it finds the next
event and calls the handling procedure again. When the parser has finished
parsing the document, control passes to the statement following the XML-SAX
operation.

The first operand must be the %HANDLER built-in function; handlerProc is a
prototype name that specifies the procedure to be called to handle the SAX events
and commArea is the communication-area parameter to be passed by the parser to
the handling procedure. The communication-area parameter must be the same type
as the first prototyped parameter of the handling procedure. It provides a way for
the procedure specifying the XML-SAX operation code to communicate with the
handling procedure, and for the handling procedure to save information related to
the parse from one event to the next. See “%HANDLER (handlingProcedure :
communicationArea)” on page 539 for more information on %HANDLER.

The second operand must be the %XML built-in function, identifying the XML
document to be parsed and the options controlling the way the parsing is done.
See “%XML (xmlDocument {:options})” on page 604 for more information on
%XML.

Operation extender E can be specified to handle the following status codes:

00351 Error in XML parsing

00352 Invalid XML option

00354 Error preparing for XML parsing

For status 00351, the return code from the parser will be placed in the subfield
″External return code″ in positions 368-371 of the PSDS. This subfield will be set to
zero at the beginning of the operation and set to the value returned by the parser
at the end of the operation. This subfield is relevant only in a module that has an
XML-SAX operation. SAX event-handling procedures receive the information from
the parser as parameters.

XML-SAX (Parse an XML Document)

886 ILE RPG Reference

The event-handling procedure will not be called if an exception occurs before
parsing begins. For example, if the specified file is not found, the operation will
end immediately with status 00354 and the event-handling procedure will never
get control.

If an error occurs during parsing, the handling procedure will be called with a
*XML_EXCEPTION event, and when the handling procedure returns, parsing will
end and the XML-SAX operation will fail with status code 00351. The return code
from the parser will be placed in the ″External return code″ subfield in positions
368 - 371 of the PSDS.

If an unknown, invalid or unrelated option is found in the %XML options string,
XML-SAX will fail with status code 00352. The External return code subfield in
positions 368 - 371 of the PSDS will not be updated from the initial value of zero,
set when the operation begins.

%XML options for the XML-SAX operation code
doc (default string)

The doc option indicates what the source operand of %XML contains.
v string indicates that the source operand contains XML data
v file indicates that the source operand contains an IFS file name

ccsid (default job)
The ccsid option specifies the CCSID that the XML data should be returned
in.
v job indicates that the XML parser should return data in the job CCSID.

This is the CCSID that the RPG compiler uses for character data in the
program.

v ucs2 indicates that the XML parser should return data in the UCS-2
CCSID of the module.

v numeric value indicates that the XML parser should return the data in the
specified CCSID. In this case, it is up to the RPG programmer to ensure
that the data is handled correctly within the RPG program. The RPG
compiler will assume that character data is in the job CCSID.

// In the following example, the first parameter
// of %XML is the name of a file. Option
// "doc=file" must be specified.
ifsfile = 'myfile.xml';
opt = 'doc=file';
XML-SAX %handler(hdlr:comm) %XML(ifsfile : opt);

// In the following example, the first parameter
// of %XML is an XML document. Since the "doc"
// option defaults to "string", no options are
// necessary.
xmldata = '<data><num>3</num></data>';
XML-SAX %handler(hdlr:comm) %XML(xmldata);

Figure 417. Example of the doc option:

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 887

Note: For *XML_UCS2_REF and *XML_ATTR_UCS2_REF events, the data
is always returned as a UCS-2 value independent of the ccsid option.

XML-SAX event-handling procedure
The event-handling procedure is a user-written prototyped procedure. It must have
the following return type and parameters:

Parameter
number or return
value

Data type and passing
mode

Description

Return value 4-byte integer (10I 0) Returning a value of zero indicates that
parsing should continue; returning any
other value indictes that parsing should
end.

1 –
Communication
area

Any type, passed by
reference

Used to communicate between the
XML-SAX operation and the handler, and
between successive calls to the handler.

2 – Event 4-byte integer (10I 0),
passed by value

The XML event discovered by the parser.
Special words such as
*XML_START_ELEMENT can be used to
identify the events within the handling
procedure. See “XML events” on page 889.

3 – Data Pointer (*), passed by
value

If this parameter is not relevant to the event,
it will have a value of *NULL. Otherwise, it
will point to the data for the event. For the
*XML_UCS2_REF, and
*XML_ATTR_UCS2_REF events, the data
will always be UCS-2 data. For all other
events, the data will be in the CCSID
specified by the ″ccsid″ option of the %XML
built-in function.

// In the following example, the data is to be
// returned in the job ccsid. Even though the
// default for the "ccsid" option is "job", it
// is valid to specify it explicitly.
XML-SAX %handler(hdlr:comm) %XML(xmlString : 'ccsid=job');

// In the following example, the data is to be
// returned in UCS-2.
opt = 'ccsid=ucs2';
XML-SAX %handler(hdlr:comm) %XML(xmldata : opt);

// In the following example, the data is to be
// returned in UTF-8. The handling procedure must
// exercise caution to convert the data to some CCSID
// that the program can handle, if the data is to be
// used within the handling procedure.
XML-SAX %handler(hdlr:comm) %XML(xmldata : 'ccsid=1208');

Figure 418. Example of the ccsid option:

XML-SAX (Parse an XML Document)

888 ILE RPG Reference

Parameter
number or return
value

Data type and passing
mode

Description

4 – Length 8-byte integer (20I 0),
passed by value

For most events, this is the length of the
data pointed to by the third parameter, in
bytes. If this parameter is not relevant for a
particular event, it will have the value -1. If
the data is being returned in UCS-2 due to
the ″ccsid″ option of the %XML built-in
function, this value must be divided by two
to obtain the number of UCS-2 characters.

For the *XML_EXCEPTION event, this
parameter will have the length of the
document that was parsed when the error
occurred.

5 – Exception ID 4-byte integer (10I 0),
passed by value

The exception ID. For all events other than
*XML_EXCEPTION, this parameter will
have a value of zero. See the section on
XML return codes in the IBM Rational
Development Studio for i: ILE RPG
Programmer’s Guide.

See “%HANDLER (handlingProcedure : communicationArea)” on page 539 for
more information on %HANDLER.

XML events
During the SAX parse of your XML document, several XML events will be passed
to your XML-SAX handling procedure. To identify the events within your
procedure, use the special names starting with *XML, for example
*XML_START_ELEMENT.

For most events, the handling procedure will be passed a value associated with the
event. For example, for the *XML_START_ELEMENT event, the value is the name
of the XML element.

D saxHandler pr 10i 0
D commArea likeds(myCommArea)
D event 10i 0 value
D string * value
D stringlen 20i 0 value
D exceptionId 10i 0 value

Figure 419. Sample prototype for an XML-SAX handling procedure

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 889

Table 85. XML events

Event Value

1. Events discovered before the first XML element

*XML_START_DOCUMENT Indicates that parsing has begun

*XML_VERSION_INFO The ″version″ value from the XML
declaration

*XML_ENCODING_DECL The ″encoding″ value from the XML
declaration

*XML_STANDALONE_DECL The ″standalone″ value from the XML
declaration

*XML_DOCTYPE_DECL The value of the Document Type Declaration

2. Events related to XML elements

*XML_START_ELEMENT The name of the XML element that is
starting

*XML_CHARS The value of the XML element

*XML_PREDEF_REF The value of a predefined reference

*XML_UCS2_REF The value of a UCS-2 reference

*XML_UNKNOWN_REF The name of an unknown entity reference

*XML_END_ELEMENT The name of the XML element that is ending

3. Events related to XML attributes

*XML_ATTR_NAME The name of the attribute

*XML_ATTR_CHARS The value of the attribute

*XML_ATTR_PREDEF_REF The value of a predefined reference

*XML_ATTR_UCS2_REF The value of a UCS-2 reference

*XML_UNKNOWN_ATTR_REF The name of an unknown entity reference

*XML_END_ATTR Indicates the end of the attribute

4. Events related to XML processing instructions

*XML_PI_TARGET The name of the target

*XML_PI_DATA The value of the data

5. Events related to XML CDATA sections

*XML_START_CDATA The beginning of the CDATA section

*XML_CHARS The value of the CDATA section

*XML_END_CDATA The end of the CDATA section

6. Other events

*XML_COMMENT The value of the XML comment

*XML_EXCEPTION Indicates that the parser discovered an error

*XML_END_DOCUMENT Indicates that parsing has ended

This sample XML document is referred to in the descriptions of the XML events.

XML-SAX (Parse an XML Document)

890 ILE RPG Reference

*XML_START_DOCUMENT
This event occurs once, at the beginning of parsing the document. Only the
first two parameters are relevant for this event. Accessing the String
parameter will cause a pointer-not-set error to occur.

*XML_VERSION_INFO
This event occurs if the XML declaration contains version information. The
value of the string parameter is the version value from the XML
declaration.

From the example:
’1.0’

*XML_ENCODING_DECL
This event occurs if the XML declaration contains encoding information.
The value of the string parameter is the encoding value from the XML
declaration.

From the example:
’ibm-1140’

*XML_STANDALONE_DECL
This event occurs if the XML declaration contains standalone information.
The value of the string parameter is the standalone value from the XML
declaration.

From the example:
’yes’

*XML_DOCTYPE_DECL
This event occurs if the XML declaration contains a DTD (Document Type
Declaration). Document type declarations begin with the character
sequence ’<!DOCTYPE’ and end with a ’>’ character.

Note: This is the only event where the XML text includes the delimiters.

The value of the string parameter is the entire DOCTYPE value, including
the opening and closing character sequences.

From the example
'<!DOCTYPE page [LF <!ENTITY abc "ABC Inc">LF]>'

(LF represents the LINE FEED character.)

<?xml version="1.0" encoding="ibm-1140" standalone="yes" ?>
<!DOCTYPE page [

<!ENTITY abc "ABC Inc">
]>
<!-- This document is just an example -->
<sandwich>

<bread type="baker's best" supplier="&abc;" />
<?spread please use real mayonnaise ?>
<spices attr="+">Salt & pepper</spices>
<filling>Cheese, lettuce,

tomato, = &xyz;
</filling>
<![CDATA[We should add a <relish> element in future!]]>

</sandwich>junk

Figure 420. Sample XML document referred to in the descriptions of the XML events

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 891

*XML_START_ELEMENT
This event occurs once for each element tag or empty element tag. The
value of the string parameter is the element name.

From the example, in the order they appear:

1. ’sandwich’
2. ’bread’
3. ’spices’
4. ’filling’

*XML_CHARS
This event occurs for each fragment of content. Content normally consists
of a single string, even if the text is on multiple lines. It is split into
multiple events if it contains references. The value of the string parameter
is the fragment of the content.

From the example:

1. ’Salt ’
2. ’ pepper’
3. ’Cheese, lettuce,WWWtomato, ’, where WWW represents

several ″whitespace″ characters. See the “Notes” section.
4. ’We should add a <relish> element in future!’

Notes:

1. The content fragment ’&’ causes a *XML_PREDEF_REF event, and
the fragment ’=’ causes a *XML_UCS2_REF event.

2. If the value spans multiple lines of the XML document, it will contain
end-of-line characters and it will possibly contain unwanted series of
blanks. In the example, ″lettuce,″ and ″tomato″ are separated by a
line-feed character and several blanks. These characters are called
whitespace; whitespace is ignored if it appears between XML elements,
but it is considered to be data if it appears within an element. If it is
possible that the XML data may contain unwanted whitespace, the data
may need to be trimmed before use. To trim unwanted leading and
trailing whitespace, use the following coding. See example Figure 424
on page 901.
* x'15'=newline x'05'=tab x'0D'=carriage-return
* x'25'=linefeed x'40'=blank

D whitespaceChr C x'15050D2540'
/free

temp = %trim(value : whitespaceChr);

*XML_PREDEF_REF
This event occurs when content has one of the predefined single-character
references ’&’, ’'’, ’>’, ’<’, and ’"’. The value of the
string parameter is the single-byte character:

Table 86.

& &

' ’

> <

< >

" ″

XML-SAX (Parse an XML Document)

892 ILE RPG Reference

Note: The string is a UCS-2 character if the parsing is being done in
UCS-2.

From the example:
’&’, from the content for the ″spices″ element.

*XML_UCS2_REF
This event occurs when content has a reference of the form ’’ or ’’, where
’d’ and ’h’ represent decimal and hexadecimal digits, respectively. The
value of the string parameter is the UCS-2 value of reference.

Note: This parameter is a UCS-2 character (type C) even if the parsing is
being done in single-byte character.

From the example:
The UCS-2 value ’=’, appearing as ″=″, from the fragment at
the end of the ″filling″ element,

*XML_UNKNOWN_REF
This event occurs for an entity reference appearing in content, other than
the five predefined entity references as shown for *XML_PREDEF_REF
above. The value of the string parameter is the name of the reference; the
data that appears between the opening ’&’ and the closing ’;’.

From the example:
’xyz’

*XML_END_ELEMENT
This event occurs when the parser finds an element end tag or the closing
angle bracket of an empty element. The value of the string parameter is the
element name.

From the example, in the order they occur:

1. ’bread’
2. ’spices’
3. ’filling’
4. ’sandwich’

*XML_ATTR_NAME
This event occurs once for each attribute in an element tag or empty
element tag, after recognizing a valid name. The value of the string
parameter is the attribute name.

From the example, in the order they appear:

1. ’type’
2. ’supplier’
3. ’attr’

*XML_ATTR_CHARS
This event occurs for each fragment of an attribute value. An attribute
value normally consists of a single string, even if the text is on multiple
lines. It is split into multiple events if it contains references. The value of
the string parameter is the fragment of the attribute value.

From the example, in the order they appear:

1. ’baker’
2. ’s best’

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 893

Notes:

1. The fragment ’'’ causes a *XML_ATTR_PREDEF_REF event
2. See the discussion on “*XML_CHARS” on page 892 for

recommendations for handling unwanted end-of-line characters and
unwanted blanks.

*XML_ATTR_PREDEF_REF
This event occurs when an attribute value has one of the predefined
single-character references ’&’, ’'’, ’>’, ’<’, and ’"’.
The value of the string parameter is the single-byte character:

Table 87.

& &

' ’

> <

< >

" ″

Note: The string is a UCS-2 character if the parsing is being done in
UCS-2.

From the example, the value for the ″type″ attribute:
’ (The apostrophe character, ″&apos″)

*XML_ATTR_UCS2_REF
This event occurs when an attribute value has a reference of the form
’&#dd..;’ or ’&#xhh..;’, where ’d’ and ’h’ represent decimal and
hexadecimal digits, respectively. The value of the string parameter is the
UCS-2 value of the reference.

Note: This parameter is a UCS-2 character (type C) even if the parsing is
being done in single-byte character.

From the example, from the value of the ″attr″ attribute:
The UCS-2 value ’+’, appearing as ″+″ in the document.

*XML_UNKNOWN_ATTR_REF
This event occurs for an entity reference appearing in an attribute, other
than the five predefined entity references as shown for
*XML_ATTR_PREDEF_REF above. The value of the string parameter is the
name of the reference; the data that appears between the opening ’&’ and
the closing ’;’.

From the example:
’abc’

Note: The parser does not parse the DOCTYPE declaration, so even
though entity ″abc″ is defined in the DOCTYPE declaration, it is
considered undefined by the parser.

*XML_END_ATTR
This event occurs when the parser reaches the end of an attribute value.
The string parameter is not relevant for this event. Accessing the string
parameter will cause a pointer-not-set error to occur.

From the example:
For the attribute type=″baker's best″, the *XML_END_ATTR
event occurs after all three parts of the attribute value (″baker″,
' and ″s best″) have been handled.

XML-SAX (Parse an XML Document)

894 ILE RPG Reference

*XML_PI_TARGET
This event occurs when the parser recognizes the name following the
processing instruction (PI) opening character sequence ’<?’. Processing
instructions allow XML documents to contain special instructions for
applications. The value of the string parameter is the processing instruction
name.

From the example:
’spread’

*XML_PI_DATA
This event occurs for the data part of a processing instruction, up to but
not including the PI closing character sequence ’?>’. The value of the string
parameter is the processing instruction data, including trailing but not
leading white space.

From the example:
’please use real mayonnaise ’

Note: See the discussion for “*XML_CHARS” on page 892 for
recommendations for handling unwanted end-of-line characters and
unwanted blanks.

*XML_START_CDATA
This event occurs when a CDATA section begins. CDATA sections begin
with the string ’<![CDATA[’ and end with the string ’]]>’. Such sections are
used to ″escape″ blocks of text containing characters that would otherwise
be recognized as XML markup. The parser passes the content of a CDATA
section between these delimiters as a single *XML_CHARS event. The
value of the string parameter is always the opening character sequence
’<![CDATA[’.

From the example:
'<![CDATA['

*XML_END_CDATA
This event occurs when a CDATA section ends. The value of the string
parameter is always the closing character sequence ’]]>’.

From the example:
’]]>’

*XML_COMMENT
This event occurs for any comments in the XML document. The value of
the string parameter is the data between the opening delimiter ’<!--’ and
the closing delimiter ’-->’ , including leading and trailing white space.

From the example:
’ This document is just an example ’

*XML_EXCEPTION
This event occurs when the parser detects an error. The value of the string
parameter is the ″String″ parameter is not relevant for this event. Accessing
the String parameter will cause a pointer-not-set error to occur. The value
of the string-length parameter is the length of the document that was
parsed up to and including the point where the exception occurred. The
value of the Exception-Id parameter is the exception ID as assigned by the
parser. The meaning of these exceptions is documented in the section on
XML return codes in the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 895

From the example:
An exception event would occur when the parser encountered the
word ″junk″, which is non-whitespace data appearing after the end
of the XML document. (The XML document ends with the
end-element tag for the ″sandwich″ element.)

*XML_END_DOCUMENT
This event occurs when parsing has completed. Only the first two
parameters are relevant for this event. Accessing the String parameter will
cause a pointer-not-set error to occur.

Note: To aid in debugging an XML-SAX handling procedure, the Control
specification keyword DEBUG(*XMLSAX) can be specified. For more details
on this keyword, see “DEBUG{(*INPUT | *DUMP | *XMLSAX | *NO |
*YES)}” on page 263 and the Debugging chapter in the IBM Rational
Development Studio for i: ILE RPG Programmer’s Guide. For more information
about XML parsing, including limitations of the XML parser used by RPG,
see the XML chapter in the IBM Rational Development Studio for i: ILE RPG
Programmer’s Guide.

Examples of the XML-SAX operation

D xmlString S C '<?xml version="1.0"> +
D <elem>data</elem>'
D psds DS
D xmlRc 10I 0 OVERLAY(psds:368)
/free

// The XML is in an IFS file. The "option" operand of %XML specifies
// that the document operand is the name of an IFS file.
XML-SAX %HANDLER(mySaxHandler : myHandlerInfo)

%XML('/home/myuserid/myxml.xml' : 'doc=file');

// The XML is in a string. The "option" operand of %XML is not specified.
XML-SAX %HANDLER(mySaxHandler : myHandlerInfo) %XML(xmlString);

Figure 421. XML-SAX operations in Free-form calculations

CL0N01Factor1+++++++Opcode&ExtExtended-Factor2+++++++++++++++++++++++++
C XML-SAX %HANDLER(mySaxHandler : myHandlerInfo)
C %XML('/home/myuserid/myxml.xml' : 'doc=file')

C XML-SAX %HANDLER(mySaxHandler : myHandlerInfo)
C %XML(xmlString)

Figure 422. XML-SAX operations in Fixed-form calculations

XML-SAX (Parse an XML Document)

896 ILE RPG Reference

H DEBUG(*XMLSAX)
Fqsysprt o f 132 printer

* The xmlRc subfield will be set to a non-zero value
* if the XML-SAX operation fails because of an error
* discovered by the parser

D psds SDS
D xmlRc
�[1]� 10I 0 OVERLAY(psds:368)

D qsysprtDs DS 132

* This data structure defines the type for the parameter
* passed to the SAX handling procedure.
�[2]�
D value_t S 50A VARYING
D handlerInfo_t DS QUALIFIED
D BASED(dummy)
D pValue *
D numAttendees 5P 0
D name LIKE(value_t)
D company LIKE(value_t)
D alwExtraAttr 1N
D handlingAttrs...
D N

* Define a specific instance of the handlerInfo_t data
* structure and the prototype for the handler
D myHandlerInfo DS LIKEDS(handlerInfo_t)
D mySaxHandler PR 10I 0
D info LIKEDS(handlerInfo_t)
D event 10I 0 VALUE
D stringPtr * VALUE
D stringLen 20I 0 VALUE
D exceptionId 10I 0 VALUE

/free
monitor;

// Start XML parsing
// Indicate that the handler should not allow
// any unexpected attributes in the XML elements.
myHandlerInfo.alwExtraAttr = *OFF;

�[3]� XML-SAX %HANDLER(mySaxHandler : myHandlerInfo)
%XML('/home/myuserid/myxml.xml' : 'doc=file');

// The XML parse completed normally
// Results are passed back in the communication
// area specified by the %HANDLER built-in function
qsysprtDs = 'There are '

+ %CHAR(myHandlerInfo.numAttendees)
+ ' attendees.';

on-error 00351;
// The XML parse failed with a parser error.
// The return code from the parser is in the PSDS.

Figure 423. A complete working program, illustrating an XML-SAX handling procedure (Part 1
of 4)

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 897

qsysprtDs = 'XML parser error: rc='
+ %CHAR(xmlRc)
+ '.';

endmon;

write qsysprt qsysprtDs;
*inlr = '1';

/end-free

P mySaxHandler B
D PI 10I 0
D info LIKEDS(handlerInfo_t)
D event 10I 0 VALUE
D stringPtr * VALUE
D stringLen 20I 0 VALUE
D exceptionId 10I 0 VALUE

D value S LIKE(value_t)
D BASED(info.pValue)

D chars S 65535A BASED(stringPtr)
D ucs2 S 16383C BASED(stringPtr)
D ucs2Len S 10I 0

/free

select;

Figure 423. A complete working program, illustrating an XML-SAX handling procedure (Part 2
of 4)

XML-SAX (Parse an XML Document)

898 ILE RPG Reference

// start parsing
when event = *XML_START_DOCUMENT;

�[4]�
clear info;

// start processing an attendee, by indicating
// that subsequent calls to this procedure should
// handle XML-attribute events.
when event = *XML_START_ELEMENT;

if %subst(chars : 1 : stringLen) = 'attendee';
info.handlingAttrs = *ON;

�[5]�
info.name = '';
info.company = '';
info.numAttendees += 1;

endif;

// display information about the attendee
when event = *XML_END_ELEMENT;

if %subst(chars : 1 : stringLen) = 'attendee';
info.handlingAttrs = *OFF;
qsysprtDs = 'Attendee '

+ info.name
+ ' is from company '
+ info.company;

write qsysprt qsysprtDs;
endif;

// prepare to get an attribute value by setting
// a basing pointer to the address of the correct
// variable to receive the value
when event = *XML_ATTR_NAME;

if info.handlingAttrs;
if %subst(chars : 1 : stringLen) = 'name';

info.pValue = %addr(info.name);
elseif %subst(chars : 1 : stringLen) = 'company';

info.pValue = %addr(info.company);
else;

// If the XML element is not expected to have
// extra attributes, halt the parsing by
// returning -1.
if not info.alwExtraAttr;

qsysprtDs = 'Unexpected attribute '
+ %subst(chars : 1 : stringLen)
+ ' found.';

write qsysprt qsysprtDs;
return -1;

�[6]�
endif;
info.pValue = *NULL;

endif;
endif;

Figure 423. A complete working program, illustrating an XML-SAX handling procedure (Part 3
of 4)

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 899

This example illustrates several features of SAX parsing.
1. The ″External Return Code″ subfield of the PSDS, named xmlRc here.
2. The communication area data structure, used to communicate between the

XML-SAX operation and the SAX event-handling procedure.
3. The XML-SAX operation initiates the parsing of the XML document.
4. The SAX event-handling procedure compares the event parameter to the special

names *XML_START_DOCUMENT etc.
5. The communication area is also used for the event-handling procedure to

communicate with itself between calls.
6. The event-handling procedure discovers an error and halts the parsing by

returning -1.
7. The *XML_ATTR_UCS2_REF event has UCS-2 data, independent of the CCSID

that is normally used to return data for this XML-SAX operation. The length
represents the number of bytes in the data, so it must be divided by two to
obtain the number of UCS-2 characters.

8. If the event-handling procedure does not discover any errors, it returns 0,
indicating that parsing should continue.

The following sample XML document could be used with this example.

// handle an exception
when event = *XML_EXCEPTION;

qsysprtDs = 'Exception '
+ %char(exceptionId)
+ ' occurred.';

write qsysprt qsysprtDs;
return exceptionId;

other;

// If this is an attribute we are interested
// in, the basing pointer for "value" has been
// set to point to either "name" or "company"

// Append each fragment of the value to the
// current data

if info.handlingAttrs
and info.pValue <> *NULL;

if event = *XML_ATTR_CHARS
or event = *XML_ATTR_PREDEF_REF;

value += %subst(chars : 1 : stringLen);
elseif event = *XML_ATTR_UCS2_REF;

ucs2Len = stringLen / 2;

�[7]� value += %char(%subst(ucs2 : 1 : ucs2Len));
endif;

endif;
endsl;

return 0;
�[8]�

/end-free
P mySaxHandler E

Figure 423. A complete working program, illustrating an XML-SAX handling procedure (Part 4
of 4)

XML-SAX (Parse an XML Document)

900 ILE RPG Reference

<meeting>
<attendee name="Jack" company="A&B Electronics"/>
<attendee company="City+ Waterworks" name="Jill"/>
<attendee name="Bill" company="Ace Movers" extra="yes"/>

</meeting>

For more information about XML operations, see “XML Operations” on page 475.

// The following procedure returns a string that is the same
// as the input string except that strings of whitespace are
// converted to a single blank.

P rmvWhiteSpace b
D rmvWhiteSpace pi 65535a varying
D input 65535a varying const
D output s like(input) inz('')

* x'15'=newline x'05'=tab x'0D'=carriage-return
* x'25'=linefeed x'40'=blank
D whitespaceChr C x'15050D2540'
D c s 1A
D i s 10I 0
D inWhitespace s N INZ(*OFF)
/free

// copy all non-whitespace characters to the return value
for i = 1 to %len(input);

c = %subst(input : i : 1);
if %scan(c : whitespaceChr) > 0;

// If this is a new set of whitespace, add one blank
if inWhitespace = *OFF;

inWhitespace = *ON;
output += ' ';

endif;
else;

// Not handling whitespace now. Add character to output
inWhitespace = *OFF;
output += c;

endif;
endfor;
return output;

/end-free
P rmvWhiteSpace e

Figure 424. Removing internal whitespace from XML data

XML-SAX (Parse an XML Document)

Chapter 22. Operation Codes 901

Z-ADD (Zero and Add)

Free-Form Syntax (not allowed - use the EVAL operation code)

Code Factor 1 Factor 2 Result Field Indicators

Z-ADD (H) Addend Sum + − Z

Factor 2 is added to a field of zeros. The sum is placed in the result field. Factor 1
is not used. Factor 2 must be numeric and can contain one of: an array, array
element, field, figurative constant, literal, named constant, subfield, or table name.

The result field must be numeric, and can contain one of: an array, array element,
field, subfield, or table name.

Half-adjust can be specified.

For the rules for the Z-ADD operation, see “Arithmetic Operations” on page 434.

See Figure 172 on page 437 for an example of the Z-ADD operation.

Z-ADD (Zero and Add)

902 ILE RPG Reference

Z-SUB (Zero and Subtract)

Free-Form Syntax (not allowed - use the EVAL operation code)

Code Factor 1 Factor 2 Result Field Indicators

Z-SUB (H) Subtrahend Difference + − Z

Factor 2 is subtracted from a field of zeros. The difference, which is the negative of
factor 2, is placed in the result field. You can use the operation to change the sign
of a field. Factor 1 is not used. Factor 2 must be numeric and can contain one of
the following: an array, array element, field, figurative constant, literal, named
constant, subfield, or table name.

The result field must be numeric, and can contain one of the following: an array,
array element, field, subfield, or table name.

Half-adjust can be specified.

For the rules for the Z-SUB operation, see “Arithmetic Operations” on page 434.

See Figure 172 on page 437 for an example of the Z-SUB operation.

Z-SUB (Zero and Subtract)

Chapter 22. Operation Codes 903

Z-SUB (Zero and Subtract)

904 ILE RPG Reference

Part 5. Appendixes

© Copyright IBM Corp. 1994, 2010 905

906 ILE RPG Reference

Appendix A. RPG IV Restrictions
Function Restriction

Array/table input record length for compile
time

Maximum length is 100

Character field length The maximum length for a fixed-length
character field is 16773104. The maximum
length for a variable-length character field is
16773100.

Graphic or UCS-2 field length The maximum length for a fixed-length
graphic or UCS-2 field is 8386552. The
maximum length for a variable-length
graphic or UCS-2 field is 8386550.

Control fields (position 63 and 64 of input
specifications) length

Maximum length is 256

Named data structure length Maximum of 16773104

Unnamed data structure length Maximum of 16773104

Data structure occurrences (number of) Maximum of 16773104 per data structure;
the maximum total size is 16773104.

Edit Word Maximum length of 115

Elements in an array/table (DIM keyword
on the definition specifications)

Maximum of 16773104 per array; the
maximum total size is 16773104.

Levels of nesting in structured groups Maximum of 100

Levels of nesting in expressions Maximum of 100

Look-ahead Can be specified only once for a file. Can be
specified only for primary and secondary
files.

Named Constant or Literal Maximum length of 16380 characters for a
character or hexadecimal literal, 16379 DBCS
characters for a graphic literal, 8190 UCS-2
characters for a UCS-2 literal, and 63 digits
with 63 decimal positions for a numeric
literal.

Overflow indicator Only 1 unique overflow indicator can be
specified per printer file.

Parameters to programs Maximum of 255

Parameters to procedures Maximum of 399

Primary file (P in position 18 of file
description specifications)

Maximum of 1 per program

Printer file (PRINTER in positions 36
through 42 of file description specifications)

Maximum of 8 per program.

Printing lines per page Minimum of 2; maximum of 255

Program status data structure Only 1 allowed per program.

Record address file (R in position 18 of file
description specifications)

Only 1 allowed per program.

Record length for a file Maximum length is 99999 1

Structured groups (see levels of nesting)

© Copyright IBM Corp. 1994, 2010 907

#
#
#
#

#
#
#
#

#

#

#

#
#

#
#
#
#
#
#

Function Restriction

Storage allocation Maximum length is 16776704 2

Symbolic names Maximum length is 4096

Notes:

1. Any device record size restraints override this value.

2. The practical maximum is normally much less.

908 ILE RPG Reference

Appendix B. EBCDIC Collating Sequence
Table 88. EBCDIC Collating Sequence

Ordinal
Number Symbol Meaning

Decimal
Represen-
tation

Hex
Represen-
tation

65 � Space 64 40

.

.

.

75 ¢ Cent sign 74 4A

76 . Period, decimal point 75 4B

77 < Less than sign 76 4C

78 (Left parenthesis 77 4D

79 + Plus sign 78 4E

80 | Vertical bar, Logical OR 79 4F

81 & Ampersand 80 50

.

.

.

91 ! Exclamation point 90 5A

92 $ Dollar sign 91 5B

93 * Asterisk 92 5C

94) Right parenthesis 93 5D

95 ; Semicolon 94 5E

96 ¬ Logical NOT 95 5F

97 - Minus, hyphen 96 60

98 / Slash 97 61

.

.

.

107 ª Split vertical bar 106 6A

108 , Comma 107 6B

109 % Percent sign 108 6C

110 _ Underscore 109 6D

111 > Greater than sign 110 6E

112 ? Question mark 111 6F

.

.

.

122 ` Accent grave 121 79

123 : Colon 122 7A

124 # Number sign, pound sign 123 7B

125 @ At sign 124 7C

© Copyright IBM Corp. 1994, 2010 909

Table 88. EBCDIC Collating Sequence (continued)

Ordinal
Number Symbol Meaning

Decimal
Represen-
tation

Hex
Represen-
tation

126 ’ Apostrophe, prime sign 125 7D

127 = Equal sign 126 7E

128 " Quotation marks 127 7F

.

.

.

130 a 129 81

131 b 130 82

132 c 131 83

133 d 132 84

134 e 133 85

135 f 134 86

136 g 135 87

137 h 136 88

138 i 137 89

.

.

.

146 j 145 91

147 k 146 92

148 l 147 93

149 m 148 94

150 n 149 95

151 o 150 96

152 p 151 97

153 q 152 98

154 r 153 99

.

.

.

162 ~ Tilde 161 A1

163 s 162 A2

164 t 163 A3

165 u 164 A4

166 v 165 A5

167 w 166 A6

168 x 167 A7

169 y 168 A8

170 z 169 A9

910 ILE RPG Reference

Table 88. EBCDIC Collating Sequence (continued)

Ordinal
Number Symbol Meaning

Decimal
Represen-
tation

Hex
Represen-
tation

.

.

.

193 { Left brace 192 C0

194 A 193 C1

195 B 194 C2

196 C 195 C3

197 D 196 C4

198 E 197 C5

199 F 198 C6

200 G 199 C7

201 H 200 C8

202 I 201 C9

.

.

.

209 } Right brace 208 D0

210 J 209 D1

211 K 210 D2

212 L 211 D3

213 M 212 D4

214 N 213 D5

215 O 214 D6

216 P 215 D7

217 Q 216 D8

218 R 217 D9

.

.

.

225 \ Left slash 224 E0

.

.

.

227 S 226 E2

228 T 227 E3

229 U 228 E4

230 V 229 E5

231 W 230 E6

232 X 231 E7

233 Y 232 E8

234 Z 233 E9

Appendix B. EBCDIC Collating Sequence 911

Table 88. EBCDIC Collating Sequence (continued)

Ordinal
Number Symbol Meaning

Decimal
Represen-
tation

Hex
Represen-
tation

.

.

.

241 0 240 F0

242 1 241 F1

243 2 242 F2

244 3 243 F3

245 4 244 F4

246 5 245 F5

247 6 246 F6

248 7 247 F7

249 8 248 F8

250 9 249 F9

Note: These symbols may not be the same for all codepages. Codepages may map
different hexadecimal values to different symbols for various languages. For more
information, see the iSeries Information Center globalization topic.

912 ILE RPG Reference

Bibliography

For additional information about topics related to ILE RPG programming, refer to the following
publications:
v CL Programming, SC41-5721-06, provides a wide-ranging discussion of programming topics including a

general discussion on objects and libraries, CL programming, controlling flow and communicating
between programs, working with objects in CL programs, and creating CL programs. Other topics
include predefined and impromptu messages and message handling, defining and creating
user-defined commands and menus, application testing, including debug mode, breakpoints, traces,
and display functions.
See the iSeries Information Center programming category (URL http://www.ibm.com/systems/i/
infocenter/) for a description of the i5/OScontrol language (CL) and its commands.

v Communications Management, SC41-5406-02, provides information about work management in a
communications environment, communications status, tracing and diagnosing communications
problems, error handling and recovery, performance, and specific line speed and subsystem storage
information.
See the iSeries Information Center database and file systems category for related database
programming topics such as, using files in application programs, database organization, data
description specifications (DDS) and DDS keywords, distributed data management (DDM), and
application programming interfaces.

v Experience RPG IV Multimedia Tutorial, GK2T-9882-00 is an interactive self-study program explaining the
differences between RPG III and RPG IV and how to work within the new ILE environment. An
accompanying workbook provides additional exercises and doubles as a reference upon completion of
the tutorial. ILE RPG code examples are shipped with the tutorial and run directly on the operating
system.

v ILE Concepts, SC41-5606-09, explains concepts and terminology pertaining to the Integrated Language
Environment (ILE) architecture. Topics covered include creating modules, binding, running programs,
debugging programs, and handling exceptions.

v IBM Rational Development Studio for i: ILE RPG Programmer’s Guide, SC09-2507-08, provides information
about the ILE RPG programming language, which is an implementation of the RPG IV language in the
Integrated Language Environment (ILE). It includes information on creating and running programs,
with considerations for procedure calls and interlanguage programming. The guide also covers
debugging and exception handling and explains how to use files and devices in RPG programs.
Appendixes include information on migration to RPG IV and sample compiler listings. It is intended
for people with a basic understanding of data processing concepts and of the RPG language.

v Who Knew You Could Do That with RPG IV? A Sorcerer’s Guide to System Access and More, SG24-5402
provides hints and tips for system programmers who want to take full advantage of RPG IV and the
Integrated Language Environment (ILE).

You can obtain current System i5 and iSeries information and publications from the i5/OS Information
Center at the following Web site:
http://www.ibm.com/systems/i/infocenter/

© Copyright IBM Corp. 1994, 2010 913

914 ILE RPG Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2010 915

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, IBM License Agreement for
Machine Code, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication is intended to help you create programs using RPG IV source.
This publication documents General-Use Programming Interface and Associated
Guidance Information provided by the ILE RPG compiler.

General-Use programming interfaces allow the customer to write programs that
obtain the services of the ILE RPG compiler.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

916 ILE RPG Reference

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 917

918 ILE RPG Reference

Index

Special characters
/ (division) 482
/COPY statement

inserting records during
ompilation 12

recognizing a compiler 13
/DEFINE 15
/EJECT 11
/ELSE 18
/ELSEIF condition-expression 17
/END-FREE 11
/ENDIF 18
/EOF 19
/FREE 11
/IF condition-expression 17
/INCLUDE statement 12
/SPACE 12
/TITLE 11
/UNDEFINE 15
$ (fixed or floating currency symbol)

in body of edit word 238
use in edit word 238
with combination edit codes 229

* (asterisk)
in body of edit word 238
with combination edit codes 229

* (multiplication) 482
* (pointer data type entry) 320
** (double asterisk)

alternate collating sequence table 196
arrays and tables 165
file translation table 118
for program described files 378
lookahead fields 378, 379

*ALL 415
*ALL’x..’ 134
*ALLG’oK1K2i’ 134
*ALLU’XxxxYyyy’ 134
*ALLX’x1..’ 134
*BLANK/*BLANKS 134
*CANCL 34, 94
*CYMD, *CMDY, and *CDMY date

formats
description 207
with MOVE operation 463, 720, 741
with MOVEL operation 463
with TEST operation 829

*DATE 8
*DAY 8
*DETC

file exception/error subroutine
(INFSR) 94

flowchart 34
program exception/errors 97

*DETL
file exception/error subroutine

(INFSR) 94
flowchart 32
program exception/errors 97

*DTAARA DEFINE 653
*END 809

*ENTRY PLIST 768
*EQUATE 120
*EXT 666
*EXTDFT

initialization, externally described
data 338

*FILE�� 119
*GETIN

file exception/error subroutine
(INFSR) 94

flowchart 32
program exception/errors 97

*HIVAL 134
*IN 73
*IN(xx) 73
*INIT 97
*INxx 73
*INZSR 38
*JOB

initialization, date fields 339
language identifier, LANGID 269
sort sequence, SRTSEQ 274

*JOBRUN
date format example 721
date format, DATFMT 207
date separator, DATSEP 207
decimal format, DECFMT 264
language identifier, LANGID 196,

269
sort sequence, SRTSEQ 165, 274
time separator, TIMSEP 210

*LDA 653
*LIKE DEFINE 651
*LONGJUL date format

description 207
with MOVE operation 463, 720, 741
with MOVEL operation 463
with TEST operation 829

*LOVAL 134
*M 666
*MONTH 8
*NOIND 303
*NOKEY (with CLEAR operation) 642
*NOKEY (with RESET operation) 789
*NULL 134, 213
*OFL

file exception/error subroutine
(INFSR) 94

flowchart 34
program exception/errors 97

*ON/*OFF 134
*PDA 653
*PLACE 409
*PSSR 105
*ROUTINE 445
*START 809
*SYS

initialization 339
initialization, date field 208
initialization, time field 210
initialization, timestamp field 210

*TERM 97
*TOTC

flowchart 34
program exception/errors 94

*TOTL
file exception/error subroutine

(INFSR) 94
flowchart 34
program exception/errors 97

*USER
initialization, character fields 339
with USRPRF keyword 277

*VAR data attribute
output specification 382, 413

*YEAR 8
*ZERO/*ZEROS 134
− (unary operator) 482
%ABS (Absolute Value of

Expression) 493
%ADDR (Get Address of Variable)

data types supported 483
description 494
example 494

%ALLOC (Allocate Storage) 497
%BITAND (Bitwise AND Operation) 498
%BITNOT (Invert Bits) 499
%BITOR (Bitwise OR Operation) 500
%BITXOR (Bitwise Exclusive-OR

Operation) 501
%CHAR (Convert to Character

Data) 505
%CHECK (Check Characters) 507
%CHECKR (Check Reverse) 509
%DATE (Convert to Date) 511
%DAYS (Number of Days) 512
%DEC (Convert to Packed Decimal

Format) 513
%DECH (Convert to Packed Decimal

Format with Half Adjust) 515
%DECPOS (Get Number of Decimal

Positions)
description 517
example 517, 547

%DIFF (Difference Between Two Date or
Time Values) 518

%DIV (Return Integer Portion of
Quotient) 521

%EDITC (Edit Value Using an
Editcode) 522

%EDITFLT (Convert to Float External
Representation) 525

%EDITW (Edit Value Using an
Editword) 526

%ELEM (Get Number of Elements) 483,
527

%EOF (Return End or Beginning of File
Condition) 528

%EQUAL (Return Exact Match
Condition) 530

%ERROR (Return Error Condition) 532
%FIELDS (Fields to update) 533

© Copyright IBM Corp. 1994, 2010 919

%FLOAT (Convert to Floating
Format) 534

%FOUND (Return Found
Condition) 535

%GRAPH (Convert to Graphic
Value) 537

%HANDLER (handlingProcedure :
communicationArea) built-in
function 475, 539

%HOURS (Number of Hours) 543
%INT (Convert to Integer Format) 544
%INTH (Convert to Integer Format with

Half Adjust) 544
%KDS (Search Arguments in Data

Structure) 546
%LEN (Get Length) 547
%LOOKUPxx (Look Up an Array

Element) 551
%MINUTES (Number of Minutes) 554
%MONTHS (Number of Months) 555
%MSECONDS (Number of

Microseconds) 556
%NULLIND (Query or Set Null

Indicator) 557
%OCCUR (Set/Get Occurrence of a Data

Structure) 558
%OPEN (Return File Open

Condition) 559
%PADDR (Get Procedure Address) 483,

560
%PARMS (Return Number of

Parameters) 563, 565
%REALLOC (Reallocate Storage) 566
%REM (Return Integer Remainder) 567
%REPLACE (Replace Character

String) 568
%SCAN (Scan for Characters) 570
%SCANRPL (Scan and Replace

Characters) 572
%SECONDS (Number of Seconds) 574
%SHTDN (Shut Down) 575
%SIZE (Get Size in Bytes) 483, 576
%SQRT (Square Root of Expression) 578
%STATUS (Return File or Program

Status) 579
%STR (Get or Store Null-Terminated

String) 582
%SUBARR (Set/Get Portion of an

Array) 438, 584
%SUBDT (Subset of Date or Time) 587
%SUBST (Get Substring)

data types supported 483
description 588
example 589
use with EVAL 588

%THIS (Return Class Instance for Native
Method) 590

%TIME (Convert to Time) 591
%TIMESTAMP (Convert to

Timestamp) 592
%TLOOKUPxx (Look Up a Table

Element) 593
%TRIM (Trim Blanks at Edges) 483, 595
%TRIML (Trim Leading Blanks) 483, 597
%TRIMR (Trim Trailing Blanks) 483, 598
%UCS2 (Convert to UCS-2 Value) 599

%UNS (Convert to Unsigned
Format) 600

%UNSH (Convert to Unsigned Format
with Half Adjust) 600

%XFOOT (Sum Array Expression
Elements) 602

%XLATE (Translate) 603
%XML (xmlDocument {:options}) built-in

function 475, 604
%XML options for the XML-INTO

operation code 856
%XML options for the XML-SAX

operation code 887
%YEARS (Number of Years) 606
> (greater than) 482
>= (greater than or equal) 482
< (less than) 482
<> (not equal) 482
<= (less than or equal) 482
& (ampersand)

in body of edit word 240
in status of edit word 237
use in edit word 237, 240

+ (unary operator) 482
= (equal) 482

Numerics
1P (first page) indicator

conditioning output 405, 409
general description 61
restrictions 61
setting 76
with initialization subroutine

(*INZSR) 38

A
absolute notation 140, 319
absolute value 493
ACQ (acquire) operation code 453, 608
ACTGRP keyword 257
ACTGRP parameter

specifying on control
specifications 257

ADD operation code 434, 609
add records

file description specifications entry
(A) 284

output specification entry (ADD) 403
ADDDUR (add duration) operation code

adding dates 449, 610
general discussion 449
unexpected results 451

adding date-time durations 449, 610
adding factors 609, 610
address

of based variable 494
of procedure pointer 560

ALIAS keyword
for externally-described data

structures 322
for externally-described files 291

ALIGN keyword
aligning subfields 140
description 323

ALIGN keyword (continued)
float fields 200
integer fields 200
unsigned fields 202

alignment
of basing pointers 213
of integer fields 202

alignment of forms 267
ALLOC (allocate storage) operation

code 458, 612
ALLOC keyword, control

specification 257
allocate storage (ALLOC) operation

code 612
allocating storage 497, 612
allocation built-in functions

%ALLOC (Allocate Storage) 497
%REALLOC (Reallocate Storage) 566

ALT keyword 324
altering overflow logic 40
alternate collating sequence

changing collating sequence 196
coding form 195
control specification entry 195
control specification keyword

ALTSEQ 324
control-specification keyword

ALTSEQ 258
definition specification keyword

ALTSEQ 195
input record format 196
operations affected 196

alternating format (arrays and tables)
definition specification keyword

ALT 324
example 168

ALTSEQ keyword
**ALTSEQ 164, 196
changing collating sequence 195
control-specification description 258
definition specification

description 324
specifying in source 196

ALWNULL keyword 258
ALWNULL parameter

specifying on control
specifications 258

ampersand (&)
in body of edit word 240
in status of edit word 237
use in edit word 237, 240

AND relationship
calculation specifications 393
input specifications 381
output specifications 403, 414

conditioning indicators 405
ANDxx operation code 445, 469, 613
apostrophe

use with edit word 241
use with output constant 412

application programming interface (API)
parsing system built-in names 444

arithmetic built-in functions
%ABS (Absolute Value of

Expression) 493
%DIV (Return Integer Portion of

Quotient) 521

920 ILE RPG Reference

arithmetic built-in functions (continued)
%REM (Return Integer

Remainder) 567
%SQRT (Square Root of

Expression) 578
%XFOOT (Sum Array Expression

Elements) 602
arithmetic operation codes

ADD 434, 609
DIV (divide) 434, 657
ensuring accuracy 435
general information 434
integer arithmetic 435
MULT (multiply) 434, 751
MVR (move remainder) 434, 752
performance considerations 435
SQRT (square root) 434, 820
SUB (subtract) 434, 821
XFOOT (summing the elements of an

array) 434, 849
Z-ADD (zero and add) 434, 902
Z-SUB (zero and subtract) 434, 903

array
%XFOOT built-in 602
alternating

definition 168
examples 168

array of data structures 137
binary format 197
combined array file 163, 282
compile-time

arrangement in source
program 166

definition of 163
creating input records 164
definition 159
differences from table 159
dynamically-allocated arrays 174
editing 174
elements 159
end position 410
even number of digits 361
file

description of 282
file description specifications

entry 282
file name (when required on file

description specifications) 280
float format 198
initialization of 167
loading

compile-time 164
from more than one record 161
from one record 161
LOOKUP operation code 711
prerun-time 166
run-time 160

lookup 551
moving (MOVEA operation

code) 734
name

in compare operation codes 446
output specifications 408
rules for 165

number of elements 327, 527
order in source program 166
output 173

array (continued)
packed format 201
prerun-time arrays 163

rules for loading 166
referring to in calculations 171
run-time

definition of 160
rules for loading 160
Using dynamically-sized

arrays 174
with consecutive elements 163
with scattered elements 161

searching an array data structure 170
searching with an index 171
searching without an index 169
size of 576
sorting an array data structure 173
square root (SQRT) operation

code 820
summing elements of (XFOOT)

operation code 849
to file name 308
types 159
Using dynamically-sized arrays 174
Using partial arrays 584
XFOOT operation code 849

array operations 438
%SUBARR (Set/Get Portion of an

Array) 438, 584
general information 438
LOOKUP (look up) 438, 711
MOVEA (move array) 438, 734
SORTA (sort an array) 438, 815
XFOOT (summing the elements of an

array) 438, 849
ASCEND keyword 324
ascending sequence

definition specification keyword
ASCEND 324

file description specifications
entry 284

assigning match field values
(M1-M9) 111

Assignment 480
Assignment operators 480
EVAL (evaluate) 676
EVALR (evaluate, right adjust) 678
Move operations 460
Z-ADD (zero and add) 902
Z-ADD (zero and subtract) 903

asterisk fill
in body of edit word 231
with combination edit codes 231

AUT keyword 259
AUT parameter

specifying on control
specifications 259

automatic storage 127

B
BASED keyword 325
based variable

address of 494
and basing pointers 212, 214
defining 325

begin a select group (SELECT) operation
code 802

begin/end entry in procedure
specification 419

BEGSR (beginning of subroutine)
operation code 472, 614

bibliography 913
binary field

definition 197
EXTBININT keyword 266
input specifications 198, 382
output specifications 198, 412

binary format
definition 197
input field 383
input field specification 197
output field 412
output field specification 197

binary operations
data types supported 482
precedence of operators 479

binary operators 615, 617
binary relative-record number 289
bit operations

%BITAND 498
%BITNOT 499
%BITOR 500
%BITXOR 501
BITOFF (set bits off) 439, 615
BITON (set bits on) 617
BITON operation code 439
general information 439
TESTB (test bit) 439, 831

bit testing (TESTB) 831
BITOFF (set bits off) operation code 615
BITOFF operation code 439
BITON (set bits on) operation code 617
BITON operation code 439
blank after

definition 410
output specifications 410

blanks, removing from a string 349, 595
BLOCK keyword 292
blocking/unblocking records 91
BNDDIR keyword 259
BNDDIR parameter on CRTBNDRPG

specifying on control
specifications 259

body (of an edit word) 237
branching operations 439

CABxx (compare and branch) 439,
619

ENDSR (end of subroutine) 675
EXCEPT (calculation time

output) 684
general description 439
GOTO (go to) 439, 696
ITER (iterate) 439, 703
LEAVE (leave a structured

group) 439, 708
TAG (tag) 439, 828

branching within logic cycle 619
built-in functions

%FIELDS (Fields to update) 533
%HANDLER (handlingProcedure :

communicationArea) built-in
function 539

Index 921

built-in functions (continued)
%KDS (Search Arguments in Data

Structure) 546
%SUBARR(Set/Get Portion of an

Array) 584
%XML (xmlDocument {:options})

built-in function 604
allocation

%ALLOC (Allocate Storage) 497
%REALLOC (Reallocate

Storage) 566
arithmetic

%ABS (Absolute Value of
Expression) 493

%DIV (Return Integer Portion of
Quotient) 521

%REM (Return Integer
Remainder) 567

%SQRT (Square Root of
Expression) 578

%XFOOT (Sum Array Expression
Elements) 602

data conversion
%CHAR (Convert to Character

Data) 505
%DATE (Convert to Date) 511
%DEC (Convert to Packed Decimal

Format) 513
%DECH (Convert to Packed

Decimal Format with Half
Adjust) 515

%EDITC (Edit Value Using an
Editcode) 522

%EDITFLT (Convert to Float
External Representation) 525

%EDITW (Edit Value Using an
Editword) 526

%FLOAT (Convert to Floating
Format) 534

%GRAPH (Convert to Graphic
Value) 537

%INT (Convert to Integer
Format) 544

%INTH (Convert to Integer Format
with Half Adjust) 544

%TIME (Convert to Time) 591
%TIMESTAMP (Convert to

Timestamp) 592
%UCS2 (Convert to UCS-2

Value) 599
%UNS (Convert to Unsigned

Format) 600
%UNSH (Convert to Unsigned

Format with Half Adjust) 600
%XLATE (Translate) 603

data information
%DECPOS (Get Number of

Decimal Positions) 517
%ELEM (Get Number of

Elements) 527
%LEN (Get Length) 547
%OCCUR (Set/Get Occurrence of

a Data Structure) 558
%SIZE (Get Size in Bytes) 576

data types supported 483
date and time

%DAYS (Number of Days) 512

built-in functions (continued)
date and time (continued)

%DEC (Date, time or
timestamp) 513

%DIFF (Difference Between Two
Date or Time Values) 518

%HOURS (Number of
Hours) 543

%MINUTES (Number of
Minutes) 554

%MONTHS (Number of
Months) 555

%MSECONDS (Number of
Microseconds) 556

%SECONDS (Number of
Seconds) 574

%SUBDT (Subset of Date or
Time) 587

%YEARS (Number of Years) 606
editing

%EDITC (Edit Value Using an
Editcode) 522

%EDITFLT (Convert to Float
External Representation) 525

%EDITW (Edit Value Using an
Editword) 526

example 430
exception/error handling

%ERROR (Return Error
Condition) 532

%STATUS (Return File or Program
Status) 579

feedback
%EOF (Return End or Beginning of

File Condition) 528
%EQUAL (Return Exact Match

Condition) 530
%ERROR (Return Error

Condition) 532
%FOUND (Return Found

Condition) 535
%LOOKUPxx (Look Up an Array

Element) 551
%NULLIND (Query or Set Null

Indicator) 557
%OPEN (Return File Open

Condition) 559
%PARMNUM (Return Parameter

Number) 565
%PARMS (Return Number of

Parameters) 563
%SHTDN (Shut Down) 575
%STATUS (Return File or Program

Status) 579
%TLOOKUPxx (Look Up a Table

Element) 593
list of 493
on definition specification 315
pointer

%ADDR (Get Address of
Variable) 494

%PADDR (Get Procedure
Address) 560

string
%CHECK (Check Characters) 507
%CHECKR (Check Reverse) 509

built-in functions (continued)
string (continued)

%REPLACE (Replace Character
String) 568

%SCAN (Scan for Characters) 570
%SCANRPL (Scan and Replace

Characters) 572
%STR (Get or Store

Null-Terminated String) 582
%SUBST (Get Substring) 588
%TRIM (Trim Blanks at

Edges) 595
%TRIML (Trim Leading

Blanks) 597
%TRIMR (Trim Trailing

Blanks) 598
syntax 493
table of 432

C
CABxx (compare and branch) operation

code 439, 445, 619
calculating 247
calculating date durations 449
calculating date-time durations 823
calculation

indicators
AND/OR relationship 68, 393
conditioning 68, 391
control level 67, 393
resulting 58, 397

operation codes 394, 398
summary of 423

specifications
entries for factor 1 394
entries for result field 396
relationship between positions 7

and 8 and 9-11 393
summary of 391
summary of operation codes 423

subroutines
BEGSR (beginning of subroutine)

operation code 614
coding of 472
ENDSR (end of subroutine)

operation code 675
EXSR (invoke subroutine)

operation code 688
SR identifier 393

calculation specifications
control level 392
decimal positions 396
extended factor 2 field

continuation 252
factor 1 394
factor 2 396
field length 396
free-form 252, 399
general description 391
indicators 394
operation 394, 398
operation extender 394, 398
result field 396
resulting indicators 397
summary of 391

922 ILE RPG Reference

calculation-time output (EXCEPT)
operation code 684

CALL (call a program) operation code
call operations 440
description 621

call operations
CALL (call a program) 440, 621
CALLB (call a bound

procedure) 440, 622
CALLP (call a prototyped

procedure) 440, 623
FREE (deactivate a program) 440
general description 440
PARM (identify parameters) 440, 765
parsing program names 442
parsing system built-in names 444
PLIST (identify a parameter list) 440,

768
RETURN (return to caller) 440, 795

CALLB (call a bound procedure)
operation code

call operations 440
description 622

calling programs/procedures
operational descriptors 442
prototyped call 441

CALLP (call a prototyped program or
procedure) operation code

call operations 440
description 623
with expressions 477

CASxx (conditionally invoke subroutine)
operation code 445, 472, 628

CAT (concatenate two character strings)
operation code 467, 630

CCSID keyword, control
specification 260

CCSID keyword, definition
specification 325

CCSIDs
on control specification 260
on definition specification 325

century formats
description 207
with MOVE operation 463, 720, 741
with MOVEL operation 463
with TEST operation 829

CHAIN (random retrieval from a file
based on record number or key value)
ope 633

CHAIN (random retrieval from a file
based on record number or key value)
operation code 453

changing between character fields and
numeric fields 461

character format
allowed formats

description 182
fixed length 182
indicator 183
variable length 185

collating sequence 196
converting to 505
definition specification 320
in record identification code 381
indicator literals 128
keys in record address type 287

character format (continued)
literals 128
replace or insert string 568
valid set 3

CHECK (check) operation code 467, 636
CHECKR (check reverse) operation

code 467, 639
CL commands

Change Job (CHGJOB) command 60
Create Job Description (CRTJOBD)

command 60
class instance, native method 590
CLASS keyword, definition

specification 325
CLEAR operation code 128, 457, 642
CLOSE (close files) operation code 453,

646
closing a file 646
code part

in record identification code for
program described file 380

coding subroutines 472
collating sequence

alternate 195
EBCDIC 909
normal 195

combination edit codes (1-4, A-D,
J-Q) 230

combined file
description 281

command attention (CA) keys
corresponding indicators 66

command function (CF) keys
corresponding indicators 66

comments
* in common entries 248
on array input records 164

COMMIT (commit) operation code 453
description 647

COMMIT keyword
description 293

commitment control
conditional 293

common entries to all specifications 248
COMP (compare) operation code 445,

648
compare and branch (CABxx) operation

code 619
compare operations

ANDxx (and) 445, 613
CABxx (compare and branch) 445,

619
CABxx (Compare and Branch) 619
CASxx (conditionally invoke

subroutine) 445, 628
CASxx (Conditionally Invoke

Subroutine) 628
COMP (compare) 445, 648
COMP (Compare) 648
DOU (do until) 445, 660
DOUxx (do until) 445, 661
DOW (do while) 445, 663
DOWxx (do while) 445, 664
EVAL (evaluate) 676
EVALR (evaluate, right adjust) 678
general information 445
IF (if/then) 445, 698

compare operations (continued)
IFxx (if/then) 445, 699
ORxx (or) 445, 761
WHEN (when true then select) 445
When (When) 843
whenxx (when true then select) 844
WHENxx (when true then select) 445

comparing bits 831
comparing factors 619, 648
compile time array or table

definition specification keyword
CTDATA 326

general description 163
number of elements per record 361
rules for loading 164
specifying external data type 330

compiler
directives 11

compiler directives
/COPY 12
/EJECT 11
/FREE... /END-FREE 11
/INCLUDE 12
/SPACE 12
/TITLE 11
conditional compilation directives

/DEFINE 15
/ELSE 18
/ELSEIF condition-expression 17
/ENDIF 18
/EOF 19
/IF condition-expression 17
/UNDEFINE 15
predefined conditions 16

composite key operation codes
KLIST (define a composite key) 706

concatenate two strings (CAT) operation
code 630

condition expressions 17
conditional file open 296, 312
conditionally invoke subroutine (CASxx)

operation code 628
conditioning indicators

calculation
general description 66
positions 7 and 8 67
positions 9 through 11 67
specification of 394

file
general description 62
rules for 63

general description 62
conditioning output

explanation of 70
for fields of a record 408
for records 405

CONST keyword
description 326

constants 128
constant/editword field

continuation 253
defining using CONST 326
entries for factor 2 128
figurative 134

Index 923

constants (continued)
*ALL’x..’, *ALLX’x1..’,

*BLANK/*BLANKS,
*HIVAL/*LOVAL,
*ZERO/*ZEROS,
*ON/*OFF 134

named 133
rules for use on output

specification 412
size of 576

continuation rules for specifications 249
control break

general description 50
how to avoid unwanted 51
on first cycle 50
unwanted 52

control entries
in output specification 402

control field
assigning on input specifications

externally described file 389
program described file 384

general information 50
overlapping 52
split 55

control group
general information 49

control level (L1-L9) indicators 393
as field record relation indicator 63,

386
as record identifying indicator 378,

387
assigning to input fields 384, 388
conditioning calculations 391
conditioning output 405
examples 52, 56
general description 49
in calculation specification 392
rules for 50
setting of 76

control specification keywords
ALLOC 257
ALTSEQ 258
CCSID 260
compile-option keywords

ACTGRP 257
ALWNULL 258
AUT 259
BNDDIR 259
CVTOPT 262
DFTACTGRP 265
ENBPFRCOL 265
FIXNBR 266
GENLVL 268
INDENT 268
LANGID 269
OPTIMIZE 271
OPTION 271
PRFDTA 274
SRTSEQ 274
STGMDL 275
TEXT 275
TRUNCNBR 277
USRPRF 277

COPYNEST 261
COPYRIGHT 261
CURSYM 261

control specification keywords (continued)
DATEDIT 262
DATFMT 263
DEBUG 263
DECEDIT 264
DECPREC 264
DFTNAM 265
EXPROPTS 266
EXTBININT 266
FLTDIV 267
FORMSALIGN 267
FTRANS 268
INTPREC 268
NOMAIN 271
THREAD 275
TIMFMT 277

control specifications
continuation line 251
data area (DFTLEHSPEC) 255
data area (RPGLEHSPEC) 255
form type 256
general description 255

controlling input of program 41
controlling spacing of compiler

listing 12
conversion operations

general information 447
converting a character to a date

field 464
COPYNEST keyword 261
COPYRIGHT keyword 261
CR (negative balance symbol)

with combination edit code 230
with edit words 240

CTDATA keyword
**CTDATA 164, 196
description 326

currency symbol
specifying 261

CURSYM keyword 261
CVTOPT keyword 262
CVTOPT parameter

specifying on control
specifications 262

cycle module
definition of 27

cycle module exporting
potential problems with 29

cycle-free module 30
cycle, program

detailed description 34
fetch overflow logic 39
general description 21, 32
with initialization subroutine

(*INZSR) 38
with lookahead 40
with match fields 39
with RPG IV exception/error

handling 40

D
data area data structure

general information 141
statement

externally described 136
program described 136

data areas
defining 328, 651, 653
DFTLEHSPEC data area 255
local data area (LDA) 653
PIP data area (PDA) 651
restrictions 653
retrieval

explicit 701
implicit 32, 141

RPGLEHSPEC data area 255
unlocking

explicit 759
implicit 34, 141
UNLOCK operation code 839

writing
explicit 764
implicit 34, 141

data attributes
input specification 382
output specification 412

data conversion built-in functions
%CHAR (Convert to Character

Data) 505
%DATE (Convert to Date) 511
%DEC (Convert to Packed Decimal

Format) 513
%DECH (Convert to Packed Decimal

Format with Half Adjust) 515
%EDITC (Edit Value Using an

Editcode) 522
%EDITFLT (Convert to Float External

Representation) 525
%EDITW (Edit Value Using an

Editword) 526
%FLOAT (Convert to Floating

Format) 534
%GRAPH (Convert to Graphic

Value) 537
%INT (Convert to Integer

Format) 544
%INTH (Convert to Integer Format

with Half Adjust) 544
%TIME (Convert to Time) 591
%TIMESTAMP (Convert to

Timestamp) 592
%UCS2 (Convert to UCS-2

Value) 599
%UNS (Convert to Unsigned

Format) 600
%UNSH (Convert to Unsigned Format

with Half Adjust) 600
%XLATE (Translate) 603

data format
binary 197
definition specification 320
external 330, 411
float 198
integer 200
internal 179
packed-decimal 201
specifying external character

format 181
specifying external date or time

format 181
specifying external numeric

format 180
unsigned 202

924 ILE RPG Reference

data format (continued)
zoned-decimal 202

data information built-in functions
%DECPOS (Get Number of Decimal

Positions) 517
%ELEM (Get Number of

Elements) 527
%LEN (Get Length) 547
%OCCUR (Set/Get Occurrence of a

Data Structure) 558
%SIZE (Get Size in Bytes) 576

data structures
alignment of 140
array data structure 137
data area 141
defining 139
definition keyword summary 371
definition type entry 318
examples 142
externally described 136
file information 142
file information data structure 79
general information 136
indicator 142
keyed array data structure 137, 551,

815
multiple-occurrence

number of occurrences 347, 527
size of 576

nested 141
overlaying storage 140
printer control 306
program described 136
program-status 142
qualified name 363
qualifyied name 137
rules 141
rules for 4
saving for attached device 309
searching an array data structure 170
sorting an array data structure 173
special 141
subfields

alignment of 140
defining 139, 318
external definition 331
name prefixing 136, 304, 362
overlaying storage 140, 359
renaming 136, 330

type of 317
using for I/O 453
with OCCUR operation code 754

data type
allowed for built-in functions 483
basing pointer 212
character 182
data mapping errors 227
date 206, 263, 293, 311, 326
definition specification 320
graphic 183
numeric 197
of return value 795
procedure pointer 218
supported by binary operations 482
supported by unary operations 482
supported in expressions 482
time 208, 277, 369

data type (continued)
timestamp 210
UCS-2 184

data-area operations
DEFINE (field definition) 651
general information 448
IN (retrieve a data area) 448, 701
OUT (write a data area) 448, 764
UNLOCK (unlock a data area) 448,

839
database data

null values 219
variable-length fields 190

date data field
DATFMT 293
DATFMT on control specification 263
DATFMT on definition

specification 326
effect of end position 232
general discussion 206
moving 462
unexpected results 451
zero suppression 230

date data format
*JOBRUN date separator and

format 207
*LONGJUL format 207
3-digit year century formats 207
control specification 263
converting to 511
definition specification 326
description 206
file description specification 293
initialization 208
input specification 382
internal format on definition

specification 320
output specification 411
separators 208
table of external formats 207
table of RPG-defined formats 207

date-time built-in functions
%DAYS (Number of Days) 512
%DEC(Date, time or timestamp) 513
%DIFF (Difference Between Two Date

or Time Values) 518
%HOURS (Number of Hours) 543
%MINUTES (Number of

Minutes) 554
%MONTHS (Number of

Months) 555
%MSECONDS (Number of

Microseconds) 556
%SECONDS (Number of

Seconds) 574
%SUBDT (Subset of Date or

Time) 587
%YEARS (Number of Years) 606

date-time operations
ADDDUR (add duration) 610
EXTRCT (extract date/time) 689
general information 449
SUBDUR (subtract duration) 822
TEST (test date/time/

timestamp) 829
TIME (retrieve time and date)

operation code 837

date-time operations (continued)
unexpected results 451

date, user 8
*DATE, *DAY, *MONTH, *YEAR 8
UDATE, UDAY, UMONTH,

UYEAR 8
DATEDIT keyword 262
DATFMT keyword

control specification 263
definition specification 326
file description specification 293

DEALLOC (free storage) operation
code 458, 649

deallocate storage (DEALLOC) operation
code 649

DEBUG keyword 263
DECEDIT keyword 264
decimal point character 264
decimal positions

calculation specifications 396
get with %DECPOS 517
input specifications

field description entry for program
described file 384

with arithmetic operation codes 434
declarative operations

DEFINE (field definition) 452, 651
general information 452
KFLD (define parts of a key) 452,

705
KLIST (define a composite key) 452
PARM (identify parameters) 452, 765
PLIST (identify a parameter list) 452,

768
TAG (tag) 452, 828

DECPREC keyword 264
default data formats

date 207, 263, 326
time 209, 277, 369
timestamp 210

DEFINE (field definition) operation
code 452, 651

define a composite key (KLIST) operation
code 706

define parts of a key (KFLD) operation
code 705

defining a field as a data area 651
defining a field based on attributes 651
defining a file 246
defining a symbolic name for the

parameter list 768
defining an alternate collating

sequence 195
defining indicators 47
defining like

DEFINE operation 651
LIKE keyword 340
subfields 139

defining parameters 765
definition of 29, 30
definition specification keywords

ALIAS 322
ALIGN 323
ALT 324
ALTSEQ 324
ASCEND 324
BASED 325

Index 925

definition specification keywords
(continued)

CCSID 325
CONST 326
continuation line 252
CTDATA 326
DATFMT 326
DESCEND 327
DIM 327
DTAARA 328
EXPORT 329
EXTFLD 330
EXTFMT 330
EXTNAME 331
EXTPGM 332
EXTPROC 332
FROMFILE 337
IMPORT 337
INZ 338
LEN 339
LIKE 340
LIKEDS 342
LIKEFILE 343
LIKEREC 345
NOOPT 346
OCCURS 347
OPDESC 348
OPTIONS 348
OVERLAY 359
PACKEVEN 361
PERRCD 361
PREFIX 362
PROCPTR 363
QUALIFIED 137, 363
RTNPARM 363
specifying 321
STATIC 367
TEMPLATE 368
TIMFMT 369
TOFILE 369
VALUE 370
VARYING 370

definition specifications
decimal positions 321
entry summary by type 370
external description 317
form type 316
from position 318
general 315
internal format 320
keyword summary by type 371
keywords 321
name 316
to position / length 319
type of data structure 317
type of definition 318

DELETE (delete record) operation
code 453, 655

delete a record
DELETE (delete record) operation

code 655
output specifications entry (DEL) 403

DESCEND keyword 327
descending sequence

definition specification keyword
ASCEND 327

descending sequence (continued)
file description specifications

entry 284
describe data structures 375
describing arrays 246
describing tables 246
describing the format of fields 401
describing the record 401
describing when the record is

written 401
description 30, 31, 62
descriptors, operational

minimal 563
OPDESC keyword 348

detail (D) output record 403
detailed program logic 34
DETC

file exception/error subroutine
(INFSR) 94

flowchart 34
program exception/errors 97

DETL
file exception/error subroutine

(INFSR) 94
flowchart 32
program exception/errors 97

device name
specifying 293

devices
maximum number of 302
on file description specification 290
saving data structure 309
saving indicators 309

DEVID keyword 293
DFTACTGRP keyword 265
DFTACTGRP parameter on CRTBNDRPG

specifying on control
specifications 265

DFTLEHSPEC data area 255
DFTNAM keyword 265
DIM keyword 137, 327
disconnecting a file from the

program 646
DISK file

processing methods 312
program-described

processing 312
summary of processing methods 312

display message (DSPLY) operation
code 666

Display Module (DSPMOD) command
copyright information 261

Display Program (DSPPGM) command
copyright information 261

Display Service Program (DSPSRVPGM)
command

copyright information 261
DIV (divide) operation code 434, 657
dividing factors 657
division operator (/) 482
DO operation code 469, 658
DO-group

general description 469
DOU (do until) operation code 445, 469,

477, 660
double asterisk (**)

alternate collating sequence table 196

double asterisk (**) (continued)
arrays and tables 165
file translation table 118
for program described files 378
lookahead fields 378, 379

DOUxx (do until) operation code 445,
469, 661

DOW (do while) operation code 445,
469, 477, 663

DOWxx (do while) operation code 445,
469, 664

DSPLY (display function) operation
code 460

DSPLY (display message) operation
code 666

DTAARA keyword 328
DUMP (program dump) operation

code 457, 669
dynamic array

%SUBARR (Set/Get Portion of an
Array) 584

definition of 160
rules for loading 160
Using dynamically-sized arrays 174
with consecutive elements 163
with scattered elements 161

dynamic calls
using CALLP 623

E
EBCDIC

collating sequence 909
edit codes

combination (1-4, A-D, J-Q) 230
description 230
effect on end position 232
simple (X, Y, Z) 230
summary tables 230, 234
unsigned integer field 232
user-defined (5-9) 232
using %EDITC 522
zero suppression 230

edit word
constant/editword field

continuation 253
formatting 236, 240
on output specifications 413
parts of 236

body 236
expansion 237
status 237

rules for 240
using %EDITW 526

edit, date 230
editing

built-in functions
%EDITC (Edit Value Using an

Editcode) 522
%EDITFLT (Convert to Float

External Representation) 525
%EDITW (Edit Value Using an

Editword) 526
date fields 230
decimal point character 264
externally described files 241
non-printer files 232

926 ILE RPG Reference

elements
number of in array or table 327, 527
number per record 361
size of field or constant 576

ELSE (else do) operation code 469, 671
else do (ELSE) operation code 671
else if (ELSEIF) operation code 672
ELSEIF (else if) operation code 469, 672
ENBPFRCOL keyword 265
ENBPFRCOL parameter

specifying on control
specifications 265

end a group (ENDyy) operation
code 673

End Job (ENDJOB) 773
end of file

built-in function 528
file description specifications

entry 283
with primary file 61

end position
effect of edit codes on 235
in output record

for RPG IV output
specifications 410

End Subsystem (ENDSBS) 773
End System (ENDSYS) 773
ending a group of operations (CASxx,

DO, DOUxx, DOWxx, IFxx,
SELECT) 673

ending a program, without a primary
file 40

ending a subroutine 675
ENDMON (end a monitor group)

operation code 452, 673
ENDSR (end of subroutine) operation

code 472, 675
return points 94

ENDyy (end a group) operation
code 469, 673

equal operator (=) 482
error handling

major/minor error return codes 93
steps 42

error logic
error handling routine 42

EVAL (evaluate expression) operation
code

description 676
structured programming 469
use with %SUBST 588
with expressions 477

EVAL-CORR (Assign corresponding
subfields) operation code 678

EVALR (evaluate expression, right adjust)
operation code

description 678
examples of program

exception/errors 96
examples of the XML-INTO

operation 882
examples of the XML-SAX

operation 896
EXCEPT (calculation time output)

operation code 453, 684
EXCEPT name

on output specifications 406

EXCEPT name (continued)
rules for 4

exception (E) output records 403
exception-handling operations

ENDMON (end a monitor group)
operation code 452, 673

MONITOR (begin a monitor
group) 452, 718

ON-ERROR (on-error) 452, 758
exception/error codes

file status codes 92
program status codes 101

exception/error handling
built-in functions

%ERROR (Return Error
Condition) 532

%STATUS (Return File or Program
Status) 579

data mapping errors 227
file exception/error subroutine 93
file information data structure 79
flowchart 42
INFSR 93
program exception/error subroutine

(*PSSR) 105
program status data structure 97
status codes 91, 101

file 91
program 97, 101

EXFMT (write/then read format)
operation code 453, 686

expansion (of an edit word) 237, 240
expected format of XML data 877
exponent operator (**) 482
EXPORT keyword

definition specification 329
procedure specification 419

exported data, defining 329
exporting a procedure 419
exporting a program 419
exporting cycle modules 28
expression-using operation codes

CALLP (call prototyped
procedure) 477

DOU (do until) 477
DOW (do while) 477
EVAL (evaluate) 477
EVALR (evaluate, right adjust) 477
FOR (for) 477
general information 477
IF (if/then) 477
RETURN (return) 477
WHEN (when true then select) 477

expressions
data type of operands 482
general rules 478
intermediate results 486
operators 479
order of evaluation of operands 491,

492
precedence rules 479
precision rules 486

EXPROPTS keyword 266
EXSR (invoke subroutine) operation

code 472, 688
EXTBININT keyword

and binary fields 198

EXTBININT keyword (continued)
description 266

EXTDESC keyword 294
extended factor 2 field, continuation 252
external (U1-U8) indicators

as field indicator 386, 389
as field record relation indicator 63,

386
as record identifying indicator 378,

387
conditioning calculations 394
conditioning output 405
general description 60
resetting 60, 386
setting 76

external data area
defining 328, 651

external data format
date 293
definition 180
in input specification 382
specifying using EXTFMT 330
specifying using TIMFMT 369
time 311

external field name
renaming 388

external message queue (*EXT) 666
external procedure name 332
external program name 332
externally described file

editing 241
input specifications for 387
output specifications for 414
record format

for a subfile 309
ignoring 297
including 298
renaming 308
writing to a display 310

renaming fields 304
externally described files, field

description and control entries, output
specifications

field name 415
output indicators 415

externally described files, field
description entries, input specifications

control level 388
external field name 388
field indicators 389
field name 388
general description 388
matching fields 389

externally described files, record
identification and control entries,
output specifications

EXCEPT name 415
logical relationship 414
output indicators 414
record addition 414
record name 414
release 414
type 414

externally described files, record
identification entries, input
specifications

form type 387

Index 927

externally described files, record
identification entries, input
specifications (continued)

general description 387
record identifying indicator 387
record name 387

EXTFILE keyword 295
EXTFLD keyword 136, 330
EXTFMT keyword 330
EXTIND keyword 296
EXTMBR keyword 296
EXTNAME keyword 331
EXTPGM keyword 317, 332, 623
EXTPROC keyword 317, 332
EXTRCT (extract date/time) operation

code 449, 689

F
factor 1

as search argument 711
entries for, in calculation

specification 394
in arithmetic operation codes 434

factor 2
entries for, in calculation

specification 396
in arithmetic operation codes 434

feedback built-in functions
%EOF (Return End or Beginning of

File Condition) 528
%EQUAL (Return Exact Match

Condition) 530
%ERROR (Return Error

Condition) 532
%FOUND (Return Found

Condition) 535
%LOOKUPxx (Look Up an Array

Element) 551
%NULLIND (Query or Set Null

Indicator) 557
%OPEN (Return File Open

Condition) 559
%PARMNUM (Return Parameter

Number) 565
%PARMS (Return Number of

Parameters) 563
%SHTDN (Shut Down) 575
%STATUS (Return File or Program

Status) 579
%TLOOKUPxx (Look Up a Table

Element) 593
FEOD (force end of data) operation

code 453, 691
fetch overflow

entry on output specifications 404
general description 40, 404
logic 39
relationship with AND line 405
relationship with OR line 405

field
binary 197

on output specifications 411
control 50
defining as data area 653
defining like 340
defining new 396

field (continued)
description entries in input

specification 382, 388
key 286
key, starting location of 299
location and size in record 383
location in input specification 383
lookahead

with program described file 378,
379

match 110
name in input specification 384
null-capable 219
numeric

on output specifications 408
packed 201
record address 286
renaming 304, 308
result 396
size of 576
standalone 127
zeroing 410, 416

field definition (DEFINE) operation
code 651

field indicators (01-99, H1-H9, U1-U8, RT)
as halt indicators 58
assigning on input specifications

for externally described files 389
for program described files 386

conditioning calculations 394
conditioning output 405
general description 58
numeric 58
rules for assigning 58
setting of 76

field length
absolute (positional) notation 140,

319
arithmetic operation codes 434
calculation operations 396
calculation specifications 396
compare operation codes 445
input specifications 382
key 286
length notation 140, 319
numeric or alphanumeric 383
record address 286

field location entry (input specifications)
for program described file 383

field name
as result field 396
external 388
in an OR relationship 381
in input specification 388
on output specifications 408
rules for 4
special words as 408
special words as field name 8

field record relation indicators (01-99,
H1-H9, L1-L9, U1-U8)

assigning on input specifications 386
example 65
general description 63
rules for 63

figurative constants
*ALL’x..’, *ALLX’x1..’,

*BLANK/*BLANKS,
*HIVAL/*LOVAL, *ZERO/*ZEROS,
*ON/*OFF 134

rules for 135
file

adding records to 283, 403
array 282
combined 281
conditioning indicators 62
deleting existing records from 403
deleting records from

DEL 403
DELETE 655

description specifications 279
designation 282
end of 283
exception/error codes 92
externally described, input

specification for 387
feedback information in INFDS 80
feedback information in INFDS after

POST 82
file organization 289
format 285
full procedural 41, 283
global and local 107
indexed 289
input 281
maximum number allowed 279
name

entry on file description
specifications 280

entry on input specifications 376
entry on output specifications 402
externally described 281
program described 280
rules for 4

nonkeyed program described 289
normal codes for file status 91
number allowed on file description

specifications 279
output 281
parameter 107
primary 282
processing 41
record address 282
rules for conditioning 63
secondary 282
status codes 91
table 282
types 281

file conditioning indicators 60
general description 62
specifying with EXTIND 296

file description specification keywords
ALIAS 291
BLOCK 292
COMMIT 293
continuation line 251
DATFMT 293
DEVID 293
EXTDESC 294
EXTIND 296
FORMLEN 297
FORMOFL 297

928 ILE RPG Reference

file description specification keywords
(continued)

IGNORE 297
INCLUDE 298
INDDS 298
INFDS 298
INFSR (file exception/error

subroutine) 299
KEYLOC 299
LIKEFILE 299
MAXDEV 302
OFLIND 303
PASS 303
PGMNAME 304
PLIST 304
PREFIX 304
PRTCTL 306
QUALIFIED 307
RAFDATA 308
RECNO 308
RENAME 308
SAVEDS 309
SAVEIND 309
SFILE 309
SLN 310
STATIC 310
TEMPLATE 311
TIMFMT 311
USROPN 312

file description specifications
device 290
end of file 283
file addition 283
file designation 282
file format 285
file name 280
file organization 289
file type 281
form type 280
general description 279
key field starting location 299
length of key or record address 286
limits processing 285
maximum number of files

allowed 279
overflow indicator 303
record address type 286
record length 285
sequence 284

file exception/error subroutine (INFSR)
description 93
INFSR keyword 299
return points 94
specifications for 93

file exception/errors
file information data structure

(INFDS) 79
general information 79
how to handle subroutine

(INFSR) 93
statement specifications 379

file information data structure 79, 80
contents of file feedback

information 80
contents of file feedback information

after POST 82
continuation line option 290

file information data structure (continued)
entry on file description

specifications 290
general information 142
INFDS keyword 298
predefined subfields 82
status codes 91
subfields

specifications 141
file operations

ACQ (acquire) operation code 453,
608

CHAIN (random retrieval from a file
based on record number) 453, 633

CLOSE (close files) operation
code 453, 646

COMMIT (commit) operation
code 453, 647

DELETE (delete record) operation
code 453, 655

EXCEPT (calculation time output)
operation code 453, 684

EXFMT (write/then read format)
operation code 453, 686

FEOD (force end of data) operation
code 453, 691

FORCE (force a file to be read)
operation code 453, 695

general description 453
NEXT (next) operation code 453, 753
OPEN (open file for processing)

operation code 453, 759
POST (post) operation code 453, 770
READ (read a record) operation

code 453, 772
READC (read next modified record)

operation code 453, 775
READE (read equal key) operation

code 453, 777
READP (read prior record) operation

code 453, 780
READPE (read prior equal) operation

code 453, 782
REL (release) operation code 453, 787
ROLBK (roll back) operation

code 453, 798
SETGT (set greater than) operation

code 453, 804
SETLL (set lower limits) operation

code 453, 808
UNLOCK (unlock a data area)

operation code 453, 839
UPDATE (modify existing record)

operation code 453
WRITE (create new records) operation

code 453, 847
file parameter 107
file translation 118

FTRANS keyword 268
table records 120

first page (1P) indicator
conditioning output 405, 409
general description 61
restrictions 61
setting 76

first program cycle 31
FIXNBR keyword 266

FIXNBR parameter
specifying on control

specifications 266
float format

alignment of fields 200
considerations for using 203
converting to 534
definition 198
displaying as 525
external display representation 199
float keys 289
FLTDIV keyword 267
input field specification 198
output field specification 198

float literals 130
floating point representation 198, 486
flowchart

detailed program logic 34
fetch-overflow logic 39
general program logic 31, 32
lookahead logic 39
match fields logic 39
RPG IV exception/error handling 42

FLTDIV keyword 267
FOR operation code 469, 692
FORCE (force a file to be read) operation

code 453, 695
force a certain file to be read on the next

cycle (FORCE) operation code 695
force end of data (FEOD) operation

code 691
form type

externally described files 387
in calculation specification 392
on control specification 256
on description specifications 279
program described file 376

format
of file 285

format, data
binary 197
definition specification 320
external 330, 411
float 198
integer 200
internal 179
packed-decimal 201
specifying external character

format 181
specifying external date or time

format 181
specifying external numeric

format 180
unsigned 202
zoned-decimal 202

formatting edit words 240
FORMLEN keyword 297
FORMOFL keyword 297
FORMSALIGN keyword 267
free-form syntax 399
freeing storage 649
FROMFILE keyword 337
FTRANS keyword 268

**FTRANS 164, 196
description 119

full procedural file
description of 283

Index 929

full procedural file (continued)
file description specifications

entry 282
file operation codes 453
search argument keys 456

function key
corresponding indicators 65

function key indicators (KA-KN, KP-KY)
corresponding function keys 66
general description 65
setting 76

G
general (01-99) indicators 47
general program logic 31
generating a program 246
GENLVL keyword 268
GENLVL parameter

specifying on control
specifications 268

get/set occurrence of data structure 754
global variables 24, 126
GOTO (go to) operation code 439, 696
graphic format

as compile-time data 165, 173
concatenating graphic strings 632
definition specification 320
description 183
displaying 668
fixed length 183
graphic CCSID

on control specification 260
on definition specification 325

moving 461, 720
size of 576
substrings 588
variable length 185
verifying with CHECK 636, 638

greater than operator (>) 482
greater than or equal operator (>=) 482

H
half adjust

on calculation specifications 394, 398
operations allowed with 394, 398

halt (H1-H9) indicators
as field indicators 386, 389
as field record relation indicator 386
as record identifying indicator 378,

387
as resulting indicator 397
conditioning calculations 394
conditioning output 405, 408
general description 66
setting 76

handling exceptions/errors
built-in functions

%ERROR (Return Error
Condition) 532

%STATUS (Return File or Program
Status) 579

data mapping errors 227
file exception/error subroutine 93
file information data structure 79

handling exceptions/errors (continued)
flowchart 42
INFSR 93
program exception/error subroutine

(*PSSR) 105
program status data structure 97
status codes 91, 101

file 91
program 97, 101

heading (H) output records 403
heading information for compiler

listing 11

I
identifying a parameter list 768
IF (if/then) operation code 445, 469,

477, 698
IFxx (if/then) operation code 445, 469,

699
IGNORE keyword 297
ILE C

specifying lowercase name 317
ILE RPG restrictions, summary 907
implicit closing of files

unlocking data areas 46
implicit opening of files

locking data areas 46
IMPORT keyword 337
imported data, defining 337
IN (retrieve a data area) operation

code 448, 701
INCLUDE keyword 298
INDDS keyword 298
INDENT keyword 268
INDENT parameter

specifying on control
specifications 268

indentation bars in source listing 699
indexed file

format of keys 289
key field 299
processing 289

indicating calculations 391
indicating length of overflow line 247
indicator data structure

general information 142
INDDS keyword 298

indicator-setting operations
general information 456
SETOFF (set off) 456, 812
SETON (set on) 456, 813

indicators
calculation specifications 397
command key (KA-KN, KP-KY)

conditioning output 70
general description 65
setting 76

conditioning calculations 66
conditioning file open 296
conditioning output 70

controlling a record 405
controlling fields of a record 408
general information 62
specification of 405

control level 393

indicators (continued)
control level (L1-L9)

as field record relation
indicator 63, 384

as record identifying
indicator 378, 388

assigning to input fields 384, 388
conditioning calculations 394
conditioning output 405, 408
examples 52, 56
general description 49
rules for 50, 55
setting of 76

description 47
external (U1-U8)

as field indicator 57
as field record relation

indicator 63, 386
as record identifying indicator 48
conditioning calculations 394
conditioning output 405
general description 60
resetting 60, 386
rules for resetting 60, 63
setting 76

field
as halt indicators 58
assigning on input

specifications 386, 389
conditioning calculations 394
conditioning output 405
general description 57
numeric 58
rules for assigning 58
setting of 76

field record relation
assigning on input

specifications 386
example 64
general description 63
rules for 63

file conditioning 62
first page (1P)

conditioning output 405, 409
general description 61
restrictions 61
setting 76
with initialization subroutine

(*INZSR) 38
halt (H1-H9)

as field indicator 58
as field record relation

indicator 63, 386
as record identifying indicator 48
as resulting indicator 58, 397
conditioning calculations 394
conditioning output 405, 408
general description 66
setting 76

internal 58
first page (1P) 61
last record (LR) 61
matching record (MR) 61
return (RT) 62

last record (LR)
as record identifying indicator 48,

378, 387

930 ILE RPG Reference

indicators (continued)
last record (LR) (continued)

as resulting indicator 58, 397
conditioning calculations 393, 394
conditioning output 405, 408
general description 61
setting 76

level zero (L0)
calculation specification 67, 392

matching record (MR)
as field record relation

indicator 63, 386
assigning match fields 110
conditioning calculations 394
conditioning output 405, 408
general description 61
setting 76

on RPG IV specifications 47
output

AND/OR lines 408
assigning 405
examples 71, 72
general description 71
restriction in use of negative

indicators 70, 405
overflow

assigning on file description
specifications 303

conditioning calculations 66, 394
conditioning output 405, 408
fetch overflow logic 39, 40
general description 47
setting of 76
with exception lines 406, 685

passing or not passing 303
record identifying

assigning on input
specifications 48

conditioning calculations 394
conditioning output 405, 408
general description 48
rules for 48
setting on and off 76
summary 75
with file operations 48

return (RT) 62
as field indicator 57
as record identifying

indicator 387
as resulting indicator 58, 397
conditioning calculations 394
conditioning output 70

rules for assigning 48
rules for assigning resulting

indicators 58
saving for attached device 309
setting of 76
status

program exception/error 97
summary chart 75
used as data 73
using 62
when set on and set off 76

indicators not defined 60
INFDS keyword 298
information operations

DUMP (program dump) 457, 669

information operations (continued)
general information 457
SHTDN (shut down) 457, 814
TIME (retrieve time and date) 457,

837
INFSR keyword 299
initialization

inside subprocedures 43, 46
of arrays 167
of fields with INZ keyword 338
overview 128
subroutine (*INZSR) 38
subroutine with RESET operation

code 788
initialization operations

CLEAR (clear) 642
general information 457
RESET (reset) operation 788

initialization subroutine (*INZSR)
and subprocedures 43, 46
description 38
with RESET operation code 788

input
file 281
input from a file into a data

structure 453
input field

as lookahead field 379
decimal positions 384
external name 387
format of 382
location 383
name of 384
RPG IV name of 388

input specifications
control level indicators 388
external field name 388
field indicators 389
location and size of field 383
match fields 389
record identifying indicator 387
record name 387
RPG IV field name 388

input specifications for program
described file

field
decimal positions 384
format 383
name 384

filename 376
indicators

control level 384
field 383
field record relation 386
record identifying 378

lookahead field 379
number of records 377
option 378
record identification codes 379
sequence checking 377

inserting records during ompilation 12
integer arithmetic 435
integer format

alignment of fields 140, 200, 323
arithmetic operations 435
considerations for using 203
converting to 544

integer format (continued)
definition 200
definition specification 320
editing an unsigned field 241
editing unsigned field 232
integer arithmetic 435
output specification 411

integer portion, quotient 521
integer remainder 567
intermediate results in expressions 486
internal data format

arithmetic operations 435
default date 263
default formats 180
default time 277
definition 179
definition specification 320
for external subfields 136

internal indicators 58
first page (1P) 61
last record (LR) 61
matching record (MR) 61
return (RT) 62

INTPREC keyword 268
INVITE DDS keyword 773
invoke subroutine (EXSR) operation

code 688
INZ keyword

description 338
ITER (iterate) operation code 439, 469,

703

J
Java

%THIS 590
CLASS keyword 325
EXTPROC keyword 332
Object data type 211

K
key field

alphanumeric 287
for externally described file 287
format of 287
graphic 287
length of 286
packed 287
starting location of 299

keyed processing
indexed file 289
sequential 312
specification of keys 287

KEYLOC keyword 299
keyword 367
keywords

ALT 258
for program status data structure 97

*ROUTINE 97
*STATUS 97

syntax 248
KFLD (define parts of a key) operation

code 24, 452, 705
KLIST (define a composite key) operation

code 24, 452, 706

Index 931

KLIST (define a composite key) operation
code (continued)

name, rules for 4

L
label, rules for 4
LANGID keyword 269
LANGID parameter

specifying on control
specifications 269

last program cycle 31
last record (LR) indicator

as record identifying indicator 378,
387

as resulting indicator 58, 397
conditioning calculations

positions 7 and 8 392, 393
positions 9-11 394

conditioning output 405, 408
general description 61
in calculation specification 393
setting 76

leading blanks, removing 349, 595, 597
LEAVE (leave a structured group)

operation code 439, 469, 708
LEAVESR (leave subroutine) operation

code 710
LEN keyword 339
length notation 140, 319
length of form for PRINTER file 297
length, get using %LEN 547
less than operator (<) 482
less than or equal operator (<=) 482
level zero (L0) indicator

calculation specification 392
calculation specifications 67

LIKE keyword 139, 340
LIKEDS keyword 342
LIKEFILE keyword 299, 343
LIKEREC keyword 345
limits processing, file description

specifications 285
line skipping 403
line spacing 403
literals

alphanumeric 128
character 128
date 130
graphic 131
hexadecimal 129
indicator format 128
numeric 129
time 130
timestamp 131
UCS-2 131

local data area 653
local variable

scope 24, 126
static storage 367

locking/unlocking a data area or
record 839

logic cycle, RPG
detail 34
general 31

logical relationship
calculation specifications 393

logical relationship (continued)
input specifications 381
output specifications 403, 414

long names
continuation rules 250, 253
definition specifications 316
examples 250, 253
limitations 3
procedure specifications 418

look-ahead function 40
lookahead field 379
LOOKUP (look up) operation code 438

arrays/tables 711

M
M1-M9 (match field values) 111
main procedure

and procedure interface 157
scope of parameters 126
specifications for 245

main source section
description 245
specifications for 246

major/minor return codes 93
match fields

alternate collating sequence 195
assigning values (M1-M9) to 111
description 110
dummy match field 112, 114
example 112
in multi-file processing 110
input specifications for 385, 389
logic 39
used for sequence checking 111

match levels (M1-M9) 111
matching record (MR) indicator

as field record relation indicator 63,
386

assigning match fields 385, 389
conditioning calculations

positions 7 and 8 392
positions 9-11 394

conditioning output 405, 408
general description 61
setting 76

MAXDEV keyword 302
maximum number of devices 302
maximum number of files allowed 279
memory management operations

ALLOC (allocate storage) operation
code 458, 612

controlling the type of heap storage
used 257

DEALLOC (free storage) operation
code 458, 649

general information 458
REALLOC (reallocate storage with

new length) operation code 458,
785

message identification 666
message operations

DSPLY (display function) 460
DSPLY (display message) 666
general information 460

MHHZO (move high to high zone)
operation code 466, 714

MHLZO (move high to low zone)
operation code 466, 715

MLHZO (move low to high zone)
operation code 466, 716

MLLZO (move low to low zone)
operation code 466, 717

modifying an existing record 841
module

NOMAIN 30, 271
MONITOR (begin a monitor group)

operation code 452, 718
move array (MOVEA) operation

code 734
move high to high zone (MHHZO)

operation code 714
move high to low zone (MHLZO)

operation code 715
move left (MOVEL) operation code 741
move low to high zone (MLHZO)

operation code 716
move low to low zone (MLLZO)

operation code 717
MOVE operation code 460, 720
move operations

general information 460
MOVE 460, 720
MOVEA (move array) 460, 734
MOVEL (move left) 460, 741

move remainder (MVR) operation
code 752

move zone operations
general information 466
MHHZO (move high to high

zone) 466, 714
MHLZO (move high to low

zone) 466, 715
MLHZO (move low to high

zone) 466, 716
MLLZO (move low to low zone) 466,

717
MOVEA (move array) operation

code 438, 460, 734
MOVEL (move left) operation code 460,

741
moving character, graphic, and numeric

data 461
moving date-time fields 462
moving the remainder 752
moving zones 714
MULT (multiply) operation code 434,

751
multifile logic 39
multifile processing

assigning match field values 111
FORCE operation code 695
logic 39
match fields 110
no match fields 110
normal selection, three files 114, 115

multiplication operator (*) 482
multiply (MULT) operation code 751
multiplying factors 751
multithread environment 275
MVR (move remainder) operation

code 434, 752

932 ILE RPG Reference

N
name(s)

array 4
conditional compile 4
data structure 4
EXCEPT 4, 406
field 4

on input specifications 384, 388
on output specifications 405

file 4
for *ROUTINE

with program status data
structure 97

KLIST 4
labels 4
PLIST 5
prototype 5
record 5
rules for 4
subfield 4
subroutine 5
symbolic 3
table 5

named constant
defining a value using CONST 326
definition keyword summary 371
specifying 133

named constants 133
native method 590
negative balance (CR)

with combination edit code 230
nested DO-group

example 471
nesting /COPY or /INCLUDE

directives 14
NEXT (next) operation code 453, 753
NOMAIN keyword 271
NOMAIN module 30

main source section 245
nonkeyed processing 287
NOOPT keyword

description 346
normal codes

file status 91
program status 101

normal program cycle 31
NOT

as a special word 7
as operator in expressions 482

not equal operator (<>) 482
null value support

ALWNULL(*NO) 227
description 219
input-only 226
user controlled 220

input 221
keyed operations 223
output 221
query or set null indicator 557

null-terminated string
get or store 582
passing 348

number
of records for program described

files 377
number of devices, maximum 302

number of elements
defining using DIM 327
determining using %ELEM 527
per record 361

numeric data type
allowed formats 197
binary 197
considerations for using 203
float 198
integer 200
packed-decimal 201
representation 204
unsigned 202
zoned-decimal 202

numeric fields
format 179, 202
moving 461
punctuation 229
resetting to zeros 410

numeric literals
considerations for use 129
length of 547

O
object data type

class 325
description 211
internal format on definition

specification 320
OCCUR (set/get occurrence of a data

structure) operation code 754
OCCURS keyword 347
OFL

file exception/error subroutine
(INFSR) 94

flowchart 34
program exception/errors 97

OFLIND keyword 303
omitted parameters

prototyped 348
ON-ERROR (on error) operation

code 452, 758
OPDESC keyword 348
OPEN (open file for processing)

operation code 453, 759
specifications for 759

opening file for processing 759
conditional 296
OPEN operation code 759
user-controlled 312

OPENOPT keyword 271
operation extender 394, 398
operational descriptors

minimal 563
OPDESC keyword 348

operations, in calculation
specification 394, 398

operator precedence rules 479
operators

binary 479
unary 479

optimization
preventing 346

OPTIMIZE keyword 271

OPTIMIZE parameter
specifying on control

specifications 271
OPTION keyword 271
OPTION parameter

specifying on control
specifications 271

OPTIONS keyword
*NOPASS 348
*OMIT 348
*RIGHTADJ 348
*STRING 348
*VARSIZE 348

OR lines
on calculations 394
on input specifications 381
on output specifications 403, 414

order of evaluation
in expressions 492

ORxx operation code 445, 469, 761
OTHER (otherwise select) operation

code 469, 762
otherwise select (OTHER) operation

code 762
OUT (write a data area) operation

code 448, 764
output

conditioning indicators 70, 405
field

format of 413
name 408

file 281
output from a data structure to a

file 453
record

end position in 410
specifications

*ALL 415
ADD records for externally

described files 414
AND/OR lines for externally

described files 414
DEL (delete) records for externally

described files 414
detail record for program

described file 403
EXCEPT name for externally

described files 415
externally described files 413
field description control 401
field name 415
file name for program described

file 402
for fields of a record 408
for records 402
general description 401
indicators for externally described

files 414
record identification and

control 401
record name for externally

described files 414
record type for externally

described files 414
specification and entry 402

output specifications
constant/editword field 253

Index 933

output specifications (continued)
for program described file

*IN, *INxx, *IN(xx) 409
*PLACE 409
ADD record 403
AND/OR lines for program

described file 403
blank after 410
conditioning indicators 405
DEL (delete) record 403
edit codes 409
end position of field 410
EXCEPT name 406
exception record for program

described file 403
PAGE, PAGE1-PAGE7 408
UDATE 408
UDAY 408
UMONTH 408
UYEAR 408

overflow
line, indicating length of 247

overflow indicators
assigning on file description

specifications 303
conditioning calculations 66, 394
conditioning output 405
fetch overflow logic 39, 40
general description 47
reset to *OFF 271
setting of 76
with exception lines 406, 671, 672

overlapping control fields 52
OVERLAY keyword 140, 359
overlaying storage in data

structures 140, 359

P
packed decimal format

array/table field 201
converting to 513
definition specification 320
description 201
input field 201
keys 288
output field 201
specifying even number of digits 361

PACKEVEN keyword 201, 361
page numbering 9
PAGE, PAGE1-PAGE 7 409
parameters

prototyped parameters 155
PARM (identify parameters) operation

code 452, 765
calculation specifications 765
call operations 440

partial arrays 584
%SUBARR (Set/Get Portion of an

Array) 584
PASS keyword 303
passing parameters

by read-only reference 326
number of a parameter 565
number of parameters 563
with CONST keyword 326

performance considerations
arithmetic operations 435

PERRCD keyword 361
PGMNAME keyword 304
PIP (Program Initialization Parameters)

data area 653
DEFINE (field definition) 651
IN (retrieve a data area) 701
OUT (write a data area) 764
UNLOCK (unlock a data area or

record) 839
UNLOCK (unlock a data area) 839

PLIST (identify a parameter list)
operation code 24, 452, 768

*ENTRY PLIST 768
calculation specifications 768
call operations 440
for SPECIAL file 304
name, rules for 5

PLIST keyword 304
pointers

basing pointer
alignment 213
alignment of subfields 140
as result of %ADDR 494
comparison to *NULL 447
creating 325
data type 212
example 214
problems comparing

pointers 447, 816
built-in functions

%ADDR (Get Address of
Variable) 494

%PADDR (Get Procedure
Address) 560

data type 320
pointer arithmetic 214
procedure pointer

address of procedure entry
point 560

alignment of subfields 140
data type 218
example 218
PROCPTR keyword 363

position of record identification
code 380

positional notation 140, 319
POST (post) operation code 453, 770
POST (Post) operation code

contents of file feedback information
after use 82

Power Down System
(PWRDWNSYS) 773

power operator 482
precedence rules of expression

operators 479
precision of expression results

″Result Decimal Position″
example 491

default example 488
intermediate results 488
precision rules 486
using the ″Result Decimal Position″

rules 490
using the default rule 487

predefined conditions 16

PREFIX keyword
definition specification 136, 362
file description specification 304

prefixing a name to a subfield 136, 362
prerun-time array or table

coding 165
example of 165
input file name 337
number of elements per record 361
output file name 369
rules for loading 166
specifying external data format 330

prevent printing over perforation 40
PRFDTA keyword 274
PRFDTA parameter

specifying on control
specifications 274

primary file
ending a program without 40
file description specifications 282
general description 282

printer control data structure 306
PRINTER file

device name 290
fetch overflow logic 40
length of form 297

procedure
address of procedure entry point 560
exported 13
external prototyped name 332
procedure pointer call 333
procedure specification 417
PROCPTR keyword 363

procedure interface
and main procedure 157
defining 23, 157, 417
definition keyword summary 372
definition type entry 318

procedure pointer calls 333
procedure specification

begin/end entry 419
form type 418
general 417
keywords 419
name 418

procedure specification keywords
EXPORT 419

processing methods
for DISK file 312

PROCPTR keyword 363
program

status, codes 101
status, exception/error codes 101

program cycle
defined 21
detail 34
detailed description 34
fetch overflow logic 39
general 31, 32
general description 21, 32
programmer control 41
with initialization subroutine

(*INZSR) 38
with lookahead 40
with match fields 39
with RPG IV exception/error

handling 40

934 ILE RPG Reference

Program Cycle
ILE RPG compiler and 31

program described files, field description
and control entries, output
specifications

blank after 410
constant or edit word 412
data format 411
edit codes 409
end position 410
field name 408
output indicators 408

program described files, field description
entries, input specifications

data format 382
field location 383
general description 382

program described files, record
identification and control entries,
output specifications

EXCEPT name 406
fetch overflow/release 404
file name 402
logical relationship 403
output indicators 405
record addition/deletion 403
skip after 407
skip before 407
space after 407
space and skip 407
space before 407
type 403

program described files, record
identification entries, input
specifications

file name 376
general description 376
logical relationship 377
number 377
option 378
record identification codes 379
record identifying indicator, or ** 378
sequence 377
summary tables 376

program device, specifying name 293
program dump (DUMP) operation

code 669
program ending, without a primary

file 40
program exception/error subroutine

and subprocedures 43, 46
program exception/errors

general information
indicators in positions 73 and

74 96
indicators in positions 56 and 57 of

calculation specifications 79, 96
data structure 97
status information 96

return point entries 94
*CANCL 94, 97
*DETC 94, 97
*DETL 94, 97
*GETIN 94, 97
*OFL 94, 97
*TOTC 94, 97
*TOTL 94

program exception/errors (continued)
return point entries (continued)

blanks 94, 97
subroutine 105

program generation 255
program name

default 265
external prototyped name 332
for SPECIAL file 304

program running 255
program status data structure

*ROUTINE 97
*STATUS 97
contents 97
defining 142
general information 97
predefined subfield 97
status codes 101
subfields

predefined 97
with OCCUR operation code 754

program-described file
date-time data format 181
entries on

file description specifications 279
input specifications 375, 376
output specifications 401

in output specification 402
length of key field 286
length of logical record 285
numeric data format 180
record identification entries 376

program/procedure call
operational descriptors 442
prototyped call 441

programmer control of file
processing 41

programming tips 255, 768
/EOF directive 19
checking parameter interface 765
displaying copyright information 261
exported procedures 13
improving call performance 97
nested /COPY or /INCLUDE 14
reducing size of module 30
using prototypes 157, 317, 346

prototype
and main procedure 157
defining 153
definition keyword summary 372
definition type entry 318
description 441

prototyped call
defining 153
using call operations 441

prototyped parameters
defining 155
definition keyword summary 372
omitting on call 348
OPTIONS keyword 348
passing *OMIT 348
passing string shorter than defined

length 348
requesting operational

descriptors 348
VALUE keyword 370

prototyped program or procedure
as built-in function 430
calling in an expression 442
CALLP (call a prototyped

procedure) 623
number of a parameter 565
number of passed parameters 563
procedure specification 417
prototyped call 441
RETURN (return to caller) 795
specifying external procedure

name 332
specifying external program

name 332
PRTCTL (printer control)

specifying 306
with space/skip entries 407

PRTCTL keyword 306
PWRDWNSYS (Power Down

System) 773

Q
QSYSOPR 666
QUALIFIED keyword 137, 307, 363
queues

*EXT (external message) 666
QSYSOPR 666

quotient, integer portion 521

R
RAFDATA keyword 308
random retrieval from a file based on

record number or key value (CHAIN)
operation code 633
RECNO keyword 308

READ (read a record) operation
code 453, 772

READC (read next modified record)
operation code 453, 775

READE (read equal key) operation
code 453, 777

reading a record 772
specifications for 772

reading next record
specifications for 775

reading prior record 777
READP (read prior record) operation

code 453, 780
READPE (read prior equal) operation

code 453, 782
REALLOC (reallocate storage with new

length) operation code 458, 785
reallocate storage (REALLOC) operation

code 785
reallocating storage 566, 785
RECNO keyword 292, 308
record

adding to a file 284, 403
deleting from a file 403, 655
detail (D) 403
exception (E) 403

with EXCEPT operation code 684
externally described 414
heading (H) 403

Index 935

record (continued)
input specifications

externally described file 387
program described file 376

length 285
output specifications

externally described 413
program described 402

record line 402
renaming 308
total (T) 403

record address field, length 286
record address file

description 282
file description specifications

entry 282
format of keys 287
length of record address field 286
RAFDATA keyword 308
RECNO keyword 308
relative-record number 289
restrictions 282
S/36 SORT files 285
sequential-within-limits 286

record address type 286
record blocking 292
record format

clearing 642
for a subfile 309
ignoring 297
including 298
renaming 308
resetting 789
writing to a display 310

record identification codes 379
for input specification 387

record identification entries
in output specification 402
input specifications 376, 387
output specifications 402, 414

record identifying indicators (01-99,
H1-H9, L1-L9, LR, U1-U8, RT)

assigning on input specifications
for externally described file 387
for program described file 376
rules for 48

conditioning calculations 392, 394
conditioning output 405, 408
for input specification 387
for program described files 378
general description 48
setting on and off 76
summary 75
with file operations 48

record line 402
record name

for externally described input
file 387

for externally described output
file 414

rules for 5
records, alternate collating sequence

table 196
records, file translation table 119
REL (release) operation code 453, 787
Release (output specifications) 414
release (REL) 787

release, output specifications 404
remainder, integer 567
removing blanks from a string 595
RENAME keyword 308
renaming fields 304
renaming subfields 136, 330
requester

accessing with ID 294
reserved words

*ALL 415
*ALL’x..’ 134
*ALLG’oK1K2i’ 134
*ALLX’x1..’ 134
*BLANK/*BLANKS 134
*CANCL 34, 94
*DATE, *DAY, *MONTH, *YEAR 8
*DETC 97
*DETL 97
*ENTRY PLIST 765
*GETIN 97
*HIVAL/*LOVAL 134
*IN 73
*IN(xx) 73
*INIT 97
*INxx 73
*INZSR 35
*LDA 653
*NOKEY 642, 789
*NULL 134
*OFL 97
*ON/*OFF 134
*PDA 653
*PLACE 409
*ROUTINE 97
*STATUS 97
*TERM 97
*TOTC 97
*TOTL 97
*ZERO/*ZEROS 134
INFDS 80
PAGE 409
PAGE, PAGE1-PAGE7 9
PAGE1-PAGE7 409
UDATE, UDAY, UMONTH,

UYEAR 8
RESET operation code 128, 457, 788
reset value 788
resetting variables 788
Restrictions, summary 907
result decimal position 266
result field

length of 396
number of decimal positions 396
possible entries, in calculation

specification 396
result operations

general information 467
resulting indicators (01-99, H1-H9,

OA-OG, OV, L1-L9, LR, U1-U8, KA-KN,
KP-KY, RT)

calculation specifications 397
general description 58
rules for assigning 59
setting of 76

retrieval of data area
explicit 701
implicit 32, 141

retrieval of record from full procedural
file 633

retrieve a data area (IN) operation
code 701

retrieving randomly (from a file based on
record number of key value) 633

RETURN (return to caller) operation
code 795

call operations 440
returning a value 23
with expressions 477

return (RT) indicator
as field indicator 386, 389
as record identifying indicator 378,

387
as resulting indicator 58, 397
conditioning calculations 394
conditioning output 405
general description 62
setting of 76

return point
for program exception/error

subroutine 105
return value

data type 795
defining 23
RETURN (return to caller) 795

returning from a called procedure
RETURN (return to caller) 795

ROLBK (roll back) operation code 453,
798

roll back (ROLBK) operation code 798
RPG logic cycle

detail 34
general 31, 32

RPGLEHSPEC data area 255
RTNPARM keyword 363
rules

for naming objects 3
rules for transferring XML data to RPG

variables 881
run-time array

%SUBARR (Set/Get Portion of an
Array) 584

definition of 160
rules for loading 160
Using dynamically-sized arrays 174
with consecutive elements 163
with scattered elements 161

S
S/36 SORT files 285
SAA data types

null value support 219
variable-length fields 190

SAVEDS keyword 309
SAVEIND keyword 309
SCAN (scan string) operation code 467,

799
scope

*PSSR subroutine 45
of definitions 24, 126

search argument
for record address type 288

searching within a table 711
searching within an array 711

936 ILE RPG Reference

secondary file
file description specifications 282
general description 282

SELECT (begin a select group) operation
code 469, 802

sequence
ascending 284
descending 284

sequence checking
alternate collating sequence 195
on input specifications 377
with match fields 385

sequential-within-limits processing
file description specifications

entry 286
set bits off (BITOFF) operation code 615
set bits on (BITON) operation code 617
set on and set off operation codes 456
set/get occurrence of data structure 754
SETGT (set greater than) operation

code 453, 804
SETLL (set lower limits) operation

code 453, 808
SETOFF (set off) operation code 456, 812
SETON (set on) operation code 456, 813
SFILE keyword 309
SHTDN (shut down) operation

code 457, 814
shut down (SHTDN) operation code 814
simple edit codes (X, Y, Z) 230
size operations

general information 467
skipping

after 407
before 407
for printer output 407

SLN keyword 310
SORTA (sort an array) operation

code 438, 815
source listing with indentation bars 699
spacing

for printer output 407
not with WRITE operation 847

SPECIAL file
parameter list 304
program device name 304

special words 8
specifications

common entries to all 248
continuation rules 249
order 245
types 245

split control field 56
SQL statements 391
SQRT (square root) operation code 434,

820
SR (subroutine identifier) 393
SRTSEQ keyword 274
SRTSEQ parameter

specifying on control
specifications 274

standalone fields 127, 318
starting location of key field 299
static calls

using CALLP 623
STATIC keyword 127, 310
static storage 127, 367

status (of an edit word) 240
status codes

in file information data structure
(INFDS) 91

in program status data structure 101
STGMDL keyword 275
STGMDL parameter

specifying on control
specifications 275

string
checking 507
indexing 799
null-terminated 348, 582
removing blanks 595
scanning 570, 572, 799

string built-in functions
%CHECK (Check Characters) 507
%CHECKR (Check Reverse) 509
%REPLACE (Replace Character

String) 568
%SCAN (Scan for Characters) 570
%SCANRPL (Scan and Replace

Characters) 572
%STR (Get or Store Null-Terminated

String) 582
%SUBST (Get Substring) 588
%TRIM (Trim Blanks at Edges) 595
%TRIML (Trim Leading Blanks) 597
%TRIMR (Trim Trailing Blanks) 598

string operations
CAT (concatenate two character

strings) 467, 630
CHECK (check) 467, 636
CHECKR (check reverse) 467, 639
general information 467
SCAN (scan string) 467, 799
SUBST (substring) 467, 825
XLATE (translate) 467, 850

structured programming operations
ANDxx (and) 469, 613
CASxx (conditionally invoke

subroutine) 628
DO (do) 469, 658
DOU (do until) 469, 660
DOUxx (do until) 469, 661
DOW (do while) 469, 663
DOWxx (do while) 469, 664
ELSE (else do) 469, 671, 672
ELSEIF (else if) 469, 672
ENDyy (end a group) 469, 673
EVAL (evaluate) 469, 676
EVALR (evaluate, right adjust) 678
FOR (for) 469, 692
general information 469
IF (if/then) 469, 698
IFxx (if/then) 469, 699
ITER (iterate) 469, 703
LEAVE (leave a structured

group) 469, 708
ORxx (or) 469, 761
OTHER (otherwise select) 469, 762
SELECT (begin a select group) 469,

802
WHEN (when true then select) 469
When (When) 843
whenxx (when true then select) 844
WHxx (when true then select) 469

SUB (subtract) operation code 434, 821
SUBDUR (subtract duration) operation

code
calculating durations 449
general discussion 449
possible error situations 824
subtracting dates 449, 822, 823
unexpected results 451

subfields
defining 318
external definition 331
for program status data structure 97
name prefixing 136, 304, 362
overlaying storage 359
renaming 136, 330

subfiles
record format 309

subprocedure 21
subprocedures

calculations coding 43, 46
comparison with subroutines 25
definition 21, 25
exception/error processing

sequence 44
NOMAIN module 30
normal processing sequence 43
number of a parameter 565
number of passed parameters 563
procedure interface 23, 157
procedure specification 417
RETURN (return to caller) 795
return values 23
returning from 795
scope of parameters 24, 126
specifications for 245, 247

subroutine identifier (SR) 393
subroutine names 5
subroutine operations

BEGSR (beginning of
subroutine) 472, 614

CASxx (conditionally invoke
subroutine) 472, 628

ENDSR (end of subroutine) 472, 675
EXSR (invoke subroutine) 472, 688
general information 472
LEAVESR (leave subroutine) 710

subroutines
calculation specifications entry in

positions 7 and 8 393
comparison with subprocedures 25
description 472
example 472
file exception/error (INFSR) 93
maximum allowed per program 472
operation codes 472
program exception/error (*PSSR) 105
program initialization (*INZSR) 38
use within a subprocedure 21, 25

SUBST (substring) operation code 467,
825

substring of character or graphic literal
RPG built-in %SUBST 588
SUBST operation 825

subtracting date-time durations 449, 822
subtracting factors 821
summary tables

calculation specifications 391

Index 937

summary tables (continued)
edit codes 232
entry summary by type 370
function key indicators and

corresponding function keys 66
ILE RPG built-in functions 432
ILE RPG restrictions 907
indicators 75, 76
input specifications 376
keyword summary by definition

type 371
operation codes 423
program description record

identification entries 376
summing array elements

using %XFOOT built-in 602
using XFOOT operation code 849

symbolic name
array names 4
conditional compile names 4
data structure names 4
EXCEPT names 4
field names 4
file names 4
KLIST names 4
labels 4
PLIST names 5
prototype names 5
record names 5
subfield names 4
subroutine names 5
table names 5

symbolic names 3

T
table

defining 176
definition 159
differences from array 159
element, specifying 176
example of using 176
file 282
loading 176
lookup 593
name, rules for 5
number of elements 327, 527
size of 576
specifying a table element 176
to file name 308

TAG operation code 439, 452, 828
TEMPLATE keyword 311, 368
TEST (test date/time/timestamp)

operation code 449, 475, 829
test operations

general information 475
TEST (test date/time/timestamp)

operation code 475, 829
TESTB (test bit) operation code 475,

831
TESTN (test numeric) operation

code 475, 834
TESTZ (test zone) operation

code 475, 836
TESTB (test bit) operation code 475, 831
TESTB operation code 439

TESTN (test numeric) operation
code 475, 834

TESTZ (test zone) operation code 475,
836

TEXT keyword 275
TEXT parameter

specifying on control
specifications 275

THREAD keyword 275
TIME (retrieve time and date) operation

code 457, 837
time and date built-in functions

%DAYS (Number of Days) 512
%DIFF (Difference Between Two Date

or Time Values) 518
%HOURS (Number of Hours) 543
%MINUTES (Number of

Minutes) 554
%MONTHS (Number of

Months) 555
%MSECONDS (Number of

Microseconds) 556
%SECONDS (Number of

Seconds) 574
%SUBDT (Subset of Date or

Time) 587
%YEARS (Number of Years) 606

time data field
general discussion 208
moving 462
TIMFMT 277, 311, 369
unexpected results 451

time data format
*JOBRUN time separator 210
control specification 277
converting to 591
description 208
external format on definition

specification 369
file description specification 311
initialization 210
input specification 382
internal format on definition

specification 320
output specification 411
separators 210
table of 209

time out 773
timestamp data field

general discussion 210
unexpected results 451

timestamp data format
converting to 592
description 210
initialization 210
internal format on definition

specification 320
output specification 411
separators 210

TIMFMT keyword
control specification 277
definition specification 369
file description specification 311

TOFILE keyword 369
total (T) output records 403
TOTC

flowchart 34

TOTC (continued)
program exception/errors 94

TOTL
file exception/error subroutine

(INFSR) 94
flowchart 34
program exception/errors 97

trailing blanks, removing 349, 595, 598
translate (XLATE) operation code 850
translation table and alternate collating

sequence coding sheet 195
TRUNCNBR keyword 277
TRUNCNBR parameter

overflow in expressions 479
specifying on control

specifications 277
type of record, output specification 403

U
UCS-2 format

description 184
fixed length 184
internal format on definition

specification 320
UCS-2 CCSID

on control specification 260
on definition specification 325

variable length 185
UDATE 8
UDAY 8
UDS data area 29
UMONTH 8
unary operations

− 482
+ 482
data types supported 482
NOT 482
precedence of operators 479

UNLOCK (unlock a data area) operation
code 448, 453, 839

unsigned arithmetic 435
unsigned integer format

alignment 202
arithmetic operations 435
considerations for using 203
converting to 600
definition 202
definition specification 320
output specification 411
unsigned arithmetic 435

unwanted control breaks 51, 52
update 281

update 281
update a file from a data

structure 453
UPDATE (modify existing record)

operation code 453
description 841
specify fields to update 533

update file 281
updating data area 764
user date special words

format 8
rules 8

user-controlled file open 296, 312
user-defined edit codes (5-9) 232

938 ILE RPG Reference

Using dynamically-sized arrays 174
USROPN keyword 29, 312
USRPRF keyword 277
USRPRF parameter on CRTBNDRPG

specifying on control
specifications 277

UYEAR 8

V
valid character set 3
VALUE keyword 370
variable

based 325, 494
clearing 642
resetting 788
scope 24, 126

variable-length format
character

description 182, 185
example 187
rules 186

database fields 190
definition specification 320
graphic

description 185
example 188
rules 186

input specification 382
output specification 413
setting the length 189
tips 190
UCS-2

description 185
example 187
rules 186

using 189
VARYING keyword 370

VARYING keyword 370

W
WAITRCD 773
WHEN (when true then select) operation

code 445, 469, 477
When (When) operation code 843
whenxx (when true then select) operation

code 844
WHENxx (when true then select)

operation code 445
WHxx (when true then select) operation

code 469
WORKSTN file

device name 290
WRITE (create new records) operation

code 453, 847
write/then read format (EXFMT)

operation code 686
writing a new record to a file 847
writing records during calculation

time 684

X
XFOOT (summing the elements of an

array) operation code 434, 438, 849

XLATE (translate) operation code 467,
850

XML events 889
XML operations 475

%HANDLER (handlingProcedure :
communicationArea) built-in
function 475, 539

%XML (xmlDocument {:options})
built-in function 475, 604

general information 475
XML-INTO (parse an XML document

into a variable) 475
XML-SAX (parse an XML

document) 475
XML-INTO (parse an XML document into

a variable) operation code 475, 852
%XML options 856
examples 882
expected format of XML data 877
rules for transferring XML data to

RPG variables 881
XML-SAX (parse an XML document)

operation code 475, 886
%XML options 887
event-handling procedure 888
examples 896
XML events 889

XML-SAX event-handling procedure 888

Y
Y edit code 262

Z
Z-ADD (zero and add) operation

code 434, 902
Z-SUB (zero and subtract) operation

code 434, 903
zero (blanking) fields 410, 416
zero suppression 230

in body of edit word 238
with combination edit code 230

zoned decimal format
definition specification 320
description 202

Index 939

940 ILE RPG Reference

����

Program Number: 5770-WDS

Printed in U.S.A.

SC09-2508-08

	Contents
	About This Reference
	Who Should Use This Reference
	Prerequisite and Related Information
	How to Send Your Comments
	What's New
	What's New in this Release
	What's New in V6R1
	What′s New in V5R4?
	What's New in V5R3?
	What's New in V5R2?
	What's New in V5R1?
	What's New in V4R4?
	What's New in V4R2?
	What's New in V3R7?
	What's New in V3R6/V3R2?

	Part 1. RPG IV Concepts
	Chapter 1. Symbolic Names and Reserved Words
	Symbolic Names
	Array Names
	Conditional Compile Names
	Data Structure Names
	EXCEPT Names
	Field Names
	KLIST Names
	Labels
	Named Constants
	PLIST Names
	Prototype Names
	Record Names
	Subroutine Names
	Table Names

	RPG IV Words with Special Functions/Reserved Words
	User Date Special Words
	Rules for User Date

	PAGE, PAGE1-PAGE7
	Rules for PAGE, PAGE1-PAGE7

	Chapter 2. Compiler Directives
	/FREE... /END-FREE (Positions 7-11)
	/TITLE (Positions 7-12)
	/EJECT (Positions 7-12)
	/SPACE (Positions 7-12)
	/COPY or /INCLUDE
	Results of the /COPY or /INCLUDE during Compile
	Nested /COPY or /INCLUDE
	Using /COPY, /INCLUDE in Source Files with Embedded SQL

	Conditional Compilation Directives
	Defining Conditions
	/DEFINE (Positions 7-13)
	/UNDEFINE (Positions 7-15)

	Predefined Conditions
	Conditions Relating to the Environment
	Conditions Relating to the Command Being Used
	Conditions Relating to the Target Release

	Condition Expressions
	Testing Conditions
	/IF Condition-Expression (Positions 7-9)
	/ELSEIF Condition-Expression (Positions 7-13)
	/ELSE (Positions 7-11)
	/ENDIF (Positions 7-12)
	Rules for Testing Conditions

	The /EOF Directive
	/EOF (Positions 7-10)

	Handling of Directives by the RPG Preprocessor

	Chapter 3. Procedures and the Program Logic Cycle
	Subprocedure Definition
	Procedure Interface Definition
	Return Values
	Scope of Definitions
	Subprocedures and Subroutines

	Program Flow in RPG Modules: Cycle Versus Linear
	Cycle Module
	Use Caution Exporting Subprocedures in Cycle Modules

	Linear Module
	Linear Main Module
	NOMAIN Module

	Module Initialization
	Initialization of Global Data

	RPG Cycle and other implicit Logic
	Program Cycle
	General RPG IV Program Cycle
	Detailed RPG IV Program Cycle

	Subprocedure Calculations
	Implicit Opening of Files and Locking of Data Areas
	Implicit Closing of Files and Unlocking of Data Areas

	Chapter 4. RPG IV Indicators
	Indicators Defined on RPG IV Specifications
	Overflow Indicators
	Record Identifying Indicators
	Rules for Assigning Record Identifying Indicators

	Control Level Indicators (L1-L9)
	Rules for Control Level Indicators
	Split Control Field

	Field Indicators
	Rules for Assigning Field Indicators

	Resulting Indicators
	Rules for Assigning Resulting Indicators

	Indicators Not Defined on the RPG IV Specifications
	External Indicators
	Internal Indicators
	First Page Indicator (1P)
	Last Record Indicator (LR)
	Matching Record Indicator (MR)

	Return Indicator (RT)

	Using Indicators
	File Conditioning
	Rules for File Conditioning

	Field Record Relation Indicators
	Assigning Field Record Relation Indicators

	Function Key Indicators
	Halt Indicators (H1-H9)
	Indicators Conditioning Calculations
	Positions 7 and 8
	Positions 9-11

	Indicators Used in Expressions
	Indicators Conditioning Output

	Indicators Referred to As Data
	*IN
	*INxx
	Additional Rules

	Summary of Indicators

	Chapter 5. File and Program Exception/Errors
	File Exception/Errors
	File Information Data Structure
	File Feedback Information
	Open Feedback Information
	Input/Output Feedback Information
	Device Specific Feedback Information
	Get Attributes Feedback Information
	Blocking Considerations
	File Status Codes

	File Exception/Error Subroutine (INFSR)

	Program Exception/Errors
	Program Status Data Structure
	Program Status Codes
	PSDS Example

	Program Exception/Error Subroutine

	Chapter 6. General File Considerations
	Global and Local Files
	File Parameters
	Variables Associated with Files
	Example of passing a file and passing a data structure with the associated variables.

	Primary/Secondary Multi-file Processing
	Multi-file Processing with No Match Fields
	Multi-file Processing with Match Fields
	Assigning Match Field Values (M1-M9)
	Processing Matching Records

	File Translation
	Specifying File Translation
	Translating One File or All Files
	Translating More Than One File
	Specifying the Files
	Specifying the Table

	Part 2. Definitions
	Chapter 7. Defining Data and Prototypes
	General Considerations
	Scope of Definitions
	Storage of Definitions

	Standalone Fields
	Variable Initialization

	Constants
	Literals
	Example of Defining Literals
	Example of Using Literals with Zero Length

	Named Constants
	Figurative Constants
	Rules for Figurative Constants

	Data Structures
	Qualifying Data Structure Names
	Array Data Structures
	Defining Data Structure Parameters in a Prototype or Procedure Interface
	Defining Data Structure Subfields
	Specifying Subfield Length
	Aligning Data Structure Subfields
	Initialization of Nested Data Structures

	Special Data Structures
	Data Area Data Structure
	File Information Data Structure
	Program-Status Data Structure
	Indicator Data Structure

	Data Structure Examples

	Prototypes and Parameters
	Prototypes
	Prototyped Parameters
	Procedure Interface

	Chapter 8. Using Arrays and Tables
	Arrays
	Array Name and Index
	The Essential Array Specifications
	Coding a Run-Time Array
	Loading a Run-Time Array
	Loading a Run-Time Array by Reading One Record from a File
	Loading a Run-Time Array by Reading Several Records from A File
	Loading an Array from Identical Externally-Described Fields
	Sequencing Run-Time Arrays

	Coding a Compile-Time Array
	Loading a Compile-Time Array
	Rules for Array Source Records

	Coding a Prerun-Time Array
	Example of Coding Arrays
	Loading a Prerun-Time Array
	Sequence Checking for Character Arrays

	Initializing Arrays
	Run-Time Arrays
	Compile-Time and Prerun-Time Arrays

	Defining Related Arrays
	Searching Arrays
	Searching an Array Without an Index
	Searching an Array Data Structure
	Searching an Array with an Index

	Using Arrays
	Specifying an Array in Calculations

	Sorting Arrays
	Sorting using part of the array as a key
	Sorting an Array Data Structure

	Array Output
	Editing Entire Arrays

	Using Dynamically-Sized Arrays
	Tables
	LOOKUP with One Table
	LOOKUP with Two Tables
	Specifying the Table Element Found in a LOOKUP Operation

	Chapter 9. Data Types and Data Formats
	Internal and External Formats
	Internal Format
	External Format
	Specifying an External Format for a Numeric Field
	Specifying an External Format for a Character, Graphic, or UCS-2 Field
	Specifying an External Format for a Date-Time Field

	Character Data Type
	Character Format
	Indicator Format
	Graphic Format
	UCS-2 Format
	Variable-Length Character, Graphic and UCS-2 Formats
	Rules for Variable-Length Character, Graphic, and UCS-2 Formats
	Using Variable-Length Fields
	CVTOPT(*VARCHAR) and CVTOPT(*VARGRAPHIC)

	Conversion between Character, Graphic and UCS-2 Data
	CCSIDs of Data
	Conversions

	Alternate Collating Sequence
	Changing the Collating Sequence
	Using an External Collating Sequence
	Specifying an Alternate Collating Sequence in Your Source
	Formatting the Alternate Collating Sequence Records

	Numeric Data Type
	Binary Format
	Processing of a Program-Described Binary Input Field
	Processing of an Externally Described Binary Input Field

	Float Format
	External Display Representation of a Floating-Point Field

	Integer Format
	Packed-Decimal Format
	Determining the Digit Length of a Packed-Decimal Field

	Unsigned Format
	Zoned-Decimal Format
	Considerations for Using Numeric Formats
	Guidelines for Choosing the Numeric Format for a Field

	Representation of Numeric Formats

	Date Data Type
	Separators
	Initialization

	Time Data Type
	Separators
	Initialization
	*JOBRUN

	Timestamp Data Type
	Separators
	Initialization

	Object Data Type
	Where You Can Specify an Object Field

	Basing Pointer Data Type
	Setting a Basing Pointer
	Examples

	Procedure Pointer Data Type
	Database Null Value Support
	User Controlled Support for Null-Capable Fields and Key Fields
	Null-capable fields in externally-described data structures
	Input of Null-Capable Fields
	Output of Null-Capable Fields
	Keyed Operations

	Input-Only Support for Null-Capable Fields
	ALWNULL(*NO)

	Error Handling for Database Data Mapping Errors

	Chapter 10. Editing Numeric Fields
	Edit Codes
	Simple Edit Codes
	Combination Edit Codes
	User-Defined Edit Codes
	Editing Considerations
	Summary of Edit Codes

	Edit Words
	How to Code an Edit Word
	Parts of an Edit Word
	Forming the Body of an Edit Word
	Forming the Status of an Edit Word
	Formatting the Expansion of an Edit Word

	Summary of Coding Rules for Edit Words

	Editing Externally Described Files

	Part 3. Specifications
	Chapter 11. About Specifications
	RPG IV Specification Types
	Main Source Section Specifications
	Subprocedure Specifications
	Program Data

	Common Entries
	Syntax of Keywords
	Continuation Rules
	Control Specification Keyword Field
	File Description Specification Keyword Field
	Definition Specification Keyword Field
	Calculation Specification Extended Factor-2
	Free-Form Calculation Specification
	Output Specification Constant/Editword Field
	Definition and Procedure Specification Name Field

	Chapter 12. Control Specifications
	Using a Data Area as a Control Specification
	Control-Specification Statement
	Position 6 (Form Type)
	Positions 7-80 (Keywords)

	Control-Specification Keywords
	ALLOC(*STGMDL | *TERASPACE | *SNGLVL)
	ACTGRP(*STGMDL | *NEW | *CALLER | ′activation-group-name′)
	ALTSEQ{(*NONE | *SRC | *EXT)}
	ALWNULL(*NO | *INPUTONLY | *USRCTL)
	AUT(*LIBRCRTAUT | *ALL | *CHANGE | *USE | *EXCLUDE | ′authorization-list-name′)
	BNDDIR(′binding-directory-name′ {:′binding-directory-name′...})
	CCSID(*GRAPH : parameter | *UCS2 : number | *CHAR : *JOBRUN)
	COPYNEST(number)
	COPYRIGHT(′copyright string′)
	CURSYM(′sym′)
	CVTOPT(*{NO}DATETIME *{NO}GRAPHIC *{NO}VARCHAR *{NO}VARGRAPHIC)
	DATEDIT(fmt{separator})
	DATFMT(fmt{separator})
	DEBUG{(*INPUT | *DUMP | *XMLSAX | *NO | *YES)}
	DECEDIT(*JOBRUN | ′value′)
	DECPREC(30|31|63)
	DFTACTGRP(*YES | *NO)
	DFTNAME(rpg_name)
	ENBPFRCOL(*PEP | *ENTRYEXIT | *FULL)
	EXPROPTS(*MAXDIGITS | *RESDECPOS)
	EXTBININT{(*NO | *YES)}
	FIXNBR(*{NO}ZONED *{NO}INPUTPACKED)
	FLTDIV{(*NO | *YES)}
	FORMSALIGN{(*NO | *YES)}
	FTRANS{(*NONE | *SRC)}
	GENLVL(number)
	INDENT(*NONE | ′character-value′)
	INTPREC(10 | 20)
	LANGID(*JOBRUN | *JOB | ′language-identifier′)
	MAIN(main_procedure_name)
	NOMAIN
	OPENOPT (*NOINZOFL | *INZOFL)
	OPTIMIZE(*NONE | *BASIC | *FULL)
	OPTION(*{NO}XREF *{NO}GEN *{NO}SECLVL *{NO}SHOWCPY *{NO}EXPDDS *{NO}EXT *{NO}SHOWSKP) *{NO}SRCSTMT) *{NO}DEBUGIO) *{NO}UNREF
	PGMINFO(*PCML | *NO { : *MODULE })
	Examples

	PRFDTA(*NOCOL | *COL)
	SRTSEQ(*HEX | *JOB | *JOBRUN | *LANGIDUNQ | *LANGIDSHR | ′sort-table-name′)
	STGMDL(*INHERIT | *SNGLVL | *TERASPACE)
	TEXT(*SRCMBRTXT | *BLANK | ′description′)
	THREAD(*CONCURRENT | *SERIALIZE)
	THREAD(*CONCURRENT)
	THREAD(*SERIALIZE)
	General thread considerations

	TIMFMT(fmt{separator})
	TRUNCNBR(*YES | *NO)
	USRPRF(*USER | *OWNER)

	Chapter 13. File Description Specifications
	File Description Specification Statement
	File-Description Keyword Continuation Line
	Position 6 (Form Type)
	Positions 7-16 (File Name)
	Program-Described File
	Externally-Described File

	Position 17 (File Type)
	Input Files
	Output Files
	Update Files
	Combined Files

	Position 18 (File Designation)
	Primary File
	Secondary File
	Record Address File (RAF)
	Array or Table File
	Full Procedural File

	Position 19 (End of File)
	Position 20 (File Addition)
	Position 21 (Sequence)
	Position 22 (File Format)
	Positions 23-27 (Record Length)
	Position 28 (Limits Processing)
	Positions 29-33 (Length of Key or Record Address)
	Position 34 (Record Address Type)
	Blank=Non-keyed Processing
	A=Character Keys
	P=Packed Keys
	G=Graphic Keys
	K=Key
	D=Date Keys
	T=Time Keys
	Z=Timestamp Keys
	F=Float Keys

	Position 35 (File Organization)
	Blank=Non-keyed Program-Described File
	I=Indexed File
	T=Record Address File

	Positions 36-42 (Device)
	Position 43 (Reserved)
	Positions 44-80 (Keywords)

	File-Description Keywords
	ALIAS
	BLOCK(*YES |*NO)
	COMMIT{(rpg_name)}
	DATFMT(format{separator})
	DEVID(fieldname)
	EXTDESC(external-filename)
	EXTFILE(filename | *EXTDESC)
	EXTIND(*INUx)
	EXTMBR(membername)
	FORMLEN(number)
	FORMOFL(number)
	IGNORE(recformat{:recformat...})
	INCLUDE(recformat{:recformat...})
	INDDS(data_structure_name)
	INFDS(DSname)
	INFSR(SUBRname)
	KEYLOC(number)
	LIKEFILE(parent-filename)
	Rules for the LIKEFILE keyword:

	MAXDEV(*ONLY | *FILE)
	OFLIND(indicator)
	PASS(*NOIND)
	PGMNAME(program_name)
	PLIST(Plist_name)
	PREFIX(prefix{:nbr_of_char_replaced})
	PRTCTL(data_struct{:*COMPAT})
	Extended Length PRTCTL Data Structure
	*COMPAT PRTCTL Data Structure

	QUALIFIED
	Rules for the QUALIFIED keyword:

	RAFDATA(filename)
	RECNO(fieldname)
	RENAME(Ext_format:Int_format)
	SAVEDS(DSname)
	SAVEIND(number)
	SFILE(recformat:rrnfield)
	SLN(number)
	STATIC
	Rules for the STATIC keyword:

	TEMPLATE
	Rules for the TEMPLATE keyword:

	TIMFMT(format{separator})
	USROPN

	File Types and Processing Methods

	Chapter 14. Definition Specifications
	Definition Specification Statement
	Definition Specification Keyword Continuation Line
	Definition Specification Continued Name Line
	Position 6 (Form Type)
	Positions 7-21 (Name)
	Position 22 (External Description)
	Position 23 (Type of Data Structure)
	Positions 24-25 (Definition Type)
	Positions 26-32 (From Position)
	Positions 33-39 (To Position / Length)
	Position 40 (Internal Data Type)
	Positions 41-42 (Decimal Positions)
	Position 43 (Reserved)
	Positions 44-80 (Keywords)

	Definition-Specification Keywords
	ALIAS
	ALIGN
	ALT(array_name)
	ALTSEQ(*NONE)
	ASCEND
	BASED(basing_pointer_name)
	CCSID(number | *DFT)
	CLASS(*JAVA:class-name)
	CONST{(constant)}
	CTDATA
	DATFMT(format{separator})
	DESCEND
	DIM(numeric_constant)
	DTAARA{({*VAR:} data_area_name)}
	EXPORT{(external_name)}
	EXTFLD(field_name)
	EXTFMT(code)
	EXTNAME(file-name{:format-name}{:*ALL| *INPUT|*OUTPUT|*KEY})
	EXTPGM(name)
	EXTPROC({*CL|*CWIDEN|*CNOWIDEN| {*JAVA:class-name:}}name)
	FROMFILE(file_name)
	IMPORT{(external_name)}
	INZ{(initial value)}
	LEN(length)
	Rules for the LEN keyword:

	LIKE(name)
	LIKE(object-name)

	LIKEDS(data_structure_name)
	LIKEFILE(filename)
	Rules for the LIKEFILE keyword for prototyped parameters:

	LIKEREC(intrecname{:*ALL|*INPUT|*OUTPUT |*KEY})
	NOOPT
	OCCURS(numeric_constant)
	OPDESC
	OPTIONS(*NOPASS *OMIT *VARSIZE *STRING *TRIM *RIGHTADJ *NULLIND)
	OVERLAY(name{:pos | *NEXT})
	PACKEVEN
	PERRCD(numeric_constant)
	PREFIX(prefix{:nbr_of_char_replaced})
	PROCPTR
	QUALIFIED
	RTNPARM
	STATIC{(*ALLTHREAD)}
	Additional Considerations for STATIC(*ALLTHREAD)

	TEMPLATE
	Rules for the TEMPLATE keyword for Definition specifications:

	TIMFMT(format{separator})
	TOFILE(file_name)
	VALUE
	VARYING{(2 | 4)}

	Summary According to Definition Specification Type

	Chapter 15. Input Specifications
	Input Specification Statement
	Program Described
	Externally Described

	Program Described Files
	Position 6 (Form Type)

	Record Identification Entries
	Positions 7-16 (File Name)
	Positions 16-18 (Logical Relationship)
	Positions 17-18 (Sequence)
	Alphabetic Entries
	Numeric Entries

	Position 19 (Number)
	Position 20 (Option)
	Positions 21-22 (Record Identifying Indicator, or **)
	Indicators
	Lookahead Fields

	Positions 23-46 (Record Identification Codes)
	Positions 23-27, 31-35, and 39-43 (Position)
	Positions 28, 36, and 44 (Not)
	Positions 29, 37, and 45 (Code Part)
	Positions 30, 38, and 46 (Character)
	AND Relationship
	OR Relationship

	Field Description Entries
	Position 6 (Form Type)
	Positions 7-30 (Reserved)
	Positions 31-34 (Data Attributes)
	Position 35 (Date/Time Separator)
	Position 36 (Data Format)
	Positions 37-46 (Field Location)
	Positions 47-48 (Decimal Positions)
	Positions 49-62 (Field Name)
	Positions 63-64 (Control Level)
	Positions 65-66 (Matching Fields)
	Positions 67-68 (Field Record Relation)
	Positions 69-74 (Field Indicators)

	Externally Described Files
	Position 6 (Form Type)

	Record Identification Entries
	Positions 7-16 (Record Name)
	Positions 17-20 (Reserved)
	Positions 21-22 (Record Identifying Indicator)
	Positions 23-80 (Reserved)

	Field Description Entries
	Positions 7-20 (Reserved)
	Positions 21-30 (External Field Name)
	Positions 31-48 (Reserved)
	Positions 49-62 (Field Name)
	Positions 63-64 (Control Level)
	Positions 65-66 (Matching Fields)
	Positions 67-68 (Reserved)
	Positions 69-74 (Field Indicators)
	Positions 75-80 (Reserved)

	Chapter 16. Calculation Specifications
	Traditional Syntax
	Calculation Specification Extended Factor-2 Continuation Line
	Position 6 (Form Type)
	Positions 7-8 (Control Level)
	Control Level Indicators
	Last Record Indicator
	Subroutine Identifier
	AND/OR Lines Identifier

	Positions 9-11 (Indicators)
	Positions 12-25 (Factor 1)
	Positions 26-35 (Operation and Extender)
	Operation Extender

	Positions 36-49 (Factor 2)
	Positions 50-63 (Result Field)
	Positions 64-68 (Field Length)
	Positions 69-70 (Decimal Positions)
	Positions 71-76 (Resulting Indicators)

	Extended Factor 2 Syntax
	Positions 7-8 (Control Level)
	Positions 9-11 (Indicators)
	Positions 12-25 (Factor 1)
	Positions 26-35 (Operation and Extender)
	Operation Extender

	Positions 36-80 (Extended Factor 2)

	Free-Form Syntax
	Positions 8-80 (Free-form Operations)

	Chapter 17. Output Specifications
	Output Specification Statement
	Program Described
	Externally Described

	Program Described Files
	Position 6 (Form Type)

	Record Identification and Control Entries
	Positions 7-16 (File Name)
	Positions 16-18 (Logical Relationship)
	Position 17 (Type)
	Positions 18-20 (Record Addition/Deletion)
	Position 18 (Fetch Overflow/Release)
	Fetch Overflow
	Release

	Positions 21-29 (Output Conditioning Indicators)
	Positions 30-39 (EXCEPT Name)
	Positions 40-51 (Space and Skip)
	Positions 40-42 (Space Before)
	Positions 43-45 (Space After)
	Positions 46-48 (Skip Before)
	Positions 49-51 (Skip After)

	Field Description and Control Entries
	Positions 21-29 (Output Indicators)
	Positions 30-43 (Field Name)
	Field Names, Blanks, Tables and Arrays
	PAGE, PAGE1-PAGE7
	*PLACE
	User Date Reserved Words
	*IN, *INxx, *IN(xx)

	Position 44 (Edit Codes)
	Position 45 (Blank After)
	Positions 47-51 (End Position)
	Position 52 (Data Format)
	Positions 53-80 (Constant, Edit Word, Data Attributes, Format Name)
	Constants
	Edit Words
	Data Attributes
	Record Format Name

	Externally Described Files
	Position 6 (Form Type)

	Record Identification and Control Entries
	Positions 7-16 (Record Name)
	Positions 16-18 (Logical Relationship)
	Position 17 (Type)
	Position 18 (Release)
	Positions 18-20 (Record Addition)
	Positions 21-29 (Output Indicators)
	Positions 30-39 (EXCEPT Name)

	Field Description and Control Entries
	Positions 21-29 (Output Indicators)
	Positions 30-43 (Field Name)
	Position 45 (Blank After)

	Chapter 18. Procedure Specifications
	Procedure Specification Statement
	Procedure Specification Keyword Continuation Line
	Procedure Specification Continued Name Line
	Position 6 (Form Type)
	Positions 7-21 (Name)
	Position 24 (Begin/End Procedure)
	Positions 44-80 (Keywords)

	Procedure-Specification Keywords
	EXPORT
	SERIALIZE

	Part 4. Operations, Expressions, and Functions
	Chapter 19. Operations
	Operation Codes
	Built-in Functions
	Arithmetic Operations
	Ensuring Accuracy
	Performance Considerations
	Integer and Unsigned Arithmetic
	Arithmetic Operations Examples

	Array Operations
	Bit Operations
	Branching Operations
	Call Operations
	Prototyped Calls
	Operational Descriptors
	Parsing Program Names on a Call
	Program CALL Example

	Parsing System Built-In Names
	Value of *ROUTINE

	Compare Operations
	Conversion Operations
	Data-Area Operations
	Date Operations
	Unexpected Results

	Declarative Operations
	Error-Handling Operations
	File Operations
	Keys for File Operations

	Indicator-Setting Operations
	Information Operations
	Initialization Operations
	Memory Management Operations
	Message Operation
	Move Operations
	Moving Character, Graphic, UCS-2, and Numeric Data
	Moving Date-Time Data
	Examples of Converting a Character Field to a Date Field

	Move Zone Operations
	Result Operations
	Size Operations
	String Operations
	Structured Programming Operations
	Subroutine Operations
	Coding Subroutines
	Subroutine Coding Examples

	Test Operations
	XML Operations

	Chapter 20. Expressions
	General Expression Rules
	Expression Operands
	Expression Operators
	Operation Precedence
	Data Types
	Data Types Supported by Expression Operands
	Format of Numeric Intermediate Results
	For the operators +, -, and *:
	For the / operator:
	For the ** operator:

	Precision Rules for Numeric Operations
	Using the Default Precision Rules
	Precision of Intermediate Results
	Example of Default Precision Rules
	Using the "Result Decimal Position" Precision Rules
	Example of "Result Decimal Position" Precision Rules

	Short Circuit Evaluation
	Order of Evaluation

	Chapter 21. Built-in Functions
	%ABS (Absolute Value of Expression)
	%ADDR (Get Address of Variable)
	%ALLOC (Allocate Storage)
	%BITAND (Bitwise AND Operation)
	%BITNOT (Invert Bits)
	%BITOR (Bitwise OR Operation)
	%BITXOR (Bitwise Exclusive-OR Operation)
	Examples of Bit Operations

	%CHAR (Convert to Character Data)
	%CHECK (Check Characters)
	%CHECKR (Check Reverse)
	%DATE (Convert to Date)
	%DAYS (Number of Days)
	%DEC (Convert to Packed Decimal Format)
	Numeric or character expression
	Date, time or timestamp expression

	%DECH (Convert to Packed Decimal Format with Half Adjust)
	%DECH Examples

	%DECPOS (Get Number of Decimal Positions)
	%DIFF (Difference Between Two Date, Time, or Timestamp Values)
	%DIV (Return Integer Portion of Quotient)
	%EDITC (Edit Value Using an Editcode)
	%EDITFLT (Convert to Float External Representation)
	%EDITW (Edit Value Using an Editword)
	%ELEM (Get Number of Elements)
	%EOF (Return End or Beginning of File Condition)
	%EQUAL (Return Exact Match Condition)
	%ERROR (Return Error Condition)
	%FIELDS (Fields to update)
	%FLOAT (Convert to Floating Format)
	%FOUND (Return Found Condition)
	%GRAPH (Convert to Graphic Value)
	%HANDLER (handlingProcedure : communicationArea)
	%HOURS (Number of Hours)
	%INT (Convert to Integer Format)
	%INTH (Convert to Integer Format with Half Adjust)

	%KDS (Search Arguments in Data Structure)
	%LEN (Get or Set Length)
	%LEN Used for its Value
	%LEN Used to Set the Length of Variable-Length Fields
	%LEN Used to Get the Maximum Length of Varying-Length Expressions

	%LOOKUPxx (Look Up an Array Element)
	Sequenced arrays that are not in the correct sequence

	%MINUTES (Number of Minutes)
	%MONTHS (Number of Months)
	%MSECONDS (Number of Microseconds)
	%NULLIND (Query or Set Null Indicator)
	%OCCUR (Set/Get Occurrence of a Data Structure)
	%OPEN (Return File Open Condition)
	%PADDR (Get Procedure Address)
	%PADDR Used with a Prototype

	%PARMS (Return Number of Parameters)
	%PARMNUM (Return Parameter Number)
	%REALLOC (Reallocate Storage)
	%REM (Return Integer Remainder)
	%REPLACE (Replace Character String)
	%SCAN (Scan for Characters)
	%SCANRPL (Scan and Replace Characters)
	%SECONDS (Number of Seconds)
	%SHTDN (Shut Down)
	%SIZE (Get Size in Bytes)
	%SQRT (Square Root of Expression)
	%STATUS (Return File or Program Status)
	%STR (Get or Store Null-Terminated String)
	%STR Used to Get Null-Terminated String
	%STR Used to Store Null-Terminated String

	%SUBARR (Set/Get Portion of an Array)
	%SUBDT (Extract a Portion of a Date, Time, or Timestamp)
	%SUBST (Get Substring)
	%SUBST Used for its Value
	%SUBST Used as the Result of an Assignment

	%THIS (Return Class Instance for Native Method)
	%TIME (Convert to Time)
	%TIMESTAMP (Convert to Timestamp)
	%TLOOKUPxx (Look Up a Table Element)
	%TRIM (Trim Characters at Edges)
	%TRIML (Trim Leading Characters)
	%TRIMR (Trim Trailing Characters)
	%UCS2 (Convert to UCS-2 Value)
	%UNS (Convert to Unsigned Format)
	%UNSH (Convert to Unsigned Format with Half Adjust)

	%XFOOT (Sum Array Expression Elements)
	%XLATE (Translate)
	%XML (xmlDocument {:options})
	%YEARS (Number of Years)

	Chapter 22. Operation Codes
	ACQ (Acquire)
	ADD (Add)
	ADDDUR (Add Duration)
	ALLOC (Allocate Storage)
	ANDxx (And)
	BEGSR (Beginning of Subroutine)
	BITOFF (Set Bits Off)
	BITON (Set Bits On)
	CABxx (Compare and Branch)
	CALL (Call a Program)
	CALLB (Call a Bound Procedure)
	CALLP (Call a Prototyped Procedure or Program)
	CASxx (Conditionally Invoke Subroutine)
	CAT (Concatenate Two Strings)
	CHAIN (Random Retrieval from a File)
	CHECK (Check Characters)
	CHECKR (Check Reverse)
	CLEAR (Clear)
	Clearing Variables
	Clearing Record Formats
	CLEAR Examples

	CLOSE (Close Files)
	COMMIT (Commit)
	COMP (Compare)
	DEALLOC (Free Storage)
	DEFINE (Field Definition)
	*LIKE DEFINE
	*DTAARA DEFINE

	DELETE (Delete Record)
	DIV (Divide)
	DO (Do)
	DOU (Do Until)
	DOUxx (Do Until)
	DOW (Do While)
	DOWxx (Do While)
	DSPLY (Display Message)
	DUMP (Program Dump)
	ELSE (Else)
	ELSEIF (Else If)
	ENDyy (End a Structured Group)
	ENDSR (End of Subroutine)
	EVAL (Evaluate expression)
	EVALR (Evaluate expression, right adjust)
	EVAL-CORR (Assign corresponding subfields)
	Examples of the EVAL-CORR operation

	EXCEPT (Calculation Time Output)
	EXFMT (Write/Then Read Format)
	EXSR (Invoke Subroutine)
	EXTRCT (Extract Date/Time/Timestamp)
	FEOD (Force End of Data)
	FOR (For)
	FORCE (Force a Certain File to Be Read Next Cycle)
	GOTO (Go To)
	IF (If)
	IFxx (If)
	IN (Retrieve a Data Area)
	ITER (Iterate)
	KFLD (Define Parts of a Key)
	KLIST (Define a Composite Key)
	LEAVE (Leave a Do/For Group)
	LEAVESR (Leave a Subroutine)
	LOOKUP (Look Up a Table or Array Element)
	MHHZO (Move High to High Zone)
	MHLZO (Move High to Low Zone)
	MLHZO (Move Low to High Zone)
	MLLZO (Move Low to Low Zone)
	MONITOR (Begin a Monitor Group)
	MOVE (Move)
	MOVEA (Move Array)
	Character, graphic, and UCS-2 MOVEA Operations
	Numeric MOVEA Operations
	General MOVEA Operations

	MOVEL (Move Left)
	MULT (Multiply)
	MVR (Move Remainder)
	NEXT (Next)
	OCCUR (Set/Get Occurrence of a Data Structure)
	ON-ERROR (On Error)
	OPEN (Open File for Processing)
	ORxx (Or)
	OTHER (Otherwise Select)
	OUT (Write a Data Area)
	PARM (Identify Parameters)
	PLIST (Identify a Parameter List)
	POST (Post)
	READ (Read a Record)
	READC (Read Next Changed Record)
	READE (Read Equal Key)
	READP (Read Prior Record)
	READPE (Read Prior Equal)
	REALLOC (Reallocate Storage with New Length)
	REL (Release)
	RESET (Reset)
	Resetting Variables
	Resetting Record Formats
	Additional Considerations
	RESET Examples

	RETURN (Return to Caller)
	ROLBK (Roll Back)
	SCAN (Scan String)
	SELECT (Begin a Select Group)
	SETGT (Set Greater Than)
	SETLL (Set Lower Limit)
	SETOFF (Set Indicator Off)
	SETON (Set Indicator On)
	SHTDN (Shut Down)
	SORTA (Sort an Array)
	SQRT (Square Root)
	SUB (Subtract)
	SUBDUR (Subtract Duration)
	Subtract a duration
	Calculate a duration
	Possible error situations
	SUBDUR Examples

	SUBST (Substring)
	TAG (Tag)
	TEST (Test Date/Time/Timestamp)
	TESTB (Test Bit)
	TESTN (Test Numeric)
	TESTZ (Test Zone)
	TIME (Retrieve Time and Date)
	UNLOCK (Unlock a Data Area or Release a Record)
	Unlocking data areas
	Releasing record locks

	UPDATE (Modify Existing Record)
	WHEN (When True Then Select)
	WHENxx (When True Then Select)
	WRITE (Create New Records)
	XFOOT (Summing the Elements of an Array)
	XLATE (Translate)
	XML-INTO (Parse an XML Document into a Variable)
	%XML options for the XML-INTO operation code
	Expected format of XML data
	Rules for transferring XML data to RPG variables
	Examples of the XML-INTO operation

	XML-SAX (Parse an XML Document)
	%XML options for the XML-SAX operation code
	XML-SAX event-handling procedure
	XML events
	Examples of the XML-SAX operation

	Z-ADD (Zero and Add)
	Z-SUB (Zero and Subtract)

	Part 5. Appendixes
	Appendix A. RPG IV Restrictions
	Appendix B. EBCDIC Collating Sequence
	Bibliography
	Notices
	Programming Interface Information
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

