
Rational Development Studio for i

ILE RPG Programmer’s Guide
7.1

SC09-2507-08

���

Rational Development Studio for i

ILE RPG Programmer’s Guide
7.1

SC09-2507-08

���

Note!
Before using this information and the product it supports, be sure to read the general information
under “Notices” on page 517.

This edition applies to Version 7, Release 1, Modification Level 0, of IBM Rational® Development Studio for ILE
RPG Programmer's Guide (5770-WDS), and to all subsequent releases and modifications until otherwise indicated in
new editions. This edition applies only to reduced instruction set computer (RISC) systems.

This edition replaces SC09-2507-07.

IBM welcomes your comments. You can send your comments to:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

You can also send your comments by FAX (attention: RCF Coordinator), or you can send your comments
electronically to IBM. See “How to Send Your Comments” for a description of the methods.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|
|

|

Contents

About This Guide ix
Who Should Use This Guide ix
Prerequisite and Related Information ix
How to Send Your Comments x
What's New x
What's New in this Release xi
What's New in V6R1 xv
What’s New in V5R4? xix
What's New in V5R3? xxiii
What's New in V5R2? xxviii
What's New in V5R1? xxx
What's New in V4R4? xxxv
What's New in V4R2? xxxix
What's New in V3R7? xliii
What's New in V3R6/V3R2? xlvii

Using the application development tools
in the client product li
Getting started in the Remote System Explorer
perspective li
Remote Systems view lvi
System i Table view lvii
Remote Systems LPEX Editor lxiii

Part 1. ILE RPG Introduction. 1

Chapter 1. Overview of the RPG IV
Programming Language 3
RPG IV Specifications 3
Cycle Programming 4

Subprocedure logic 5
Indicators 5
Operation Codes 6
Example of an ILE RPG Program 6
Using IBM i 12

Interacting with the System 12
WebSphere Development Studio for System i . . . 13
WebSphere Development Studio Client for System i 14

Chapter 2. RPG Programming in ILE . . 17
Program Creation 17
Program Management 19
Program Call 19
Source Debugging 20
Bindable APIs 20
Multithreaded Applications 21

Chapter 3. Program Creation Strategies 23
Strategy 1: OPM-Compatible Application 23

Method. 23
Example of OPM-Compatible Program 23
Related Information 24

Strategy 2: ILE Program Using CRTBNDRPG . . . 25
Method. 25

Example of ILE Program Using CRTBNDRPG . . 25
Related Information 27

Strategy 3: ILE Application Using CRTRPGMOD . . 27
Method. 28
Single-Language ILE Application Scenario . . . 28
Mixed-Language ILE Application Scenario . . . 29
Advanced Application Scenario. 30
Related Information 31

A Strategy to Avoid. 31

Chapter 4. Creating an Application
Using Multiple Procedures 33
A Multiple Procedures Module — Overview . . . 33

Main Procedures and Subprocedures 33
Prototyped Calls. 34

Example of Module with Multiple Procedures . . . 36
The Entire ARRSRPT Program 40

Coding Considerations 45
General Considerations 45
Program Creation 45
Main Procedure Considerations. 45
Subprocedure Considerations 46

For Further Information 47
Main Procedures 47
Subprocedures 47
Prototyped Call 47

Part 2. Creating and Running an ILE
RPG Application 49

Chapter 5. Using Source Files. 51
Using Source Physical Files 51

Creating a Library and Source Physical File . . 51
Using the Source Entry Utility (SEU) 52
Using SQL Statements 55

Using IFS Source Files 57
Include files 57

Chapter 6. Creating a Program with the
CRTBNDRPG Command 61
Using the CRTBNDRPG Command 61

Creating a Program for Source Debugging . . . 63
Creating a Program with Static Binding 64
Creating an OPM-Compatible Program Object . . 65

Using a Compiler Listing 67
Obtaining a Compiler Listing 67
Customizing a Compiler Listing 68
Correcting Compilation Errors 70
Correcting Run-time Errors 72
Using a Compiler Listing for Maintenance . . . 73

Accessing the RETURNCODE Data Area 74

© Copyright IBM Corp. 1994, 2010 iii

||
##
##

Chapter 7. Creating a Program with the
CRTRPGMOD and CRTPGM
Commands 77
Creating a Module Object 77

Using the CRTRPGMOD Command 78
Creating a Module for Source Debugging . . . 82
Additional Examples 84
Behavior of Bound ILE RPG Modules 84
Related CL Commands 84

Binding Modules into a Program 85
Using the CRTPGM Command 87
Additional Examples 89
Related CL Commands 90

Using a Binder Listing. 90
Changing a Module or Program 91

Using the UPDPGM Command. 91
Changing the Optimization Level 92
Removing Observability 92
Reducing an Object’s Size 93

Chapter 8. Creating a Service Program 95
Service Program Overview 95
Strategies for Creating Service Programs. 96
Creating a Service Program Using CRTSRVPGM . . 96

Changing A Service Program 97
Related CL commands. 97

Sample Service Program 97
Creating the Service Program 101
Binding to a Program 102
Updating the Service Program. 103
Sample Binder Listing 104

Chapter 9. Running a Program 107
Running a Program Using the CL CALL Command 107

Passing Parameters using the CL CALL
Command 107

Running a Program From a Menu-Driven
Application 109
Running a Program Using a User-Created
Command 112
Replying to Run-Time Inquiry Messages 112
Ending an ILE Program 113
Managing Activation Groups 114

Specifying an Activation Group 114
Running in the OPM Default Activation Group 115
Maintaining OPM RPG/400 and ILE RPG
Program Compatibility 116
Deleting an Activation Group 116
Reclaim Resources Command 116

Managing Dynamically-Allocated Storage 117
Managing the Default Heap Using RPG
Operations 119
Heap Storage Problems 124
Managing Your Own Heap Using ILE Bindable
APIs 125

Chapter 10. Calling Programs and
Procedures 133
Program/Procedure Call Overview 133

Calling Programs 134
Calling Procedures 134
The Call Stack 135
Recursive Calls 136
Parameter-Passing Considerations 138

Using a Prototyped Call 139
Using the CALLP Operation 140
Calling within an Expression 140
Examples of Free-Form Call 141

Passing Prototyped Parameters 141
Parameter Passing Styles 142
Using Operational Descriptors. 144
Omitting Parameters 146
Checking for the Number of Passed Parameters 147
Passing Less Data Than Required 152
Passing File Parameters 153
Order of Evaluation 153
Interlanguage Calls 154

Interlanguage Calling Considerations 155
Using the Fixed-Form Call Operations 155

Examples of CALL and CALLB 156
Passing Parameters Using PARM and PLIST . . 157

Returning from a Called Program or Procedure . . 158
Returning from a Main Procedure 158
Returning from a Subprocedure 161
Returning using ILE Bindable APIs 161

Using Bindable APIs 162
Examples of Using Bindable APIs 163

Calling a Graphics Routine 163
Calling Special Routines 164
Storage Model 164

Considerations for the single-level storage
model 164
Considerations for the teraspace storage model 165
Considerations for the inherit storage model 165
Recommendations for the storage model of
programs and service programs 165

Multithreading Considerations 165
Running Concurrently in Multiple Threads . . 166
Running Serialized in Multiple Threads . . . 167
Activation Group Considerations for the
THREAD keyword 167
Storage that is Shared Among Multiple Threads 167
How to Avoid Deadlock Between Modules . . 168
All-Thread Static Variables 169
When to use a serialized procedure 169
When a serialized procedure does not provide
sufficient protection 171
Difficulty of manually synchronizing access to
shared resources 171
Using thread-related APIs 172

Chapter 11. RPG and the eBusiness
World 185
RPG and XML 185

Processing XML Documents 185
RPG and MQSeries 191
RPG and Java 191

Introduction to Java and RPG 191
Calling Java Methods from ILE RPG 195
Calling methods in your own classes 200

iv ILE RPG Programmer’s Guide

##

||
|
||
||
||
|
||

##
##
|
||
##

##
##
#
##
#
##
##

Controlling how the Java Virtual Machine is set
up 202
RPG Native Methods 202
Coding Errors when calling Java from RPG . . 205
Additional RPG Coding for Using Java 207
Additional Considerations 216
Advanced JNI Coding 217
Calling RPG programs from Java using PCML 223

Part 3. Debugging and Exception
Handling 227

Chapter 12. Debugging Programs. . . 229
The ILE Source 230

Debug Commands 230
Preparing a Program for Debugging 232

Creating a Root Source View 233
Creating a COPY Source View. 234
Creating a Listing View 235
Creating a Statement View 235

Starting the ILE Source 236
STRDBG Example 237
Setting Debug Options 238

Adding/Removing Programs from a Debug
Session 239

Example of Adding a Service Program to a
Debug Session 239
Example of Removing ILE Programs from a
Debug Session 240

Viewing the Program Source 240
Viewing a Different Module 241
Changing the View of a Module 242

Setting and Removing Breakpoints 243
Setting and Removing Unconditional Job
Breakpoints 244
Setting and Removing Unconditional Thread
Breakpoints 246
Setting and Removing Conditional Job
Breakpoints 247
National Language Sort Sequence (NLSS) . . . 249
Setting and Removing Job Breakpoints Using
Statement Numbers 250
Setting and Removing Conditional Thread
Breakpoints 252
Removing All Job and Thread Breakpoints . . 253

Setting and Removing Watch Conditions 253
Characteristics of Watches 253
Setting Watch Conditions 254
Displaying Active Watches 256
Removing Watch Conditions 256

Example of Setting a Watch Condition 257
Stepping Through the Program Object 258

Stepping Over Call Statements 259
Stepping Into Call Statements 260

Displaying Data and Expressions 263
Unexpected Results when Evaluating Variables 265
Displaying the Contents of an Array 266
Displaying the Contents of a Table 266
Displaying Data Structures 267
Displaying Indicators. 268

Displaying Fields as Hexadecimal Values . . . 269
Displaying Fields in Character Format 269
Displaying UCS-2 Data 270
Displaying Variable-Length Fields 270
Displaying Data Addressed by Pointers . . . 270
Evaluating Based Variables 271
Displaying Null-Capable Fields 272
Using Debug Built-In Functions 273
Debugging an XML-SAX Handling Procedure 274

Changing the Value of Fields 275
Displaying Attributes of a Field 277
Equating a Name with a Field, Expression, or
Command 278
Source Debug National Language Support for ILE
RPG 279
Sample Source for Debug Examples 279

Chapter 13. Handling Exceptions . . . 285
Exception Handling Overview. 285

ILE RPG Exception Handling 288
Using Exception Handlers 290

Exception Handler Priority 291
Nested Exceptions 291
Unhandled Exceptions 291
Optimization Considerations 294

Using RPG-Specific Handlers 294
Specifying Error Indicators or the ’E’ Operation
Code Extender 294
Using a MONITOR Group 295
Using an Error Subroutine 297
Specifying a Return Point in the ENDSR
Operation 305

ILE Condition Handlers 306
Using a Condition Handler 306

Using Cancel Handlers 312
Problems when ILE CL Monitors for Notify and
Status Messages 315

Chapter 14. Obtaining a Dump 319
Obtaining an ILE RPG Formatted Dump 319
Using the DUMP Operation Code 320
Example of a Formatted Dump 320

Part 4. Working with Files and
Devices 327

Chapter 15. Defining Files 329
Associating Files with Input/Output Devices. . . 329
Naming Files 331
Types of File Descriptions 331

Using Files with External-Description as
Program-Described 332
Example of Some Typical Relationships between
Programs and Files 332

Defining Externally Described Files 333
Renaming Record-Format Names. 334
Renaming Field Names 334
Ignoring Record Formats 334

Contents v

Using Input Specifications to Modify an
External Description 335
Using Output Specifications 337
Level Checking 339

Defining Program-Described Files 339
Data Management Operations and ILE RPG I/O
Operations 340

Chapter 16. General File
Considerations. 341
Overriding and Redirecting File Input and Output 341

Example of Redirecting File Input and Output 342
File Locking 343
Record Locking. 344
Sharing an Open Data Path. 345
Spooling 346

Output Spooling 347
SRTSEQ/ALTSEQ in an RPG Program versus a
DDS File 347

Chapter 17. Accessing Database Files 349
Database Files 349

Physical Files and Logical Files 349
Data Files and Source Files 349

Using Externally Described Disk Files 350
Record Format Specifications 350
Access Path 350
Valid Keys for a Record or File 353
Record Blocking and Unblocking 355

Using Program-Described Disk Files. 356
Indexed File 356
Sequential File 358
Record Address File 359

Methods for Processing Disk Files 360
Consecutive Processing 360
Sequential-by-Key Processing 361
Random-by-Key Processing. 366
Sequential-within-Limits Processing 368
Relative-Record-Number Processing 370

Valid File Operations 371
Using Commitment Control 373

Starting and Ending Commitment Control. . . 374
Specifying Files for Commitment Control . . . 375
Using the COMMIT Operation 376
Specifying Conditional Commitment Control 377
Commitment Control in the Program Cycle . . 378

Unexpected Results Using Keyed Files 379
DDM Files 379

Using Pre-V3R1 DDM Files. 380

Chapter 18. Accessing Externally
Attached Devices. 381
Types of Device Files 381
Accessing Printer Devices 381

Specifying PRINTER Files 382
Handling Page Overflow 382
Using the Fetch-Overflow Routine in
Program-Described Files. 385
Changing Forms Control Information in a
Program-Described File 388

Accessing Tape Devices 390
Accessing Display Devices 390
Using Sequential Files 390

Specifying a Sequential File. 390
Using SPECIAL Files 391

Example of Using a Special File 393

Chapter 19. Using WORKSTN Files 395
Intersystem Communications Function 395
Using Externally Described WORKSTN Files . . . 395

Specifying Function Key Indicators on Display
Device Files 397
Specifying Command Keys on Display Device
Files 398
Processing an Externally Described WORKSTN
File 398
Using Subfiles 399

Using Program-Described WORKSTN Files . . . 402
Using a Program-Described WORKSTN File
with a Format Name 403
Using a Program-Described WORKSTN File
without a Format Name 404

Valid WORKSTN File Operations. 405
EXFMT Operation 405
READ Operation 406
WRITE Operation 406

Multiple-Device Files 406

Chapter 20. Example of an Interactive
Application 409
Database Physical File 409
Main Menu Inquiry 410

MAINMENU: DDS for a Display Device File 410
CUSMAIN: RPG Source 412

File Maintenance 413
CUSMSTL1: DDS for a Logical File 414
MNTMENU: DDS for a Display Device File . . 415
CUSMNT: RPG Source 417

Search by Zip Code 424
CUSMSTL2: DDS for a Logical File 425
SZIPMENU: DDS for a Display Device File . . 426
SCHZIP: RPG Source 428

Search and Inquiry by Name 432
CUSMSTL3: DDS for a Logical File 433
SNAMMENU: DDS for a Display Device File 434
SCHNAM: RPG Source 437

Part 5. Appendixes 443

Appendix A. Behavioral Differences
Between OPM RPG/400 and ILE RPG
for AS/400 445
Compiling 445
Running 445
Debugging and Exception Handling 446
I/O. 447
DBCS Data in Character Fields 450

vi ILE RPG Programmer’s Guide

Appendix B. Using the RPG III to RPG
IV Conversion Aid 451
Conversion Overview 451

File Considerations 451
The Log File. 453
Conversion Aid Tool Requirements 453
What the Conversion Aid Won’t Do 453

Converting Your Source 454
The CVTRPGSRC Command 455
Converting a Member Using the Defaults . . . 459
Converting All Members in a File 459
Converting Some Members in a File 460
Performing a Trial Conversion. 460
Obtaining Conversion Reports. 461
Converting Auto Report Source Members . . . 461
Converting Source Members with Embedded
SQL 462
Inserting Specification Templates 462
Converting Source from a Data File 462

Example of Source Conversion 462
Analyzing Your Conversion 465

Using the Conversion Report 465
Using the Log File. 467

Resolving Conversion Problems 469
Compilation Errors in Existing RPG III Code 470
Unsupported RPG III Features. 470
Use of the /COPY Compiler Directive 471
Use of Externally Described Data Structures . . 474
Run-time Differences 476

Appendix C. The Create Commands 477

Using CL Commands. 477
How to Interpret Syntax Diagrams 477

CRTBNDRPG Command 478
Description of the CRTBNDRPG Command . . 481

CRTRPGMOD Command 496
Description of the CRTRPGMOD command . . 499

Appendix D. Compiler Listings 501
Reading a Compiler Listing 502

Prologue 502
Source Section 504
Additional Diagnostic Messages 509
Output Buffer Positions 510
/COPY Member Table 510
Compile-Time Data 510
Key Field Information 511
Cross-Reference Table 512
EVAL-CORR Summary 513
External References List 514
Message Summary 515
Final Summary 515
Code Generation and Binding Errors 516

Notices 517
Programming Interface Information 518
Trademarks 518

Bibliography. 521

Index 523

Contents vii

viii ILE RPG Programmer’s Guide

About This Guide

This guide provides information that shows how to use the ILE RPG compiler (ILE
RPG) in the Integrated Language Environment. ILE RPG is an implementation of
the RPG IV language on the System i with the IBM i (IBM i) operating system. Use
this guide to create and run ILE applications from RPG IV source.

Note: There are several screen captures in this guide, which might contain obsolete
references to iSeries and other terms from prior releases.

This guide shows how to:
v Enter RPG IV source statements
v Create modules
v Bind modules
v Run an ILE program
v Call other objects
v Debug an ILE program
v Handle exceptions
v Define and process files
v Access devices
v Convert programs from an RPG III format to RPG IV format
v Read compiler listings

Who Should Use This Guide
This guide is for programmers who are familiar with the RPG programming
language, but who want to learn how to use it in the ILE framework. This guide is
also for programmers who want to convert programs from the RPG III to the RPG
IV format. It is designed to guide you in the use of the ILE RPG compiler on the
System i.

Though this guide shows how to use the RPG IV in an ILE framework, it does not
provide detailed information on RPG IV specifications and operations. For a
detailed description of the language, see the IBM Rational Development Studio for i:
ILE RPG Reference, SC09-2508-08.

Before using this guide, you should:
v Know how to use applicable System i menus and displays, or Control Language

(CL) commands.
v Have the appropriate authority to the CL commands and objects described here.
v Have a firm understanding of ILE as described in detail in the ILE Concepts,

SC41-5606-09.

Prerequisite and Related Information
Use the i5/OS Information Center as your starting point for looking up i5/OS and
System i technical information. You can access the Information Center in two ways:
v From the following Web site:

http://www.ibm.com/systems/i/infocenter/

© Copyright IBM Corp. 1994, 2010 ix

v From CD-ROMs that ship with your Operating System/400 order:
i5/OS Information Center CD, SK3T-4091.

The i5/OS Information Center contains advisors and important topics such as CL
commands, system application programming interfaces (APIs), logical partitions,
clustering, Java , TCP/IP, Web serving, and secured networks. It also includes links
to related IBM Redbooks and Internet links to other IBM Web sites such as the
Technical Studio and the IBM home page.

The manuals that are most relevant to the ILE RPG compiler are listed in the
“Bibliography” on page 521.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other i5/OS documentation.
v If you prefer to send comments by mail, use the the following address:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

If you are mailing a readers’ comment form from a country other than the
United States, you can give the form to the local IBM branch office or IBM
representative for postage-paid mailing.

v If you prefer to send comments by FAX, use the following number:
1–845–491–7727

v If you prefer to send comments electronically, use one of these e-mail addresses:
– Comments on books:

RCHCLERK@us.ibm.com
– Comments on the Information Center:

RCHINFOC@us.ibm.com

Be sure to include the following:
v The name of the book.
v The publication number of the book.
v The page number or topic to which your comment applies.

What's New
There have been several releases of RPG IV since the first V3R1 release. The
following is a list of enhancements made for each release since V3R1 to the current
release:
v “What's New in this Release” on page xi
v “What's New in V6R1” on page xv
v “What’s New in V5R4?” on page xix
v “What's New in V5R3?” on page xxiii
v “What's New in V5R2?” on page xxviii
v “What's New in V5R1?” on page xxx
v “What's New in V4R4?” on page xxxv

x ILE RPG Programmer’s Guide

|

|

v “What's New in V4R2?” on page xxxix
v “What's New in V3R7?” on page xliii
v “What's New in V3R6/V3R2?” on page xlvii

You can use this section to link to and learn about new RPG IV functions.

Note: The information for this product is up-to-date with the V7R1 release of RPG
IV. If you are using a previous release of the compiler, you will need to
determine what functions are supported on your system. For example, if
you are using a V5R1 system, the functions new to the V7R1 release will not
be supported.

What's New in this Release
This section describes the enhancements made to ILE RPG in V7R1.

Sort and search data structure arrays

Data structure arrays can be sorted and searched using one of the subfields
as a key.

// Sort the custDs array by the amount_owing subfield
SORTA custDs(*).amount_owing;

// Search for an element in the custDs array where the
// account_status subfield is "K"
elem = %LOOKUP("K" : custDs(*).account_status);

Sort an array either ascending or descending

An array can be sorted ascending using SORTA(A) and descending using
SORTA(D). The array cannot be a sequenced array (ASCEND or DESCEND
keyword).

// Sort the salary array in descending order
SORTA(D) salary;

New built-in function %SCANRPL (scan and replace)

The %SCANRPL built-in function scans for all occurrences of a value
within a string and replaces them with another value.

// Replace NAME with 'Tom'
string1 = 'See NAME. See NAME run. Run NAME run.';
string2 = %ScanRpl('NAME' : 'Tom' : string1);
// string2 = 'See Tom. See Tom run. Run Tom run.'

%LEN(varying : *MAX)

The %LEN builtin function can be used to obtain the maximum number of
characters for a varying-length character, UCS-2 or Graphic field.

Use ALIAS names in externally-described data structures

Use the ALIAS keyword on a Definition specification to indicate that you
want to use the alternate names for the subfields of externally-described
data structures. Use the ALIAS keyword on a File specification to indicate
that you want to use the alternate names for LIKEREC data structures
defined from the records of the file.

A R CUSTREC
A CUSTNM 25A ALIAS(CUSTOMER_NAME)
A CUSTAD 25A ALIAS(CUSTOMER_ADDRESS)
A ID 10P 0

D custDs e ds ALIAS

What’s New

About This Guide xi

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

D QUALIFIED EXTNAME(custFile)
/free

custDs.customer_name = 'John Smith';
custDs.customer_address = '123 Mockingbird Lane';
custDs.id = 12345;

Faster return values

A procedure defined with the RTNPARM keyword handles the return
value as a hidden parameter. When a procedure is prototyped to return a
very large value, especially a very large varying value, the performance for
calling the procedure can be significantly improved by defining the
procedure with the RTNPARM keyword.

D getFileData pr a varying len(1000000)
D rtnparm
D file a const varying len(500)
D data S a varying len(1000)
/free

data = getFileData ('/home/mydir/myfile.txt');

%PARMNUM built-in function

The %PARMNUM(parameter_name) built-in function returns the ordinal
number of the parameter within the parameter list. It is especially
important to use this built-in function when a procedure is coded with the
RTNPARM keyword.

D pi
D name 100a const varying
D id 10i 0 value
D errorInfo likeds(errs_t)
D options(*nopass)
/free

// Check if the "errorInfo" parameter was passed
if %parms >= %parmnum(errorInfo);

Optional prototypes

If a program or procedure is not called by another RPG module, it is
optional to specify the prototype. The prototype may be omitted for the
following types of programs and procedures:
v A program that is only intended to be used as an exit program or as the

command-processing program for a command
v A program that is only intended to be called from a different

programming language
v A procedure that is not exported from the module
v A procedure that is exported from the module but only intended to be

called from a different programming language

Pass any type of string parameter
Implicit conversion will be done for string parameters passed by value or
by read-only reference. For example, a procedure can be prototyped to
have a CONST UCS-2 parameter, and character expression can be passed
as a parameter on a call to the procedure. This enables you to write a
single procedure with the parameters and return value prototyped with the
UCS-2 type. To call that procedure, you can pass any type of string
parameter, and assign the return value to any type of string variable.

// The makeTitle procedure upper-cases the value
// and centers it within the provided length
alphaTitle = makeTitle(alphaValue : 50);
ucs2Title = makeTitle(ucs2Value : 50);
dbcsTitle = makeTitle(dbcsValue : 50);

What’s New

xii ILE RPG Programmer’s Guide

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

Two new options for XML-INTO

v The datasubf option allows you to name a subfield that will receive the
text data for an XML element that also has attributes.

v The countprefix option reduces the need for you to specify the
allowmissing=yes option. It specifies the prefix for the names of the
additional subfields that receive the number of RPG array elements or
non-array subfields set by the XML-INTO operation.

These options are also available through a PTF for V6R1.

Teraspace storage model

RPG modules and programs can be created to use the teraspace storage
model or to inherit the storage model of their caller. With the teraspace
storage model, the system limits regarding automatic storage are
significantly higher that for the single-level storage model. There are limits
for the amount of automatic storage for a single procedure and for the
total automatic storage of all the procedures on the call stack.

Use the storage model (STGMDL) parameter on the CRTRPGMOD or
CRTBNDRPG command, or use the STGMDL keyword on the Control
specification.

*TERASPACE
The program or module uses the teraspace storage model.

*SNGLVL
The program or module uses the single-level storage model.

*INHERIT
The program or module inherits the storage model of its caller.

Change to the ACTGRP parameter of the CRTBNDRPG command and the
ACTGRP keyword on the Control specification

The default value of the ACTGRP parameter and keyword is changed from
QILE to *STGMDL.

ACTGRP(*STGMDL) specifies that the activation group depends on the
storage model of the program. When the storage model is *TERASPACE,
ACTGRP(*STGMDL) is the same as ACTGRP(QILETS). Otherwise,
ACTGRP(*STGMDL) is the same as ACTGRP(QILE).

Note: The change to the ACTGRP parameter and keyword does not affect
the default way the activation group is assigned to the program. The
default value for the STGMDL parameter and keyword is *SNGLVL,
so when the ACTGRP parameter or keyword is not specified, the
activation group of the program will default to QILE as it did in
prior releases.

Allocate teraspace storage

Use the ALLOC keyword on the Control specification to specify whether
the RPG storage-management operations in the module will use teraspace
storage or single-level storage. The maximum size of a teraspace storage
allocation is significantly larger than the maximum size of a single-level
storage allocation.

Encrypted listing debug view

When a module’s listing debug view is encrypted, the listing view can
only be viewed during a debug session when the person doing the

What’s New

About This Guide xiii

|

|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|

debugging knows the encryption key. This enables you to send debuggable
programs to your customers without enabling your customers to see your
source code through the listing view. Use the DBGENCKEY parameter on
the CRTRPGMOD, CRTBNDRPG, or CRTSQLRPGI command.

Table 1. Changed Language Elements Since V6R1

Language Unit Element Description

Control specification
keywords

ACTGRP(*STGMDL) *STGMDL is the new default
for the ACTGRP keyword
and command parameter. If
the program uses the
teraspace storage module,
the activation group is
QILETS. Otherwise it is
QILE.

Built-in functions %LEN(varying-field : *MAX) Can now be used to obtain
the maximum number of
characters of a
varying-length field.

Operation codes SORTA(A | D) The SORTA operation code
now allows the A and D
operation extenders
indicating whether the array
should be sorted ascending
(A) or descending (D).

Table 2. New Language Elements Since V6R1

Language Unit Element Description

Control specification
keywords

STGMDL(*INHERIT |
*TERASPACE | *SNGLVL)

Controls the storage model
of the module or program

ALLOC(*STGMDL |
*TERASPACE | *SNGLVL)

Controls the storage model
for the storage-managent
operations %ALLOC,
%REALLOC, DEALLOC,
ALLOC, REALLOC

File specification keywords ALIAS Use the alternate field names
for the subfields of data
structures defined with the
LIKEREC keyword

Definition specification
keywords

ALIAS Use the alternate field names
for the subfields of the
externally-described data
structure

RTNPARM Specifies that the return
value for the procedure
should be handled as a
hidden parameter

Built-in functions %PARMNUM Returns the ordinal number
of the parameter in the
parameter list

%SCANRPL Scans for all occurrences of a
value within a string and
replaces them with another
value

What’s New

xiv ILE RPG Programmer’s Guide

|
|
|
|

||

|||

|
|
||
|
|
|
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|
|

||

|||

|
|
|
|
|
|

|
|
|
|
|
|
|

|||
|
|
|

|
|
||
|
|
|

||
|
|
|

|||
|
|

||
|
|
|

Table 2. New Language Elements Since V6R1 (continued)

Language Unit Element Description

XML-INTO options datasubf Name a subfield that will
receive the text data for an
XML element that also has
attributes

countprefix Specifies the prefix for the
names of the additional
subfields that receive the
number of RPG array
elements or non-array
subfields set by the
XML-INTO operation

What's New in V6R1
This section describes the enhancements made to ILE RPG in V6R1.

THREAD(*CONCURRENT)

When THREAD(*CONCURRENT) is specified on the Control specification
of a module, it provides ability to run concurrently in multiple threads:
v Multiple threads can run in the module at the same time.
v By default, static variables will be defined so that each thread will have

its own copy of the static variable.
v Individual variables can be defined to be shared by all threads using

STATIC(*ALLTHREAD).
v Individual procedures can be serialized so that only one thread can run

them at one time, by specifying SERIALIZE on the Procedure-Begin
specification.

Ability to define a main procedure which does not use the RPG cycle

Using the MAIN keyword on the Control specification, a subprocedure can
be identified as the program entry procedure. This allows an RPG
application to be developed where none of the modules uses the RPG
cycle.

Files defined in subprocedures

Files can be defined locally in subprocedures. I/O to local files can only be
done with data structures; I and O specifications are not allowed in
subprocedures, and the compiler does not generate I and O specifications
for externally described files. By default, the storage associated with local
files is automatic; the file is closed when the subprocedure returns. The
STATIC keyword can be used to indicate that the storage associated with
the file is static, so that all invocations of the subprocedure will use the
same file, and if the file is open when the subprocedure returns, it will
remain open for the next call to the subprocedure.

Qualified record formats

When a file is defined with the QUALIFIED keyword, the record formats
must be qualified by the file name, MYFILE.MYFMT. Qualified files do not
have I and O specifications generated by the compiler; I/O can only be
done through data structures.

Files defined like other files

What’s New

About This Guide xv

|

|||

|||
|
|
|

||
|
|
|
|
|
|
|

|
#

#

#

#
#

#

#
#

#
#

#
#
#

#

#
#
#
#

#

#
#
#
#
#
#
#
#
#

#

#
#
#
#

#
#

Using the LIKEFILE keyword, a file can be defined to use the same
settings as another File specification, which is important when passing a
file as a parameter. If the file is externally-described, the QUALIFIED
keyword is implied. I/O to the new file can only be done through data
structures.

Files passed as parameters

A prototyped parameter can be defined as a File parameter using the
LIKEFILE keyword. Any file related through the same LIKEFILE definition
may be passed as a parameter to the procedure. Within the called
procedure or program, all supported operations can be done on the file;
I/O can only be done through data structures.

EXTDESC keyword and EXTFILE(*EXTDESC)

The EXTDESC keyword identifies the file to be used by the compiler at
compile time to obtain the external decription of the file; the filename is
specified as a literal in one of the forms ’LIBNAME/FILENAME’ or
’FILENAME’. This removes the need to provide a compile-time override
for the file.

The EXTFILE keyword is enhanced to allow the special value *EXTDESC,
indicating that the file specified by EXTDESC is also to be used at runtime.

EXTNAME to specify the library for the externally-described data structure

The EXTNAME keyword is enhanced to allow a literal to specify the
library for the external file. EXTNAME(’LIBNAME/FILENAME’) or
EXTNAME(’FILENAME’) are supported. This removes the need to provide
a compile-time override for the file.

EXFMT allows a result data structure

The EXFMT operation is enhanced to allow a data structure to be specified
in the result field. The data structure must be defined with usage type
*ALL, either as an externally-described data structure for the record format
(EXTNAME(file:fmt:*ALL), or using LIKEREC of the record format
(LIKEREC(fmt:*ALL).

Larger limits for data structures, and character, UCS-2 and graphic variables

v Data structures can have a size up to 16,773,104.
v Character definitions can have a length up to 16,773,104. (The limit is 4

less for variable length character definitions.)
v Character definitions can have a length up to 16,773,104. (The limit is 4

less for variable length character definitions.)
v UCS-2 definitions can have a length up to 8,386,552 UCS-2 characters.

(The limit is 2 less for variable length UCS-2 definitions.)
v Graphic definitions can have a length up to 8,386,552 DBCS characters.

(The limit is 2 less for variable length graphic definitions.)
v The VARYING keyword allows a parameter of either 2 or 4 indicating

the number of bytes used to hold the length prefix.

%ADDR(varying : *DATA)

The %ADDR built-in function is enhanced to allow *DATA as the second
parameter to obtain the address of the data part of a variable length field.

Larger limit for DIM and OCCURS

What’s New

xvi ILE RPG Programmer’s Guide

#
#
#
#
#

#

#
#
#
#
#

#

#
#
#
#
#

#
#

#

#
#
#
#

#

#
#
#
#
#

#

#

#
#

#
#

#
#

#
#

#
#

#

#
#

#
#

An array or multiple-occurrence data structure can have up to 16,773,104
elements, provided that the total size is not greater than 16,773,104.

Larger limits for character, UCS-2 and DBCS literals

v Character literals can now have a length up to 16380 characters.
v UCS-2 literals can now have a length up to 8190 UCS-2 characters.
v Graphic literals can now have a length up to 16379 DBCS characters.

TEMPLATE keyword for files and definitions

The TEMPLATE keyword can be coded for file and variable definitions to
indicate that the name will only be used with the LIKEFILE, LIKE, or
LIKEDS keyword to define other files or variables. Template definitions are
useful when defining types for prototyped calls, since the compiler only
uses them at compile time to help define other files and variables, and
does not generate any code related to them.

Template data structures can have the INZ keyword coded for the data
structure and its subfields, which will ease the use of INZ(*LIKEDS).

Relaxation of some UCS-2 rules

The compiler will perform some implicit conversion between character,
UCS-2 and graphic values, making it unnecessary to code %CHAR, %UCS2
or %GRAPH in many cases. This enhancement is also available through
PTFs for V5R3 and V5R4. Implicit conversion is now supported for
v Assignment using EVAL and EVALR.
v Comparison operations in expressions.
v Comparison using fixed form operations IFxx, DOUxx, DOWxx, WHxx,

CASxx, CABxx, COMP.
v Note that implicit conversion was already supported for the conversion

operations MOVE and MOVEL.

UCS-2 variables can now be initialized with character or graphic literals
without using the %UCS2 built-in function.

Eliminate unused variables from the compiled object

New values *UNREF and *NOUNREF are added to the OPTION keyword
for the CRTBNDRPG and CRTRPGMOD commands, and for the OPTION
keyword on the Control specification. The default is *UNREF. *NOUNREF
indicates that unreferenced variables should not be generated into the RPG
module. This can reduce program size, and if imported variables are not
referenced, it can reduce the time taken to bind a module to a program or
service program.

PCML can now be stored in the module

Program Call Markup Language (PCML) can now be stored in the module
as well as in a stream file. By using combinations of the PGMINFO
command parameter and/or the new PGMINFO keyword for the Control
specification, the RPG programmer can choose where the PCML
information should go. If the PCML information is placed in the module, it
can later be retrieved using the QBNRPII API. This enhancement is also
available through PTFs for V5R4, but only through the Control
specification keyword.

What’s New

About This Guide xvii

#
#

#

#

#

#

#

#
#
#
#
#
#

#
#

#

#
#
#
#

#

#

#
#

#
#

#
#

#

#
#
#
#
#
#
#

#

#
#
#
#
#
#
#
#

Table 3. Changed Language Elements Since V5R4

Language Unit Element Description

Control specification
keywords

OPTION(*UNREF |
*NOUNREF)

Specifies that unused
variables should not be
generated into the module.

THREAD(*CONCURRENT) New parameter
*CONCURRENT allows
running concurrently in
multiple threads.

File specification keywords EXTFILE(*EXTDESC) Specifies that the value of the
EXTDESC keyword is also to
be used for the EXTFILE
keyword.

Built-in functions %ADDR(varying-field :
*DATA)

Can now be used to obtain
the address of the data
portion of a varying-length
variable.

Definition specification
keywords

DIM(16773104) An array can have up to
16773104 elements.

EXTNAME(’LIB/FILE’) Allows a literal for the file
name. The literal can include
the library for the file.

OCCURS(16773104) A multiple-occurrence data
structure can have up to
16773104 elements.

VARYING{(2|4)} Can now take a parameter
indicating the number of
bytes for the length prefix.

Definition specifications Length entry Can be up to 9999999 for
Data Structures, and
definitions of type A, C or G.
(To define a longer item, the
LEN keyword must be used.)

Input specifications Length entry Can be up to 99999 for
alphanumeric fields, and up
to 99998 for UCS-2 and
Graphic fields.

Calculation specifications Length entry Can be up to 99999 for
alphanumeric fields.

Operation codes EXFMT format { result-ds } Can have a data structure in
the result entry.

Table 4. New Language Elements Since V5R4

Language Unit Element Description

Control specification
keywords

MAIN(subprocedure-name) Specifies the program-entry
procedure for the program.

PGMINFO(*NO | *PCML { :
*MODULE })

Indicates whether Program
Information is to be placed
directly in the module.

What’s New

xviii ILE RPG Programmer’s Guide

##

###

#
#
#
#
#
#
#

##
#
#
#

###
#
#
#

##
#
#
#
#
#

#
#
##
#

##
#
#

##
#
#

##
#
#

###
#
#
#
#

###
#
#
#

###
#

###
#
#

##

###

|
|
||
|

#
#
#
#
#

Table 4. New Language Elements Since V5R4 (continued)

Language Unit Element Description

File specification keywords STATIC Indicates that a local file
retains its program state
across calls to a
subprocedure.

QUALIFIED Indicates that the record
format names of the file are
qualified by the file name,
FILE.FMT.

LIKEFILE(filename) Indicates that the file is
defined the same as another
file.

TEMPLATE Indicates that the file is only
to be used for later LIKEFILE
definitions.

EXTDESC(constant-filename) Specifies the external file
used at compile time for the
external definitions.

Definition specification
keywords

STATIC(*ALLTHREAD) Indicates that the same
instance of the static variable
is used by all threads
running in the module.

LIKEFILE(filename) Indicates that the parameter
is a file.

TEMPLATE Indicates that the definition
is only to be used for LIKE
or LIKEDS definitions.

LEN(length) Specifies the length of a data
structure, or a definition of
type A, C or G.

Procedure specification
keywords

SERIALIZE Indicates that the procedure
can be run by only one
thread at a time.

What’s New in V5R4?
The following list describes the enhancements made to ILE RPG in V5R4:

New operation code EVAL-CORR
EVAL-CORR{(EH)} ds1 = ds2

New operation code EVAL-CORR assigns data and null-indicators from the
subfields of the source data structure to the subfields of the target data
structure. The subfields that are assigned are the subfields that have the same
name and compatible data type in both data structures.

For example, if data structure DS1 has character subfields A, B, and C, and
data structure DS2 has character subfields B, C, and D, statement EVAL-CORR
DS1 = DS2; will assign data from subfields DS2.B and DS2.C to DS1.B and
DS1.C. Null-capable subfields in the target data structure that are affected by
the EVAL-CORR operation will also have their null-indicators assigned from
the null-indicators of the source data structure’s subfields, or set to *OFF, if the
source subfield is not null-capable.

What’s New

About This Guide xix

#

###

###
#
#
#

##
#
#
#

##
#
#

##
#
#

##
#
#

#
#
##
#
#
#

##
#

##
#
#

##
#
#

#
#
##
#
#
#

#
#

// DS1 subfields DS2 subfields
// s1 character s1 packed
// s2 character s2 character
// s3 numeric
// s4 date s4 date
// s5 character
EVAL-CORR ds1 = ds2;
// This EVAL-CORR operation is equivalent to the following EVAL operations
// EVAL ds1.s2 = ds2.s2
// EVAL ds1.s4 = ds2.s4
// Other subfields either appear in only one data structure (S3 and S5)
// or have incompatible types (S1).

EVAL-CORR makes it easier to use result data structures for I/O operations to
externally-described files and record formats, allowing the automatic transfer
of data between the data structures of different record formats, when the
record formats have differences in layout or minor differences in the types of
the subfields.

New prototyped parameter option OPTIONS(*NULLIND)

When OPTIONS(*NULLIND) is specified for a parameter, the null-byte map is
passed with the parameter, giving the called procedure direct access to the
null-byte map of the caller’s parameter.

New builtin function %XML
%XML (xmldocument { : options })

The %XML builtin function describes an XML document and specifies options
to control how the document should be parsed. The xmldocument parameter
can be a character or UCS-2 expression, and the value may be an XML
document or the name of an IFS file containing an XML document. If the value
of the xmldocument parameter has the name of a file, the ″doc=file″ option
must be specified.

New builtin function %HANDLER
%HANDLER (handlingProcedure : communicationArea)

%HANDLER is used to identify a procedure to handle an event or a series of
events. %HANDLER does not return a value, and it can only be specified as
the first operand of XML-SAX and XML-INTO.

The first operand, handlingProcedure, specifies the prototype of the handling
procedure. The return value and parameters specified by the prototype must
match the parameters required for the handling procedure; the requirements
are determined by the operation that %HANDLER is specified for.

The second operand, communicationArea, specifies a variable to be passed as a
parameter on every call to the handling procedure. The operand must be an
exact match for the first prototyped parameter of the handling procedure,
according to the same rules that are used for checking prototyped parameters
passed by reference. The communication-area parameter can be any type,
including arrays and data structures.

New operation code XML-SAX
XML-SAX{ (e) } %HANDLER(eventHandler : commArea) %XML(xmldocument { : saxOptions });

XML-SAX initiates a SAX parse for the XML document specified by the %XML
builtin function. The XML-SAX operation begins by calling an XML parser
which begins to parse the document. When the parser discovers an event such

What’s New

xx ILE RPG Programmer’s Guide

as finding the start of an element, finding an attribute name, finding the end of
an element etc., the parser calls the eventHandler with parameters describing
the event. The commArea operand is a variable that is passed as a parameter to
the eventHandler providing a way for the XML-SAX operation code to
communicate with the handling procedure. When the eventHandler returns, the
parser continues to parse until it finds the next event and calls the eventHandler
again.

New operation code XML-INTO
XML-INTO{ (EH) } variable %XML(xmlDoc { : options });
XML-INTO{ (EH) } %HANDLER(handler : commArea) %XML(xmlDoc { : options });

XML-INTO reads the data from an XML document in one of two ways:
v directly into a variable
v gradually into an array parameter that it passes to the procedure specified

by %HANDLER.

Various options may be specified to control the operation.

The first operand specifies the target of the parsed data. It can contain a
variable name or the % HANDLER built-in function.

The second operand contains the %XML builtin function specifying the source
of the XML document and any options to control how the document is parsed.
It can contain XML data or it can contain the location of the XML data. The
doc option is used to indicate what this operand specifies.
// Data structure "copyInfo" has two subfields, "from"
// and "to". Each of these subfields has two subfields
// "name" and "lib".
// File cpyA.xml contains the following XML document
// <copyinfo>
// <from><name>MASTFILE</name><lib>CUSTLIB</lib></from>
// <to><name>MYFILE</name><lib>*LIBL</lib>
// <copyinfo>
xml-into copyInfo %XML('cpyA.xml' : 'doc=file');
// After the XML-INTO operation, the following
// copyInfo.from .name = 'MASTFILE ' .lib = 'CUSTLIB '
// copyInfo.to .name = 'MYFILE ' .lib = '*LIBL '

Use the PREFIX keyword to remove characters from the beginning of field
names

PREFIX('' : number_of_characters)

When an empty character literal (two single quotes specified with no
intervening characters) is specified as the first parameter of the PREFIX
keyword for File and Definition specifications, the specified number of
characters is removed from the field names. For example if a file has fields
XRNAME, XRIDNUM, and XRAMOUNT, specifying PREFIX('':2)on the File
specification will cause the internal field names to be NAME, IDNUM, and
AMOUNT.

If you have two files whose subfields have the same names other than a
file-specific prefix, you can use this feature to remove the prefix from the
names of the subfields of externally-described data structures defined from
those files. This would enable you to use EVAL-CORR to assign the
same-named subfields from one data structure to the other. For example, if file
FILE1 has a field F1NAME and file FILE2 has a field F2NAME, and
PREFIX('':2) is specified for externally-described data structures DS1 for FILE1

What’s New

About This Guide xxi

and DS2 for FILE2, then the subfields F1NAME and F2NAME will both
become NAME. An EVAL-CORR operation between data structures DS1 and
DS2 will assign the NAME subfield.

New values for the DEBUG keyword
DEBUG { (*INPUT *DUMP *XMLSAX *NO *YES) }

The DEBUG keyword determines what debugging aids are generated into the
module. *NO and *YES are existing values. *INPUT, *DUMP and *XMLSAX
provide more granularity than *YES.

*INPUT
Fields that appear only on input specifications are read into the program
fields during input operations.

*DUMP
DUMP operations without the (A) extender are performed.

*XMLSAX
An array of SAX event names is generated into the module to be used
while debugging a SAX event handler.

*NO
Indicates that no debugging aids are to be generated into the module.
Specifying DEBUG(*NO) is the same as omitting the DEBUG keyword.

*YES
This value is kept for compatibility purposes. Specifying DEBUG(*YES) is
the same as specifying DEBUG without parameters, or DEBUG(*INPUT :
*DUMP).

Syntax-checking for free-form calculations

In SEU, free-form statements are now checked for correct syntax.

Improved debugging support for null-capable subfields of a qualified data
structure

When debugging qualified data structures with null-capable subfields, the
null-indicators are now organized as a similar data structure with an indicator
subfield for every null-capable subfield. The name of the data structure is
_QRNU_NULL_data_structure_name, for example _QRNU_NULL_MYDS. If a
subfield of the data structure is itself a data structure with null-capable
subfields, the null- indicator data structure will similarly have a data structure
subfield with indicator subfields. For example, if data structure DS1 has
null-capable subfields DS1.FLD1, DS1.FLD2, and DS1.SUB.FLD3, you can
display all the null-indicators in the entire data structure using the debug
instruction.
===> EVAL _QRNU_NULL_DS
> EVAL _QRNU_NULL_DS1

_QRNU_NULL_DS1.FLD1 = '1'
_QRNU_NULL_DS1.FLD2 = '0'
_QRNU_NULL_DS1.SUB.FLD3 = '1'

===> EVAL _QRNU_NULL_DS.FLD2
_QRNU_NULL_DS1.FLD2 = '0'

===> EVAL _QRNU_NULL_DS.FLD2 = '1'
===> EVAL DSARR(1).FLD2

DSARR(1).FLD2 = 'abcde'

===> EVAL _QRNU_NULL_DSARR(1).FLD2

_QRNU_NULL_DSARR(1).FLD2 = '0'

Change to end-of-file behaviour with shared files

What’s New

xxii ILE RPG Programmer’s Guide

If a module performs a keyed sequential input operation to a shared file and it
results in an EOF condition, and a different module sets the file cursor using a
positioning operation such as SETLL, a subsequent sequential input operation
by the first module may be successfully done. Before this change, the first RPG
module ignored the fact that the other module had repositioned the shared file.

This change in behaviour is available with PTFs for releases V5R2M0 (SI13932)
and V5R3M0 (SI14185).

Table 5. Changed Language Elements Since V5R3

Language Unit Element Description

Control specification
keywords

DEBUG(*INPUT|*DUMP
*XMLSAX|*NO|*YES)

New parameters *INPUT,
*DUMP and *XMLSAX give
more options for debugging
aids.

File specification keywords PREFIX('':2) An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

Definition specification
keywords

OPTIONS(*NULLIND) Indicates that the null
indicator is passed with the
parameter.

PREFIX('':2) An empty literal may be
specified as the first
parameter of the PREFIX
keyword, allowing characters
to be removed from the
beginning of names.

Table 6. New Language Elements Since V5R3

Language Unit Element Description

Built-in functions %HANDLER(prototype:
parameter)

Specifies a handling
procedure for an event.

%XML(document{:options}) Specifies an XML document
and options to control the
way it is parsed.

Operation codes EVAL-CORR Assigns data and
null-indicators from the
subfields of the source data
structure to the subfields of
the target data structure.

XML-INTO Reads the data from an XML
document directly into a
program variable.

XML-SAX Initiates a SAX parse of an
XML document.

What's New in V5R3?
The following list describes the enhancements made to ILE RPG in V5R3:
v New builtin function %SUBARR:

What’s New

About This Guide xxiii

New builtin function %SUBARR allows assignment to a sub-array or returning a
sub-array as a value.
Along with the existing %LOOKUP builtin function, this enhancements enables
the implementation of dynamically sized arrays with a varying number of
elements.
%SUBARR(array : start) specifies array elements array(start) to the end of the
array
%SUBARR(array : start : num) specifies array elements array(start) to array(start
+ num - 1)
Example:
// Copy part of an array to another array:
resultArr = %subarr(array1:start:num);
// Copy part of an array to part of another array:
%subarr(Array1:x:y) = %subarr(Array2:m:n);
// Sort part of an array
sorta %subarr(Array3:x:y);

// Sum part of an array
sum = %xfoot(%subarr(Array4:x:y));

v The SORTA operation code is enhanced to allow sorting of partial arrays.

When %SUBARR is specified in factor 2, the sort only affects the partial array
indicated by the %SUBARR builtin function.

v Direct conversion of date/time/timestamp to numeric, using %DEC:

%DEC is enhanced to allow the first parameter to be a date, time or timestamp,
and the optional second parameter to specify the format of the resulting numeric
value.
Example:
D numDdMmYy s 6p 0
D date s d datfmt(*jul)
date = D'2003-08-21';
numDdMmYy = %dec(date : *dmy); // now numDdMmYy = 210803

v Control specification CCSID(*CHAR : *JOBRUN) for correct conversion of
character data at runtime:

The Control specification CCSID keyword is enhanced to allow a first parameter
of *CHAR. When the first parameter is *CHAR, the second parameter must be
*JOBRUN. CCSID(*CHAR : *JOBRUN) controls the way character data is
converted to UCS-2 at runtime. When CCSID(*CHAR:*JOBRUN) is specified,
character data will be assumed to be in the job CCSID; when CCSID(*CHAR :
*JOBRUN) is not specified, character data will be assumed to be in the
mixed-byte CCSID related to the job CCSID.

v Second parameter for %TRIM, %TRIMR and %TRIML indicating what
characters to trim:

%TRIM is enhanced to allow an optional second parameter giving the list of
characters to be trimmed.
Example:
trimchars = '*-.';
data = '***a-b-c-.'
result = %trim(data : trimchars);
// now result = 'a-b-c'. All * - and . were trimmed from the ends of the data

v New prototype option OPTIONS(*TRIM) to pass a trimmed parameter:

When OPTIONS(*TRIM) is specified on a prototyped parameter, the data that is
passed be trimmed of leading and trailing blanks. OPTIONS(*TRIM) is valid for
character, UCS-2 and graphic parameters defined with CONST or VALUE. It is

What’s New

xxiv ILE RPG Programmer’s Guide

also valid for pointer parameters defined with OPTIONS(*STRING). With
OPTIONS(*STRING : *TRIM), the passed data will be trimmed even if a pointer
is passed on the call.
Example:
D proc pr
D parm1 5a const options(*trim)
D parm2 5a const options(*trim : *rightadj)
D parm3 5a const varying options(*trim)
D parm4 * value options(*string : *trim)
D parm5 * value options(*string : *trim)
D ptr s *
D data s 10a
D fld1 s 5a

/free
data = ' rst ' + x'00';
ptr = %addr(data);

proc (' xyz ' : ' @#$ ' : ' 123 ' : ' abc ' : ptr);
// the called procedure receives the following parameters
// parm1 = 'xyz '
// parm2 = ' @#$'
// parm3 = '123'
// parm4 = a pointer to 'abc.' (where . is x'00')
// parm5 = a pointer to 'rst.' (where . is x'00')

v Support for 63 digit packed and zoned decimal values

Packed and zoned data can be defined with up to 63 digits and 63 decimal
positions. The previous limit was 31 digits.

v Relaxation of the rules for using a result data structure for I/O to
externally-described files and record formats

– The result data structure for I/O to a record format may be an
externally-described data structure.

– A data structure may be specified in the result field for I/O to an
externally-described file name for operation codes CHAIN, READ, READE,
READP and READPE.

Examples:
1. The following program writes to a record format using from an

externally-described data structure.
Foutfile o e k disk
D outrecDs e ds extname(outfile) prefix(O_)
/free

O_FLD1 = 'ABCDE';
O_FLD2 = 7;
write outrec outrecDs;
*inlr = *on;

/end-free

2. The following program reads from a multi-format logical file into data
structure INPUT which contains two overlapping subfields holding the fields
of the respective record formats.
Flog if e k disk infds(infds)
D infds ds
D recname 261 270
D input ds qualified
D rec1 likerec(rec1) overlay(input)
D rec2 likerec(rec2) overlay(input)
/free
read log input;
dow not %eof(log);
dsply recname;

What’s New

About This Guide xxv

if recname = 'REC1';
// handle rec1
elseif recname = 'REC2';
// handle rec2
endif;
read log input;
enddo;
*inlr = *on;
/end-free

v If a program/module performs a keyed sequential input operation to a shared
file and it results in an EOF condition, a subsequent sequential input operation
by the same program/module may be attempted. An input request is sent data
base and if a record is available for input, the data is moved into the
program/module and the EOF condition is set off.

v Support for new environment variables for use with RPG programs calling
Java methods

– QIBM_RPG_JAVA_PROPERTIES allows RPG users to explicitly set the java
properties used to start the JVM
This environment variable must be set before any RPG program calls a Java
method in a job.
This environment variable has contains Java options, separated and
terminated by some character that does not appear in any of the option
strings. Semicolon is usually a good choice.
Examples:
1. Specifying only one option: If the system’s default JDK is 1.3, and you
want your RPG programs to use JDK 1.4, set environment variable
QIBM_RPG_JAVA_PROPERTIES to
'-Djava.version=1.4;'

Note that even with just one option, a terminating character is required. This
example uses the semicolon.
2. Specifying more than one option: If you also want to set the os400.stdout
option to a different value than the default, you could set the environment
variable to the following value:
'-Djava.version=1.4!-Dos400.stdout=file:mystdout.txt!'

This example uses the exclamation mark as the separator/terminator. Note:
This support is also available in V5R1 and V5R2 with PTFs. V5R1: SI10069,
V5R2: SI10101.

– QIBM_RPG_JAVA_EXCP_TRACE allows RPG users to get the exception
trace when an RPG call to a Java method ends with an exception
This environment variable can be set, changed, or removed at any time.
If this environment variable contains the value ’Y’, then when a Java
exception occurs during a Java method call from RPG, or a called Java
method throws an exception to its caller, the Java trace for the exception will
be printed. By default, it will be printed to the screen, and may not be
possible to read. To get it printed to a file, set the Java option os400.stderr.
(This would have to be done in a new job; it could be done by setting the
QIBM_RPG_JAVA_PROPERTIES environment variable to
'-Dos400.stderr=file:stderr.txt;'

v An RPG preprocessor enabling the SQL preprocessor to handle conditional
compilation and nested /COPY

When the RPG compiler is called with a value other than *NONE for parameter
PPGENOPT, it will behave as an RPG preprocessor. It will generate a new

What’s New

xxvi ILE RPG Programmer’s Guide

source file rather than generating a program. The new source file will contain
the original source lines that are accepted by the conditional compilation
directives such as /DEFINE and /IF. It will also have the source lines from files
included by /COPY statements, and optionally it will have the source lines
included by /INCLUDE statements. The new source file will have the comments
from the original source file if PPGENOPT(*DFT) or
PPGENOPT(*NORMVCOMMENT) is specified.When the SQL precompiler is
called with a value other than *NONE for new parameter RPGPPOPT, the
precompiler will use this RPG preprocessor to handle /COPY, the conditional
compilation directives and possibly the /INCLUDE directive. This will allow
SQLRPGLE source to have nested /COPY statements, and conditionally used
statements.

Table 7. Changed Language Elements Since V5R2

Language Unit Element Description

Control specification
keywords

CCSID(*GRAPH:parameter|
*UCS2:number|
*CHAR:*JOBRUN)

Can now take a first
parameter of *CHAR, with a
second parameter of
*JOBRUN, to control how
character data is treated at
runtime.

Built-in Functions %DEC(expression {format}) Can now take a parameter of
type Date, Time or Timestamp

%TRIM(expression:expression) Can now take a second
parameter indicating the set of
characters to be trimmed

Definition
Specification
Keywords

OPTIONS(*TRIM) Indicates that blanks are to be
trimmed from passed
parameters

Definition
Specifications

Length and decimal place entries The length and number of
decimal places can be 63 for
packed and zoned fields.

Input specifications Length entry The length can be 32 for
packed fields and 63 for zoned
fields.

Decimal place entry The number of decimal places
can be 63 for packed and
zoned fields.

Calculation
specifications

Length and decimal place entries The length and number of
decimal places can be 63 for
packed and zoned fields.

CHAIN, READ, READE, READP,
AND READPE operations

Allow a data structure to be
specified in the result field
when Factor 2 is the name of
an externally-described file.

CHAIN, READ, READC, READE,
READP, READPE, WRITE,
UPDATE operations

Allow an externally-described
data structure to be specified
in the result field when Factor
2 is the name of an
externally-described record
format.

SORTA operation Now has an extended Factor
2, allowing %SUBARR to be
specified.

What’s New

About This Guide xxvii

Table 8. New Language Elements Since V5R2

Language Unit Element Description

Built-in Functions %SUBARR(array:starting
element {:number of
elements})

Returns a section of the
array, or allows a section of
the array to be modified.

What's New in V5R2?
The following list describes the enhancements made to ILE RPG in V5R2:
v Conversion from character to numeric

Built-in functions %DEC, %DECH, %INT, %INTH, %UNS, %UNSH and
%FLOAT are enhanced to allow character parameters. For example,
%DEC(’-12345.67’ : 7 : 2) returns the numeric value -12345.67.

v Bitwise logical built-in functions
%BITAND, %BITOR, %BITXOR and %BITNOT allow direct bit manipulation
within RPG expressions.

v Complex data structures
Data structure definition is enhanced to allow arrays of data structures and
subfields of data structures defined with LIKEDS that are themselves data
structures. This allows the coding of complex structures such as arrays of arrays,
or arrays of structures containing subarrays of structures.
Example: family(f).child(i).hobbyInfo.pets(p).type = 'dog';

family(f).child(i).hobbyInfo.pets(p).name = 'Spot';

In addition, data structures can be defined the same as a record format, using
the new LIKEREC keyword.

v Enhanced externally-described data structures
Externally-described data structures can hold the programmer’s choice of input,
output, both, key or all fields. Currently, externally-described data structures can
only hold input fields.

v Enhancments to keyed I/O
Programmers can specify search arguments in keyed Input/Output operations in
/FREE calculations in two new ways:
1. By specifying the search arguments (which can be expressions) in a list.
2. By specifying a data structure which contains the search arguments.
Examples: D custkeyDS e ds extname(custfile:*key)

/free
CHAIN (keyA : keyB : key3) custrec;
CHAIN %KDS(custkeyDS) custrec;

v Data-structure result for externally-described files
A data structure can be specified in the result field when using I/O operations
for externally-described files. This was available only for program-described files
prior to V5R2. Using a data structure can improve performance if there are
many fields in the file.

v UPDATE operation to update only selected fields
A list of fields to be updated can be specified with an UPDATE operation. Tthis
could only be done by using exception output prior to V5R2.
Example: update record %fields(salary:status).

v 31 digit support

What’s New

xxviii ILE RPG Programmer’s Guide

Supports packed and zoned numeric data with up to 31 digits and decimal
places. This is the maximum length supported by DDS. Only 30 digits and
decimal places were supported prior to V5R2.

v Performance option for FEOD
The FEOD operation is enhanced by supporting an extender N which indicates
that the operation should simply write out the blocked buffers locally, without
forcing a costly write to disk.

v Enhanced data area access
The DTAARA keyword is enhanced to allow the name and library of the data
area to be determined at runtime

v New assignment operators
The new assignment operators +=, -=, *=, /=, **= allow a variable to be modified
based on its old value in a more concise manner.
Example: totals(current_customer) += count;

This statement adds ″count″ to the value currently in ″totals(current_customer)″
without having to code ″totals(current_customer)″ twice.

v IFS source files
The ILE RPG compiler can compile both main source files and /COPY files from
the IFS. The /COPY and /INCLUDE directives are enhanced to support IFS file
names.

v Program Call Markup Language (PCML) generation
The ILE RPG compiler will generate an IFS file containing the PCML,
representing the parameters to the program (CRTBNDRPG) or to the exported
procedures (CRTRPGMOD).

Table 9. Changed Language Elements Since V5R1

Language Unit Element Description

Built-in functions %DEC(expression) Can now take parameters of type character.

%DECH(expression)

%FLOAT(expression)

%INT(expression)

%INTH(expression)

%UNS(expression)

%UNSH(expression)

Definition
specification
keywords

DTAARA({*VAR:}data-area-name) The data area name can be a name, a character literal
specifying ’LIBRARY/NAME’ or a character variable
which will determine the actual data area at runtime.

DIM Allowed for data structure specifications.

LIKEDS Allowed for subfield specifications.

EXTNAME(filename{:extrecname}
{:*ALL|*INPUT|*OUTPUT|*KEY}
)

The optional ″type″ parameter controls which type of
field is extracted for the externally-described data
structure.

Definition
Specifications

Length and decimal place entries The length and number of decimal places can be 31 for
packed and zoned fields.

What’s New

About This Guide xxix

Table 9. Changed Language Elements Since V5R1 (continued)

Language Unit Element Description

Operation codes CHAIN, DELETEREADE, READPE,
SETGT, SETLL

In free-form operations, Factor 1 can be a list of key
values.

CHAIN, READ, READC, READE,
READP, READPE, UPDATE, WRITE

When used with externally-described files or record
formats, a data structure may be specified in the result
field.

UPDATE In free-form calculations, the final argument can contain
a list of the fields to be updated.

FEOD Operation extender N is allowed. This indicates that the
unwritten buffers must be made available to the
database, but not necessarily be written to disk.

Calculation
specifications

Length and decimal place entries The length and number of decimal places can be 31 for
packed and zoned fields.

Table 10. New Language Elements Since V5R1

Language Unit Element Description

Expressions Assignment Operators += -= *= /=
**=

When these assignment operators are used, the
target of the operation is also the first operand of
the operation.

Control Specification
Keywords

DECPREC(30|31) Controls the precision of decimal intermediate
values for presentation, for example, for %EDITC
and %EDITW

Definition specification
keywords

LIKEREC(intrecname{:*ALL|
*INPUT|*OUTPUT|*KEY})

Defines a data structure whose subfields are the
same as a record format.

Built-in functions %BITAND(expression : expression) Returns a result whose bits are on if the
corresponding bits of the operands are both on.

%BITNOT(expression) Returns a result whose bits are the inverse of the
bits in the argument.

%BITOR(expression : expression) Returns a result whose bits are on if either of the
corresponding bits of the operands is on.

%BITXOR(expression : expression) Returns a result whose bits are on if exactly one
of the corresponding bits of the operands is on.

%FIELDS(name{:name...}) Used in free-form ″UPDATE to specify the fields
to be updated.

%KDS(data structure) Used in free-form keyed operation codes CHAIN,
SETLL, SETGT, READE and READPE, to indicate
that the keys for the operation are in the data
structure.

What's New in V5R1?
The ILE RPG compiler is part of the IBM IBM Rational Development Studio for
System i product, which now includes the C/C++ and COBOL compilers, and the
Application Development ToolSet tools.

The major enhancements to RPG IV since V4R4 are easier interfacing with Java,
new built-in functions, free form calculation specifications, control of which file is
opened, qualified subfield names, and enhanced error handling.

The following list describes these enhancements:

What’s New

xxx ILE RPG Programmer’s Guide

v Improved support for calls between Java and ILE RPG using the Java Native
Interface (JNI):
– A new data type: Object
– A new definition specification keyword: CLASS
– The LIKE definition specification keyword has been extended to support

objects.
– The EXTPROC definition specification keyword has been extended to support

Java procedures.
– New status codes.

v New built-in functions:
– Functions for converting a number into a duration that can be used in

arithmetic expressions: %MSECONDS, %SECONDS, %MINUTES, %HOURS,
%DAYS, %MONTHS, and %YEARS.

– The %DIFF function, for subtracting one date, time, or timestamp value from
another.

– Functions for converting a character string (or date or timestamp) into a date,
time, or timestamp: %DATE, %TIME, and %TIMESTAMP.

– The %SUBDT function, for extracting a subset of a date, time, or timestamp.
– Functions for allocating or reallocating storage: %ALLOC and %REALLOC.
– Functions for finding an element in an array: %LOOKUP, %LOOKUPGT,

%LOOKUPGE, %LOOKUPLT, and %LOOKUPLE.
– Functions for finding an element in a table: %TLOOKUP, %TLOOKUPGT,

%TLOOKUPGE, %TLOOKUPLT, and %TLOOKUPLE.
– Functions for verifying that a string contains only specified characters (or

finding the first or last exception to this rule): %CHECK and %CHECKR
– The %XLATE function, for translating a string based on a list of

from-characters and to-characters.
– The %OCCUR function, for getting or setting the current occurrence in a

multiple-occurrence data structure.
– The %SHTDN function, for determining if the operator has requested

shutdown.
– The %SQRT function, for calculating the square root of a number.

v A new free-form syntax for calculation specifications. A block of free-form
calculation specifcations is delimited by the compiler directives /FREE and
/END-FREE

v You can specify the EXTFILE and EXTMBR keywords on the file specification to
control which external file is used when a file is opened.

v Support for qualified names in data structures:
– A new definition specification keyword: QUALIFIED. This keyword specifies

that subfield names will be qualified with the data structure name.
– A new definition specification keyword: LIKEDS. This keyword specifies that

subfields are replicated from another data structure. The subfield names will
be qualified with the new data structure name. LIKEDS is allowed for
prototyped parameters; it allows the parameter’s subfields to be used directly
in the called procedure.

– The INZ definition specification keyword has been extended to allow a data
structure to be initialized based on its parent data structure.

v Enhanced error handling:

What’s New

About This Guide xxxi

– Three new operation codes (MONITOR, ON-ERROR, and ENDMON) allow
you to define a group of operations with conditional error handling based on
the status code.

Other enhancements have been made to this release as well. These include:
v You can specify parentheses on a procedure call that has no parameters.
v You can specify that a procedure uses ILE C or ILE CL calling conventions, on

the EXTPROC definition specification keyword.
v The following /DEFINE names are predefined: *VnRnMn, *ILERPG,

*CRTBNDRPG, and *CRTRPGMOD.
v The search string in a %SCAN operation can now be longer than string being

searched. (The string will not be found, but this will no longer generate an error
condition.)

v The parameter to the DIM, OCCURS, and PERRCD keywords no longer needs
to be previously defined.

v The %PADDR built-in function can now take either a prototype name or an
entry point name as its argument.

v A new operation code, ELSEIF, combines the ELSE and IF operation codes
without requiring an additional ENDIF.

v The DUMP operation code now supports the A extender, which means that a
dump is always produced - even if DEBUG(*NO) was specified.

v A new directive, /INCLUDE, is equivalent to /COPY except that /INCLUDE is
not expanded by the SQL preprocessor. Included files cannot contain embedded
SQL or host variables.

v The OFLIND file-specification keyword can now take any indicator, including a
named indicator, as an argument.

v The LICOPT (licensed internal code options) keyword is now available on the
CRTRPGMOD and CRTBNDRPG commands.

v The PREFIX file description keyword can now take an uppercase character literal
as an argument. The literal can end in a period, which allows the file to be used
with qualified subfields.

v The PREFIX definition specification keyword can also take an uppercase
character literal as an argument. This literal cannot end in a period.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 11. Changed Language Elements Since V4R4

Language Unit Element Description

Built-in functions %CHAR(expression{:format}) The optional second parameter specifies the
desired format for a date, time, or timestamp. The
result uses the format and separators of the
specified format, not the format and separators of
the input.

%PADDR(prototype-name) This function can now take either a prototype
name or an entry point name as its argument.

What’s New

xxxii ILE RPG Programmer’s Guide

Table 11. Changed Language Elements Since V4R4 (continued)

Language Unit Element Description

Definition specification
keywords

EXTPROC(*JAVA:class-name:proc-
name)

Specifies that a Java method is called.

EXTPROC(*CL:proc-name) Specifies a procedure that uses ILE CL
conventions for return values.

EXTPROC(*CWIDEN:proc-name) Specifies a procedure that uses ILE C conventions
with parameter widening.

EXTPROC(*CNOWIDEN:proc-name) Specifies a procedure that uses ILE C conventions
without parameter widening.

INZ(*LIKEDS) Specifies that a data structure defined with the
LIKEDS keyword inherits the initialization from
its parent data structure.

LIKE(object-name) Specifies that an object has the same class as
another object.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

File specification
keywords

OFLIND(name) This keyword can now take any named indicator
as a parameter.

PREFIX(character-literal{:number}) Prefixes the subfields with the specified character
literal, optionally replacing the specified number
of characters.

Operation codes DUMP (A) This operation code can now take the A extender,
which causes a dump to be produced even if
DEBUG(*NO) was specified.

Table 12. New Language Elements Since V4R4

Language Unit Element Description

Data types Object Used for Java objects

Compiler directives /FREE ... /END-FREE The /FREE... /END-FREE compiler directives
denote a free-form calculation specifications block.

/INCLUDE Equivalent to /COPY, except that it is not
expanded by the SQL preprocessor. Can be used
to inlcude nested files that are within the copied
file. The copied file cannot have embedded SQlL
or host variables.

Definition specification
keywords

CLASS(*JAVA:class-name) Specifies the class for an object.

LIKEDS(dsname) Specifies that a data structure, prototyped
parameter, or return value inherits the subfields of
another data strucutre.

QUALIFIED Specifies that the subfield names in a data
structure are qualified with the data structure
name.

File specification
keywords

EXTFILE(filename) Specifies which file is opened. The value can be a
literal or a variable. The default file name is the
name specified in position 7 of the file
specification. The default library is *LIBL.

EXTMBR(membername) Specifies which member is opened. The value can
be a literal or a variable. The default is *FIRST.

What’s New

About This Guide xxxiii

Table 12. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Built-in functions %ALLOC(num) Allocates the specified amount of storage.

%CHECK(comparator:base{:start}) Finds the first character in the base string that is
not in the comparator.

%CHECKR(comparator:base{:start}) Finds the last character in the base string that is
not in the comparator.

%DATE(expression{:date-format}) Converts the expression to a date.

%DAYS(num) Converts the number to a duration, in days.

%DIFF(op1:op2:unit) Calculates the difference (duration) between two
date, time, or timestamp values in the specified
units.

%HOURS(num) Converts the number to a duration, in hours.

%LOOKUPxx(arg:array{:startindex
{:numelems}})

Finds the specified argument, or the specified
type of near-match, in the specified array.

%MINUTES(num) Converts the number to a duration, in minutes.

%MONTHS(num) Converts the number to a duration, in months.

%MSECONDS(num) Converts the number to a duration, in
microseconds.

%OCCUR(dsn-name) Sets or gets the current position of a
multiple-occurrence data structure.

%REALLOC(pointer:number) Reallocates the specified amount of storage for the
specified pointer.

%SECONDS(num) Converts the number to a duration, in seconds.

%SHTDN Checks if the system operator has requested
shutdown.

%SQRT(numeric-expression) Calculates the square root of the specified
number.

%SUBDT(value:unit) Extracts the specified portion of a date, time, or
timestamp value.

%THIS Returns an Object value that contains a reference
to the class instance on whose behalf the native
method is being called.

%TIME(expression{:time-format}) Converts the expression to a time.

%TIMESTAMP(expression
{:*ISO|*ISO0})

Converts the expression to a timestamp.

%TLOOKUP(arg:search-table
{:alt-table})

Finds the specified argument, or the specified
type of near-match, in the specified table.

%XLATE(from:to:string{:startpos}) Translates the specified string, based on the
from-string and to-string.

%YEARS(num) Converts the number to a duration, in years.

What’s New

xxxiv ILE RPG Programmer’s Guide

Table 12. New Language Elements Since V4R4 (continued)

Language Unit Element Description

Operation codes MONITOR Begins a group of operations with conditional
error handling.

ON-ERROR Performs conditional error handling, based on the
status code.

ENDMON Ends a group of operations with conditional error
handling.

ELSEIF Equivalent to an ELSE operation code followed by
an IF operation code.

CRTBNDRPG and
CRTRPGMOD keywords

LICOPT(options) Specifies Licensed Internal Code options.

What's New in V4R4?
The major enhancements to RPG IV since V4R2 are the support for running ILE
RPG modules safely in a threaded environment, the new 3-digit and 20-digit
signed and unsigned integer data types, and support for a new Universal
Character Set Version 2 (UCS-2) data type and for conversion between UCS-2 fields
and graphic or single-byte character fields.

The following list describes these enhancements:
v Support for calling ILE RPG procedures from a threaded application, such as

Domino® or Java™.
– The new control specification keyword THREAD(*SERIALIZE) identifies

modules that are enabled to run in a multithreaded environment. Access to
procedures in the module is serialized.

v Support for new 1-byte and 8-byte integer data types: 3I and 20I signed integer,
and 3U and 20U unsigned integer
– These new integer data types provide you with a greater range of integer

values and can also improve performance of integer computations, taking full
advantage of the 64-bit AS/400 RISC processor.

– The new 3U type allows you to more easily communicate with ILE C
procedures that have single-byte character (char) return types and parameters
passed by value.

– The new INTPREC control specification keyword allows you to specify
20-digit precision for intermediate values of integer and unsigned binary
arithmetic operations in expressions.

– Built-in functions %DIV and %REM have been added to support integer
division and remainder operations.

v Support for new Universal Character Set Version 2 (UCS-2) or Unicode data type
– The UCS-2 (Unicode) character set can encode the characters for many written

languages. The field is a character field whose characters are two bytes long.
– By adding support for Unicode, a single application can now be developed

for a multinational corporation, minimizing the necessity to perform code
page conversion. The use of Unicode permits the processing of characters in
multiple scripts without loss of integrity.

– Support for conversions between UCS-2 fields and graphic or single-byte
character fields using the MOVE and MOVEL operations, and the new
%UCS2 and %GRAPH built-in functions.

What’s New

About This Guide xxxv

– Support for conversions between UCS-2 fields or graphic fields with different
Coded Character Set Identifiers (CCSIDs) using the EVAL, MOVE, and
MOVEL operations, and the new %UCS2 built-in function.

Other enhancements have been made to this release as well. These include:
v New parameters for the OPTION control specification keyword and on the

create commands:
– *SRCSTMT allows you to assign statement numbers for debugging from the

source IDs and SEU sequence numbers in the compiler listing. (The statement
number is used to identify errors in the compiler listing by the debugger, and
to identify the statement where a run-time error occurs.) *NOSRCSTMT
specifies that statement numbers are associated with the Line Numbers of the
listing and the numbers are assigned sequentially.

– Now you can choose not to generate breakpoints for input and output
specifications in the debug view with *NODEBUGIO. If this option is
selected, a STEP on a READ statement in the debugger will step to the next
calculation, rather than stepping through the input specifications.

v New special words for the INZ definition specification keyword:
– INZ(*EXTDFT) allows you to use the default values in the DDS for

initializing externally described data structure subfields.
– Character variables initialized by INZ(*USER) are initialized to the name of

the current user profile.
v The new %XFOOT built-in function sums all elements of a specified array

expression.
v The new EVALR operation code evaluates expressions and assigns the result to a

fixed-length character or graphic result. The assignment right-adjusts the data
within the result.

v The new FOR operation code performs an iterative loop and allows free-form
expressions for the initial, increment, and limit values.

v The new LEAVESR operation code can be used to exit from any point within a
subroutine.

v The new *NEXT parameter on the OVERLAY(name:*NEXT) keyword indicates
that a subfield overlays another subfield at the next available position.

v The new *START and *END values for the SETLL operation code position to the
beginning or end of the file.

v The ability to use hexadecimal literals with integer and unsigned integer fields
in initialization and free-form operations, such as EVAL, IF, etc.

v New control specification keyword OPENOPT{(*NOINZOFL | *INZOFL)} to
indicate whether the overflow indicators should be reset to *OFF when a file is
opened.

v Ability to tolerate pointers in teraspace — a memory model that allows more
than 16 megabytes of contiguous storage in one allocation.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

What’s New

xxxvi ILE RPG Programmer’s Guide

Table 13. Changed Language Elements Since V4R2

Language Unit Element Description

Control
specification
keywords

OPTION(*{NO}SRCSTMT) *SRCSTMT allows you to request that
the compiler use SEU sequence
numbers and source IDs when
generating statement numbers for
debugging. Otherwise, statement
numbers are associated with the Line
Numbers of the listing and the
numbers are assigned sequentially.

OPTION(*{NO}DEBUGIO) *{NO}DEBUGIO, determines if
breakpoints are generated for input
and output specifications.

Definition
specification
keywords

INZ(*EXTDFT) All externally described data structure
subfields can now be initialized to the
default values specified in the DDS.

INZ(*USER) Any character field or subfield can be
initialized to the name of the current
user profile.

OVERLAY(name:*NEXT) The special value *NEXT indicates that
the subfield is to be positioned at the
next available position within the
overlayed field.

OPTIONS(*NOPASS *OMIT
*VARSIZE *STRING
*RIGHTADJ)

The new OPTIONS(*RIGHTADJ)
specified on a value or constant
parameter in a function prototype
indicates that the character, graphic, or
UCS-2 value passed as a parameter is
to be right adjusted before being
passed on the procedure call.

Definition
specification
positions 33-39 (To
Position/Length)

3 and 20 digits allowed for I
and U data types

Added to the list of allowed values for
internal data types to support 1-byte
and 8-byte integer and unsigned data.

Internal data type C (UCS-2 fixed or
variable-length format)

Added to the list of allowed internal
data types on the definition
specifications. The UCS-2 (Unicode)
character set can encode the characters
for many written languages. The field
is a character field whose characters
are two bytes long.

Data format C (UCS-2 fixed or
variable-length format)

UCS-2 format added to the list of
allowed data formats on the input and
output specifications for program
described files.

Command
parameter

OPTION *NOSRCSTMT, *SRCSTMT,
*NODEBUGIO, and *DEBUGIO have
been added to the OPTION parameter
on the CRTBNDRPG and
CRTRPGMOD commands.

What’s New

About This Guide xxxvii

Table 14. New Language Elements Since V4R2

Language Unit Element Description

Control
specification
keywords

CCSID(*GRAPH: *IGNORE |
*SRC | number)

Sets the default graphic CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
*IGNORE.

CCSID(*UCS2: number) Sets the default UCS-2 CCSID for the
module. This setting is used for
literals, compile-time data and
program-described input and output
fields and definitions. The default is
13488.

INTPREC(10 | 20) Specifies the decimal precision of
integer and unsigned intermediate
values in binary arithmetic operations
in expressions. The default,
INTPREC(10), indicates that 10-digit
precision is to be used.

OPENOPT{(*NOINZOFL |
*INZOFL)}

Indicates whether the overflow
indicators should be reset to *OFF
when a file is opened.

THREAD(*SERIALIZE) Indicates that the module is enabled to
run in a multithreaded environment.
Access to the procedures in the
module is to be serialized.

Definition
specification
keywords

CCSID(number | *DFT) Sets the graphic and UCS-2 CCSID for
the definition.

Built-in functions %DIV(n:m) Performs integer division on the two
operands n and m; the result is the
integer portion of n/m. The operands
must be numeric values with zero
decimal positions.

%GRAPH(char-expr |
graph-expr | UCS2-expr {:
ccsid})

Converts to graphic data from
single-byte character, graphic, or
UCS-2 data.

%REM(n:m) Performs the integer remainder
operation on two operands n and m;
the result is the remainder of n/m. The
operands must be numeric values with
zero decimal positions.

%UCS2(char-expr |
graph-expr | UCS2-expr {:
ccsid})

Converts to UCS-2 data from
single-byte character, graphic, or
UCS-2 data.

%XFOOT(array-expr) Produces the sum of all the elements
in the specified numeric array
expression.

What’s New

xxxviii ILE RPG Programmer’s Guide

Table 14. New Language Elements Since V4R2 (continued)

Language Unit Element Description

Operation codes EVALR Evaluates an assignment statement of
the form result=expression. The result
will be right-justified.

FOR Begins a group of operations and
indicates the number of times the
group is to be processed. The initial,
increment, and limit values can be
free-form expressions.

ENDFOR ENDFOR ends a group of operations
started by a FOR operation.

LEAVESR Used to exit from anywhere within a
subroutine.

What's New in V4R2?
The major enhancements to RPG IV since V3R7 are the support for variable-length
fields, several enhancements relating to indicators, and the ability to specify
compile options on the control specifications. These further improve the RPG
product for integration with the OS/400 operating system and ILE interlanguage
communication.

The following list describes these enhancements:
v Support for variable-length fields

This enhancement provides full support for variable-length character and
graphic fields. Using variable-length fields can simplify many string handling
tasks.

v Ability to use your own data structure for INDARA indicators
Users can now access logical data areas and associate an indicator data structure
with each WORKSTN and PRINTER file that uses INDARA, instead of using the
*IN array for communicating values to data management.

v Ability to use built-in functions instead of result indicators
Built-in functions %EOF, %EQUAL, %FOUND, and %OPEN have been added to
query the results of input/output operations. Built-in functions %ERROR and
%STATUS, and the operation code extender ’E’ have been added for error
handling.

v Compile options on the control specification
Compile options, specified through the CRTBNDRPG and CRTRPGMOD
commands, can now be specified through the control specification keywords.
These compile options will be used on every compile of the program.

In addition, the following new function has been added:
v Support for import and export of procedures and variables with mixed case

names
v Ability to dynamically set the DECEDIT value at runtime
v Built-in functions %CHAR and %REPLACE have been added to make string

manipulation easier
v New support for externally defined *CMDY, *CDMY, and *LONGJUL date data

formats
v An extended range for century date formats

What’s New

About This Guide xxxix

v Ability to define indicator variables
v Ability to specify the current data structure name as the parameter for the

OVERLAY keyword
v New status code 115 has been added to indicate variable-length field errors
v Support for application profiling
v Ability to handle packed-decimal data that is not valid when it is retrieved from

files using FIXNBR(*INPUTPACKED)
v Ability to specify the BNDDIR command parameter on the CRTRPGMOD

command.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 15. Changed Language Elements Since V3R7

Language Unit Element Description

Control
specification
keywords

DECEDIT(*JOBRUN |
’value’)

The decimal edit value can now be
determined dynamically at runtime
from the job or system value.

Definition
specification
keywords

DTAARA {(data_area_name)} Users can now access logical data
areas.

EXPORT {(external_name)} The external name of the variable
being exported can now be specified as
a parameter for this keyword.

IMPORT {(external_name)} The external name of the variable
being imported can now be specified
as a parameter for this keyword.

OVERLAY(name{:pos}) The name parameter can now be the
name of the current data structure.

Extended century
format

*CYMD (cyy/mm/dd) The valid values for the century
character ’c’ are now:

'c' Years

0 1900-1999
1 2000-2099
. .
. .
. .
9 2800-2899

Internal data type N (Indicator format) Added to the list of allowed internal
data types on the definition
specifications. Defines character data in
the indicator format.

Data format N (Indicator format) Indicator format added to the list of
allowed data formats on the input and
output specifications for program
described files.

Data Attribute *VAR Added to the list of allowed data
attributes on the input and output
specifications for program described
files. It is used to specify
variable-length fields.

What’s New

xl ILE RPG Programmer’s Guide

Table 15. Changed Language Elements Since V3R7 (continued)

Language Unit Element Description

Command
parameter

FIXNBR The *INPUTPACKED parameter has
been added to handle packed-decimal
data that is not valid.

Table 16. New Language Elements Since V3R7

Language Unit New Description

Control
specification
keywords

ACTGRP(*NEW | *CALLER
| ’activation- group-name’)

The ACTGRP keyword allows you to
specify the activation group the
program is associated with when it is
called.

ALWNULL(*NO |
*INPUTONLY | *USRCTL)

The ALWNULL keyword specifies how
you will use records containing
null-capable fields from externally
described database files.

AUT(*LIBRCRTAUT | *ALL
| *CHANGE | *USE |
*EXCLUDE |
’authorization-list-name’)

The AUT keyword specifies the
authority given to users who do not
have specific authority to the object,
who are not on the authorization list,
and whose user group has no specific
authority to the object.

BNDDIR(’binding
-directory-name’ {:’binding-
directory-name’...})

The BNDDIR keyword specifies the list
of binding directories that are used in
symbol resolution.

CVTOPT(*{NO}DATETIME
*{NO}GRAPHIC
*{NO}VARCHAR
*{NO}VARGRAPHIC)

The CVTOPT keyword is used to
determine how the ILE RPG compiler
handles date, time, timestamp, graphic
data types, and variable-length data
types that are retrieved from externally
described database files.

DFTACTGRP(*YES | *NO) The DFTACTGRP keyword specifies
the activation group in which the
created program will run when it is
called.

ENBPFRCOL(*PEP |
*ENTRYEXIT | *FULL)

The ENBPFRCOL keyword specifies
whether performance collection is
enabled.

FIXNBR(*{NO}ZONED
*{NO}INPUTPACKED)

The FIXNBR keyword specifies
whether decimal data that is not valid
is fixed by the compiler.

GENLVL(number) The GENLVL keyword controls the
creation of the object.

INDENT(*NONE |
’character-value’)

The INDENT keyword specifies
whether structured operations should
be indented in the source listing for
enhanced readability.

LANGID(*JOBRUN | *JOB |
’language-identifier’)

The LANGID keyword indicates which
language identifier is to be used when
the sort sequence is *LANGIDUNQ or
*LANGIDSHR.

What’s New

About This Guide xli

Table 16. New Language Elements Since V3R7 (continued)

Language Unit New Description

OPTIMIZE(*NONE | *BASIC
| *FULL)

The OPTIMIZE keyword specifies the
level of optimization, if any, of the
object.

OPTION(*{NO}XREF
*{NO}GEN *{NO}SECLVL
*{NO}SHOWCPY
*{NO}EXPDDS *{NO}EXT
*{NO}SHOWSKP)

The OPTION keyword specifies the
options to use when the source
member is compiled.

PRFDTA(*NOCOL | *COL) The PRFDTA keyword specifies
whether the collection of profiling data
is enabled.

SRTSEQ(*HEX | *JOB |
*JOBRUN | *LANGIDUNQ
| *LANGIDSHR |
’sort-table-name’)

The SRTSEQ keyword specifies the sort
sequence table that is to be used in the
ILE RPG source program.

TEXT(*SRCMBRTXT |
*BLANK | ’description’)

The TEXT keyword allows you to
enter text that briefly describes the
object and its function.

TRUNCNBR(*YES | *NO) The TRUNCNBR keyword specifies if
the truncated value is moved to the
result field or if an error is generated
when numeric overflow occurs while
running the object.

USRPRF(*USER | *OWNER) The USRPRF keyword specifies the
user profile that will run the created
program object.

File Description
Specification
keywords

INDDS(
data_structure_name)

The INDDS keyword lets you associate
a data structure name with the
INDARA indicators for a workstation
or printer file.

Definition
specification
keywords

VARYING Defines variable-length fields when
specified on character data or graphic
data.

Built-in functions %CHAR(graphic, date, time
or timestamp expression)

Returns the value in a character data
type.

%EOF{file name} Returns ’1’ if the most recent file input
operation or write to a subfile (for a
particular file, if specified) ended in an
end-of-file or beginning-of-file
condition; otherwise, it returns ’0’.

%EQUAL{file name} Returns ’1’ if the most recent SETLL
(for a particular file, if specified) or
LOOKUP operation found an exact
match; otherwise, it returns ’0’.

%ERROR Returns ’1’ if the most recent operation
code with extender ’E’ specified
resulted in an error; otherwise, it
returns ’0’.

What’s New

xlii ILE RPG Programmer’s Guide

Table 16. New Language Elements Since V3R7 (continued)

Language Unit New Description

%FOUND{file name} Returns ’1’ if the most recent relevant
operation (for a particular file, if
specified) found a record (CHAIN,
DELETE, SETGT, SETLL), an element
(LOOKUP), or a match (CHECK,
CHECKR and SCAN); otherwise, it
returns ’0’.

%OPEN(file name) Returns ’1’ if the specified file is open
and ’0’ if the specified file is closed.

%REPLACE(replacement
string: source string {:start
position {:source length to
replace}})

Returns the string produced by
inserting a replacement string into a
source string, starting at the start
position and replacing the specified
number of characters.

%STATUS{file name} If no program or file error occurred
since the most recent operation code
with extender ’E’ specified, it returns 0.
If an error occurred, it returns the most
recent value set for any program or file
status. If a file is specified, the value
returned is the most recent status for
that file.

Operation code
Extender

E Allows for error handling using the
%ERROR and %STATUS built-in
functions on the CALLP operation and
all operations that allow error
indicators.

New century
formats

*CMDY (cmm/dd/yy) To be used by the MOVE, MOVEL,
and TEST operations.

*CDMY (cdd/mm/yy) To be used by the MOVE, MOVEL,
and TEST operations.

New 4-digit year
format

*LONGJUL (yyyy/ddd) To be used by the MOVE, MOVEL,
and TEST operations.

Command
parameters

PRFDTA The PRFDTA parameter specifies
whether the collection of profiling data
is enabled.

BNDDIR The BNDDIR parameter was
previously only allowed on the
CRTBNDRPG command and not on
the CRTRPGMOD command, now it is
allowed on both commands.

What's New in V3R7?
The major enhancements to RPG IV since V3R6 are the new support for database
null fields, and the ability to better control the precision of intermediate results in
expressions. Other enhancements include the addition of a floating point data type
and support for null-terminated strings. These further improve the RPG product
for integration with the OS/400 operating system and ILE interlanguage
communication. This means greater flexibility for developing applications.

What’s New

About This Guide xliii

The following is a list of these enhancements including a number of new built-in
functions and usability enhancements:
v Support for database null fields

This enhancement allows users to process database files which contain
null-capable fields, by allowing these fields to be tested for null and set to null.

v Expression intermediate result precision
A new control specification keyword and new operation code extenders on
free-form expression specifications allow the user better control over the
precision of intermediate results.

v New floating point data type
The new floating point data type has a much larger range of values than other
data types. The addition of this data type will improve integration with the
database and improve interlanguage communication in an ILE environment,
specifically with the C and C++ languages.

v Support for null terminated strings
The new support for null terminated strings improves interlanguage
communication. It allows users full control over null terminated data by
allowing users to define and process null terminated strings, and to conveniently
pass character data as parameters to procedures which expect null terminated
strings.

v Pointer addition and subtraction
Free-form expressions have been enhanced to allow adding an offset to a
pointer, subtracting an offset from a pointer, and determining the difference
between two pointers.

v Support for long names
Names longer than 10 characters have been added to the RPG language.
Anything defined on the definition or procedure specifications can have a long
name and these names can be used anywhere where they fit within the bounds
of an entry. In addition, names referenced on any free-form specification may be
continued over multiple lines.

v New built-in functions
A number of new built-in functions have been added to the language which
improve the following language facilities:
– editing (%EDITW, %EDITC, %EDITFLT)
– scanning strings (%SCAN)
– type conversions (%INT, %FLOAT, %DEC, %UNS)
– type conversions with half-adjust (%INTH, %DECH, %UNSH)
– precision of intermediate results for decimal expressions (%DEC)
– length and decimals of variables and expressions (%LEN, %DECPOS)
– absolute value (%ABS)
– set and test null-capable fields (%NULLIND)
– handle null terminated strings (%STR)

v Conditional compilation
RPG IV has been extended to support conditional compilation. This support will
include the following:
– defining conditions (/DEFINE, /UNDEFINE),
– testing conditions (/IF, /ELSEIF, /ELSE, /ENDIF)
– stop reading current source file (/EOF)

What’s New

xliv ILE RPG Programmer’s Guide

– a new command option (DEFINE) to define up to 32 conditions on the
CRTBNDRPG and CRTRPGMOD commands.

v Date enhancements
Several enhancements have been made to improve date handling operations.
The TIME operation code is extended to support Date, Time or Timestamp fields
in the result field. Moving dates or times from and to character fields no longer
requires separator characters. Moving UDATE and *DATE fields no longer
requires a format code to be specified. Date fields can be initialized to the
system (*SYS) or job (*JOB) date on the definition specifications.

v Character comparisons with alternate collating sequence
Specific character variables can be defined so that the alternate collating
sequence is not used in comparisons.

v Nested /COPY members
You can now nest /COPY directives. That is, a /COPY member may contain one
(or more) /COPY directives which can contain further /COPY directives and so
on.

v Storage management
You can now use the new storage management operation codes to allocate,
reallocate and deallocate storage dynamically.

v Status codes for storage management and float underflow errors.
Two status codes 425 and 426 have been added to indicate storage management
errors. Status code 104 was added to indicate that an intermediate float result is
too small.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 17. Changed Language Elements Since V3R6

Language Unit Element Description

Definition
specification
keywords

ALIGN ALIGN can now be used to align float
subfields along with the previously
supported integer and unsigned
alignment.

OPTIONS(*NOPASS *OMIT
*VARSIZE *STRING)

The *STRING option allows you to
pass a character value as a
null-terminated string.

Record address
type

F (Float format) Added to the list of allowed record
address types on the file description
specifications. Signals float processing
for a program described file.

Internal data type F (Float format) Added to the list of allowed internal
data types on the definition
specifications. Defines a floating point
standalone field, parameter, or data
structure subfield.

Data format F (Float format) Added to the list of allowed data
formats on the input and output
specifications for program described
files.

What’s New

About This Guide xlv

Table 18. New Language Elements Since V3R6

Language Unit New Description

Control
specification
keywords

COPYNEST(’1-2048’) Specifies the maximum depth for
nesting of /COPY directives.

EXPROPTS(*MAXDIGITS |
*RESDECPOS)

Expression options for type of
precision (default or ″Result Decimal
Position″ precision rules)

FLTDIV{(*NO | *YES)} Indicates that all divide operations in
expressions are computed in floating
point.

Definition
specification
keywords

ALTSEQ(*NONE) Forces the normal collating sequence to
be used for character comparison even
when an alternate collating sequence is
specified.

Built-in functions %ABS Returns the absolute value of the
numeric expression specified as the
parameter.

%DEC & %DECH Converts the value of the numeric
expression to decimal (packed) format
with the number of digits and decimal
positions specified as parameters.
%DECH is the same as %DEC, but
with a half adjust applied.

%DECPOS Returns the number of decimal
positions of the numeric variable or
expression. The value returned is a
constant, and may be used where a
constant is expected.

%EDITC This function returns a character result
representing the numeric value edited
according to the edit code.

%EDITFLT Converts the value of the numeric
expression to the character external
display representation of float.

%EDITW This function returns a character result
representing the numeric value edited
according to the edit word.

%FLOAT Converts the value of the numeric
expression to float format.

%INT & %INTH Converts the value of the numeric
expression to integer. Any decimal
digits are truncated with %INT and
rounded with %INTH.

%LEN Returns the number of digits or
characters of the variable expression.

%NULLIND Used to query or set the null indicator
for null-capable fields.

%SCAN Returns the first position of the search
argument in the source string, or 0 if it
was not found.

What’s New

xlvi ILE RPG Programmer’s Guide

Table 18. New Language Elements Since V3R6 (continued)

Language Unit New Description

%STR Used to create or use null-terminated
strings, which are very commonly
used in C and C++ applications.

%UNS & %UNSH Converts the value of the numeric
expression to unsigned format. Any
decimal digits are truncated with
%UNS and rounded with %UNSH.

Operation code
Extenders

N Sets pointer to *NULL after successful
DEALLOC

M Default precision rules

R No intermediate value will have fewer
decimal positions than the result
(″Result Decimal Position″ precision
rules)

Operation codes ALLOC Used to allocate storage dynamically.

DEALLOC Used to deallocate storage dynamically.

REALLOC Used to reallocate storage dynamically.

What's New in V3R6/V3R2?
The major enhancement to RPG IV since V3R1 is the ability to code a module with
more than one procedure. What does this mean? In a nutshell, it means that you
can code an module with one or more prototyped procedures, where the
procedures can have return values and run without the use of the RPG cycle.

Writing a module with multiple procedures enhances the kind of applications you
can create. Any application consists of a series of logical units that are conceived to
accomplish a particular task. In order to develop applications with the greatest
flexibility, it is important that each logical unit be as independent as possible.
Independent units are:
v Easier to write from the point of view of doing a specific task.
v Less likely to change any data objects other than the ones it is designed to

change.
v Easier to debug because the logic and data items are more localized.
v Maintained more readily since it is easier to isolate the part of the application

that needs changing.

The main benefit of coding a module with multiple procedures is greater control
and better efficiency in coding a modular application. This benefit is realized in
several ways. You can now:
v Call procedures and programs by using the same call operation and syntax.
v Define a prototype to provide a check at compile time of the call interface.
v Pass parameters by value or by reference.
v Define a procedure that will return a value and call the procedure within an

expression.
v Limit access to data items by defining local definitions of variables.
v Code a module that does not make use of the cycle.
v Call a procedure recursively.

What’s New

About This Guide xlvii

The run-time behavior of the main procedure in a module is the same as that of a
V3R1 procedure. The run-time behavior of any subsequent procedures differs
somewhat from a V3R1 program, most notably in the areas of procedure end and
exception handling. These differences arise because there is no cycle code that is
generated for these procedures.

Other enhancements have been made to for this release as well. These include:
v Support for two new integer data types: signed integer (I), and unsigned integer

(U)
The use of the integer data types provides you with a greater range of values
than the binary data type. Integer data types can also improve performance of
integer computations.

v *CYMD support for the MOVE, MOVEL, and TEST operations
You can now use the *CYMD date format in certain operations to work with
system values that are already in this data format.

v Ability to copyright your programs and modules by using the COPYRIGHT
keyword on the control specification
The copyright information that is specified using this keyword becomes part of
the DSPMOD, DSPPGM, or DSPSRVPGM information.

v User control of record blocking using keyword BLOCK
You can request record blocking of DISK or SEQ files to be done even when
SETLL, SETGT, or CHAIN operations are used on the file. You can also request
that blocking not be done. Use of blocking in these cases may significantly
improve runtime performance.

v Improved PREFIX capability
Changes to the PREFIX keyword for either file-description and definition
specifications allow you to replace characters in the existing field name with the
prefix string.

v Status codes for trigger program errors
Two status codes 1223 and 1224 have been added to indicate trigger program
errors.

The following tables summarize the changed and new language elements, based
on the part of the language affected.

Table 19. Changed Language Elements Since V3R1

Language Unit Element Description

File description
specification
keywords

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field
name or a partial rename of the field
name

Definition
specification
keywords

CONST{(constant)} Specifies the value of a named
constant, or indicates that a prototyped
parameter that is passed by reference
has a constant value

PREFIX(prefix_string
{:nbr_of_char_ replaced})

Allows prefixing of string to a field
name or a partial rename of the field
name

Operation codes RETURN Returns control to the caller, and
returns a value, if specified

What’s New

xlviii ILE RPG Programmer’s Guide

Table 20. New Language Elements Since V3R1

Language Unit New Description

Control
specification
keywords

COPYRIGHT(’copyright
string’)

Allows you to associate copyright
information with modules and
programs

EXTBININT{(*NO | *YES)} Specifies that binary fields in
externally-described files be assigned
an integer format during program
processing

NOMAIN Indicates that the module has only
subprocedures

File description
specification
keywords

BLOCK(*YES |*NO) Allows you to control whether record
blocking occurs (assuming other
conditions are met)

Definition
specification
keywords

ALIGN Specifies whether integer or unsigned
fields should be aligned

EXTPGM(name) Indicates the external name of the
prototyped program

EXTPROC(name) Indicates the external name of the
prototyped procedure

OPDESC Indicates whether operational
descriptors are to be passed for the
prototyped bound call

OPTIONS(*NOPASS *OMIT
*VARSIZE)

Specifies various options for
prototyped parameters

STATIC Specifies that the local variable is to
use static storage

VALUE Specifies that the prototyped
parameter is to be passed by value

Built-in functions %PARMS Returns the number of parameters
passed on a call

Operation codes CALLP Calls a prototyped program or
procedure

Specification type Procedure specification Signals the beginning and end of a
subprocedure definition

Definition type PR Signals the beginning of a prototype
definition

PI Signals the beginning of a procedure
interface definition

blank in positions 24-25 Defines a prototyped parameter

What’s New

About This Guide xlix

What’s New

l ILE RPG Programmer’s Guide

Using the application development tools in the client product

You can accomplish the most commonly performed development tasks on your
System i® using the Remote Systems view, the System i Table view, and the Remote
Systems LPEX Editor. These views and their associated functions are available
through the Remote System Explorer perspective in the client product.

If you are accustomed to working with PDM, the Table view provides similar
support. If you are accustomed to working with SEU, the Remote Systems LPEX
Editor can operate in a similar way.

Note: References to tutorials throughout these topics refer to the following tutorials
that are in the Tutorials Gallery in the client product:
v Maintain an ILE COBOL application using Remote System Explorer

v Maintain an ILE RPG application using Remote System Explorer

For more information, see the following topics:

Getting started in the Remote System Explorer perspective
The Remote System Explorer perspective enables you to access, edit, run,
compile, and debug all items on your system.

Remote Systems view
Use the Remote Systems view to navigate and list objects that you need to
access to develop your applications.

System i Table view
The System i Table view displays the same information as the Remote
Systems view, with the added ability to sort items, view descriptions, and
perform more PDM-like actions.

Remote Systems LPEX Editor
The Remote Systems LPEX Editor is based on the base LPEX Editor, and
contains System i specific functions.

Getting started in the Remote System Explorer perspective
The Remote System Explorer perspective enables you to access, edit, run, compile,
and debug all items on your system.

When you first open Remote System Explorer, you are not connected to any
system except your local workstation. To connect to a remote System i, you need to
define a profile and a connection.
v A profile is used to group connections, share connections, or keep them private.
v A connection is a TCP/IP network connection to your System i, that enables you

to access, edit, run, compile, and debug all items on the system. When you
define a connection, you specify the name or IP address of the remote system
and you also give the connection itself a unique name that acts as a label in
your workspace so that you can easily connect and disconnect. When you
connect to the System i, the workbench prompts you for your user ID and
password on that system.

To start working in Remote System Explorer (RSE):

© Copyright IBM Corp. 1994, 2010 li

1. Start the workbench
2. When prompted, specify the workspace
3. Once the workbench opens, ensure that you are in the Remote System Explorer

perspective. If the perspective is not open, you can open it by selecting
Window > Open Perspective > Remote System Explorer

Click the X to close the Welcome view.

4. In the Remote Systems view New Connection shows the various remote
system types you can connect to through the Remote Systems view.

5. Create a connection:
a. Expand iSeries® under New Connection in the view, to open the Name

personal profile page. Accept the default profile value to open the
connection page.

b. Leave the Parent profile default value
c. Enter your host system name in the Host name field. The Connection name

field is automatically filled with the host name.
d. Leave the Verify host name check box selected.
e. Click Finish to create your connection.

You can define multiple connections to the same System i, but in addition, you can
include different configurations for the startup of your connection, such as saving
different user IDs and passwords, initial library lists, for example. After you create
a connection to a System i, you can easily connect and disconnect.

For more information see the topic Configuring a connection to a remote system in the
online help in the client product. See also Configuring a connection to a System i and
connecting to a System i in the tutorials.

Tips:

v When creating a connection, use the default profile name. The default
profile can be used to share connections with others, and to use filter
pools. (For more information about filter pools, see the topic Remote System
Explorer filters, filter pools, and filter pool references in the online help in the
client product.)

v When specifying Host name, you can either specify the IP address, or the
fully qualified name (if necessary).

v The Verify host name check box ensures that you can actually connect to
the System i you have specified. To ensure that you have all necessary

lii ILE RPG Programmer’s Guide

PTFs installed on your System i, right-click the connection (after it has
been created) and select Verify connection. This ensures that all necessary
ports are open, callbacks can be performed, and that the required host
PTFs are applied.

v To define the startup properties for a connection, right-click on a
connection and select Properties.

Subsystems

After you configure a connection to a System i, you can easily connect and expand
your new connection to show the subsystems. Subsystems are represented by
containers which show the libraries, command sets, and jobs on your remote
system. Subsystem in this context is not related to the subsystem on the System i.

System i connections have five different subsystems:
1. System i Objects: This can be used to access libraries, objects and members.
2. System i Commands : By default, this subsystem is populated with a set of

predefined commands that you can use to run against remote objects. You can
also define command sets, and commands of your own. The results are logged
in the Commands Log view. (For more information about the Commands Log
view see the topic Running programs and commands in the online help in the
client product.)

3. System i Jobs: Use this subsystem to list jobs. You can subset by job attributes,
and perform job operations, such as hold, resume, end.

4. IFS Files: Explore files and folder structures in the Integrated File System, and
perform actions on them.

5. Qshells: Access the list of active running Qshells for the connection, and use
this subsystem to start a Qshell. (For more information see the topic Running
and viewing commands and shells using the Remote Shell view in the online help in
the client product.)

Using the application development tools in the client product liii

The view that a connection is in is called the Remote Systems view. It works much
like Windows® File Explorer. You drill down by clicking the “plus” (+) to gain
access to desired items. For example, expand the *LIBL filter to see all the libraries
in the library list, then expand a file to see all its members (much like option 12 in
PDM).

Filters

Expanding a subsystem results in a list of filters for that subsystem. Filters are
names of lists of items that you can specify, reuse, and share. Filters filter out items
that you are not currently interested in. When creating filters, you can use generic
values, and have as many filters as you want or need. Filters can be created for
each subsystem, so you can have filters for IFS files, local files, System i objects, for
example.

Tips:

v You can always drill down within a filter if the item is a container (a
library and a file are examples of containers)

v You can specify multiple levels of generic values, for example you could
specify library BOB, file QRPG* member A*, when you create your filter.

v Pay close attention to the page where you specify the filter name. On this
page you choose whether or not you want the filter to be only for the
specified connection, or to appear in all connections. You can also specify
a profile, if you want to share your filters with others.

Since filters are names which are stored with your connection in RSE, all filters
persist between sessions.

Filter strings

When first created, a filter contains only one filter string. By modifying the
properties of a filter, you can add additional filter strings. Filter strings provide the
ability to generate more complex lists. By using multiple filter strings in a filter,
you can list members in different files, and even in different libraries in a single
named filter.

Tips:

v Filters must contain the same types of items. For example, it is not
possible to list objects and members in the same filter.

v Group items into a filter by project or application. For example, add filter
strings so that you can see the DDS members in the same list as your RPG
and COBOL files.

v For more information about filters, see the topic Filtering members in the
online help in the client product. See also Introducing filters in the tutorials.

Searching

There are two ways to search in RSE:
1. From the Search menu option (then selecting System i)
2. From the Find String action in the Remote Systems view and System i Table

view

RSE allows you to search filters, not just libraries, files, and members. This means
that you can search with very flexible search patterns. For example, you could

liv ILE RPG Programmer’s Guide

search all the members in the file QRPGLESRC in library MYLIB and the members A*
in the files PRJA* in library PROJECT by invoking the Find string action on the filter
that contained those filter strings.

Search results appear in the Remote Search view, and the view has a history of
searches. You see the list of all the search results in one place, allowing you to
open whichever member you want first, and using whichever match in the
member you decide. The Remote Search view allows you to manage the resulting
list, by letting you remove members and matches from the list through the pop-up
menu.

Tips:

v Double-click the member name in the Remote Search view to open a
member in the “Remote Systems LPEX Editor” on page lxiii for editing
and to be positioned to the match selected.

v The pop-up in the Remote Search view has a list of options similar to the
System i Table view.

v Double-click on the Remote Search tab to maximize the view to the full
workbench window. This will allow you to see more matches at one time.

v Expand or collapse matched members to quickly zero in on the matches
that are important to you.

Using the application development tools in the client product lv

v See the topic Searching for text strings on the System i in the online help in
the client product. See also Searching multiple files in the tutorials.

Comparing RSE to PDM

The following table compares the RSE features described in this topic to equivalent
or similar features in PDM.

Table 21.

In RSE In PDM

Create a connection Start an emulator session

Create filters with generic values Create filters with generic values

Expand a container to view additional items Option 12

Specify multiple levels of generic items Not available

Filters persist between sessions Previous parameters for the WRKxxxPDM
command are remembered

Create complex lists by defining multiple
filter strings in a filter to list members in
different files

List members in one source physical file in a
single library

Flexible search patterns permit searching of
filters

Single search pattern with option 25 or with
FNDSTRPDM

All search results are available in the Remote
Search view

Search results and members are available
one at a time in the order that the matches
are found

Remote Systems view
Use the Remote Systems view to navigate and list objects that you need to access
to develop your applications.

Drill down, or expand items to see their children. Right-click to gain access to
actions available in a pop-up menu. Standard actions such as drag and drop, copy,
paste, delete, and rename are all available through the pop-up menu. These
options are quite powerful in comparison to PDM. You can use copy and paste, or
drag and drop, to copy or move members and even objects from one System i to
another (no more SAVOBJ and FTP!). The pop-up menu also contains many other
actions that can be performed on items, and allows you to create additional actions
of your own.

lvi ILE RPG Programmer’s Guide

See User actions, and the topic Manipulating items in the Remote System Explorer in
the online help in the client product. See also Viewing and accessing objects in the
Remote System Explorer in the tutorials.

System i Table view
The System i Table view displays the same information as the Remote Systems
view, with the added ability to sort items, view descriptions, and perform more
PDM-like actions.

With the System i Table view, you can see the properties of all items at the same
time; they are displayed as rows across the table. The view takes the currently
selected file, library, or filter in the System i Objects subsystem as input, and
displays the contents in the table when you select the Show in Table option from
the pop-up menu. You can also use Work with actions from the System i Table
view itself to populate the view with libraries, objects, or members.

You can open the view directly by selecting the System i Table view tab at the
bottom of the Remote System Explorer perspective, or by selecting the Show in
Table action item in the pop-up of the Remote Systems View. You can use the
Work with menu to generate lists. The Work with menu keeps a small list (10) of
previously displayed lists in the System i Table view. The command line appears at
the bottom of the System i Table view, and allows you to enter commands, or
parameters for actions.

Using the application development tools in the client product lvii

You can modify which columns appear in the System i Table view. You can choose
to hide or show any individual column. You can type a character to bring up the
Position To dialog. This dialog allows you to quickly scroll to your desired item.

Tips:

v Click on column headings to sort by that column.
v Use the Show in Table View to show filter contents in the System i Table

view.
v Collapse the command line for a clean screen and the ability to see more

items.
v Double-click on the System i Table view tab, to maximize the view to the

full workbench. You will then be able to see more items in one screen.
v Use filters to generate complicated lists, use the Work with submenu to

get access to infrequently used or simple lists.

System i Table view actions

Like the Remote Systems view, the System i Table view has actions that can be
invoked on items in it. As in the Remote Systems view, access to the action is
provided through a pop-up menu from clicking with the right mouse button. In
the pop-up from the System i Table view, you will see a list of actions with their
PDM option number to make the menu feel more familiar. Use the User actions
menu to create and add your own actions. User actions added either in the Table
or Remote Systems view, appear in the User Actions menu in both views.

lviii ILE RPG Programmer’s Guide

Tips:

v Use the Show in Table action from inside the System i Table view to go
from a list of libraries to a list of objects.

v Double-click a member to open it in “Remote Systems LPEX Editor” on
page lxiii in edit mode.

v Click on the item name to open an edit cell in the Table view directly to
quickly rename an item. The Description column, and member type
column are also edit enabled, and allow you to quickly change the values
in those columns.

v Access an object’s properties by selecting the Properties menu item in the
pop-up menu in the System i Table view or Remote Systems view.

v See Managing objects in the System i Table view in the online help in the
client product. See also Viewing and accessing objects in the Remote Systems
Explorer in the tutorials.

User actions

User actions allow you to extend the System i Table view and the Remote Systems
view with the action that you use. You can create your own action, where you will
be able to prompt the command to run, and to define how a command is executed.

Note: RSE has three command modes:
1. Normal: RSE jobs run in batch, so even though the mode is normal

(meaning in this case immediate), you still cannot run interactive
commands like STRPDM

2. Batch: Commands are submitted to a new batch job
3. Interactive: Commands are run interactively in a STRRSESVR job

When creating actions use the Insert variable button to see the list of available
variables. Actions are very customizable and you can:
v Specify if the action should refresh the Remote Systems view or System i Table

view after running
v Specify whether or not the command should be called once for each selected

object, or once for all the objects. This gives greater flexibility than PDM. For

Using the application development tools in the client product lix

example, in RSE you could define a Save Object action, which would allow you
to select several objects and when invoked, would generate a single command to
save all of the selected objects to one save file.

v Actions can be refined so that they are only displayed for appropriate types.
There are several types predefined, but user types can be easily added to the list.
For example, this allows you to have an action for only *PGM objects, or only
RPGLE members.

v Selective prompts can be used when defining the CL command to run for the
action.

One of the advantages of RSE user actions is that they can be named, which makes
them easier to use and remember. (For more information, see the topic Managing
user actions (user options) in the online help in the client product. See also Creating a
user action in the tutorials.

Command line

The System i Table view contains a command line.

You can use the command line to run any command, or in the System i Table view,
to specify additional parameters for PDM options. The results of any commands
are displayed in the messages field. You can use familiar PDM keys:
v F9 to retrieve the last command
v F4 to prompt a command

The Show Log button can be used to view the System i Commands Log view.

lx ILE RPG Programmer’s Guide

Command execution mode can also be selected.

Tips:

v The System i Table view command line is good for quick commands
v The System i Commands Log view is better for commands where the

results are more critical, and where you want to see second level help on
the messages.

v The System i Commands Log also show the results of compiles, and users
actions, either run through the Remote Systems view or the System i Table
view.

v See the topic Running programs and commands from the System i Table view in
the online help in the client product. See also Submitting commands in the
System i Table view in the tutorials.

Compiling

Compile actions are grouped into two menus: with and without prompting. You
can add your own compile commands to the compile menu. This is much the same
as adding a user action.

Using the application development tools in the client product lxi

Compile actions are different from other actions: The results of the command itself
appear in the System i Commands Log, but for commands which support events
files, errors generated by the compiler are displayed in the Error List view. For
more information about event files, see the topic Events File format in the online
help in the client product.

Tips:

v Additional command execution preferences are available in the Window >
Preferences > Remote Systems > System i > Command Execution
preference page

v Compile commands use the same defaults as the host
v The compile actions remembers the last used compile command by

member type
v Add your own compile commands and specify the source types that they

should apply to, or refine existing compile commands, by modifying the
properties and the CL command parameters

v The default is to compile in batch, use the Command Execution
preferences to specify additional SBMJOB parameters, or to switch to normal
execution (note that this is technically not interactive, because, as
previously mentioned, RSE jobs run in batch)

v See the Compiling your programs topic in the online help in the client
product. See also Verifying and compiling source in the tutorials.

Comparing the System i Table view to PDM

The following table compares the features of the System i Table view described in
this topic to equivalent or similar features in PDM.

lxii ILE RPG Programmer’s Guide

Table 22.

In the System i Table view In PDM

Use the Work with menu to generate lists.
Retains up to 10 previously displayed lists

Use WRKxxxPDM commands to generate lists

Provides a command line for actions Provides a command line for actions

Determine which columns to display, and
choose to hide or show any individual
columns

Option 14 provides similar manipulation but
with less customization capability

The pop-up menu lists actions with their
PDM option number

Not applicable

Use the Show in Table action from inside the
view to go from a list of libraries to a list of
objects

Option 12

Use the pop-up menu to select the
Properties menu item to access an object's
properties

Option 8

Extend the Table view with user actions F16

Substitution variables when creating actions
are the same as in PDM

Not applicable

Refine actions to display only for
appropriate types

Not available

Define user actions by name User action names are limited to 2 characters

Use the Show Log button to open the
System i Commands Log view

F20

Compile actions are grouped in 2 menus -
with and without prompting

Option 14 and option 15

Additional command execution preferences
are available

F18

Remote Systems LPEX Editor
The Remote Systems LPEX Editor is based on the base LPEX Editor, and contains
System i specific functions.

You can quickly launch the Remote Systems LPEX Editor in edit mode from the
Remote Systems view, System i Table view, and Remote Search view by
double-clicking a member. You can also launch the editor by using the pop-up
menu on a member to open it in edit mode, or in browse mode.

The first thing you will notice when you open the editor is the use of color in the
source. This is called tokenization, and is the coloring of language tokens to make
them easy to distinguish.

Using the application development tools in the client product lxiii

Note that the prefix area contains the sequence numbers of the member. The prefix
area in Remote Systems LPEX Editor supports SEU commands (for example, CC, B,
A, LL).

Also note that for many source types, an Outline view appears. The Outline view
displays the outline of your source and can be used to navigate within your
source.

Tips:

v By default the Date area does not appear in the editor. If you want the
date to appear all the time, you need to set the preference in Window >
Preferences > Remote Systems > Remote Systems LPEX Editor. You can
turn on the date area for a single session through the Source menu in the
pop-up in the editor view.

v While you can use X, XX, Xn to exclude lines, a + appears which allows you
to easily peek at and hide excluded lines.

v In addition to excluded lines, use the Filter menu in the pop-up menu in
the editor view to show comments, control statements, for example. Each
language has its own list of items that it can display in the filter menu.

v The pop-up menu in the editor view only shows appropriate items
depending on source type being edited, cursor position within the source,
and whether or not there is text selected.

v You can use the pop-up menu or Ctrl+2 to split the current editor view to
work with different parts of the same member. Up to 5 splits are allowed.

lxiv ILE RPG Programmer’s Guide

Syntax checking, prompting, and help

The Remote Systems LPEX Editor has automatic syntax checking. are immediately
visible. All of the syntax errors are embedded into the editor view and there is no
need to move to the bottom of the screen to scroll through errors. The Remote
Systems LPEX Editor uses the latest language syntax to check syntax for DDS, RPG
and COBOL. An active connection is required for syntax checking SQL and CL. CL
does cache syntax information, so syntax checking may be available when
disconnected if cached information exists.

Help (F1 in the Remote Systems LPEX Editor) is not just available for errors, but
for source too. Pressing F1 for context-sensitive help opens the reference manual at
the topic for the code you are editing. For example, when you press F1 on an ILE
RPG operation code, the help for that operation code opens in the help browser.
Reference manuals are also accessible through the Source menu in the Remote
Systems LPEX Editor. This reduces the requirement for printed manuals.

Using the application development tools in the client product lxv

F4 allows you to prompt when editing in the Remote Systems LPEX Editor. For
languages other than CL, the Prompt view opens and allows you to modify your
source. For CL, a window opens with your prompt. F1 context-sensitive help is
available from all prompts.

For more information, see the topic Editing RPG, COBOL, CL, C, C++, and DDS
members in the online help in the client product. See also Editing source in the
tutorials.

Verifiers and System i Error List view

lxvi ILE RPG Programmer’s Guide

Syntax checking ensures that there are no errors on the line that you type, but the
Remote Systems LPEX Editor provides an additional check, called the Verifier. A
verifier does the same syntax checking and semantic checking that the compiler
does, without generating an object. This means that if you try to use an undeclared
variable, the verifier will let you know.

The verifier function is available for COBOL, RPG and DDS from the Source menu,
or by pressing Ctrl+Shift+V. Use the Source menu to verify with prompt and
specify additional options.

Any errors detected by a verify will appear in the System i Error List view, exactly
as those from a compile.

The System i Error List view allows you to insert the errors into the editor view by
double-clicking. Use the F1 key to get help for errors, and use the View menu to
filter errors that you don’t want to see (for example, perhaps you want to ignore
informational messages). The menu can also be used to dictate whether or not, and
how, error messages are inserted into the editor view.

To cleanup any inserted errors, from the editor you can use Ctrl+F5 to refresh the
list. The refresh action:
v Removes any syntax, verifier, or compile errors
v Clears any excluded lines

Or you can use the Remove messages menu option from the Source menu.

The System i Error List view can also be used as a To Do list. As you modify lines,
they are either marked with an X to indicate that the line has been deleted, or with
a check mark, to indicate that an error has been addressed. Only another verify
will ensure that the errors have truly been fixed.

Using the verifier has the following advantages:
v You can ensure a clean compile before actually compiling. This can be important

for machines where compiling must only occur on off-peak times.
v If you are working offline, you can ensure that you are working with source that

will compile when you reconnect to your System i.

Using the application development tools in the client product lxvii

The System i Error List view (whether being used for compile results or verify) has
several advantages as well:
v There is no need to switch between a spooled file and the source, or have two

emulators open, as both are visible simultaneously, and you can have all the
errors inserted into the source.

v When used as a To Do list, it is easy to ensure that all errors are addressed.
There is no need to fix an error, recompile, fix another, and so on, until all errors
are addressed.

v When an error occurs in a /COPY or a /INCLUDE member in RPG, or a Copy book
in COBOL, double-clicking the error opens that member quickly for you and
inserts the errors, as with the primary source member.

v F1 help for errors helps you fix the error quickly without using a reference
manual.

v Using the preferences you can hide any messages you don’t want to look at
(such as informational or warning messages), making it easier to ensure that you
address important errors quickly.

v For more information, see the topic Verifying and the topic The Error List view in
the online help in the client product. See also Verify the source in the tutorials.

Content assist, templates, and RPG wizards

The Remote Systems LPEX Editor has several functions which help you quickly
enter code.

Content assist (Ctrl+Space) will propose, display, and insert code completions at
the cursor position. Based on the previously typed characters, or in the case of
RPG, column position as well, invoking content assist presents you with possible
valid completions to the code you have already entered. For example, this can be
useful when you are unsure of the number of parameters required when calling a
procedure, or even the parameter types.

For more information, see the topic Content assist in the online help in the client
product.

Templates can be used to generate frequently used blocks of code. They can be
imported and exported, which means they can be shared. For example, if you have
a standard header that must be added to each program, or a standard interface,
you can define a template, and insert it by typing its name and then Ctrl+Space.

lxviii ILE RPG Programmer’s Guide

For more information, see the topic Completing code with content assist and the topic
Templates in the online help in the client product. See also Verifying the source in the
tutorials.

Tip: The content assist function and Outline view in RPG is driven by the
information generated by a verify. This is what pulls in external information
like procedures found in a /COPY member, or fields and records from a
display file. It’s important to refresh the Outline view at least once before
invoking content assist, or only limited content assist will be available.

There are three RPG wizards that can help you create code quickly:
v D Specification wizard
v Procedure wizard
v Java Method Call wizard

Using the application development tools in the client product lxix

Code will be generated for you.

For more information, see the topic Creating an RPG Definition Specification in the
Remote Systems LPEX Editor in the online help in the client product.

Additional Remote Systems LPEX Editor parser action and preferences

Additional preferences and actions are available for the System i languages:
v Column Sensitive Editing: This function is useful for column-sensitive languages

like RPG and DDS. Normally in a windows application, inserting and deleting
text pushes the remaining text left or right, and for these languages results in a
syntax error. Enabling column sensitive editing limits insertion and deletion to
the columns specified for the language.

lxx ILE RPG Programmer’s Guide

v Signatures: Available for RPG and DDS, enabling this feature automatically flags
each line with the specified signature. Note that modified lines in the Remote
Systems LPEX Editor have the date changed as in SEU, regardless of member
type.

v Automatic-uppercasing: Uppercases modified lines. Available for CL, DDS, RPG,
COBOL members

v Automatic-indent: Indents the cursor when enter is pressed on the following line
to help pretty-print your source. Available for CL, RPGLE.

v Automatic-formatting: Formats your source as you enter it, according to
specified preferences. Available for CL and free-form SQLRPGLE.

v Open/Browse /COPY member or Copy book: For RPG and COBOL languages,
you can open or browse members referred in the source through the pop-up in
the Editor menu.

v Show block nesting: Using Ctrl+Shift+O, or from the Source menu in the
pop-up menu, you can display an arrow indicating the nesting level at the
cursor location.

v Show fields: When a file is referenced in a program, you can use this menu
option from the pop-up menu to show the fields in the file in the System i Table
view. Available in RPG, COBOL, and CL.

v RPG actions:
– Convert to free form (RPGLE)
– Convert to ILE (RPG)
– Show indentation (RPG, RPGLE)

Content assist, templates, and RPG wizards, are designed to speed up and improve
your editing experience.

Additional LPEX keys

In the Remote Systems LPEX Editor, most functions are available through menus
and keystrokes. Here is a list of additional keys you might find useful in LPEX:

Table 23.

Key combination Description

Ctrl+Home Go to the top (like TOP in SEU)

Ctrl+End Go to the end (like BOTTOM is SEU)

Ctrl+L Go to line number (also entering line number in prefix area
like SEU works)

Alt+S Split a line

Alt+J Join a line

Alt+L Select a line

Alt+R Select a rectangle

Ctrl+W Show all lines (useful when lines are filtered out)

Ctrl+Z Undo

Ctrl+Y Redo

Ctrl+S Save

Ctrl+M Match (selects matching brackets, and for languages like CL
and RPG, control statements like DO/ENDDO, IF/ENDIF)

Using the application development tools in the client product lxxi

Table 23. (continued)

Key combination Description

Ctrl+Shift+M Find match

Printing

Like most Windows applications, printing can be done through the File > Print
menu option or by pressing Ctrl+P. This can be done while editing. Printing also
tokenizes the printed source, as long as you select the Tokenized checkbox.
Printing in the Remote Systems LPEX Editor prints to your Windows printer, not
the System i printer. Print options are available in Window >Preferences > LPEX
Editor > Print.

The following substitution variables are available for use in the header and footer:
v %p: page number
v %n: source name, base file name, or document name
v %f: full path file name or document name
v %d: date
v %t: time

Tips:

v To print to a host printer, add a user action in the Remote Systems view
and the System i Table view that invokes the STRSEU command with the
print option.

v Printing with tokenization is best done on a color printer

Find and replace in the Remote Systems LPEX Editor

In the Remote Systems LPEX Editor you can use Ctrl+F to open the Find function
in LPEX. The search function is very flexible. You can specify regular expressions
that allow you to search for a pattern. For example, if you specify this|that as the

lxxii ILE RPG Programmer’s Guide

search string with the Regular expression check box selected, then the editor
searches for lines with this or that on them. You can use Ctrl+N or Shift+F4 to
find the next match.

Tips:

v Ensure column sensitive editing is enabled to make sure that replace does
not shift text inappropriately

v Click the All button to have all the lines that do not contain the search
string filtered out, so that you only see matching lines (they can easily be
shown again by clicking the + in front of the prefix area, or by pressing
Ctrl+W)

For more information, see the topic Finding and replacing text in the online help in
the client product. See also Finding and replacing text in the tutorials.

Compare a file in the Remote Systems LPEX Editor

Comparing members in the Remote Systems LPEX Editor requires you to open a
member in the editor. Once open, you can easily compare that member to another
by selecting the Compare button in the toolbar or through the Edit > Compare >
Compare file menu option.

Once the compare has been triggered, source appears merged with different lines
flagged in color. Pink is the color used for the source being compared to, and
yellow is the color for the opened source.

Unlike on the System i , where you have to flip between the spooled file and the
source opened in SEU, comparing in the Remote Systems LPEX Editor allows you
to continue to modify the member that was opened originally. Use Ctrl+Shift+N to
navigate to the next mismatch and Ctrl+Shift+P for the previous mismatch. If you
do modify source, you can use Ctrl+Shift+R to refresh the compare and finally
Edit > Compare >Clear to end.

Using the application development tools in the client product lxxiii

Tips:

v Specify additional preferences in Window > Preferences > LPEX Editor >
Compare.

v Unlike other compare tools in eclipse, the Remote Systems LPEX Editor is
sequence number aware, and will not mismatch lines just because the
sequence number has been modified.

v For more information about comparing a file, see the topic Editing RPG,
COBOL, CL, C, C++, and DDS members in the online help in the client
product. See also Comparing file differences from the Remote Systems view in
the tutorials.

Compile from the Remote Systems LPEX Editor

When you have source open in the Remote Systems LPEX Editor, it’s not
convenient to go to the Remote Systems view or System i Table view to issue a
compile. Instead you can use one of the following:
v Toolbar button (uses the last used compile command for the member type to

compile without prompt)
v Ctrl+Shift+C (uses the last used compile command for the member type to

compile without prompt)
v Compile menu (where you can choose to compile with and without prompts,

and select whichever compile command you want for the item). If you have not
saved prior to compiling, you are prompted to do so.

For more information, see the topic Compiling in the online help in the client
product. See also Compiling source remotely in the tutorials.

Comparing the Remote Systems LPEX Editor to SEU

The following table compares the features of the Remote Systems LPEX Editor
described in this topic to equivalent or similar features in SEU.

lxxiv ILE RPG Programmer’s Guide

Table 24.

In the Remote Systems LPEX Editor In SEU

Launch the editor from the pop-up menus on a member in
edit or browse modes

Launch SEU with PDM
option 5

Full screen mode for both edit and browse (double-click the
editor tab). However, many more lines are visible in Remote
Systems LPEX Editor in full screen than in SEU.

Full screen mode when
browsing only (F13)

Split screen for edit and browse:

v Drag and drop editor tabs to view more than on member at
a time

v Use editor view pop-up or Ctrl+2 to split the current editor
view to work with different parts of the same member (up
to 5 splits are allowed)

Split screen and browse

Language tokens are displayed in colors (tokenization) Not available

Provides a prefix area containing sequence numbers and
supports SEU edit commands

Prefix area available for
edit commands

Date area appears next to the sequence numbers. It is Off by
default, but can be enabled through the preference, or the
pop-up menu.

Date area is at the right,
and is always enabled

View or hide excluded lines by expanding (clicking +), or
collapsing (clicking -) items

Excluded lines cannot be
viewed

Automatic syntax checking - all errors are immediately visible Automatic syntax checking
- first error is visible

Content assist, code templates, and RPG wizards are available
to assist in code creation

Prompter is available to
assist in code creation

Most editing functions are available through menus and
keystrokes

All editing functions are
available through
keystrokes

Printing is available from the File menu, or Ctrl+P Print with STRSEU, Option
6

Printing can be done while editing Not available

A member opened in the editor for compare can be modified To edit the source, switch
from the spooled file to
the source in SEU

Using the application development tools in the client product lxxv

lxxvi ILE RPG Programmer’s Guide

Part 1. ILE RPG Introduction

Before using ILE RPG to create a program, you must know certain aspects of the
environment in which you will be using it. This part provides information on the
following topics that you should know:
v Overview of RPG IV language
v Role of Integrated Language Environment components in RPG programming
v Integrated Language Environment program creation strategies
v Overview of coding a module with more than one procedure and prototyped

calls

© Copyright IBM Corp. 1994, 2010 1

2 ILE RPG Programmer’s Guide

Chapter 1. Overview of the RPG IV Programming Language

This chapter presents a high-level review of the features of the RPG IV
programming language that distinguish RPG from other programming languages.
You should be familiar and comfortable with all of these features before you
program in the RPG IV language. The features discussed here encompass the
following subjects:
v Coding specifications
v The program cycle
v Indicators
v Operation codes

For more information on RPG IV, see the IBM Rational Development Studio for i: ILE
RPG Reference.

RPG IV Specifications
RPG code is written on a variety of specification forms, each with a specific set of
functions. Many of the entries which make up a specification type are
position-dependent. Each entry must start in a specific position depending on the
type of entry and the type of specification.

There are seven types of RPG IV specifications. Each specification type is optional.
Specifications must be entered into your source program in the order shown below.

Main source section:

1. Control specifications provide the compiler with information about generating
and running programs, such as the program name, date format, and use of
alternate collating sequence or file translation.

2. File description specifications describe all the files that your program uses.
3. Definition specifications describe the data used by the program.
4. Input specifications describe the input records and fields used by the program.
5. Calculation specifications describe the calculations done on the data and the

order of the calculations. Calculation specifications also control certain input
and output operations.

6. Output specifications describe the output records and fields used by the
program.

Subprocedure section:

1. Procedure specifications mark the beginning and end of the subprocedure,
indicate the subprocedure name, and whether it is exported.

2. Definition specifications describe the local data used by the subprocedure.
3. Calculation specifications describe the calculations done on both the global

and local data and the order of the calculations.

© Copyright IBM Corp. 1994, 2010 3

Cycle Programming
When a system processes data, it must do the processing in a particular order. This
logical order is provided by:
v The ILE RPG compiler
v The program code

The logic the compiler supplies is called the program cycle. When you let the
compiler provide the logic for your programs, it is called cycle programming.

The program cycle is a series of steps that your program repeats until an
end-of-file condition is reached. Depending on the specifications you code, the
program may or may not use each step in the cycle.

If you want to have files controlled by the cycle, the information that you code on
RPG specifications in your source program need not specify when records for these
files are read. The compiler supplies the logical order for these operations, and
some output operations, when your source program is compiled.

If you do not want to have files controlled by the cycle, you must end your
program some other way, either by creating an end-of-file condition by setting on
the last record (LR) indicator, by creating a return condition by setting on the
return (RT) indicator, or by returning directly using the RETURN operation.

Note: No cycle code is generated for subprocedures or when MAIN or NOMAIN
is specified on the control specification. See

Figure 1 shows the specific steps in the general flow of the RPG program cycle.

�1� RPG processes all heading and detail lines (H or D in position 17 of the
output specifications).

Write
heading and
detail lines

Get input
record

Perform
total

calculations

Write
total

output

Perform
detail

calculations

LR on
Move fields

Start

Yes

No

End of
program

Figure 1. RPG Program Logic Cycle

RPG IV Overview

4 ILE RPG Programmer’s Guide

#
#

�2� RPG reads the next record and sets on the record identifying and control
level indicators.

�3� RPG processes total calculations (conditioned by control level indicators L1
through L9, an LR indicator, or an L0 entry).

�4� RPG processes all total output lines (identified by a T in position 17 of the
output specifications).

�5� RPG determines if the LR indicator is on. If it is on, the program ends.

�6� The fields of the selected input records move from the record to a
processing area. RPG sets on field indicators.

�7� RPG processes all detail calculations (not conditioned by control level
indicators in positions 7 and 8 of the calculation specifications). It uses the
data from the record at the beginning of the cycle.

The first cycle

The first and last time through the program cycle differ somewhat from other
cycles. Before reading the first record the first time through the cycle, the program
does three things:
v handles input parameters, opens files, initializes program data
v writes the records conditioned by the 1P (first page) indicator
v processes all heading and detail output operations.

For example, heading lines printed before reading the first record might consist of
constant or page heading information, or special fields such as PAGE and *DATE.
The program also bypasses total calculations and total output steps on the first
cycle.

The last cycle

The last time a program goes through the cycle, when no more records are
available, the program sets the LR (last record) indicator and the L1 through L9
(control level) indicators to on. The program processes the total calculations and
total output, then all files are closed, and then the program ends.

Subprocedure logic
The general flow of a subprocedure is much simpler: the calculations of a
subprocedure are done once, and then the subprocedure returns. There is no cycle
code generated for a subprocedure.

Indicators
An indicator is a one-byte character field that is either set on (’1’) or off (’0’). It is
generally used to indicate the result of an operation or to condition (control) the
processing of an operation. Indicators are like switches in the flow of the program
logic. They determine the path the program will take during processing,
depending on how they are set or used.

Indicators can be defined as variables on the definition specifications. You can also
use RPG IV indicators, which are defined either by an entry on a specification or
by the RPG IV program itself.

RPG IV Overview

Chapter 1. Overview of the RPG IV Programming Language 5

Each RPG IV indicator has a two-character name (for example, LR, 01, H3), and is
referred to in some entries of some specifications just by the two-character name,
and in others by the special name *INxx where xx is the two-character name. You
can use several types of these indicators; each type signals something different. The
positions on the specification in which you define an indicator determine the use
of the indicator. Once you define an indicator in your program, it can limit or
control calculation and output operations.

Indicator variables can be used any place an indicator of the form *INxx may be
used with the exception of the OFLIND and EXTIND keywords on the file
description specifications.

An RPG program sets and resets certain indicators at specific times during the
program cycle. In addition, the state of indicators can be changed explicitly in
calculation operations.

Operation Codes
The RPG IV programming language allows you to do many different types of
operations on your data. Operation codes, entered on the calculation specifications,
indicate what operations will be done. For example, if you want to read a new
record, you could use the READ operation code. The following is a list of the types
of operations available.
v Arithmetic operations
v Array operations
v Bit operations
v Branching operations
v Call operations
v Compare operations
v Conversion operations
v Data-area operations
v Date operations
v Declarative operations
v Error-handling operations
v File operations
v Indicator-setting operations
v Information operations
v Initialization operations
v Memory management operations
v Move operations
v Move zone operations
v Result operations
v Size operations
v String operations
v Structured programming operations
v Subroutine operations
v Test operations

Example of an ILE RPG Program
This section illustrates a simple ILE RPG program that performs payroll
calculations.

Problem Statement

RPG IV Overview

6 ILE RPG Programmer’s Guide

The payroll department of a small company wants to create a print output that
lists employees’ pay for that week. Assume there are two disk files, EMPLOYEE
and TRANSACT, on the system.

The first file, EMPLOYEE, contains employee records. The figure below shows the
format of an employee record:

The second file, TRANSACT, tracks the number of hours each employee worked
for that week and any bonus that employee may have received. The figure below
shows the format of a transaction record:

Each employee’s pay is calculated by multiplying the ″hours″ (from the
TRANSACT file) and the ″rate″ (from the EMPLOYEE file) and adding the ″bonus″
from the TRANSACT file. If more than 40 hours were worked, the employee is
paid for for 1.5 times the normal rate.

Control Specifications

EMP_NUMBER

EMP_REC

1 6 22 27

EMP_NAME EMP_RATE

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*
A R EMP_REC
A EMP_NUMBER 5 TEXT('EMPLOYEE NUMBER')
A EMP_NAME 16 TEXT('EXPLOYEE NAME')
A EMP_RATE 5 2 TEXT('EXPLOYEE RATE')
A K EMP_NUMBER

Figure 2. DDS for Employee physical file

TRN_NUMBER

TRN_REC

1 6 10 16

TRN_HOURS TRN_BONUS

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*
A R TRN_REC
A TRN_NUMBER 5 TEXT('EMPLOYEE NUMBER')
A TRN_HOURS 4 1 TEXT('HOURS WORKED')
A TRN_BONUS 6 2 TEXT('BONUS')

Figure 3. DDS for TRANSACT physical file

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... 8
HKeywords++
H DATEDIT(*DMY/)

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 7

Today's date will be printed in day, month, year format with ″/″ as the separator.

File Description Specifications

There are three files defined on the file description specifications:
v The TRANSACT file is defined as the Input Primary file. The ILE RPG program

cycle controls the reading of records from this file.
v The EMPLOYEE file is defined as the Input Full-Procedure file. The reading of

records from this file is controlled by operations in the calculation specifications.
v The QSYSPRT file is defined as the Output Printer file.

Definition Specifications

Using the definition specifications, declare a variable called ″Pay″ to hold an
employees’ weekly pay and two constants ″Heading1″ and ″Heading2″ to aid in
the printing of the report headings.

Calculation Specifications

The coding entries on the calculation specifications include:
v Using the CHAIN operation code, the field TRN_NUMBER from the transaction

file is used to find the record with the same employee number in the employee
file.

v If the CHAIN operation is successful (that is, indicator 99 is off), the pay for that
employee is evaluated. The result is ″rounded″ and stored in the variable called
Pay.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++
FTRANSACT IP E K DISK
FEMPLOYEE IF E K DISK
FQSYSPRT O F 80 PRINTER

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
D+Name++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D Pay S 8P 2
D Heading1 C 'NUMBER NAME RATE H-
D OURS BONUS PAY '
D Heading2 C '______ ________________ ______ _-
D ____ _______ __________'
D CalcPay PR 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
/free

chain trn_number emp_rec;
if %found(emp_rec);

pay = CalcPay (emp_rate: trn_hours: trn_bonus);
endif;

/end-free

Example of an ILE RPG Program

8 ILE RPG Programmer’s Guide

Output Specifications

The output specifications describe what fields are to be written on the QSYSPRT
output:
v The Heading Lines that contain the constant string ’PAYROLL REGISTER’ as

well as headings for the detail information will be printed if indicator 1P is on.
Indicator 1P is turned on by the ILE RPG program cycle during the first cycle.

v The Detail Lines are conditioned by the indicators 1P and 99. Detail Lines are
not printed at 1P time. The N99 will only allow the Detail lines to be printed if
indicator 99 is off, which indicates that the corresponding employee record has
been found. If the indicator 99 is on, then the employee number and the
constant string ’** NOT ON EMPLOYEE FILE **’ will be printed instead.

v The Total Line contains the constant string ’END OF LISTING’. It will be printed
during the last program cycle.

A Subprocedure

The subprocedure calculates the pay for the employee using the parameters passed
to it. The resulting value is returned to the caller using the RETURN statement.

The procedure specifications indicate the beginning and end of the procedure. The
definition specifications define the return type of the procedure, the parameters to
the procedure, and the local variable Overtime.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat
OQSYSPRT H 1P 2 3
O 35 'PAYROLL REGISTER'
O *DATE Y 60
O H 1P 2
O 60 Heading1
O H 1P 2
O 60 Heading2
O D N1PN99 2
O TRN_NUMBER 5
O EMP_NAME 24
O EMP_RATE L 33
O TRN_HOURS L 40
O TRN_BONUS L 49
O Pay 60 '$ 0. '
O D N1P 99 2
O TRN_NUMBER 5
O 35 '** NOT ON EMPLOYEE FILE **'
O T LR
O 33 'END OF LISTING'

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 9

The Entire Source Program

The following figure combines all the specifications used in this program. This is
what you should enter into the source file for this program.

P CalcPay B
D CalcPay PI 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE
D Overtime S 5P 2 INZ(0)

/free
// Determine any overtime hours to be paid.
if Hours > 40;

Overtime = (Hours - 40) * Rate * 1.5;
Hours = 40;

endif;
// Calculate the total pay and return it to the caller.
return Rate * Hours + Bonus + Overtime;

/end-free
P CalcPay E

--
* DESCRIPTION: This program creates a printed output of employee's pay *
* for the week. *
--
H DATEDIT(*DMY/)
--
* File Definitions *
--
FTRANSACT IP E K DISK
FEMPLOYEE IF E K DISK
FQSYSPRT O F 80 PRINTER
--
* Variable Declarations *
--
D Pay S 8P 2

Figure 4. A Sample Payroll Calculation Program (Part 1 of 3)

Example of an ILE RPG Program

10 ILE RPG Programmer’s Guide

--
* Constant Declarations *
--
D Heading1 C 'NUMBER NAME RATE H-
D OURS BONUS PAY '
D Heading2 C '______ ________________ ______ _-
D ____ _______ __________'
--
* Prototype Definition for subprocedure CalcPay *
--
D CalcPay PR 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE
--
* For each record in the transaction file (TRANSACT), if the employee *
* is found, compute the employee's pay and print the details. *
--
/free

chain trn_number emp_rec;
if %found(emp_rec);

pay = CalcPay (emp_rate: trn_hours: trn_bonus);
endif;

/end-free
--
* Report Layout *
* -- print the heading lines if 1P is on *
* -- if the record is found (indicator 99 is off) print the payroll *
* details otherwise print an exception record *
* -- print 'END OF LISTING' when LR is on *
--
OQSYSPRT H 1P 2 3
O 35 'PAYROLL REGISTER'
O *DATE Y 60
O H 1P 2
O 60 Heading1
O H 1P 2
O 60 Heading2
O D N1PN99 2
O TRN_NUMBER 5
O EMP_NAME 24
O EMP_RATE L 33
O TRN_HOURS L 40
O TRN_BONUS L 49
O Pay 60 '$ 0. '
O D N1P 99 2
O TRN_NUMBER 5
O 35 '** NOT ON EMPLOYEE FILE **'
O T LR
O 33 'END OF LISTING'

Figure 4. A Sample Payroll Calculation Program (Part 2 of 3)

Example of an ILE RPG Program

Chapter 1. Overview of the RPG IV Programming Language 11

Using IBM i
The operating system that controls all of your interactions with System i is called
the IBM i. From your workstation, IBM i allows you to:
v Sign on and sign off
v Interact with the displays
v Use the online help information
v Enter control commands and procedures
v Respond to messages
v Manage files
v Run utilities and programs.

You can obtain a complete list of publications that discuss the IBM i system at the
i5/OS Information Center.

Interacting with the System
You can manipulate the IBM i system using Command Language (CL). You
interact with the system by entering or selecting CL commands. The system often
displays a series of CL commands or command parameters appropriate to the
situation on the screen. You then select the desired command or parameters.

Commonly Used Control Language Commands

The following table lists some of the most commonly used CL commands, their
function, and the reasons you might want to use them.

--
* Subprocedure -- calculates overtime pay. *
--
P CalcPay B
D CalcPay PI 8P 2
D Rate 5P 2 VALUE
D Hours 10U 0 VALUE
D Bonus 5P 2 VALUE
D Overtime S 5P 2 INZ(0)

/free
// Determine any overtime hours to be paid.
if Hours > 40;

Overtime = (Hours - 40) * Rate * 1.5;
Hours = 40;

endif;
// Calculate the total pay and return it to the caller.
return Rate * Hours + Bonus + Overtime;

/end-free
P CalcPay E

Figure 4. A Sample Payroll Calculation Program (Part 3 of 3)

Using IBM i

12 ILE RPG Programmer’s Guide

Table 25. Commonly Used CL Commands

Action CL command Result

Using System Menus
GO MAIN Display main menu

GO INFO Display help menu

GO CMDRPG List commands for RPG

GO CMDCRT List commands for creating

GO CMDxxx List commands for ’xxx’

Calling
CALL program-name

Runs a program

Compiling
CRTxxxMOD Creates xxx Module

CRTBNDxxx Creates Bound xxx Program

Binding
CRTPGM Creates a program from ILE modules

CRTSRVPGM Creates a service program

UPDPGM Updates a bound program object

Debugging
STRDBG Starts ILE source debugger

ENDDBG Ends ILE source debugger

Creating Files
CRTPRTF Creates Print File

CRTPF Creates Physical File

CRTSRCPF Creates Source Physical File

CRTLF Creates Logical File

WebSphere Development Studio for System i
IBM Rational Development Studio for System i is an application development
package to help you rapidly and cost-effectively increase the number of e-business
applications for the System i5. This package consolidates all of the key System i
development tools, both host and workstation, into one IBM System i5 offering.

The host development tools have undergone major improvements. We are shipping
new C and C++ compilers, completely refreshed from the latest AIX compilers, to
replace the existing versions of these compilers. This will help customers and
solution providers port e-business solutions from other platforms. ILE RPG has
also made major enhancements. Improved Java interoperability and free-form
C-Specs top the list of enhancements. COBOL has added z/OS migration
capabilities as well as introducing some COBOL/Java interoperability capabilities.

The following components are included in WebSphere Development Studio for
System i.

Host components:
v ILE RPG
v ILE COBOL
v ILE C/C++
v Application Development ToolSet (ADTS)

Using IBM i

Chapter 1. Overview of the RPG IV Programming Language 13

Workstation components:
v IBM WebFacing Tool
v System i development tools: Remote System Explorer and System i projects
v Java development tools (with System i enhancements)
v Web development tools (with System i enhancements)
v Struts environment support
v Database development tools
v Web services development tools
v System development tools
v XML development tools
v CODE
v VisualAge RPG
v Integrated System i5/OS debugger

WebSphere Development Studio Client for System i
WebSphere Development Studio Client for System i (Development Studio Client) is
an application development package of workstation tools that helps you rapidly
and cost-effectively increase the number of e-business applications for the System i.

This package consolidates all of the key System i workstation-based development
tools into one System i offering. It is also an included entitlement for purchasers of
WebSphere Development Studio for System i.

See Using the application development tools in the client product for information
about getting started with the client tools.

WebSphere Development Studio Client for System i Feature List:

The workbench-based integrated development environment
IBM WebSphere Development Studio Client for System i uses WebSphere
Studio Workbench (WSWB) version 2.1.

The IBM WebFacing Tool
The IBM WebFacing Tool can convert your DDS display source files into an
application that can be run in a browser.

Remote System Explorer and System i Development Tools
The Remote System Explorer, included as a part of System i development
tools, encompasses the framework, user interface, editing, and file,
command, and job actions of System i capability.

System i Java development tools
Java development tools and System i Java development tools give you the
ability to develop Java applications and write, compile, test, debug, and
edit programs written in the Java programming language for Java
applications development.

System i Web development tools
Web development tools give you the ability to create new e-business
applications that use a Web-based front end to communicate with the
business logic in an ILE and non-ILE language program residing on the
System i host.

WebSphere Developoment Studio for System i

14 ILE RPG Programmer’s Guide

Struts environment support
Development Studio Client offers support for Struts and the Web Diagram
editor.

Database development tools
Database development tools support any local or remote database that has
a Java Database Connectivity (JDBC) driver.

Web services development tools
Web services development tools allow developers to create modular
applications that can be invoked on the World Wide Web.

System development tools
System development tools are used to test applications in a local or
remotely installed run-time environment.

XML development tools
XML development tools support any XML-based development.

CODE (CoOperative Development Environment)
CODE is the classic set of Windows tools for System i development. It
gives you a suite of utilities for creating source and DDS files, and
managing your projects.

VisualAge RPG
VisualAge RPG is a visual development environment that allows you to
create and maintain client/system applications on the workstation.

Integrated i5/OS debugger
The integrated i5/OS debugger helps you debug code that is running on
i5/OS or on your Windows system, using a graphical user interface on
your workstation.

If you want to learn more about WebSphere Development Studio, see the most
current information available on the World Wide Web at ibm.com/software/
awdtools/iseries/.

WebSphere Developoment Studio for System i

Chapter 1. Overview of the RPG IV Programming Language 15

16 ILE RPG Programmer’s Guide

Chapter 2. RPG Programming in ILE

ILE RPG is an implementation of the RPG IV programming language in the
Integrated Language Environment. It is one of the family of ILE compilers
available on i5/OS.

ILE is a recent approach to programming on System i5. It is the result of major
enhancements to the System i machine architecture and the IBM i operating
system. The ILE family of compilers includes: ILE RPG, ILE C, ILE COBOL, ILE
CL, and VisualAge for C++. Table 26 lists the programming languages supported
by the IBM i operating system. In addition to the support for the ILE languages,
support for the original program model (OPM) and extended program model
(EPM) languages has been retained.

Table 26. Programming Languages Supported on the System i5

Integrated Language
Environment (ILE)

Original Program Model
(OPM)

Extended Program Model
(EPM)

C++ BASIC (PRPQ) FORTRAN

C CL PASCAL (PRPQ)

CL COBOL

COBOL PL/I (PRPQ)

RPG RPG

Compared to OPM, ILE provides RPG users with improvements or enhancements
in the following areas of application development:
v Program creation
v Program management
v Program call
v Source debugging
v Bindable application program interfaces (APIs)

Each of the above areas is explained briefly in the following paragraphs and
discussed further in the following chapters.

Program Creation
In ILE, program creation consists of:
1. Compiling source code into modules
2. Binding (combining) one or more modules into a program object

You can create a program object much like you do in the OPM framework, with a
one-step process using the Create Bound RPG Program (CRTBNDRPG) command.
This command creates a temporary module which is then bound into a program
object. It also allows you to bind other objects through the use of a binding
directory.

Alternatively, you may create a program using separate commands for compilation
and binding. This two-step process allows you to reuse a module or update one

© Copyright IBM Corp. 1994, 2010 17

module without recompiling the other modules in a program. In addition, because
you can combine modules from any ILE language, you can create and maintain
mixed-language programs.

In the two-step process, you create a module object using the Create RPG Module
(CRTRPGMOD) command. This command compiles the source statements into a
module object. A module is a nonrunnable object; it must be bound into a program
object to be run. To bind one or more modules together, use the Create Program
(CRTPGM) command.

Service programs are a means of packaging the procedures in one or more
modules into a separately bound object. Other ILE programs can access the
procedures in the service program, although there is only one copy of the service
program on the system. The use of service programs facilitates modularity and
maintainability. You can use off-the-shelf service programs developed by third
parties or, conversely, package your own service programs for third-party use. A
service program is created using the Create Service Program (CRTSRVPGM)
command.

You can create a binding directory to contain the names of modules and service
programs that your program or service program may need. A list of binding
directories can be specified when you create a program on the CRTBNDRPG,
CRTSRVPGM, and CRTPGM commands. They can also be specified on the
CRTRPGMOD command; however, the search for a binding directory is done when
the module is bound at CRTPGM or CRTSRVPGM time. A binding directory can
reduce program size because modules or service programs listed in a binding
directory are used only if they are needed.

Figure 5 shows the two approaches to program creation.

Once a program is created you can update the program using the Update Program
(UPDPGM) or Update Service Program (UPDSRVPGM) commands. This is useful,
because it means you only need to have the new or changed module objects
available to update the program.

For more information on the one-step process, see Chapter 6, “Creating a Program
with the CRTBNDRPG Command,” on page 61. For more information on the
two-step process, see Chapter 7, “Creating a Program with the CRTRPGMOD and

RPG IV source specifications
Externally described files
Copy source text

ILE Program
(CRTBNDRPG)

ILE HLL Modules,
Service Programs

RPG Module
(CRTRPGMOD)

One-Step Process Two-Step Process

ILE Program
(CRTPGM)

Figure 5. Program Creation in ILE

RPG Programming in ILE

18 ILE RPG Programmer’s Guide

CRTPGM Commands,” on page 77. For more information on service programs, see
Chapter 8, “Creating a Service Program,” on page 95.

Program Management
ILE provides a common basis for:
v Managing program flow
v Sharing resources
v Using application program interfaces (APIs)
v Handling exceptions during a program’s run time

It gives RPG users much better control over resources than was previously
possible.

ILE programs and service programs are activated into activation groups which are
specified at program-creation time. The process of getting a program or service
program ready to run is known as activation. Activation allocates resources within
a job so that one or more programs can run in that space. If the specified activation
group for a program does not exist when the program is called, then it is created
within the job to hold the program’s activation.

An activation group is the key element governing an ILE application’s resources
and behavior. For example, you can scope commitment-control operations to the
activation group level. You can also scope file overrides and shared open data
paths to the activation group of the running application. Finally, the behavior of a
program upon termination is also affected by the activation group in which the
program runs.

For more information on activation groups, see “Managing Activation Groups” on
page 114.

You can dynamically allocate storage for a run-time array using the bindable APIs
provided for all ILE programming languages. These APIs allow single- and
mixed-language applications to access a central set of storage management
functions and offer a storage model to languages that do not now provide one.
RPG offers some storage management capabilities using operation codes. For more
information on storage management, see “Managing Dynamically-Allocated
Storage” on page 117.

Program Call
In ILE, you can write applications in which ILE RPG programs and OPM RPG/400
programs continue to interrelate through the traditional use of dynamic program
calls. When using such calls, the calling program specifies the name of the called
program on a call statement. The called program’s name is resolved to an address
at run time, just before the calling program passes control to the called program.

You can also write ILE applications that can interrelate with faster static calls.
Static calls involve calls between procedures. A procedure is a self-contained set of
code that performs a task and then returns to the caller. An ILE RPG module
consists of an optional main procedure followed by zero or more subprocedures.
Because the procedure names are resolved at bind time (that is, when you create
the program), static calls are faster than dynamic calls.

Static calls also allow

RPG Programming in ILE

Chapter 2. RPG Programming in ILE 19

v Operational descriptors
v Omitted parameters
v The passing of parameters by value
v The use of return values
v A greater number of parameters to be passed

Operational descriptors and omitted parameters can be useful when calling
bindable APIs or procedures written in other ILE languages.

For information on running a program refer to Chapter 9, “Running a Program,”
on page 107. For information on program/procedure call, refer to Chapter 10,
“Calling Programs and Procedures,” on page 133.

Source Debugging
Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about debugging programs and appears in that
product’s online help. With the integrated i5/OS debugger you can debug your
program running on the System i from a graphical user interface on your
workstation. You can also set breakpoints directly in your source before running
the debugger. The integrated i5/OS debugger client user interface also enables you
to control program execution. For example, you can run your program, set line,
watch, and service entry point breakpoints, step through program instructions,
examine variables, and examine the call stack. You can also debug multiple
applications, even if they are written in different languages, from a single debugger
window. Each session you debug is listed separately in the Debug view.

In ILE, you can perform source-level debugging on any single- or mixed-language
ILE application. The ILE source debugger also supports OPM programs. You can
control the flow of a program by using debug commands while the program is
running. You can set conditional and unconditional job or thread breakpoints prior
to running the program. After you call the program, you can then step through a
specified number of statements, and display or change variables. When a program
stops because of a breakpoint, a step command, or a run-time error, the pertinent
module is shown on the display at the point where the program stopped. At that
point, you can enter more debug commands.

For information on the debugger, refer to Chapter 12, “Debugging Programs,” on
page 229.

Bindable APIs
ILE offers a number of bindable APIs that can be used to supplement the function
currently offered by ILE RPG. The bindable APIs provide program calling and
activation capability, condition and storage management, math functions, and
dynamic screen management.

Some APIs that you may wish to consider using in an ILE RPG application
include:
v CEETREC – Signal the Termination-Imminent Condition
v CEE4ABN – Abnormal End
v CEECRHP – Create your own heap
v CEEDSHP – Discard your own heap
v CEEFRST – Free Storage in your own heap

RPG Programming in ILE

20 ILE RPG Programmer’s Guide

v CEEGTST – Get Heap Storage in your own heap
v CEECZST – Reallocate Storage in your own heap
v CEEDOD – Decompose Operational Descriptor

Note: You cannot use these or any other ILE bindable APIs from within a program
created with DFTACTGRP(*YES). This is because bound calls are not
allowed in this type of program.

For more information on these ILE bindable APIs, see Chapter 9, “Running a
Program,” on page 107.

Multithreaded Applications
ILE RPG has two modes of operating in a multithreaded environment: concurrent
and serialized. Each mode has advantages and disadvantages. You can choose
which mode of operation fits each module in your application.

The RPG support for threads ensures that your static storage is handled in a
threadsafe way. However, you are responsible for other aspects of thread-safety for
your application. You must ensure that all the programs that your application uses
are threadsafe, that you manage any shared storage in a threadsafe way, and that
you only use those aspects of the system that are threadsafe.

Table 27. Comparison of thread-safety modes in RPG

Issue THREAD(*CONCURRENT) THREAD(*SERIALIZE)

Is source-modification
required to achieve
thread-safety (other than
coding the THREAD
keyword)?

No, although some
source-code modification
may be necessary to reduce
the amount of static storage
used by the module, if the
number of concurrent
threads might be very large.

No

Is there a deadlock risk due
to the handling of static
storage within the module?

Yes, if SERIALIZE is coded
on a Procedure specification.

Yes, the risk is high.
Deadlock is possible at a
module level. If THREAD_A
is in module MOD_1 and
THREAD_B is in module
MOD_2, and each thread is
trying to call a procedure in
the other module.

Does the module get the
benefits of running
multithreaded?

Yes No

Is there a risk of
bottlenecks?

Yes, if the SERIALIZE
keyword is coded on a
procedure specification.

Yes, the risk is high. The
serialization of access to the
module can cause the
module to act as a bottleneck
within the application. If one
thread is active in the
module, other threads must
wait until the first thread is
no longer running in the
module, in any procedure.

Is thread-local storage
supported?

Yes, it is the default type of
static storage.

No

RPG Programming in ILE

Chapter 2. RPG Programming in ILE 21

#
#
#

#
#
#
#
#

##

###

#
#
#
#
#

#
#
#
#
#
#
#

#

#
#
#

#
#
#
#
#
#
#
#
#
#

#
#
#

##

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

Table 27. Comparison of thread-safety modes in RPG (continued)

Issue THREAD(*CONCURRENT) THREAD(*SERIALIZE)

Is all-thread static storage
supported?

Yes Yes, it is the only supported
type of static storage.

Can the RPG programmer
choose whether a static
variable is thread-local or
shared by all threads?

Yes No, only all-thread static
storage is supported.

Is there a concern about the
amount of memory required
at runtime?

Possibly. The amount of
static storage needed for the
module is multiplied by the
number of threads using the
module.

No, all threads use the same
static storage.

Who is the intended user? An RPG programmer who
wants the performance
benefits of running in
multiple threads, who is
either willing to accept the
amount of thread-local static
storage used by each thread,
and/or willing to rewrite the
RPG module to use the least
amount of static storage
possible.

An RPG programmer who
does not wish to rewrite the
module to reduce the
amount of static storage, or
who is concerned about the
additional storage per thread
required by
THREAD(*CONCURRENT).
The RPG programmer is
willing to accept the fact that
the module can act as a
bottleneck if more than one
thread wants to run a
procedure in the module at
the same time.

For more information, see “Multithreading Considerations” on page 165.

RPG Programming in ILE

22 ILE RPG Programmer’s Guide

#

###

#
#
##
#

#
#
#
#

##
#

#
#
#

#
#
#
#
#

#
#

##
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

Chapter 3. Program Creation Strategies

There are many approaches you can take in creating programs using an ILE
language. This section presents three common strategies for creating ILE programs
using ILE RPG or other ILE languages.
1. Create a program using CRTBNDRPG to maximize OPM compatibility.
2. Create an ILE program using CRTBNDRPG.
3. Create an ILE program using CRTRPGMOD and CRTPGM.

The first strategy is recommended as a temporary one. It is intended for users who
have OPM applications and who, perhaps due to lack of time, cannot move their
applications to ILE all at once. The second strategy can also be a temporary one. It
allows you time to learn more about ILE, but also allows you to immediately use
some of its features. The third strategy is more involved, but offers the most
flexibility.

Both the first and second strategy make use of the one-step program creation
process, namely, CRTBNDRPG. The third strategy uses the two-step program
creation process, namely, CRTRPGMOD followed by CRTPGM.

Strategy 1: OPM-Compatible Application
Strategy 1 results in an ILE program that interacts well with OPM programs. It
allows you to take advantage of RPG IV enhancements, but not all of the ILE
enhancements. You may want such a program temporarily while you complete
your migration to ILE.

Method
Use the following general approach to create such a program:
1. Convert your source to RPG IV using the CVTRPGSRC command.

Be sure to convert all /COPY members that are used by the source you are
converting.

2. Create a program object using the CRTBNDRPG command, specifying
DFTACTGRP(*YES).

Specifying DFTACTGRP(*YES) means that the program object will run only in the
default activation group. (The default activation group is the activation group
where all OPM programs are run.) As a result, the program object will interact
well with OPM programs in the areas of override scoping, open scoping, and
RCLRSC.

When you use this approach you cannot make use of ILE static binding. This
means that you cannot code a bound procedure call in your source, nor can you
use the BNDDIR or ACTGRP parameters on the CRTBNDRPG command when
creating this program.

Example of OPM-Compatible Program
Figure 6 on page 24 shows the run-time view of a sample application where you
might want an OPM-compatible program. The OPM application consisted of a CL
program and two RPG programs. In this example, one of the RPG programs has

© Copyright IBM Corp. 1994, 2010 23

been moved to ILE; the remaining programs are unchanged.

Effect of ILE
The following deals with the effects of ILE on the way your application handles:

Program call OPM programs behave as before. The system automatically creates
the OPM default activation group when you start your job, and all
OPM applications run in it. One program can call another program
in the default activation group by using a dynamic call.

Data Storage for static data is created when the program is activated,
and it exists until the program is deactivated. When the program
ends (either normally or abnormally), the program’s storage is
deleted. To clean up storage for a program that returns without
ending, use the Reclaim Resource (RCLRSC) command.

Files File processing is the same as in previous releases. Files are closed
when the program ends normally or abnormally.

Errors As in previous releases, the compiler handles errors within each
program separately. The errors you see that originated within your
program are the same as before. However, the errors are now
communicated between programs by the ILE condition manager, so
you may see different messages between programs. The messages
may have new message IDs, so if your CL program monitors for a
specific message ID, you may have to change that ID.

Related Information
Converting to RPG IV “Converting Your Source” on page 454

One-step creation process Chapter 6, “Creating a Program with the
CRTBNDRPG Command,” on page 61

ILE static binding Chapter 10, “Calling Programs and Procedures,” on
page 133; also ILE Concepts

Job

Default Activation Group

OPM CL

ILE RPG

OPM RPG

*PGM(X)

*PGM(Y)

*PGM(Z)

Figure 6. OPM-Compatible Application

OPM-Compatible Application

24 ILE RPG Programmer’s Guide

Exception handling differences
“Differences between OPM and ILE RPG Exception
Handling” on page 290

Strategy 2: ILE Program Using CRTBNDRPG
Strategy 2 results in an ILE program that can take advantage of ILE static binding.
Your source can contain static procedure calls because you can bind the module to
other modules or service programs using a binding directory. You can also specify
the activation group in which the program will run.

Method
Use the following general approach to create such a program:
1. If starting with RPG III source, convert your source to RPG IV using the

CVTRPGSRC command.
If converting, be sure to convert all /COPY members and any programs that
are called by the source you are converting. Also, if you are using CL to call the
program, you should also make sure that you are using ILE CL instead of OPM
CL.

2. Determine the activation group the program will run in.
You may want to name it after the application name, as in this example.

3. Identify the names of the binding directories, if any, to be used.
It is assumed with this approach that if you are using a binding directory, it is
one that is already created for you. For example, there may be a third-party
service program that you may want to bind to your source. Consequently, all
you need to know is the name of the binding directory.

4. Create an ILE program using CRTBNDRPG, specifying DFTACTGRP(*NO), the
activation group on the ACTGRP parameter, and the binding directory, if any,
on the BNDDIR parameter.

Note that if ACTGRP(*CALLER) is specified and this program is called by a
program running in the default activation group, then this program will behave
according to ILE semantics in the areas of override scoping, open scoping, and
RCLRSC.

The main drawback of this strategy is that you do not have a permanent module
object that you can later reuse to bind with other modules to create an ILE
program. Furthermore, any procedure calls must be to modules or service
programs that are identified in a binding directory. If you want to bind two or
more modules without using a binding directory when you create the program,
you need to use the third strategy.

Example of ILE Program Using CRTBNDRPG
Figure 7 on page 26 shows the run-time view of an application in which an ILE CL
program calls an ILE RPG program that is bound to a supplied service program.
The application runs in the named activation group XYZ.

OPM-Compatible Application

Chapter 3. Program Creation Strategies 25

Effect of ILE
The following deals with the effects of ILE on the way your program handles:

Program call The system automatically creates the activation group if it does not
already exist, when the application starts.

The application can contain dynamic program calls or static
procedure calls. Procedures within bound programs call each other
by using static calls. Procedures call ILE and OPM programs by
using dynamic calls.

Data The lifetime of a program’s storage is the same as the lifetime of
the activation group. Storage remains active until the activation
group is deleted.

The ILE RPG run time manages data so that the semantics of
ending programs and reinitializing the data are the same as for
OPM RPG, although the actual storage is not deleted as it was
when an OPM RPG program ended. Data is reinitialized if the
previous call to the procedure ended with LR on, or ended
abnormally.

Program data that is identified as exported or imported (using the
keywords EXPORT and IMPORT respectively) is external to the
individual modules. It is known among the modules that are
bound into a program.

Files By default, file processing (including opening, sharing, overriding,
and commitment control) by the system is scoped to the activation
group level. You cannot share files at the data management level
with programs in different activation groups. If you want to share
a file across activation groups, you must open it at the job level by
specifying SHARE(*YES) on an override command or create the file
with SHARE(*YES).

Errors When you call an ILE RPG program or procedure in the same

Job

XYZ Activation Group

ILE CL

ILE RPG

Supplied Service
Program

*PGM(X)

*PGM(Y)

*SRVPGM(Z)

Figure 7. ILE Program Using CRTBNDRPG

ILE Program Using CRTBNDRPG

26 ILE RPG Programmer’s Guide

activation group, if it gets an exception that would previously have
caused it to display an inquiry message, now your calling program
will see that exception first.

If your calling program has an error indicator or *PSSR, the
program or procedure that got the exception will end abnormally
without the inquiry message being displayed. Your calling program
will behave the same (the error indicator will be set on or the
*PSSR will be invoked).

When you call an OPM program or a program or main procedure
in a different activation group, the exception handling will be the
same as in OPM RPG, with each program handling its own
exceptions. The messages you see may have new message IDs, so
if you monitor for a specific message ID, you may have to change
that ID.

Each language processes its own errors and can process the errors
that occur in modules written in another ILE language. For
example, RPG will handle any C errors if an error indicator has
been coded. C can handle any RPG errors.

Related Information
Converting to RPG IV “Converting Your Source” on page 454

One-step creation process Chapter 6, “Creating a Program with the
CRTBNDRPG Command,” on page 61

Activation groups “Managing Activation Groups” on page 114

RCLRSC “Reclaim Resources Command” on page 116

ILE static binding Chapter 10, “Calling Programs and Procedures,” on
page 133; also ILE Concepts

Exception handling differences
“Differences between OPM and ILE RPG Exception
Handling” on page 290

Override and open scope “Overriding and Redirecting File Input and
Output” on page 341 and “Sharing an Open Data
Path” on page 345; also ILE Concepts

Strategy 3: ILE Application Using CRTRPGMOD
This strategy allows you to fully utilize the concepts offered by ILE. However,
while being the most flexible approach, it is also more involved. This section
presents three scenarios for creating:
v A single-language application
v A mixed-language application
v An advanced application

The effect of ILE is the same as described in “Effect of ILE” on page 26.

You may want to read about the basic ILE concepts in ILE Concepts before using
this approach.

ILE Program Using CRTBNDRPG

Chapter 3. Program Creation Strategies 27

Method
Because this approach is the most flexible, it includes a number of ways in which
you might create an ILE application. The following list describes the main steps
that you may need to perform:
1. Create a module from each source member using the appropriate command, for

example, CRTRPGMOD for RPG source, CRTCLMOD for CL source, etc..
2. Determine the ILE characteristics for the application, for example:

v Determine which module will contain the procedure that will be the starting
point for the application. The module you choose as the entry module is the
first one that you want to get control. In an OPM application, this would be
the command processing program, or the program called because a menu
item was selected.

v Determine the activation group the application will run in. (Most likely you
will want to run in a named activation group, where the name is based on
the name of the application.)

v Determine the exports and imports to be used.
3. Determine if any of the modules will be bound together to create a service

program. If so, create the service programs using CRTSRVPGM.
4. Identify the names of the binding directories, if any, to be used.

It is assumed with this approach that if you are using a binding directory, it is
one that is already created for you. For example, there may be a third-party
service program that you may want to bind to your source. Consequently, all
you need to know is the name of the binding directory.

5. Bind the appropriate modules and service programs together using CRTPGM,
specifying values for the parameters based on the characteristics determined in
step 2.

An application created using this approach can run fully protected, that is, within
its own activation group. Furthermore, it can be updated easily through use of the
UPDPGM or UPDSRVPGM commands. With these commands you can add or
replace one or more modules without having to re-create the program object.

Single-Language ILE Application Scenario
In this scenario you compile multiple source files into modules and bind them into
one program that is called by an ILE RPG program. Figure 8 on page 29 shows the
run-time view of this application.

ILE Application Using CRTRPGMOD

28 ILE RPG Programmer’s Guide

The call from program X to program Y is a dynamic call. The calls among the
modules in program Y are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Mixed-Language ILE Application Scenario
In this scenario, you create integrated mixed-language applications. The main
module, written in one ILE language, calls procedures written in another ILE
language. The main module opens files that the other modules then share. Because
of the use of different languages, you may not expect consistent behavior.
However, ILE ensures that this occurs.

Figure 9 on page 30 shows the run-time view of an application containing a
mixed-language ILE program where one module calls a non-bindable API,
QUSCRTUS (Create User Space).

Job

XY Activation Group

RPG

RPG *MODULE(Y1)

RPG *MODULE(Y2)

RPG *MODULE(Y3)

RPG *MODULE(Y4)

*PGM(X)

*PGM(Y)

Figure 8. Single-Language Application Using CRTRPGMOD and CRTPGM

ILE Application Using CRTRPGMOD

Chapter 3. Program Creation Strategies 29

The call from program Y to the OPM API is a dynamic call. The calls among the
modules in program Y are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Advanced Application Scenario
In this scenario, you take full advantage of ILE function, including service
programs. The use of bound calls, used for procedures within modules and service
programs, provide improved performance especially if the service program runs in
the same activation group as the caller.

Figure 10 on page 31 shows an example in which an ILE program is bound to two
service programs.

Job

Y Activation Group

CL *MODULE(Y1)

RPG *MODULE(Y2)

C *MODULE(Y3)

RPG *MODULE(Y4)

*PGM(Y)

Default Activation Group

*PGM(QUSCRTUS)

Figure 9. Mixed-Language Application

ILE Application Using CRTRPGMOD

30 ILE RPG Programmer’s Guide

The calls from program X to service programs Y and Z are static calls.

See “Effect of ILE” on page 26 for details on the effects of ILE on the way your
application handles calls, data, files and errors.

Related Information
Two-step creation process Chapter 7, “Creating a Program with the

CRTRPGMOD and CRTPGM Commands,” on page
77

Activation groups “Managing Activation Groups” on page 114

ILE static binding Chapter 10, “Calling Programs and Procedures,” on
page 133; also ILE Concepts

Exception Handling Chapter 13, “Handling Exceptions,” on page 285;
also ILE Concepts

Service programs Chapter 8, “Creating a Service Program,” on page
95; also ILE Concepts

Updating a Program “Using the UPDPGM Command” on page 91

A Strategy to Avoid
ILE provides many alternatives for creating programs and applications. However,
not all are equally good. In general, you should avoid a situation where an
application consisting of OPM and ILE programs is split across the OPM default
activation group and a named activation group. In other words, try to avoid the
scenario shown in Figure 11 on page 32.

Job

XYZ Activation Group

CL *MODULE(X1)

RPG *MODULE(X2)

C *MODULE(Z1)

CL *MODULE(Z2)

*PGM(X)

*SRVPGM(Y)

*SRVPGM(Z)

RPG

Figure 10. Advanced Application

ILE Application Using CRTRPGMOD

Chapter 3. Program Creation Strategies 31

When an application is split across the default activation group and any named
activation group, you are mixing OPM behavior with ILE behavior. For example,
programs in the default activation group may be expecting the ILE programs to
free their resources when the program ends. However, this will not occur until the
activation group ends.

Similarly, the scope of overrides and shared ODPs will be more difficult to manage
when an application is split between the default activation group and a named
one. By default, the scope for the named group will be at the activation group
level, but for the default activation group, it can be either call level or job level, not
activation group level.

Note: Calling an ILE program from the command line, or from an OPM program
that simply makes a call, is not a problem. The problems, which can all be
solved, stem from OPM programs and ILE programs using shared resources
such as overrides and commitment control, and from OPM programs trying
to using OPM commands such as RCLRSC which have no effect on
programs running in a named activation group.

Job

CL

*PGM(X)

RPG

RPG

*PGM(Y)

*SRVPGM(Z)

Default Activation Group

QILE Activation Group

Figure 11. Scenario to Avoid. An application has a CL program in the OPM default activation
group and ILE programs in a named activation group.

A Strategy to Avoid

32 ILE RPG Programmer’s Guide

Chapter 4. Creating an Application Using Multiple Procedures

The ability to code more than one procedure in an ILE RPG module greatly
enhances your ability to code a modular application. This chapter discusses why
and how you might use such a module in your application. Specifically this
chapter presents:
v Overview of key concepts
v Example of module with more than one procedure
v Coding considerations

Refer to the end of this section to see where to look for more detailed information
on coding modules with multiple procedures.

A Multiple Procedures Module — Overview
An ILE program consists of one or more modules; a module is made up of one or
more procedures.
1. A procedure is a self-contained unit of computation that is called using a

bound call.
2. The RPG Compiler restricts the RPG programmer from calling a linear-main

procedure with a bound call. Instead, the bound call to the linear-main
procedure is made by the compiler-supplied Program Entry Procedure (PEP) of
the program. The prototype for the linear-main procedure always uses the
EXTPGM keyword, so calls using the prototype perform a program call.

Note: In the RPG documentation, the term ’procedure’ refers to both main and
subprocedures.

Main Procedures and Subprocedures
An ILE RPG module consists of zero or more subprocedures and optionally, a main
procedure. A main procedure is a procedure that can be specified as the program
entry procedure (and so receive control when an ILE program is first called). A
cycle-main procedure can be defined in the main source section, which is the set of
H, F, D, I, C, and O specifications that begin a module; a linear-main procedure
can be specified in the subprocedure section and specially-designated with the
MAIN keyword on a Control specification. For additional information about
procedures and the program logic cycle, refer to the ″WebSphere Development Studio
ILE RPG Reference".

A subprocedure is a procedure that is specified after the main source section. A
subprocedure differs from a main procedure primarily in that:
v Names that are defined within subprocedure are not accessible outside the

subprocedure.
v No cycle code is generated for the subprocedure.
v The call interface must be prototyped.
v Calls to subprocedures must be bound procedure calls.
v Only P, F, D, and C specifications can be used.
v Other than being called through a program call rather than a bound call, a

linear-main procedure is just like any other subprocedure.

© Copyright IBM Corp. 1994, 2010 33

#
#

#
#
#
#
#

#
#
#
#
#
#
#
#
#

#

#
#

Subprocedures can provide independence from other procedures because the data
items are local. Local data items are normally stored in automatic storage, which
means that the value of a local variable is not preserved between calls to the
procedure.

Subprocedures offer another feature. You can pass parameters to a subprocedure
by value, and you can call a subprocedure in an expression to return a value.
Figure 12 shows what a module might look like with multiple procedures.

As the picture suggests, you can now code subprocedures to handle particular
tasks. These tasks may be needed by the main procedures or by other modules in
the application. Furthermore, you can declare temporary data items in
subprocedures and not have to worry if you have declared them elsewhere in the
module.

Prototyped Calls
To call a subprocedure, you must use a prototyped call. You can also call any
program or procedure that is written in any language in this way. A prototyped

P

D

C

P

specification
specifications - Data items visible only

to Subprocedure 1
specifications - Can access local and

global data items
specifications

P

D

C

P

specification
specifications - Data items visible

only to Subprocedure 2
specifications - Can access local and

global data items
specifications

H

F

D

I

C

O

specifications
specifications
specifications - Data items visible

throughout module
specifications
specifications
specifications

Cycle-Main
Procedure

Main
Source
Section

Global
Scope

Local
Scope

Local
Scope

Subprocedure 1

Subprocedure 2

Program Data - part of main source section

*MODULE

Figure 12. An ILE RPG Cycle-module with Multiple Procedures

Multiple Procedures Module

34 ILE RPG Programmer’s Guide

#

#
#
#

call is one where the call interface is checked at compile time through the use of a
prototype. A prototype is a definition of the call interface. It includes the following
information:
v Whether the call is bound (procedure) or dynamic (program)
v How to find the program or procedure (the external name)
v The number and nature of the parameters
v Which parameters must be passed, and which are optionally passed
v Whether operational descriptors are passed (for a procedure)
v The data type of the return value, if any (for a procedure)

The prototype is used by the compiler to call the program or procedure correctly,
and to ensure that the caller passes the correct parameters. Figure 13 shows a
prototype for a procedure FmtCust, which formats various fields of a record into
readable form. It has two output parameters.

To format an address, the application calls a procedure FmtAddr. FmtAddr has
several input parameters, and returns a varying character field. Figure 14 shows
the prototype for FmtAddr.

If the procedure is coded in the same module as the call, specifying the prototype
is optional. If the prototype is not specified, the compiler will generate the
prototype from the procedure interface. However, if the procedure is exported and
it is also called from another RPG module or program, a prototype should be
specified in a copy file, and the copy file should be copied into both the calling
module and the module that is exporting the procedure.

If the program or procedure is prototyped, you call it with CALLP or within an
expression if you want to use the return value. You pass parameters in a list that
follows the name of the prototype, for example, name (parm1 : parm2 : ...).

Figure 15 on page 36 shows a call to FmtCust. Note that the names of the output
parameters, shown above in Figure 13, do not match those in the call statement.
The parameter names in a prototype are for documentation purposes only. The
prototype serves to describe the attributes of the call interface. The actual definition

// Prototype for procedure FmtCust (Note the PR on definition
// specification.) It has two output parameters.
D FmtCust PR
D Name 100A
D Address 100A

Figure 13. Prototype for FmtCust Procedure

//---
// FmtAddr - procedure to produce an address in the form
//---
D FmtAddr PR 100A VARYING
D streetNum 10I 0 CONST
D streetName 50A CONST
D city 20A CONST
D state 15A CONST
D zip 5P 0 CONST

Figure 14. Prototype for FmtAddr Procedure

Multiple Procedures Module

Chapter 4. Creating an Application Using Multiple Procedures 35

|
|
|
|
|
|

of call parameters takes place inside the procedure itself.

Using prototyped calls you can call (with the same syntax):
v Programs that are on the system at run time
v Exported procedures in other modules or service programs that are bound in the

same program or service program
v Subprocedures in the same module

FmtCust calls FmtAddr to format the address. Because FmtCust wants to use the
return value, the call to FmtAddr is made in an expression. Figure 16 shows the
call.

The use of procedures to return values, as in the above figure, allows you to write
any user-defined function you require. In addition, the use of a prototyped call
interface enables a number of options for parameter passing.
v Prototyped parameters can be passed in several ways: by reference, by value (for

procedures only), or by read-only reference. The default method for RPG is to
pass by reference. However, passing by value or by read-only reference gives
you more options for passing parameters.

v If the prototype indicates that it is allowed for a given parameter, you may be
able to do one or more of the following:
– Pass *OMIT
– Leave out a parameter entirely
– Pass a shorter parameter than is specified (for character and graphic

parameters, and for array parameters)

Example of Module with Multiple Procedures
Now let us look at an example of a multiple procedures module. In this
’mini-application’ we are writing a program ARRSRPT to produce a report of all
customers whose accounts are in arrears. We will create the basic report as a
module, so that it can be bound to other modules, if necessary. There are two main
tasks that are required for this module:
1. Determine that a record of an account from a customer file is in arrears.
2. Format the data into a form that is suitable for the report.

We have decided to code each task as a subprocedure. Conceptually, the module
will look something like that shown in Figure 17 on page 37.

C CALLP FmtCust(RPTNAME : RPTADDR)

Figure 15. Calling the FmtCust Procedure

//--
// Call the FmtAddr procedure to handle the address
//--
Address = FmtAddress (STREETNUM : STREETNAME :

CITY : STATE : ZIP);

Figure 16. Calling the FmtAddr Procedure

Multiple Procedures Module

36 ILE RPG Programmer’s Guide

Now consider the first subprocedure, InArrears, which is shown in Figure 18 on
page 38. InArrears is called by the main procedure to determine if the current
record is in arrears.

TIP
When coding subprocedures that use global fields, you may want to establish
a naming convention that shows the item to be global. In this example, the
uppercase field names indicate DDS fields. Another option would be to prefix
’g_’, or some other string to indicate global scope.

If the record is in arrears, the subprocedure returns ’1’ to the main procedure.

Open file, read record, write
output records, close files

Subprocedure to determine if
customer record is in arrears

Subprocedure to format
customer data into report form

Main Procedure

InArrears

FmtCust

ARRSRPT MODULE

Figure 17. Components of the ARRSRPT Module

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 37

Figure 18 shows the main elements that are common to all subprocedures.

�1� All subprocedures begin and end with procedure specifications.

�2� After the Begin-Procedure specification (B in position 24 of the procedure
specification), you code a procedure interface definition. The return value,
if any, is defined on the PI specification. Any parameters are listed after the
PI specification.

�3� Any variables or prototypes that are used by the subprocedure are defined
after the procedure interface definition.

�4� The return value, if specified, is returned to the caller with a RETURN
operation.

�5� If the record is not in arrears, the subprocedure returns ’0’ to the main
procedure.

For all subprocedures, and also for a cycle-main procedure with prototyped entry
parameters, you need to define a procedure interface. A procedure interface
definition is a repeat of the prototype information, if the prototype was specified,
within the definition of a procedure. It is used to define the entry parameters for
the procedure. The procedure interface definition is also used to ensure that the
internal definition of the procedure is consistent with the external definition (the
prototype). When the prototype is not specified, the compiler generates the
prototype from the procedure interface, so the procedure interface definition
provides both the internal definition and the external definition. In the case of
InArrears, there are no entry parameters.

//--
// InArrears
//
// Parameters: (none)
// Globals: DUEDATE, AMOUNT, CurDate
//
// Returns: '1' if the customer is in arrears
//--
P InArrears B �1�
D InArrears PI 1A �2�
// Local declarations
D DaysLate S 10I 0 �3�
D DateDue S D �3�
// Body of procedure
/free

DateDue = %date (DUEDATE: *ISO);
DaysLate = %diff (CurDate: DateDue: *d);
// The data in the input file comes from another type
// of computer, and the AMOUNTC field is a character
// string containing the numeric value. This string
// must be converted to the numeric AMOUNT field
// for printing.

AMOUNT = %dec(AMOUNTC : 31 : 9);
if DaysLate > 60 AND AMOUNT > 100.00;

return '1'; �4�
endif;
return '0'; �4� �5�

/end-free
P InArrears E �1�

Figure 18. Source for Subprocedure InArrears

Example of Module with Multiple Procedures

38 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|

Consider next the subprocedure FmtCust, which is shown in Figure 19. FmtCust is
called by ARRSRPT to format the relevant fields of a record into an output record
for the final report. (The record represents an account that is in arrears.) FmtCust
uses global data, and so does not have any input parameters. It formats the data
into two output fields: one for the name, and one for the address.

Finally, consider the last subprocedure of this application, FmtAddr. Notice that
FmtAddr does not appear in the ARRSRPT module, that is shown in Figure 17 on
page 37. We decided to place FmtAddr inside another module called FMTPROCS.
FMTPROCS is a utility module that will contain any conversion procedures that
other modules might need to use.

Figure 20 on page 40 shows the source of the module FMTPROCS. Since procedure
FmtAddr is called from another module, a prototype is required. So that the
prototype can be shared, we have placed the prototype into a /COPY file which is
copied into both the calling module, to provide information about how to call the
procedure, and into the module that defines the procedure, to ensure that the
prototype matches the procedure interface.

//--
// FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
// readable forms
//
// Parameters: Name (output)
// Address (output)
// Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY
// STATE, ZIP
//--

P FmtCust B
D FmtCust PI
D Name 100A
D Address 100A

/free
//--
// CUSTNAME and CUSTNUM are formatted to look like this:
// A&P Electronics (Customer number 157)
//--
Name = CUSTNAME + ' ' + '(Customer number '

+ %char(CUSTNUM) + ')';
//--
// Call the FmtAddr procedure to handle the address
//--

Address = FmtAddress (STREETNUM : STREETNAME :
CITY : STATE : ZIP);

/end-free
P FmtCust E

Figure 19. Source for Subprocedure FmtCust

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 39

|
|
|
|
|
|

FMTPROCS is a NOMAIN module, meaning that it consists only of
subprocedures; there is no main procedure. A NOMAIN module compiles faster
and requires less storage because there is no cycle code that is created for the
module. You specify a NOMAIN module, by coding the NOMAIN keyword on the
control specification. For more information on NOMAIN modules, see “Program
Creation” on page 45.

The Entire ARRSRPT Program
The ARRSRPT program consists of two modules: ARRSRPT and FMTPROCS.
Figure 21 on page 41 shows the different pieces of our mini-application.

//===
// Source for module FMTPROCS. This module does not have a
// main procedure, as indicated by the keyword NOMAIN.
//===
H NOMAIN
//---
// The prototype must be available to EACH module containing
// a prototyped procedure. The /COPY pulls in the prototype
// for FmtAddr.
//---
D/COPY QRPGLESRC,FMTPROC_P
P FmtAddr B EXPORT
D FmtAddr PI 100A VARYING
D streetNum 10I 0 CONST
D streetName 50A CONST
D city 20A CONST
D state 15A CONST
D zip 5P 0 CONST
/free

//--
// STREETNUM, STREETNAME, CITY, STATE, and ZIP are formatted to
// look like:
// 27 Garbanzo Avenue, Smallville IN 51423
//--
return %char(streetNum) + ' ' + %trimr(streetName)

+ ', ' + %trim(city) + ' ' + %trim(state)
+ ' ' + %editc(zip : 'X');

P FmtAddr E

Figure 20. Source for module FMTPROCS, containing subprocedure FmtAddr.

Example of Module with Multiple Procedures

40 ILE RPG Programmer’s Guide

Figure 22 shows the source for the entire ARRSRPT module.

Figure 21. The ARRSRPT Application

//===
// Source for module ARRSRPT. Contains a cycle-main procedure and
// two subprocedures: InArrears and FmtCust.
//
// Related Module: CVTPROCS (CharToNum called by InArrears)
//===
//--
// F I L E S
//
// CUSTFILE - contains customer information
// CUSTRPT - printer file (using format ARREARS)
//--
FCUSTFILE IP E DISK
FCUSTRPT O E PRINTER
--
* P R O T O T Y P E S
--
/COPY QRPGLE,FMTPROC_P
--
* InArrears returns '1' if the customer is in arrears
--
D InArrears PR 1A
--
* FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
* readable forms
--
D FmtCust PR
D Name 100A
D Address 100A

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 1 of 3)

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 41

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

--
* G L O B A L D E F I N I T I O N S
--
D CurDate S D
ICUSTREC 01
--
* M A I N P R O C E D U R E
--
C IF InArrears() = '1'
C CALLP FmtCust(RPTNAME : RPTADDR)
C EVAL RPTNUM = CUSTNUM
C WRITE ARREARS
C ENDIF
C *INZSR BEGSR
C MOVEL UDATE CurDate
C ENDSR

--
* S U B P R O C E D U R E S
--

//--
// InArrears
//
// Parameters: (none)
// Globals: DUEDATE, AMOUNT, CurDate
//
// Returns: '1' if the customer is in arrears
//--

P InArrears B
D InArrears PI 1A

// Local declarations
D DaysLate S 10I 0
D DateDue S D

// Body of procedure
/free

DateDue = %date (DUEDATE: *ISO);
DaysLate = %diff (CurDate: DateDue: *d);
// The data in the input file comes from another type
// of computer, and the AMOUNTC field is a character
// string containing the numeric value. This string
// must be converted to the numeric AMOUNT field
// for printing.
AMOUNT = %dec(AMOUNTC : 31 : 9);
if DaysLate > 60 AND AMOUNT > 100.00;

return '1';
endif;
return '0';

/end-free
P InArrears E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 2 of 3)

Example of Module with Multiple Procedures

42 ILE RPG Programmer’s Guide

Note the following about ARRSRPT:
v The definition specifications begin with the prototypes for the prototyped calls.

A /COPY file is used to supply the prototype for the called procedure FmtAddr.
The prototypes do not have to be first, but you should establish an order for the
different types of definitions for consistency.

v The date field CurDate is a global field, meaning that any procedure in the
module can access it.

v The main procedure is simple to follow. It contains calculation specifications for
the two main tasks: the I/O, and an initialization routine.

v Each subprocedure that follows the main procedure contains the details of one
of the tasks.

Sample output for the program ARRSRPT is shown in Figure 23 on page 44.

//--
// FmtCust formats CUSTNAME, CUSTNUM, STREETNAME etc into
// readable forms
//
// Parameters: Name (output)
// Address (output)
// Globals: CUSTNAME, CUSTNUM, STREETNUM, STREETNAME, CITY
// STATE, ZIP
//--

P FmtCust B
D FmtCust PI
D Name 100A
D Address 100A

/free
//--
// CUSTNAME and CUSTNUM are formatted to look like this:
// A&P Electronics (Customer number 157)
//--
Name = CUSTNAME + ' ' + '(Customer number '

+ %char(CUSTNUM) + ')';
//--
// Call the FmtAddr procedure to handle the address
//--

Address = FmtAddress (STREETNUM : STREETNAME :
CITY : STATE : ZIP);

/end-free
P FmtCust E

Figure 22. ILE RPG Complete Source for ARRSRPT Module (Part 3 of 3)

Example of Module with Multiple Procedures

Chapter 4. Creating an Application Using Multiple Procedures 43

Figure 24 and Figure 25 show the DDS source for the files CUSTFILE and
CUSTRPT respectively.

Customer number: 00001
ABC Electronics (Customer number 1)
15 Arboreal Way, Treetop MN 12345
Amount outstanding: $1234.56 Due date: 1995-05-01

Customer number: 00152
A&P Electronics (Customer number 152)
27 Garbanzo Avenue, Smallville MN 51423
Amount outstanding: $26544.50 Due date: 1995-02-11

Figure 23. Output for ARRSRPT

A*==*
A* FILE NAME : CUSTFILE
A* RELATED PGMS : ARRSRPT
A* DESCRIPTIONS : THIS IS THE PHYSICAL FILE CUSTFILE. IT HAS
A* ONE RECORD FORMAT CALLED CUSTREC.
A*==*
A* CUSTOMER MASTER FILE -- CUSTFILE
A R CUSTREC
A CUSTNUM 5 0 TEXT('CUSTOMER NUMBER')
A CUSTNAME 20 TEXT('CUSTOMER NAME')
A STREETNUM 5 0 TEXT('CUSTOMER ADDRESS')
A STREETNAME 20 TEXT('CUSTOMER ADDRESS')
A CITY 20 TEXT('CUSTOMER CITY')
A STATE 2 TEXT('CUSTOMER STATE')
A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')
A AMOUNTC 15 TEXT('AMOUNT OUTSTANDING')
A DUEDATE 10 TEXT('DATE DUE')

Figure 24. DDS for CUSTFILE

A*==*
A* FILE NAME : CUSTRPT
A* RELATED PGMS : ARRSRPT
A* DESCRIPTIONS : THIS IS THE PRINTER FILE CUSTRPT. IT HAS
A* ONE RECORD FORMAT CALLED ARREARS.
A*==*
A R ARREARS
A 2 6
A 'Customer number:'
A RPTNUM 5 0 2 23
A TEXT('CUSTOMER NUMBER')
A RPTNAME 100A 3 10
A TEXT('CUSTOMER NAME')
A RPTADDR 100A 4 10
A TEXT('CUSTOMER ADDRESS')
A 5 10'Amount outstanding:'
A AMOUNT 10 2 5 35EDTWRD(' $0. ')
A TEXT('AMOUNT OUTSTANDING')
A 5 50'Due date:'
A DUEDATE 10 5 60
A TEXT('DATE DUE')

Figure 25. DDS for CUSTRPT

Example of Module with Multiple Procedures

44 ILE RPG Programmer’s Guide

Coding Considerations
This section presents some considerations that you should be aware of before you
begin designing applications with multiple-procedure modules. The items are
grouped into the following categories:
v General
v Program Creation
v Main Procedures
v Subprocedures

General Considerations
v When coding a module with multiple procedures, you will want to make use of

/COPY files, primarily to contain any prototypes that your application may
require. If you are creating a service program, you will need to provide both the
service program and the prototypes, if any.

v Maintenance of the application means ensuring that each component is at the
most current level and that any changes do not affect the different pieces. You
may want to consider using a tool such as Application Development Manager to
maintain your applications.
For example, suppose that another programmer makes a change to the /COPY
file that contains the prototypes. When you request a rebuild of your
application, any module or program that makes use of the /COPY file will be
recompiled automatically. You will find out quickly if the changes to the /COPY
file affect the calls or procedure interfaces in your application. If there are
compilation errors, you can then decide whether to accept the change to
prototypes to avoid these errors, or whether to change the call interface.

Program Creation
v If you specify that a module does not have a main procedure then you cannot

use the CRTBNDRPG command to create the program. (A module does not have
a main procedure if the NOMAIN keyword is specified on a control
specification.) This is because the CRTBNDRPG command requires that the
module contain a program entry procedure and only a main procedure can be a
program entry procedure.

v Similarly, when using CRTPGM to create the program, keep in mind that a
NOMAIN module cannot be an entry module since it does not have a program
entry procedure.

v A program that is created to run in the default OPM activation group (by
specifying DFTACTGRP(*YES) on the CRTBNDRPG command) cannot contain
bound procedure calls.

Main Procedure Considerations
You cannot define return values for a main procedure, nor can you specify that its
parameters be passed by value.

The following considerations apply only to a cycle-main procedure:
v Because the cycle-main procedure is the only procedure with a complete set of

specifications available (except the P specification), it should be used to set up
the environment of all procedures in the module.

v A cycle-main procedure is always exported, which means that other procedures
in the program can call the main procedure by using bound calls.

Coding Considerations

Chapter 4. Creating an Application Using Multiple Procedures 45

#
#

#

#
#
#

#
#

v The call interface of a cycle-main procedure can be defined in one of two ways:
1. Using a procedure interface and an optional prototype
2. Using an *ENTRY PLIST without a prototype

v The functionality of an *ENTRY PLIST is similar to a prototyped call interface.
However, a prototyped call interface is much more robust since it provides
parameter checking at compile time. If you prototype the main procedure, then
you specify how it is to be called by specifying either the EXTPROC or EXTPGM
keyword on the prototype definition. If EXTPGM is specified, then an external
program call is used; if EXTPROC is specified or if neither keyword is specified,
it will be called by using a procedure call.

Subprocedure Considerations
These considerations apply to ordinary subprocedures and linear-main procedures
except as otherwise noted.
v Any of the calculation operations may be coded in a subprocedure. However,

input and output specifications are not supported in subprocedures, so data
structure result fields must be used for file I/O operations to files defined locally
in the subprocedure. All data areas must be defined in the main source section,
although they can be used in a subprocedure.

v The control specification can only be coded in the main source section since it
controls the entire module.

v A subprocedure can be called recursively.Each recursive call causes a new
invocation of the procedure to be placed on the call stack. The new invocation
has new storage for all data items in automatic storage, and that storage is
unavailable to other invocations because it is local. (A data item that is defined
in a subprocedure uses automatic storage unless the STATIC keyword is
specified for the definition.)
The automatic storage that is associated with earlier invocations is unaffected by
later invocations. All invocations share the same static storage, so later
invocations can affect the value held by a variable in static storage.
Recursion can be a powerful programming technique when properly
understood.

v The run-time behavior of a subprocedure (including a linear-main procedure)
differs somewhat from that of a cycle-main procedure, because there is no cycle
code for the subprocedure.
– When a subprocedure ends, any open local files in automatic storage are

closed. However, none of the termination activities, such as closing of global
files, occurs until the cycle-main procedure, if any, that are associated with the
subprocedure itself ends. If you want to ensure that your global files are
closed before the activation group ends, you can code a ″cleanup″
subprocedure that is called both by the program entry procedure at
application-end, and by a cancel handler enabled for the program entry
procedure.
An alternative to using a cleanup procedure is to code the module so that
there is no implicit file opening or data area locking, and that within any
subprocedure, an open is matched by a close, an IN by an OUT, a CRT by a
DLT, and so on. This alternative should be strongly considered for a
cycle-module if it might have a subprocedure active when the cycle-main
procedure is not active.

– Exception handling within a subprocedure differs from a cycle-main
procedure primarily because there is no default exception handler for

Coding Considerations

46 ILE RPG Programmer’s Guide

#

|

#

#
#
#
#
#
#
#

#
#

#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#

subprocedures. As a result, situations where the default handler would be
called for a cycle-main procedure correspond to abnormal end of the
subprocedure.

For Further Information
To find out more about the topics discussed here, consult the following list:

Main Procedures
Topic See

Exception handling “Exception Handling within a Cycle-Main
Procedure” on page 288

Main Procedure End “Returning from a Main Procedure” on page 158

Subprocedures
Topic See

Defining Chapter on subprocedures, in the IBM Rational
Development Studio for i: ILE RPG Reference

NOMAIN module “Creating a NOMAIN Module” on page 80

Exception handling “Exception Handling within Subprocedures” on
page 289

Procedure Specification Chapter on procedure specifications, in the IBM
Rational Development Studio for i: ILE RPG Reference

Procedure Interface Chapter on defining data and prototypes in the
IBM Rational Development Studio for i: ILE RPG
Reference

Subprocedure End “Returning from a Subprocedure” on page 161

Prototyped Call
Topic See

Free-form call “Using a Prototyped Call” on page 139

General Information IBM Rational Development Studio for i: ILE RPG
Reference, Chapter 24

Passing parameters “Passing Prototyped Parameters” on page 141

Prototypes Chapter on defining data and prototypes in the
IBM Rational Development Studio for i: ILE RPG
Reference

Coding Considerations

Chapter 4. Creating an Application Using Multiple Procedures 47

#
#
#

For Further Information

48 ILE RPG Programmer’s Guide

Part 2. Creating and Running an ILE RPG Application

This section provides you with the information that is needed to create and run
ILE RPG programs. It describes how to:
v Enter source statements
v Create modules
v Read compiler listings
v Create programs
v Create service programs
v Run programs
v Pass parameters
v Manage the run time
v Call other programs or procedures

Use Rational Development Studio for i. This is the recommended method and
documentation about creating and running an ILE RPG application appears in that
product’s online help.

See Using the application development tools in the client product for information
about getting started with the client tools.

Many Integrated Language Environment terms and concepts are discussed briefly
in the following pages. These terms and concepts are more fully discussed in ILE
Concepts.

© Copyright IBM Corp. 1994, 2010 49

50 ILE RPG Programmer’s Guide

Chapter 5. Using Source Files

This chapter provides the information you need to enter RPG source statements. It
also briefly describes the tools necessary to complete this step.

To enter RPG source statements into the system, use one of the following methods:
v Interactively using SEU
v Interactively using Remote Systems LPEX Editor.

Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about editing source appears in that product’s online
help. Your program editing tasks are simplified with the Remote Systems LPEX
editor. The editor can access source files on your workstation or your System i.
When a compilation results in errors, you can jump directly from the compiler
messages to an editor containing the source. The editor opens with the cursor
positioned at the offending source statements so that you can correct them.

See Using the application development tools in the client product for information
about getting started with the client tools.

Initially, you may want to enter your source statements into a file called
QRPGLESRC. New members of the file QRPGLESRC automatically receive a
default type of RPGLE. Furthermore, the default source file for the ILE RPG
commands that create modules and bind them into program objects is
QRPGLESRC. IBM® supplies a source file QRPGLESRC in library QGPL. It has a
record length of 112 characters.

Note: You can use mixed case when entering source. However, the ILE RPG
compiler will convert most of the source to uppercase when it compiles it. It
will not convert literals, array data or table data.

Your source can be in two different kinds of files:
1. Source physical files
2. IFS (Integrated File System) files

Using Source Physical Files

Creating a Library and Source Physical File
Source statements are entered into a member of a source physical file. Before you
can enter your program, you must have a library and a source physical file.

To create a library, use the CRTLIB command. To create a source physical, use the
Create Source Physical file (CRTSRCPF) command. The recommended record
length of the file is 112 characters. This record length takes into account the new
ILE RPG structure as shown in Figure 26 on page 52.

© Copyright IBM Corp. 1994, 2010 51

Since the system default for a source physical file is 92 characters, you should
explicitly specify a minimum record length of 112. If you specify a length less than
92 characters, the program may not compile since you may be truncating source
code.

For more information about creating libraries and source physical files, refer to the
ADTS for AS/400: Source Entry Utility manual and the ADTS/400: Programming
Development Manager manual.

Using the Source Entry Utility (SEU)
You can use the Source Entry Utility (SEU) to enter your source statements. SEU
also provides prompting for the different specification templates as well as syntax
checking. To start SEU, use the STRSEU (Start Source Entry Utility) command. For
other ways to start and use SEU, refer to the ADTS for AS/400: Source Entry Utility
manual.

See Using the application development tools in the client product for information
about getting started with the client tools.

If you name your source file QRPGLESRC, SEU automatically sets the source type
to RPGLE when it starts the editing session for a new member. Otherwise, you
have to specify RPGLE when you create the member.

If you need prompting after you type STRSEU, press F4. The STRSEU display
appears, lists the parameters, and supplies the default values. If you supply
parameter values before you request prompting, the display appears with those
values filled in.

In the following example you enter source statements for a program which will
print employee information from a master file. This example shows you how to:
v Create a library
v Create a source physical file
v Start an SEU editing session
v Enter source statements.
1. To create a library called MYLIB, type:

CRTLIB LIB(MYLIB)

The CRTLIB command creates a library called MYLIB.
2. To create a source physical file called QRPGLESRC type:

CRTSRCPF FILE(MYLIB/QRPGLESRC) RCDLEN(112)
TEXT('Source physical file for ILE RPG programs')

The CRTSRCPF command creates a source physical file QRPGLESRC in library
MYLIB.

Seq#/Date

12 80 20

Code Comments

Minimum Record Length
(92 characters)

Recommended Record Length
(112 characters)

Figure 26. ILE RPG Record Length Breakdown

52 ILE RPG Programmer’s Guide

3. To start an editing session and create source member EMPRPT type:
STRSEU SRCFILE(MYLIB/QRPGLESRC)
SRCMBR(EMPRPT)
TYPE(RPGLE) OPTION(2)

Entering OPTION(2) indicates that you want to start a session for a new
member. The STRSEU command creates a new member EMPRPT in file
QRPGLESRC in library MYLIB and starts an edit session.
The SEU Edit display appears as shown in Figure 27. Note that the screen is
automatically shifted so that position 6 is (for specification type) at the left
edge.

4. Type the following source in your SEU Edit display, using the following SEU
prefix commands to provide prompting:
v IPF — for file description specifications
v IPD — for definition specifications
v IPI — for input specifications
v IPC — for calculation specifications
v IPCX — for calculation specifications with extended Factor 2
v IPO — for output specifications
v IPP — for output specifications continuation
v IPPR — for procedure specifications

Columns . . . : 6 76 Edit MYLIB/QRPGLESRC
SEU==> ___ EMPRPT
FMT H HKeywords++

*************** Beginning of data *************************************
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''
'''''''

****************** End of data **
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor
F16=Repeat find F17=Repeat change F24=More keys
Member EMPRPT added to file MYLIB/QRPGLESRC. +

Figure 27. Edit Display for a New Member

Using SEU

Chapter 5. Using Source Files 53

5. Press F3 (Exit) to go to the Exit display. Type Y (Yes) to save EMPRPT.
The member EMPRPT is saved.

Figure 29 on page 55 shows the DDS which is referenced by the EMPRPT source.

===
* MODULE NAME: EMPRPT
* RELATED FILES: EMPMST (PHYSICAL FILE)
* QSYSPRT (PRINTER FILE)
* DESCRIPTION: This program prints employee information
* from the file EMPMST.
===
FQSYSPRT O F 80 PRINTER
FEMPMST IP E K DISK
D TYPE S 8A
D EMPTYPE PR 8A
D CODE 1A
IEMPREC 01
C EVAL TYPE = EMPTYPE(ETYPE)
OPRINT H 1P 2 6
O 50 'EMPLOYEE INFORMATION'
O H 1P
O 12 'NAME'
O 34 'SERIAL #'
O 45 'DEPT'
O 56 'TYPE'
O D 01
O ENAME 20
O ENUM 32
O EDEPT 45
O TYPE 60
* Procedure EMPTYPE returns a string representing the employee
* type indicated by the parameter CODE.
P EMPTYPE B
D EMPTYPE PI 8A
D CODE 1A
C SELECT
C WHEN CODE = 'M'
C RETURN 'Manager'
C WHEN CODE = 'R'
C RETURN 'Regular'
C OTHER
C RETURN 'Unknown'
C ENDSL
P EMPTYPE E

Figure 28. Source for EMPRPT member

Using SEU

54 ILE RPG Programmer’s Guide

To create a program from this source use the CRTBNDRPG command, specifying
DFTACTGRP(*NO).

Using SQL Statements
The DB2 UDB for iSeries® database can be accessed from an ILE RPG program by
embedding SQL statements into your program source. Use the following rules to
enter your SQL statements:
v Enter your SQL statements on the Calculation specification in free form or in

fixed form
v In free form

– You start your SQL statement using the delimiter ″EXEC SQL″.
– The SQL statement can be placed on several lines. No continuation character

is required.
– Use a semicolon to signal the end of your SQL statement.

v In fixed form
– Start your SQL statements using the delimiter /EXEC SQL in positions 7-15

(with the / in position 7)
– Use the continuation line delimiter (a + in position 7) to continue your

statements on any subsequent lines
– Use the ending delimiter /END-EXEC in positions 7-15 (with the slash in

position 7) to signal the end of your SQL statements.
v You can start entering your SQL statements on the same line as the starting

delimiter

Note: SQL statements cannot go past position 80 in your program.

Figure 30 on page 56 and Figure 31 on page 56 show examples of embedded SQL
statements.

A***
A* DESCRIPTION: This is the DDS for the physical file EMPMST. *
A* It contains one record format called EMPREC. *
A* This file contains one record for each employee *
A* of the company. *
A***
A*
A R EMPREC
A ENUM 5 0 TEXT('EMPLOYEE NUMBER')
A ENAME 20 TEXT('EMPLOYEE NAME')
A ETYPE 1 TEXT('EMPLOYEE TYPE')
A EDEPT 3 0 TEXT('EMPLOYEE DEPARTMENT')
A ENHRS 3 1 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 29. DDS for EMPRPT

Using SEU

Chapter 5. Using Source Files 55

|
|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

You must enter a separate command to process the SQL statements. For more
information, refer to the DB2 Universal Database for iSeries section of the Database
and File Systems category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

Refer to the ADTS for AS/400: Source Entry Utility manual for information about
how SEU handles SQL statement syntax checking.

...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
/FREE

X = Y + Z; // ILE RPG calculation operations

// The entire SQL statement is on one line
EXEC SQL INSERT INTO MYLIB/MYFILE (FLD1) VALUES(12);

// The SQL statement begins on the same line as
// EXEC SQL and then it is is split across several lines
EXEC SQL INSERT

INTO MYLIB/MYFILE
(FLD1) VALUE(12);

// The SQL statement begins on the line after
// EXEC SQL and then it is is split across several lines
EXEC SQL

INSERT INTO MYLIB/MYFILE
(FLD1) VALUE(12);

X = Y + Z; // ILE RPG calculation operations
/END-FREE

Figure 30. Free Form SQL Statements in an ILE RPG Program

...+....1....+....2....+....3....+....4....+....5....+....6....+....7..
* ILE RPG calculation operations
C EVAL X = Y + Z

* The entire SQL statement is on one line
C/EXEC SQL INSERT INTO MYLIB/MYFILE (FLD1) VALUES(12)
C/END-EXEC

* The SQL statement begins on the same line as
* EXEC SQL and then it is is split across several lines
C/EXEC SQL INSERT
C+ INTO MYLIB/MYFILE
C+ (FLD1) VALUE(12)
C/END-EXEC

* The SQL statement begins on the line after
* EXEC SQL and then it is is split across several lines
C/EXEC SQL
C+ INSERT INTO MYLIB/MYFILE
C+ (FLD1) VALUE(12)
C/END-EXEC

* ILE RPG calculation operations
C EVAL X = Y + Z
C

Figure 31. Fixed Form SQL Statements in an ILE RPG Program

Using SQL Statements

56 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

http://www.ibm.com/systems/i/infocenter/

See Using the application development tools in the client product for information
about getting started with the client tools.

Using IFS Source Files
The CRTBNDRPG and CRTRPGMOD commands include parameters to allow the
source files to be either in the QSYS file system of in the IFS sile system. These are:

SRCSTMF
SRCSTMF is used instead of SRCFILE and SRCMBR to indicate a stream
file is the main source file.

INCDIR
INCDIR is used to list the directories that will contain copy files.

The stream file specified for the SRCSTMF can be an absolute path to the file
(beginning with a slash), or it can be a path relative to the current directory.

Include files
The /COPY and /INCLUDE directives allow the specification of files in either the
QSYS file system or the IFS file system. In cases where the compiler cannot tell
which file system the directive refers to, the search will begin in the file system of
the file containing the /COPY directive.

When the compiler encounters a /COPY statement, the statement could refer to a
file in the IFS or in the QSYS file system. If the name begins with a slash or is
specified in single quotes, the name can only refer to a file in the IFS. A name in
the IFS can be specified in double quotes as well. Where only part of the name is
in double quotes, for example:
/copy "SOME-LIB"/QRPGLESRC,MBR

the name can only be a QSYS file system name.

If the name could be either in the QSYS file system or the IFS, the file system of
the file containing the /COPY statement will be searched first. Note that
upper-casing occurs for the QSYS file system (except with extended names
specified with double quotes, such as ″A/B″) but not for the IFS. (The IFS is not
case sensitive.)

Table 28. /Copy File Name Intepretation for QSYS and IFS

/Copy statement QSYS interpretation IFS interpretation (see below for the
meaning of ″.suffix″)

/COPY MYMBR FILE(*LIBL/QRPGLESRC)
MBR(MYMBR)

MYMBR or MYMBR.suffix in one of
the directories in the include path

/COPY mymbr FILE(*LIBL/QRPGLESRC)
MBR(MYMBR)

mymbr or mymbr.suffix in one of the
directories in the include path

/COPY myfile,mymbr FILE(*LIBL/MYFILE)
MBR(MYMBR)

myfile,mymbr or myfile,mymbr.suffix
(note that MYFILE,MYMBR is a valid
name in the IFS file system)

/COPY mylib/myfile,mymbr FILE(MYLIB/MYFILE)
MBR(MYMBR)

mylib/myfile,mymbr (directory mylib
and file myfile,mymbr)

/COPY ″A/b″,mymbr FILE(*LIBL/″A/b″)
MBR(MYMBR)

n/a (only part of name is in double
quotes

/COPY ″A/B″ FILE(*LIBL/QRPGLESRC)
MBR(″A/B″)

A/B

Using SQL Statements

Chapter 5. Using Source Files 57

Table 28. /Copy File Name Intepretation for QSYS and IFS (continued)

/Copy statement QSYS interpretation IFS interpretation (see below for the
meaning of ″.suffix″)

/COPY a b FILE(*LIBL/QRPGLESRC)
MBR(A) (everything after a
blank is assumed to be a
comment)

a or a.suffix (everything
after a blank is assumed
to be a comment)

/COPY ’a b’ N/A (name in single quotes) a b or a b.suffix

/COPY /home/mydir/myfile.rpg N/A (name begins with slash) /home/mydir/myfile.rpg

/COPY /QSYS.LIB/
L.LIB/F.FILE/M.MBR

N/A (name begins with slash) /QSYS.LIB/L.LIB/F.FILE/
M.MBR (which is actually a
file in the QSYS file system,
but is considered to be an
IFS file by RPG)

Note: When searching for files in the IFS, if the file name does not contain a dot,
the RPG compiler will look for files with the following suffixes (in this
order):
1. no suffix (abc)
2. .rpgleinc (abc.rpgleinc)
3. .rpgle (abc.rpgle)

Search Path Within The IFS
You have two ways to indicate where /COPY and /INCLUDE files can be found
in the IFS:
1. The INCDIR parameter, which lists the directories in the order you want them

to be searched.
2. The RPGINCDIR environment variable, which has a colon-separated list of

directores in the order you want them to be searched. To set the environment
variable, use the ADDENVVAR or CHGENVVAR command.
For Example: ADDENVVAR ENVVAR(RPGINCDIR) VALUE('/home/mydir:/project/
prototypes')ADDENVVAR

When searching for a relative file in the IFS (one whose path does not begin with
/), the file will be searched for in the following places, in this order
1. The current directory.
2. The path specified by the INCDIR comand parameter.
3. The directories in the RPGINCDIR environment variable.
4. The source directory (if the source is an IFS file).

For example, if:
v The current directory is /home/auser.
v The INCDIR parameter is /driver/v5r2/inc:/driver/v5r1/inc.
v The RPGINCDIR environment variable is /home/auser/temp.
v The source is in directory /home/auser/src.

The directory search path takes precedence over the default-suffix order. If a file
with no extension is searched for in several different directories, all suffixes will be
tried in each directory before the next directory is tried.

Using IFS Source Files

58 ILE RPG Programmer’s Guide

Table 29. Search Order for /Copy Files

/Copy statement Files searched for

Assume the source file containing the
/COPY is /driver/src/main.rpg,
in the IFS

/COPY file.rpg

In IFS:

/home/auser/file.rpg
/driver/v5r2/inc/file.rpg
/driver/v5r1/inc/file.rpg
/home/auser/temp/file.rpg
/home/auser/src/file.rpg

In QSYS:

FILE(*LIBL/QRPGLESRC) MBR(FILE.RPG)

Assume the source file containing the
/COPY is MYLIB/QRPGLESRC
MYMBR, in the QSYS file system

/COPY file

In QSYS:

FILE(*LIBL/QRPGLESRC) MBR(FILE)

In IFS:

/home/auser/file
/home/auser/file.rpgleinc
/home/auser/file.rpgle

/driver/v5r2/inc/file
/driver/v5r2/inc/file.rpgleinc
/driver/v5r2/inc/file.rpgle

/driver/v5r1/inc/file
/driver/v5r1/inc/file.rpgleinc
/driver/v5r1/inc/file.rpgle

/home/auser/temp/file
/home/auser/temp/file.rpgleinc
/home/auser/temp/file.rpgle

/home/auser/src/file
/home/auser/src/file.rpgleinc
/home/auser/src/file.rpgle

Using IFS Source Files

Chapter 5. Using Source Files 59

Using IFS Source Files

60 ILE RPG Programmer’s Guide

Chapter 6. Creating a Program with the CRTBNDRPG
Command

This chapter shows you how to create an ILE program using RPG IV source with
the Create Bound RPG Program (CRTBNDRPG) command. With this command
you can create one of two types of ILE programs:
1. OPM-compatible programs with no static binding
2. Single-module ILE programs with static binding

Whether you obtain a program of the first type or the second type depends on
whether the DFTACTGRP parameter of CRTBNDRPG is set to *YES or *NO
respectively.

Creating a program of the first type produces a program that behaves like an OPM
program in the areas of open scoping, override scoping, and RCLRSC. This high
degree of compatibility is due in part to its running in the same activation group
as OPM programs, namely, in the default activation group.

However, with this high compatibility comes the inability to have static binding.
Static binding refers to the ability to call procedures (in other modules or service
programs) and to use procedure pointers. The inability to have static binding
means that you cannot:
v Use the CALLB operation in your source
v Call a prototyped procedure
v Bind to other modules during program creation

Creating a program of the second type produces a program with ILE characteristics
such as static binding. You can specify at program-creation time the activation
group the program is to run in, and any modules for static binding. In addition,
you can call procedures from your source.

Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about creating an ILE RPG program appears in that
product’s online help.

See Using the application development tools in the client product for information
about getting started with the client tools.

Using the CRTBNDRPG Command
The Create Bound RPG (CRTBNDRPG) command creates a program object from
RPG IV source in one step. It also allows you to bind in other modules or service
programs using a binding directory.

The command starts the ILE RPG compiler and creates a temporary module object
in the library QTEMP. It then binds it into a program object of type *PGM. Once
the program object is created, the temporary module used to create the program is
deleted.

The CRTBNDRPG command is useful when you want to create a program object
from standalone source code (code that does not require modules to be bound

© Copyright IBM Corp. 1994, 2010 61

together), because it combines the steps of creating and binding. Furthermore, it
allows you to create an OPM-compatible program.

Note: If you want to keep the module object in order to bind it with other
modules into a program object, you must create the module using the
CRTRPGMOD command. For more information see Chapter 7, “Creating a
Program with the CRTRPGMOD and CRTPGM Commands,” on page 77.

You can use the CRTBNDRPG command interactively, in batch, or from a
Command Language (CL) program. If you are using the command interactively
and require prompting, type CRTBNDRPG and press F4 (Prompt). If you need
help, type CRTBNDRPG and press F1 (Help).

Table 30 summarizes the parameters of the CRTBNDRPG command and shows
their default values.

Table 30. CRTBNDRPG Parameters and Their Default Values Grouped by Function

Program Identification

PGM(*CURLIB/*CTLSPEC) Determines created program name and library

SRCFILE(*LIBL/QRPGLESRC) If specified, identifies source file and library

SRCMBR(*PGM) If specified, identifies file member containing source specifications

SRCSTMF(path) If specified, indicates the path to the source file in the IFS

INCDIR(’path to directory 1:path to directory
2’)

Identifies a list of directories to search for /copy and /include files

TEXT(*SRCMBRTXT) Provides brief description of program

Program Creation

GENLVL(10) Conditions program creation to error severity (0-20)

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

OPTION(*GEN) *GEN/*NOGEN, determines if program is created

OPTION(*NOSRCSTMT) Specifies how the compiler generates statement numbers for
debugging

OPTION(*UNREF) *UNREF/*NOUNREF Determines whether unreferenced fields are
placed in the program object

DBGVIEW(*STMT) Specifies type of debug view, if any, to be included in program

DBGENCKEY(*NONE) Specifies the encryption for the listing debug view for the program

OPTIMIZE(*NONE) Determines level of optimization, if any

REPLACE(*YES) Determines if program should replace existing program

BNDDIR(*NONE) Specifies the binding directory to be used for symbol resolution

USRPRF(*USER) Specifies the user profile that will run program

AUT(*LIBCRTAUT) Specifies type of authority for created program

TGTRLS(*CURRENT) Specifies the release level the object is to be run on

ENBPFRCOL(*PEP) Specifies whether performance collection is enabled

DEFINE(*NONE) Specifies condition names that are defined before the compilation
begins

PRFDTA(*NOCOL) Specifies the program profiling data attribute

STGMDL(*SNGLVL) Specifies the storage model for the program

Compiler Listing

Using the CRTBNDRPG Command

62 ILE RPG Programmer’s Guide

||

||

Table 30. CRTBNDRPG Parameters and Their Default Values Grouped by Function (continued)

OUTPUT(*PRINT) Determines if there is a compiler listing

INDENT(*NONE) Determines if indentation should show in listing, and identifies
character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY
*EXPDDS *EXT *NOSHOWSKP

*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

CVTOPT(*NONE) Specifies how various data types from externally described files are
handled

ALWNULL(*NO) Determines if the program will accept values from null-capable
fields

FIXNBR(*NONE) Determines which decimal data that is not valid is to be fixed by the
compiler

Run-Time Considerations

DFTACTGRP(*YES) Identifies whether this program always runs in the OPM default
activation group

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

ACTGRP(*STGMDL) Identifies the activation group in which the program should run

SRTSEQ(*HEX) Specifies the sort sequence table to be used.

LANGID(*JOBRUN) Used with SRTSEQ to specify the language identifier for sort
sequence

TRUNCNBR(*YES) Specifies the action to take when numeric overflow occurs for
packed-decimal, zoned-decimal, and binary fields in fixed-format
operations.

INFOSTMF(path) Used with PGMINFO, specifies the stream file in the IFS to receive
the PCML

PGMINFO(*NONE) *PCML indicates that PCML (Program Call Markup Language)
should be generated for the program; the second parameter indicates
whether it should be generated into a stream file or into the module.

LICOPT(options) Specifies Licensed Internal Code options.

See Appendix C, “The Create Commands,” on page 477 for the syntax diagram and
parameter descriptions of CRTBNDRPG.

Creating a Program for Source Debugging
In this example you create the program EMPRPT so that you can debug it using
the source debugger. The DBGVIEW parameter on either CRTBNDRPG or
CRTRPGMOD determines what type of debug data is created during compilation.
The parameter provides six options which allow you to select which view(s) you
want:
v *STMT — allows you to display variables and set breakpoints at statement

locations using a compiler listing. No source is displayed with this view.
v *SOURCE — creates a view identical to your input source.
v *COPY — creates a source view and a view containing the source of any /COPY

members.
v *LIST — creates a view similar to the compiler listing.
v *ALL — creates all of the above views.

Using the CRTBNDRPG Command

Chapter 6. Creating a Program with the CRTBNDRPG Command 63

|

v *NONE — no debug data is created.

The source for EMPRPT is shown in Figure 28 on page 54.
1. To create the object type:

CRTBNDRPG PGM(MYLIB/EMPRPT) DBGVIEW(*SOURCE) DFTACTGRP(*NO)

The program will be created in the library MYLIB with the same name as the
source member on which it is based, namely, EMPRPT. Note that by default, it
will run in the default named activation group, QILE. This program object can
be debugged using a source view.

2. To debug the program type:
STRDBG EMPRPT

Figure 32 shows the screen which appears after entering the above command.

From this screen (the Display Module Source display) you can enter debug
commands to display or change field values and set breakpoints to control
program flow while debugging.

For more information on debugging see Chapter 12, “Debugging Programs,” on
page 229.

Creating a Program with Static Binding
In this example you create a program COMPUTE using CRTBNDRPG to which
you bind a service program at program-creation time.

Assume that you want to bind the program COMPUTE to services which you have
purchased to perform advanced mathematical computations. The binding directory
to which you must bind your source is called MATH. This directory contains the
name of a service program that contains the various procedures that make up the
services.

To create the object, type:
CRTBNDRPG PGM(MYLIB/COMPUTE)

DFTACTGRP(*NO) ACTGRP(GRP1) BNDDIR(MATH)

Display Module Source
Program: EMPRPT Library: MYLIB Module: EMPRPT

1 *==*
2 * MODULE NAME: EMPRPT
3 * RELATED FILES: EMPMST (PHYSICAL FILE)
4 * QSYSPRT (PRINTER FILE)
5 * DESCRIPTION: This program prints employee information
6 * from the file EMPMST.
7 *==*
8 FQSYSPRT O F 80 PRINTER
9 FEMPMST IP E K DISK
10
11 D TYPE S 8A
12 D EMPTYPE PR 8A
13 D CODE 1A
14
15 IEMPREC 01

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 32. Display Module Source display for EMPRPT

Using the CRTBNDRPG Command

64 ILE RPG Programmer’s Guide

The source will be bound to the service program specified in the binding directory
MATH at program-creation time. This means that calls to the procedures in the
service program will take less time than if they were dynamic calls.

When the program is called, it will run in the named activation group GRP1. The
default value ACTGRP parameter on CRTBNDRPG is QILE. However, it is
recommended that you run your application as a unique group to ensure that the
associated resources are fully protected.

Note: DFTACTGRP must be set to *NO in order for you to enter a value for the
ACTGRP and BNDDIR parameters.

For more information on service programs, see Chapter 8, “Creating a Service
Program,” on page 95.

Creating an OPM-Compatible Program Object
In this example you use the CRTBNDRPG command to create an OPM-compatible
program object from the source for the payroll program, shown in Figure 33 on
page 66.
1. To create the object, type:

CRTBNDRPG PGM(MYLIB/PAYROLL)
SRCFILE(MYLIB/QRPGLESRC)
TEXT('ILE RPG program') DFTACTGRP(*YES)

The CRTBNDRPG command creates the program PAYROLL in MYLIB, which
will run in the default activation group. By default, a compiler listing is
produced.

Note: The setting of DFTACTGRP(*YES) is what provides the OPM
compatibility. This setting also prevents you from entering a value for
the ACTGRP and BNDDIR parameters. Furthermore, if the source
contains any bound procedure calls, an error is issued and the
compilation ends.

2. Type one of the following CL commands to see the listing that is created:
v DSPJOB and then select option 4 (Display spooled files)
v WRKJOB
v WRKOUTQ queue-name

v WRKSPLF

Using the CRTBNDRPG Command

Chapter 6. Creating a Program with the CRTBNDRPG Command 65

--
* DESCRIPTION: This program creates a printed output of employee's pay *
* for the week. *
--
H DATEDIT(*DMY/)
--
* File Definitions *
--
FTRANSACT IP E K DISK
FEMPLOYEE IF E K DISK
FQSYSPRT O F 80 PRINTER
--
* Variable Declarations *
--
D Pay S 8P 2
--
* Constant Declarations *
--
D Heading1 C 'NUMBER NAME RATE H-
D OURS BONUS PAY '
D Heading2 C '______ ________________ ______ _-
D ____ _______ __________'
--
* For each record in the transaction file (TRANSACT), if the employee *
* is found, compute the employees pay and print the details. *
--
C TRN_NUMBER CHAIN EMP_REC 99
C IF NOT *IN99
C EVAL (H) Pay = EMP_RATE * TRN_HOURS + TRN_BONUS
C ENDIF

--
* Report Layout *
* -- print the heading lines if 1P is on *
* -- if the record is found (indicator 99 is off) print the payroll *
* details otherwise print an exception record *
* -- print 'END OF LISTING' when LR is on *
--
OQSYSPRT H 1P 2 3
O 35 'PAYROLL REGISTER'
O *DATE Y 60
O H 1P 2
O 60 Heading1
O H 1P 2
O 60 Heading2
O D N1PN99 2
O TRN_NUMBER 5
O EMP_NAME 24
O EMP_RATE L 33
O TRN_HOURS L 40
O TRN_BONUS L 49
O Pay 60 '$ 0. '
O D N1P 99 2
O TRN_NUMBER 5
O 35 '** NOT ON EMPLOYEE FILE **'
O T LR
O 33 'END OF LISTING'

Figure 33. A Sample Payroll Calculation Program

Using the CRTBNDRPG Command

66 ILE RPG Programmer’s Guide

Using a Compiler Listing
This section discusses how to obtain a listing and how to use it to help you:
v Fix compilation errors
v Fix run-time errors
v Provide documentation for maintenance purposes.

See Appendix D, “Compiler Listings,” on page 501 for more information on the
different parts of the listing and for a complete sample listing.

Obtaining a Compiler Listing
To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTBNDRPG
command or the CRTRPGMOD command. (This is their default setting.) The
specification OUTPUT(*NONE) will suppress a listing.

Specifying OUTPUT(*PRINT) results in a compiler listing which consists minimally
of the following sections:
v Prologue (command option summary)
v Source Listing, which includes:

– In-Line diagnostic messages
– Match-field table (if using the RPG cycle with match fields)

v Additional diagnostic messages
v Field Positions in Output Buffer
v /COPY Member Table
v Compile Time Data which includes:

– Alternate Collating Sequence records and table or NLSS information and table
– File translation records
– Array records
– Table records

v Message summary
v Final summary
v Code generation report (appears only if there are errors)
v Binding report (applies only to CRTBNDRPG; appears only if there are errors)

The following additional information is included in a compiler listing if the
appropriate value is specified on the OPTION parameter of either create command:

*EXPDDS
Specifications of externally-described files (appear in source section of
listing)

*SHOWCPY
Source records of /COPY members (appear in source section of listing)

*SHOWSKP
Source lines excluded by conditional compilation directives (appear in
source section of listing)

*EXPDDS
Key field information (separate section)

*XREF List of Cross references (separate section)

*EXT List of External references (separate section)

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 67

*SECLVL
Second-level message text (appear in message summary section)

Note: Except for *SECLVL and *SHOWSKP, all of the above values reflect the
default settings on the OPTION parameter for both create commands. You
do not need to change the OPTION parameter unless you do not want
certain listing sections or unless you want second level text to be included.

The information contained in a compiler listing is also dependent on whether
*SRCSTMT or *NOSRCSTMT is specified for the OPTION parameter. For details on
how this information changes, see “″*NOSRCSTMT Source Heading″” on page 508
and “″*SRCSTMT Source Heading″” on page 508.

If any compile option keywords are specified on the control specification, the
compiler options in effect will appear in the source section of the listing.

Customizing a Compiler Listing
You can customize a compiler listing in any or all of the following ways:
v Customize the page heading
v Customize the spacing
v Indent structured operations

Customizing a Page Heading
The page heading information includes the product information line and the title
supplied by a /TITLE directive. The product information line includes the ILE
RPG compiler and library copyright notice, the member, and library of the source
program, the date and time when the module was created, and the page number
of the listing.

You can specify heading information on the compiler listing through the use of the
/TITLE compiler directive. This directive allows you to specify text which will
appear at the top of each page of the compiler listing. This information will
precede the usual page heading information. If the directive is the first record in
the source member, then this information will also appear in the prologue section.

You can also change the date separator, date format, and time separator used in
the page heading and other information boxes throughout the listing. Normally,
the compiler determines these by looking at the job attributes. To change any of
these, use the Change Job (CHGJOB) command. After entering this command you
can:
v Select one of the following date separators: *SYSVAL, *BLANK, slash (/),

hyphen (-) period (.) or comma (,)
v Select one of the following date formats: *SYSVAL, *YMD, *MDY, *DMY, or *JUL
v Select one of the following time separators: *SYSVAL, *BLANK, colon (:), comma

(,) or period (.)

Anywhere a date or time field appears in the listing, these values are used.

Customizing the Spacing
Each section of a listing usually starts on a new page; Each page of the listing
starts with product information, unless the source member contains a /TITLE
directive. If it does, the product information appears on the second line and the
title appears on the first line.

Using a Compiler Listing

68 ILE RPG Programmer’s Guide

You can control the spacing and pagination of the compiler listing through the use
of the /EJECT and /SPACE compiler directives. The /EJECT directive forces a
page break. The /SPACE directive controls line spacing within the listing. For more
information on these directives refer to the IBM Rational Development Studio for i:
ILE RPG Reference.

Indenting Structured Operations

Note: Calculations can only be indented if they are written with traditional syntax.
The RPG compiler does not change the indentation of your free-form
calculations (between /FREE and /END-FREE) in the listing. You may
indent the free-form claculations directly in your source file.

If your source specifications contain structured operations (such as DO-END or
IF-ELSE-END), you may want to have these indented in the source listing. The
INDENT parameter lets you specify whether to show indentation, and specify the
character to mark the indentation. If you do not want indentation, specify
INDENT(*NONE); this is the default. If you do want indentation, then specify up
to two characters to mark the indentation.

For example, to specify that you want structured operations to be indented and
marked with a vertical bar (|) followed by a space, you specify INDENT('| ').

If you request indentation, then some of the information which normally appears
in the source listing is removed, so as to allow for the indentation. The following
columns will not appear in the listing:
v Do Num
v Last Update
v PAGE/LINE

If you specify indentation and you also specify a listing debug view, the
indentation will not appear in the debug view.

Figure 34 on page 70 shows part of source listing which was produced with
indentation. The indentation mark is '| '.

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 69

Correcting Compilation Errors
The main sections of a compiler listing that are useful for fixing compilation errors
are:
v The source section
v The Additional Messages section
v The /COPY table section
v The various summary sections.

In-line diagnostic messages, which are found in the source section, point to errors
which the compiler can flag immediately. Other errors are flagged after additional
information is received during compilation. The messages which flag these errors
are in the source section and Additional Messages section.

To aid you in correcting any compilation errors, you may want to include the
second-level message text in the listing — especially if you are new to RPG. To do
this, specify OPTION(*SECLVL) on either create command. This will add
second-level text to the messages listed in the message summary.

Finally, keep in mind that a compiler listing is a record of your program. Therefore,
if you encounter any errors when testing your program, you can use the listing to
check that the source is coded the way you intended it to be. Parts of the listing,
besides the source statements, which you may want to check include:
v Match field table

If you are using the RPG cycle with match fields, then you can use this to check
that all your match fields are the correct lengths, and in the correct positions.

v Output-buffer positions
Lists the start and end positions along with the literal text or field names. Use
this to check for errors in your output specifications.

v Compile-time data

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

33 C** 002000
34 C* MAINLINE * 002100
35 C** 002200
36 C WRITE FOOT1 002300
37 C WRITE HEAD 002400
38 C EXFMT PROMPT 002500
39 C* 002600
40 C DOW NOT *IN03 002700
41 C CSTKEY | SETLL CMLREC2 ----20 002800
42 C | IF *IN20 002900
43 C | | MOVE '1' *IN61 003000
44 C | ELSE 003100
45 C | | EXSR SFLPRC 003200
46 C | END 003300
47 C | IF NOT *IN03 003400
48 C | | IF *IN04 003500
49 C | | | IF *IN61 003600
50 C | | | | WRITE FOOT1 003700
51 C | | | | WRITE HEAD 003800
52 C | | | ENDIF 003900
53 C | | | EXFMT PROMPT 004000
54 C | | ENDIF 004100
55 C | ENDIF 004200
56 C ENDDO 004300
57 C* 004500
58 C SETON LR---- 004600

Figure 34. Sample Source Part of the Listing with Indentation

Using a Compiler Listing

70 ILE RPG Programmer’s Guide

ALTSEQ and FTRANS records and tables are listed. NLSS information and
tables are listed. Tables and arrays are explicitly identified. Use this to confirm
that you have specified the compile-time data in the correct order, and that you
have specified the correct values for the SRTSEQ and LANGID parameters to the
compiler.

Using In-Line Diagnostic Messages
There are two types of in-line diagnostic messages: finger and non-finger. Finger
messages point out exactly where the error occurred. Figure 35 shows an example
of finger in-line diagnostic messages.

In this example, an indicator has been incorrectly placed in positions 72 - 73
instead of 71 - 72 or 73 - 74. The three fingers ’aa’, ’bb’, and ’cccccc’ identify the
parts of the line where there are errors. The actual columns are highlighted with
variables which are further explained by the messages. In this case, message
RNF5051 indicates that the fields marked by ’aa’ and ’bb’ do not contain a valid
indicator. Since there is no valid indicator the compiler assumes that the fields are
blank. However, since the SETOFF operation requires an indicator, another error
arises, as pointed out by the field ’cccccc’ and message RNF5053.

Errors are listed in the order in which they are found. As a general rule, you
should focus on correcting the first few severity 30 and 40 errors, since these are
often the cause of other errors.

Non-finger in-line diagnostic messages also indicate errors. However, they are not
issued immediately following the line in error. Figure 36 shows an example of the
non-finger in-line diagnostic messages.

In this example, FLD1 is defined like FLD2 with a length 5 bytes greater. Later,
FLD2 is defined as a date, which makes the length adjustment in the definition of
FLD1 invalid. Message RNF3479 is issued pointing at listing line 1. Note that the
SEU sequence number (000100) is also given, to aid you in finding the source line
in error more quickly. (The SEU sequence number can also be found at listing line
1).

Using Additional-Diagnostic Messages
The Additional Diagnostic Messages section identifies errors which arise when one
or more lines of code are viewed collectively. These messages are not placed within
the code where the problem is; in general, the compiler does not know at the time
of checking that portion of the source that a problem exists. However, when

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

63 C SETOFF _12___ 003100
======> aabb
======> cccccc
*RNF5051 20 a 003100 Resulting-Indicator entry is not valid; defaults to blanks.
*RNF5051 20 b 003100 Resulting-Indicator entry is not valid; defaults to blanks.
*RNF5053 30 c 003100 Resulting-Indicators entry is blank for specified

Figure 35. Sample Finger In-Line Diagnostic Messages

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

1 D FLD1 S +5 LIKE(FLD2) 000100
2 D FLD2 S D 000200

*RNF3479 20 1 000100 A length adjustment is not allowed for a field of the
specified data type.

Figure 36. Sample Non-Finger In-Line Diagnostic Messages

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 71

possible, the message line includes either the listing Line Number and SEU
sequence number, or the Statement Number of a source line which is related to the
message.

Browsing a Compiler Listing Using SEU
The SEU Split/Browse session (F15) allows you to browse a compiler listing in the
output queue. You can review the results of a previous compilation while making
the required changes to your source code.

See Using the application development tools in the client product for information
about getting started with the client tools.

While browsing the compiler listing, you can scan for errors and correct those
source statements that have errors. To scan for errors, type F *ERR on the SEU
command line of the browse session. The line with the first (or next) error is
highlighted, and the first-level text of the same message appears at the bottom of
the screen. You can see the second-level text by placing your cursor on the message
at the bottom and then pressing F1 (Help).

When possible, the error messages in the listing identify the SEU sequence number
of the line in error. The sequence number is found just before the message text.

For complete information on browsing a compiler listing, see ADTS for AS/400:
Source Entry Utility.

Correcting Run-time Errors
The source section of the listing is also useful for correcting run-time errors. Many
run-time error messages identify a statement number where the error in question
occurred.

If OPTION(*NOSRCSTMT) is specified, the Line Number on the left side of the
compiler listing corresponds to the statement number in the run-time error
message. The source ID number and the SEU sequence number on the right side of
the compiler listing identify the source member and record. You can use the two
together, especially if you are editing the source using SEU, to determine which
line needs to be examined.

If OPTION(*SRCSTMT) is specified, the Statement Number on the right side of the
compiler listing corresponds to the statement number in the run-time error
message. If the statement is from the main source member, this is the same as the
statement on the left side of the compiler listing, and is also the same as the SEU
sequence number.

If you have a /COPY member, you can find the source ID number of the actual file
in the /COPY Member table at the end of the listing. For an example of a /COPY
Member table, see “/COPY Member Table” on page 510.

Coordinating Listing Options with Debug View Options
Correcting run-time errors often involves debugging a program. The following
considerations may help you when you go to debug your program:
v If you use the source debugger to debug your program you have a choice of

debug views: *STMT, *SOURCE, *LIST, *COPY, *ALL.
v If you plan to use a compiler listing as an aid while debugging, then you can

obtain one by specifying OUTPUT(*PRINT). A listing is important if you intend
to debug using a statement (*STMT) view since the statement numbers for

Using a Compiler Listing

72 ILE RPG Programmer’s Guide

setting breakpoints are those identified in the source listing. The statement
numbers are listed in the column labeled as the Line Number when
OPTION(*NOSRCSTMT) is specified, and in the column labeled as the Statement
Number when OPTION(*SRCSTMT) is specified.

v If you know that you will have considerable debugging to do, you may want to
compile the source with DBGVIEW(*ALL), OUTPUT(*PRINT) and
OPTION(*SHOWCPY). This will allow you to use either a source or listing view,
and it will include /COPY members.

v If you specify DBGVIEW(*LIST), the information available to you while
debugging depends on what you specified for the OPTION parameter. The view
will include /COPY members and externally described files only if you specify
OPTION(*SHOWCPY *EXPDDS) — these are the defaults.

Using a Compiler Listing for Maintenance
A compiler listing of an error-free program can be used as documentation when:
v Teaching the program to a new programmer.
v Updating the program at a later date.

In either case it is advisable to have a full listing, namely, one produced with
OUTPUT(*PRINT) and with OPTION(*XREF *SHOWCPY *EXPDDS *EXT
*SHOWSKP).

Note: Except for *SHOWSKP, this is the default setting for each of these
parameters on both create commands.

Of particular value for program maintenance is the Prologue section of the listing.
This section tells you:
v Who compiled the module/program
v What source was used to produce the module/program
v What options were used when compiling the module/program

You may need to know about the command options (for example, the debug view
selected, or the binding directory used) when you make later changes to the
program.

The following specifications for the OPTION parameter provide additional
information as indicated:
v *SHOWCPY and *EXPDDS provide a complete description of the program,

including all specifications from /COPY members, and generated specifications
from externally described files.

v *SHOWSKP allows you to see the statements that are ignored by the compiler as
a result of /IF, /ELSEIF, /ELSE, OR /EOF directives.

v *XREF allows you to check the use of files, fields, and indicators within the
module/program.

v *EXT allows you to see which procedures and fields are imported or exported
by the module/program. It also identifies the actual files which were used for
generating the descriptions for externally described files and data structures.

Using a Compiler Listing

Chapter 6. Creating a Program with the CRTBNDRPG Command 73

Accessing the RETURNCODE Data Area
Both the CRTBNDRPG and CRTRPGMOD (see “Using the CRTRPGMOD
Command” on page 78) commands create and update a data area with the status
of the last compilation. This data area is named RETURNCODE, is 400 characters
long, and is placed into library QTEMP.

To access the RETURNCODE data area, specify RETURNCODE in factor 2 of a
*DTAARA DEFINE statement.

The data area RETURNCODE has the following format:

Byte Content and Meaning

1 For CRTRPGMOD, character '1' means that a module was created
in the specified library. For CRTBNDRPG, character '1' means a
module with the same name as the program name was created in
QTEMP.

2 Character '1' means that the compilation failed because of compiler
errors.

3 Character '1' means that the compilation failed because of source
errors.

4 Not set. Always '0'.

5 Character '1' means the translator was not called because either
OPTION(*NOGEN) was specified on the CRTRPGMOD or
CRTBNDRPG command; or the compilation failed before the
translator was called.

6-10 Number of source statements

11-12 Severity level from command

13-14 Highest severity of diagnostic messages

15-20 Number of errors that are found in the module (CRTRPGMOD) or
program (CRTBNDRPG).

21-26 Compile date

27-32 Compile time

33-100 Not set. Always blank

101-110 Module (CRTRPGMOD) name or program (CRTBNDRPG) name.

111-120 Module (CRTRPGMOD) library name or program (CRTBNDRPG)
library name.

121-130 Source file name

131-140 Source file library name

141-150 Source file member name

151-160 Compiler listing file name

161-170 Compiler listing library name

171-180 Compiler listing member name

181-329 Not set. Always blank

Accessing the RETURNCODE Data Area

74 ILE RPG Programmer’s Guide

330-334 Total elapsed compile time to the nearest 10th of a second (or -1 if
an error occurs while this time is being calculated)

335 Not set. Always blank

336-340 Elapsed compile time to the nearest 10th of a second (or -1 if an
error occurs while this time is being calculated)

341-345 Elapsed translator time to the nearest 10th of a second (or -1 if an
error occurs while this time is being calculated)

346-379 Not set. Always blank

380-384 Total compile CPU time to the nearest 10th of a second

385 Not set. Always blank

386-390 CPU time that is used by compiler to the nearest 10th of a second

391-395 CPU time that is used by the translator to the nearest 10th of a
second

396-400 Not set. Always blank

Accessing the RETURNCODE Data Area

Chapter 6. Creating a Program with the CRTBNDRPG Command 75

Accessing the RETURNCODE Data Area

76 ILE RPG Programmer’s Guide

Chapter 7. Creating a Program with the CRTRPGMOD and
CRTPGM Commands

The two-step process of program creation consists of compiling source into
modules using CRTRPGMOD and then binding one or more module objects into a
program using CRTPGM. With this process you can create permanent modules.
This in turn allows you to modularize an application without recompiling the
whole application. It also allows you to reuse the same module in different
applications.

This chapter shows how to:
v Create a module object from RPG IV source
v Bind modules into a program using CRTPGM
v Read a binder listing
v Change a module or program

Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about creating an ILE RPG program appears in that
product’s online help.

Creating a Module Object
A module is a nonrunnable object (type *MODULE) that is the output of an ILE
compiler. It is the basic building block of an ILE program.

An ILE RPG module consists of one or more procedures, and the file control blocks
and static storage used by all the procedures in the module. The procedures that
can make up an ILE RPG module are:
v an optional cycle-main procedure which consists of the set of H, F, D, I, C, and

O specifications that begin the source. The cycle-main procedure has its own LR
semantics and logic cycle; neither of which is affected by those of other ILE RPG
modules in the program.

v zero or more subprocedures, which are coded on P, D, and C specifications.
Subprocedures do not use the RPG cycle. A subprocedure may have local
storage that is available for use only by the subprocedure itself. One of the
subprocedures may be designated as a linear-main procedure, if a cycle-main
procedure is not coded.

The main procedure (if coded) can always be called by other modules in the
program. Subprocedures may be local to the module or exported. If they are local,
they can only be called by other procedures in the module; if they are exported
from the module, they can be called by any procedure in the program.

Module creation consists of compiling a source member, and, if that is successful,
creating a *MODULE object. The *MODULE object includes a list of imports and
exports referenced within the module. It also includes debug data if you request
this at compile time.

A module cannot be run by itself. You must bind one or more modules together to
create a program object (type *PGM) which can then be run. You can also bind one

© Copyright IBM Corp. 1994, 2010 77

#
#
#
#

#
#
#
#
#

or more modules together to create a service program object (type *SRVPGM). You
then access the procedures within the bound modules through static procedure
calls.

This ability to combine modules allows you to:
v Reuse pieces of code. This generally results in smaller programs. Smaller

programs give you better performance and easier debugging capabilities.
v Maintain shared code with little chance of introducing errors to other parts of

the overall program.
v Manage large programs more effectively. Modules allow you to divide your old

program into parts that can be managed separately. If the program needs to be
enhanced, you only need to recompile those modules which have been changed.

v Create mixed-language programs where you bind together modules written in
the best language for the task required.

For more information about the concept of modules, refer to ILE Concepts.

Using the CRTRPGMOD Command
You create a module using the Create RPG Module (CRTRPGMOD) command. You
can use the command interactively, as part of a batch input stream, or from a
Command Language (CL) program.

If you are using the command interactively and need prompting, type
CRTRPGMOD and press F4 (Prompt). If you need help, type CRTRPGMOD and
press F1 (Help).

Table 31 lists the parameters of the CRTRPGMOD command and their
system-supplied defaults. The syntax diagram of the command and a description
of the parameters are found in Appendix C, “The Create Commands,” on page 477.

Table 31. CRTRPGMOD Parameters and Their Default Values Grouped by Function

Module Identification

MODULE(*CURLIB/*CTLSPEC) Determines created module name and library

SRCFILE(*LIBL/QRPGLESRC) If specified, identifies source file and library

SRCMBR(*MODULE) If specified, identifies file member containing source specifications

SRCSTMF(path) If specified, indicates the path to the source file in the IFS

INCDIR(’path to directory 1:path to directory
2’)

Identifies a list of modules to search for /copy and /include files

TEXT(*SRCMBRTXT) Provides brief description of module

Module Creation

GENLVL(10) Conditions module creation to error severity (0-20)

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

OPTION(*GEN) *GEN/*NOGEN, determines if module is created

OPTION(*NOSRCSTMT) Specifies how the compiler generates statement numbers for
debugging

OPTION(*UNREF) *UNREF/*NOUNREF Determines whether unreferenced fields are
placed in the module

DBGVIEW(*STMT) Specifies type of debug view, if any, to be included in module

DBGENCKEY(*NONE) Specifies the encryption for the listing debug view for the module

Creating a Module Object

78 ILE RPG Programmer’s Guide

||

Table 31. CRTRPGMOD Parameters and Their Default Values Grouped by Function (continued)

OPTIMIZE(*NONE) Determines level of optimization, if any

REPLACE(*YES) Determines if module should replace existing module

AUT(*LIBCRTAUT) Specifies type of authority for created module

TGTRLS(*CURRENT) Specifies the release level the object is to be run on

BNDDIR(*NONE) Specifies the binding directory to be used for symbol resolution

ENBPFRCOL(*PEP) Specifies whether performance collection is enabled

DEFINE(*NONE) Specifies condition names that are defined before the compilation
begins

PRFDTA(*NOCOL) Specifies the program profiling data attribute

STGMDL(*INHERIT) Specifies the storage model for the module

Compiler Listing

OUTPUT(*PRINT) Determines if there is a compiler listing

INDENT(*NONE) Determines if indentation should show in listing, and identify
character for marking it

OPTION(*XREF *NOSECLVL *SHOWCPY
*EXPDDS *EXT *NOSHOWSKP

*NOSRCSTMT)

Specifies the contents of compiler listing

Data Conversion Options

CVTOPT(*NONE) Specifies how various data types from externally described files are
handled

ALWNULL(*NO) Determines if the module will accept values from null-capable fields

FIXNBR(*NONE) Determines which decimal data that is not valid is to be fixed by the
compiler

Run-Time Considerations

SRTSEQ(*HEX) Specifies the sort sequence table to be used

OPTION(*DEBUGIO) *DEBUGIO/*NODEBUGIO, determines if breakpoints are generated
for input and output specifications

LANGID(*JOBRUN) Used with SRTSEQ to specify the language identifier for sort
sequence

INFOSTMF(path) Used with PGMINFO, specifies the stream file in the IFS to receive
the PCML

PGMINFO(*NONE) *PCML indicates that PCML (Program Call Markup Language)
should be generated for the module; the second parameter indicates
whether it should be generated into a stream file or into the module.

TRUNCNBR(*YES) Specifies action to take when numeric overflow occurs for
packed-decimal, zoned-decimal, and binary fields in fixed format
operations.

LICOPT(options) Specifies Licensed Internal Code options.

When requested, the CRTRPGMOD command creates a compiler listing which is
for the most part identical to the listing that is produced by the CRTBNDRPG
command. (The listing created by CRTRPGMOD will never have a binding
section.)

For information on using the compiler listing, see “Using a Compiler Listing” on
page 67. A sample compiler listing is provided in Appendix D, “Compiler
Listings,” on page 501.

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 79

||

Creating a NOMAIN Module
In this example you create an NOMAIN module object TRANSSVC using the
CRTRPGMOD command and its default settings. TRANSSVC contains prototyped
procedures that perform transaction services for procedures in other modules. The
source for TRANSSVC is shown in Figure 37 on page 81. The prototypes for the
procedures in TRANSSVC are stored in a /COPY member, as shown in Figure 38
on page 82.
1. To create a module object, type:

CRTRPGMOD MODULE(MYLIB/TRANSSVC) SRCFILE(MYLIB/QRPGLESRC)

The module will be created in the library MYLIB with the name specified in the
command, TRANSSVC. The source for the module is the source member
TRANSSVC in file QRPGLESRC in the library MYLIB.
You bind a module containing NOMAIN to another module using one of the
following commands:
a. CRTPGM command
b. CRTSRVPGM command
c. CRTBNDRPG command where the NOMAIN module is included in a

binding directory.
2. Once it is bound, this module object can be debugged using a statement view.

A compiler listing for the module is also produced.
3. Type one of the following CL commands to see the compiler listing.

v DSPJOB and then select option 4 (Display spooled files)
v WRKJOB
v WRKOUTQ queue-name

v WRKSPLF

Creating a Module Object

80 ILE RPG Programmer’s Guide

===
* MODULE NAME: TRANSSVC (Transaction Services)
* RELATED FILES: N/A
* RELATED SOURCE: TRANSRPT
* EXPORTED PROCEDURES: Trans_Inc -- calculates the income
* for the transaction using the data in the fields in the
* parameter list. It returns to the caller after all
* the calculations are done.
*
* Prod_Name -- retrieves the product name based on the
* input parameter with the product number.
===
* This module contains only subprocedures; it is a NOMAIN module.
H NOMAIN
*--
* Pull in the prototypes from the /COPY member
*--
/COPY TRANSP

*--
* Subprocedure Trans_Inc
*--
P Trans_Inc B EXPORT
D Trans_Inc PI 11P 2
D ProdNum 10P 0 VALUE
D Quantity 5P 0 VALUE
D Discount 2P 2 VALUE
D Factor S 5P 0
*
C SELECT
C WHEN ProdNum = 1
C EVAL Factor = 1500
C WHEN ProdNum = 2
C EVAL Factor = 3500
C WHEN ProdNum = 5
C EVAL Factor = 20000
C WHEN ProdNum = 8
C EVAL Factor = 32000
C WHEN ProdNum = 12
C EVAL Factor = 64000
C OTHER
C EVAL Factor = 0
C ENDSL
C RETURN Factor * Quantity * (1 - Discount)
P Trans_Inc E

Figure 37. Source for TRANSSVC member (Part 1 of 2)

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 81

Creating a Module for Source Debugging
In this example, you create an ILE RPG module object that you can debug using
the source debugger. The module TRANSRPT contains a main procedure which
drives the report processing. It calls the procedures in TRANSSVC to perform
certain required tasks. The source for this module is shown in Figure 39 on page
83.

To create a module object, type:
CRTRPGMOD MODULE(MYLIB/TRANSRPT) SRCFILE(MYLIB/QRPGLESRC)

DBGVIEW(*SOURCE)

The module is created in the library MYLIB with the same name as the source file
on which it is based, namely, TRANSRPT. This module object can be debugged
using a source view. For information on the other views available, see “Preparing a
Program for Debugging” on page 232.

A compiler listing for the TRANSRPT module will be produced.

*--
* Subprocedure Prod_Name
*--
P Prod_Name B EXPORT
D Prod_Name PI 40A
D ProdNum 10P 0 VALUE
*
C SELECT
C WHEN ProdNum = 1
C RETURN 'Large'
C WHEN ProdNum = 2
C RETURN 'Super'
C WHEN ProdNum = 5
C RETURN 'Super Large'
C WHEN ProdNum = 8
C RETURN 'Super Jumbo'
C WHEN ProdNum = 12
C RETURN 'Incredibly Large Super Jumbo'
C OTHER
C RETURN '***Unknown***'
C ENDSL
P Prod_Name E

Figure 37. Source for TRANSSVC member (Part 2 of 2)

* Prototype for Trans_Inc
D Trans_Inc PR 11P 2
D Prod 10P 0 VALUE
D Quantity 5P 0 VALUE
D Discount 2P 2 VALUE

* Prototype for Prod_Name
D Prod_Name PR 40A
D Prod 10P 0 VALUE

Figure 38. Source for TRANSP /COPY member

Creating a Module Object

82 ILE RPG Programmer’s Guide

The DDS for the file TRNSDTA is shown in Figure 40 on page 84. The /COPY
member is shown in Figure 38 on page 82.

===
* MODULE NAME: TRANSRPT
* RELATED FILES: TRNSDTA (PF)
* RELATED SOURCE: TRANSSVC (Transaction services)
* EXPORTED PROCEDURE: TRANSRPT
* The procedure TRANSRPT reads every tranasction record
* stored in the physical file TRNSDTA. It calls the
* subprocedure Trans_Inc which performs calculations and
* returns a value back. Then it calls Prod_Name to
* to determine the product name. TRANSRPT then prints
* the transaction record out.
===
FTRNSDTA IP E DISK
FQSYSPRT O F 80 PRINTER OFLIND(*INOF)
/COPY QRPGLE,TRANSP
* Define the readable version of the product name like the
* return value of the procedure 'Prod_Name'
D ProdName S 30A
D Income S 10P 2
D Total S +5 LIKE(Income)
*
ITRNSREC 01
* Calculate the income using subprocedure Trans_Inc
C EVAL Income = Trans_Inc(PROD : QTY : DISC)
C EVAL Total = Total + Income
* Find the name of the product
C EVAL ProdName = Prod_Name(PROD)
OQSYSPRT H 1P 1
O OR OF
O 12 'Product name'
O 40 'Quantity'
O 54 'Income'
OQSYSPRT H 1P 1
O OR OF
O 30 '----------+
O ----------+
O ----------'
O 40 '--------'
O 60 '------------'
OQSYSPRT D 01 1
O ProdName 30
O QTY 1 40
O Income 1 60
OQSYSPRT T LR 1
O 'Total: '
O Total 1

Figure 39. Source for TRANSRPT module

Creating a Module Object

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 83

Additional Examples
For additional examples of creating modules, see:
v “Sample Service Program” on page 97, for an example of creating a module for a

service program.
v “Binding to a Program” on page 102. for an example of creating a module to be

used with a service program.
v “Managing Your Own Heap Using ILE Bindable APIs” on page 125, for an

example of creating a module for dynamically allocating storage for a run-time
array

v “Sample Source for Debug Examples” on page 279, for example of creating an
RPG and C module for use in a sample debug program.

Behavior of Bound ILE RPG Modules
In ILE RPG, the cycle-main procedure is the boundary for the scope of LR semantics
and the RPG cycle. The module is the boundary for the scope of open files.

In any ILE program, there may be several RPG cycles active; there is one RPG
cycle for each RPG module that has a cycle-main procedure. The cycles are
independent: setting on LR in one cycle-main procedure has no effect on the cycle
in another. An RPG module which has a linear-main procedure or has no main
procedure does not use the RPG cycle; nor will it effect the cycle in another
module.

Related CL Commands
The following CL commands can be used with modules:
v Display Module (DSPMOD)
v Change Module (CHGMOD)
v Delete Module (DLTMOD)
v Work with Modules (WRKMOD)

For further information on these commands see the CL and APIs section of the
Programming category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

A***
A* RELATED FILES: TRNSRPT *
A* DESCRIPTION: This is the physical file TRNSDTA. It has *
A* one record format called TRNSREC. *
A***
A* PARTS TRANSACTION FILE -- TRNSDTA
A R TRNSREC
A PROD 10S 0 TEXT('Product')
A QTY 5S 0 TEXT('Quantity')
A DISCOUNT 2S 2 TEXT('Discount')

Figure 40. DDS for TRNSDTA

Creating a Module Object

84 ILE RPG Programmer’s Guide

#
#

#
#
#
#
#
#

http://www.ibm.com/systems/i/infocenter/

Binding Modules into a Program
Binding is the process of creating a runnable ILE program by combining one or
more modules and optional service programs, and resolving symbols passed
between them. The system code that does this combining and resolving is called a
binder on the i5/OS system.

As part of the binding process, a procedure must be identified as the startup
procedure, or program entry procedure. When a program is called, the program
entry procedure receives the parameters from the command line and is given
initial control for the program. The user’s code associated with the program entry
procedure is the user entry procedure.

If an ILE RPG module contains a main procedure, it implicitly also contains a
program entry procedure. Therefore, any ILE RPG module may be specified as the
entry module as long as it is not a NOMAIN module.

Figure 41 on page 86 gives an idea of the internal structure of a program object. It
shows the program object TRPT, which was created by binding the two modules
TRANSRPT and TRANSSVC. TRANSRPT is the entry module.

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 85

Within a bound object, procedures can interrelate using static procedure calls.
These bound calls are faster than external calls. Therefore, an application consisting

Figure 41. Structure of Program TRPT

Binding Modules into a Program

86 ILE RPG Programmer’s Guide

of a single bound program with many bound calls should perform faster than a
similar application consisting of separate programs with many external
interapplication calls.

In addition to binding modules together, you can also bind them to service
programs (type *SRVPGM). Service programs allow you to code and maintain
modules separately from the program modules. Common routines can be created
as service programs and if the routine changes, the change can be incorporated by
binding the service program again. The programs that use these common routines
do not have to be recreated. For information on creating service programs see
Chapter 8, “Creating a Service Program,” on page 95.

For information on the binding process and the binder, refer to the ILE Concepts.

Using the CRTPGM Command
The Create Program (CRTPGM) command creates a program object from one or
more previously created modules and, if required, one or more service programs.
You can bind modules created by any of the ILE Create Module commands,
CRTRPGMOD, CRTCMOD, CRTCBLMOD, or CRTCLMOD.

Note: The modules and/or service programs required must have been created
prior to using the CRTPGM command.

Before you create a program object using the CRTPGM command, you should:
1. Establish a program name.
2. Identify the module or modules, and if required, service programs you want to

bind into a program object.
3. Identify the entry module.

You indicate which module contains the program entry procedure through the
ENTMOD parameter of CRTPGM. The default is ENTMOD(*FIRST), meaning
that the module containing the first program entry procedure found in the list
for the MODULE parameter is the entry module.
Assuming you have only one module with a main procedure, that is, all
modules but one have NOMAIN specified, you can accept the default (*FIRST).
Alternatively, you can specify (*ONLY); this will provide a check that in fact
only one module has a main procedure. For example, in both of the following
situations you could specify ENTMOD(*ONLY).
v You bind an RPG module to a C module without a main() function.
v You bind two RPG modules, where one has NOMAIN on the control

specification.

Note: If you are binding more than one ILE RPG module with a main
procedure, then you should specify the name of the module that you
want to receive control when the program is called. You can also specify
*FIRST if the module with a main procedure precedes any other modules
with main procedures on the list specified for the MODULE parameter.

4. Identify the activation group that the program is to use.
Specify the named activation group QILE if your program has no special
requirements or if you are not sure which group to use. In general, it is a good
idea to run an application in its own activation group. Therefore, you may
want to name the activation group after the application.
Note that the default activation group for CRTPGM is *NEW. This means that
your program will run in its own activation group, and the activation group

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 87

will terminate when the program does. Whether or not you set on LR, your
program will have a fresh copy of its data the next time you call it. For more
information on activation groups see “Specifying an Activation Group” on page
114.

To create a program object using the CRTPGM command, perform the following
steps:
1. Enter the CRTPGM command.
2. Enter the appropriate values for the command parameter.

Table 32 lists the CRTPGM command parameters and their default values. For a
full description of the CRTPGM command and its parameters, refer to the CL and
APIs section of the Programming category in the i5/OS Information Center at this
Web site - http://www.ibm.com/systems/i/infocenter/.

Table 32. Parameters for CRTPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification PGM(library name/program name)
MODULE(*PGM)

Program access ENTMOD(*FIRST)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*NEW)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWRINZ(*NO)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT)
USRPRF(*USER)

Once you have entered the CRTPGM command, the system performs the following
actions:
1. Copies listed modules into what will become the program object, and links any

service programs to the program object.
2. Identifies the module containing the program entry procedure, and locates the

first import in this module.
3. Checks the modules in the order in which they are listed, and matches the first

import with a module export.
4. Returns to the first module, and locates the next import.
5. Resolves all imports in the first module.
6. Continues to the next module, and resolves all imports.
7. Resolves all imports in each subsequent module until all of the imports have

been resolved.
8. If any imports cannot be resolved with an export, the binding process

terminates without creating a program object.
9. Once all the imports have been resolved, the binding process completes and the

program object is created.

Binding Modules into a Program

88 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

Note: If you have specified that a variable or procedure is to be exported (using
the EXPORT keyword), it is possible that the variable or procedure name
will be identical to a variable or procedure in another procedure within the
bound program object. In this case, the results may not be as expected. See
ILE Concepts for information on how to handle this situation.

Binding Multiple Modules
This example shows you how to use the CRTPGM command to bind two ILE RPG
modules into a program TRPT. In this program, the following occurs:
v The module TRANSRPT reads each transaction record from a file TRNSDTA.
v It then calls procedure Trans_Inc and Proc_Name in module TRANSSVC using

bound calls within expressions.
v Trans_Inc calculates the income pertaining to each transaction and returns the

value to the caller
v Proc_Name determines the product name and returns it
v TRANSRPT then prints the transaction record.

Source for TRANSRPT, TRANSSVC, and TRNSDTA is shown in Figure 39 on page
83, Figure 37 on page 81 and Figure 40 on page 84 respectively.
1. First create the module TRANSRPT. Type:

CRTRPGMOD MODULE(MYLIB/TRANSRPT)

2. Then create module TRANSSVC by typing:
CRTRPGMOD MODULE(MYLIB/TRANSSVC)

3. To create the program object, type:
CRTPGM PGM(MYLIB/TRPT) MODULE(TRANSRPT TRANSSVC)

ENTMOD(*FIRST) ACTGRP(TRPT)

The CRTPGM command creates a program object TRPT in the library MYLIB.

Note that TRANSRPT is listed first in the MODULE parameter. ENTMOD(*FIRST)
will find the first module with a program entry procedure. Since only one of the
two modules has a program entry procedure, they can be entered in either order.

The program TRPT will run in the named activation group TRPT. The program
runs in a named group to ensure that no other programs can affect its resources.

Figure 42 shows an output file created when TRPT is run.

Additional Examples
For additional examples of creating programs, see:
v “Binding to a Program” on page 102, for an example of binding a module and a

service program.

Product name Quantity Income
------------------------------ -------- ------------
Large 245 330,750.00
Super 15 52,500.00
Super Large 0 .00
Super Jumbo 123 2,952,000.00
Incredibly Large Super Jumbo 15 912,000.00
Unknown 12 .00
Total: 4,247,250.00

Figure 42. File QSYSPRT for TRPT

Binding Modules into a Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 89

v “Sample Source for Debug Examples” on page 279, for an example of creating a
program consisting of an RPG and C module.

Related CL Commands
The following CL commands can be used with programs:
v Change Program (CHGPGM)
v Delete Program (DLTPGM)
v Display Program (DSPPGM)
v Display Program References (DSPPGMREF)
v Update Program (UPDPGM)
v Work with Program (WRKPGM)

For further information on these commands, see the CL and APIs section of the
Programming category in the System i Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

Using a Binder Listing
The binding process can produce a listing that describes the resources used,
symbols and objects encountered, and problems that were resolved or not resolved
in the binding process. The listing is produced as a spooled file for the job you use
to enter the CRTPGM command. The command default is to not produce this
information, but you can choose a DETAIL parameter value to generate it at three
levels of detail:
v *BASIC
v *EXTENDED
v *FULL

The binder listing includes the following sections depending on the value specified
for DETAIL:

Table 33. Sections of the Binder Listing based on DETAIL Parameter

Section Name *BASIC *EXTENDED *FULL

Command Option Summary X X X

Brief Summary Table X X X

Extended Summary Table X X

Binder Information Listing X X

Cross-Reference Listing X

Binding Statistics X

The information in this listing can help you diagnose problems if the binding was
not successful, or give feedback about what the binder encountered in the process.
You may want to store the listing for an ILE program in the file where you store
the modules or the module source for a program. To copy this listing to a database
file, you can use the Copy Spool File (CPYSPLF) command.

Note: The CRTBNDRPG command will not create a binder listing. However, if any
binding errors occur during the binding phase, the errors will be noted in
your job log, and the compiler listing will include a message to this effect.

Binding Modules into a Program

90 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

For an example of a basic binder listing, see “Sample Binder Listing” on page 104.

For more information on binder listings see ILE Concepts.

Changing a Module or Program
An ILE object may need to be changed for enhancements or for maintenance
reasons. You can isolate what needs to be changed by using debugging information
or the binder listing from the CRTPGM command. From this information you can
determine what module needs to change, and often, what procedure or field needs
to change.

In addition, you may want to change the optimization level or observability of a
module or program. This often happens when you want to debug an program or
module, or when you are ready to put a program into production. Such changes
can be performed more quickly and use fewer system resources than re-creating
the object in question.

Finally, you may want to reduce the program size once you have completed an
application. ILE programs have additional data added to them which may make
them larger than a similar OPM program.

Each of the above requires different data to make the change. The resources you
need may not be available to you for an ILE program.

The following sections tell you how to
v Update a program
v Change the optimization level
v Change observability
v Reduce the object size

Note: In the remainder of this section the term ’object’ will be used to refer to
either an ILE module or ILE program.

Using the UPDPGM Command
In general, you can update a program by replacing modules as needed. For
example, if you add a new procedure to a module, you recompile the module
object, and then update the program. You do not have to re-create the program.
This is helpful if you are supplying an application to other sites. You need only
send the revised modules, and the receiving site can update the application using
the UPDPGM or UPDSRVPGM command.

The UPDPGM command works with both program and module objects. The
parameters on the command are very similar to those on the CRTPGM command.
For example, to replace a module in a program, you would enter the module name
for MODULE parameter and the library name. The UPDPGM command requires
that the modules to be replaced be in the same libraries as when the program was
created. You can specify that all modules are to be replaced, or some subset.

The UPDPGM command requires that the module object be present. Thus, it is
easier to use the command when you have created the program using separate
compile and bind steps. Since the module object already exists, you simply specify
its name and library when issuing the command.

Using a Binder Listing

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 91

To update a program created by CRTBNDRPG command, you must ensure that the
revised module is in the library QTEMP. This is because the temporary module
used when the CRTBNDRPG command was issued, was created in QTEMP. Once
the module is in QTEMP, you can issue the UPDPGM command to replace the
module.

For more information, see ILE Concepts.

Changing the Optimization Level
Optimizing an object means looking at the compiled code, determining what can
be done to make the run-time performance as fast as possible, and making the
necessary changes. In general, the higher the optimizing request, the longer it takes
to create an object. At run time the highly optimized program or service program
should run faster than the corresponding nonoptimized program or service
program.

However, at higher levels of optimization, the values of fields may not be accurate
when displayed in a debug session, or after recovery from exception. In addition,
optimized code may have altered breakpoints and step locations used by the
source debugger, since the optimization changes may rearrange or eliminate some
statements.

To ensure that the contents of a field reflect their most current value, especially
after exception recovery, you can use the NOOPT keyword on the corresponding
Definition specification. For more information, see “Optimization Considerations”
on page 294.

To circumvent this problem while debugging, you can lower the optimization level
of a module to display fields accurately as you debug a program, and then raise
the level again afterwards to improve the program efficiency as you get the
program ready for production.

To determine the current optimization level of a program object, use the DSPPGM
command. Display 3 of this command indicates the current level. To change the
optimization level of a program, use the CHGPGM command. On the Optimize
program parameter you can specify one the following values: *FULL, *BASIC,
*NONE. These are the same values which can be specified on the OPTIMIZE
parameters of either create command. The program is automatically re-created
when the command runs.

Similarly, to determine the current optimization level of a module, use the
DSPMOD command. Display 1, page 2 of this command indicates the current level.
To change the optimization level, use the CHGMOD command. You then need to
re-create the program either using UPDPGM or CRTPGM.

Removing Observability
Observability involves the kinds of data that can be stored with an object, and that
allow the object to be changed without recompiling the source. The addition of this
data increases the size of the object. Consequently, you may want to remove the
data in order to reduce object size. But once the data is removed, observability is
also removed. You must recompile the source and recreate the program to replace
the data. The types of data are:

Create Data Represented by the *CRTDTA value. This data is necessary to

Changing a Module or Program

92 ILE RPG Programmer’s Guide

translate the code to machine instructions. The object must have
this data before you can change the optimization level.

Debug Data Represented by the *DBGDTA value. This data is necessary to
allow an object to be debugged.

Profiling Data Represented by the *BLKORD and *PRCORD values. This data is
necessary to allow the system to re-apply block order and
procedure order profiling data.

Use the CHGPGM command or the CHGMOD command to remove some or all
the data from a program or module respectively. Removing all observability
reduces an object to its minimum size (without compression). It is not possible to
change the object in any way unless you re-create it. Therefore, ensure that you
have all source required to create the program or have a comparable program
object with CRTDATA. To re-create it, you must have authorization to access the
source code.

Reducing an Object’s Size
The create data (*CRTDTA) associated with an ILE program or module may make
up more than half of the object’s size. By removing or compressing this data, you
will reduce the secondary storage requirements for your programs significantly.

If you remove the data, ensure that you have all source required to create the
program or have a comparable program object with CRTDATA. Otherwise you will
not be able to change the object.

An alternative is to compress the object, using the Compress Object (CPROBJ)
command. A compressed object takes up less system storage than an
uncompressed one. If the compressed program is called, the part of the object
containing the runnable code is automatically decompressed. You can also
decompress a compressed object by using the Decompress Object (DCPOBJ)
command.

For more information on these CL commands, see the CL and APIs section of the
Programming category in the System i Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

Changing a Module or Program

Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands 93

http://www.ibm.com/systems/i/infocenter/

Changing a Module or Program

94 ILE RPG Programmer’s Guide

Chapter 8. Creating a Service Program

This chapter provides:
v An overview of the service program concept
v Strategies for creating service programs
v A brief description of the CRTSRVPGM command
v An example of a service program

Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about creating a service program appears in that
product’s online help.

Service Program Overview
A service program is a bound program (type *SRVPGM) consisting of a set of
procedures that can be called by procedures in other bound programs.

Service programs are typically used for common functions that are frequently
called within an application and across applications. For example, the ILE
compilers use service programs to provide run-time services such as math
functions and input/output routines. Service programs enable reuse, simplify
maintenance, and reduce storage requirements.

A service program differs from a program in two ways:
v It does not contain a program entry procedure. This means that you cannot call

a service program using the CALL operation.
v A service program is bound into a program or other service programs using

binding by reference.

When you bind a service program to a program, the contents of the service
program are not copied into the bound program. Instead, linkage information of
the service program is bound into the program. This is called ’binding by
reference’ in contrast to the static binding process used to bind modules into
programs.

Because a service program is bound by reference to a program, you can call the
service program’s exported procedures using bound procedure calls. The initial call
has a certain amount of overhead because the binding is not completed until the
service program is called. However, subsequent calls to any of its procedures are
faster than program calls.

The set of exports contained in a service program are the interface to the services
provided by it. You can use the Display Service Program (DSPSRVPGM) command
or the service program listing to see what variable and procedure names are
available for use by the calling procedures. To see the exports associated with
service program PAYROLL, you would enter:

DSPSRVPGM PAYROLL DETAIL(*PROCEXP *DATAEXP)

© Copyright IBM Corp. 1994, 2010 95

Strategies for Creating Service Programs
When creating a service program, you should keep in mind:
1. Whether you intend to update the program at a later date
2. Whether any updates will involve changes to the interface (namely, the imports

and exports used).

If the interface to a service program changes, then you may have to re-bind any
programs bound to the original service program. However, if the changes required
are upward-compatible, you may be able to reduce the amount of re-binding if you
created the service program using binder language. In this case, after updating the
binder language source to identify the new exports you need to re-bind only those
programs that use them.

TIP
If you are planning a module with only subprocedures (that is, with a
module with keyword NOMAIN specified on the control specification) you
may want to create it as a service program. Only one copy of a service
program is needed on a system, and so you will need less storage for the
module.

Also, you can copyright your service programs using the COPYRIGHT
keyword on the control specification.

Binder language gives you control over the exports of a service program. This
control can be very useful if you want to:
v Mask certain service program procedures from service-program users
v Fix problems
v Enhance function
v Reduce the impact of changes to the users of an application.

See “Sample Service Program” on page 97 for an example of using binder
language to create a service program.

For information on binder language, masking exports, and other service program
concepts, see ILE Concepts.

Creating a Service Program Using CRTSRVPGM
You create a service program using the Create Service Program (CRTSRVPGM)
command. Any ILE module can be bound into a service program. The module(s)
must exist before you can create a service program with it.

Table 34 lists the CRTSRVPGM parameters and their defaults. For a full description
of the CRTSRVPGM command and its parameters, refer to the CL and APIs section
of the Programming category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

Table 34. Parameters for CRTSRVPGM Command and their Default Values

Parameter Group Parameter(Default Value)

Identification SRVPGM(library name/service program name)
MODULE(*SRVPGM)

Strategies for Creating Service Programs

96 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

Table 34. Parameters for CRTSRVPGM Command and their Default Values (continued)

Parameter Group Parameter(Default Value)

Program access EXPORT(*SRCFILE)
SRCFILE(*LIBL/QSRVSRC)
SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*CALLER)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWRINZ(*NO)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT)
USRPRF(*USER)

See “Creating the Service Program” on page 101 for an example of using the
CRTSRVPGM command.

Changing A Service Program
You can update or change a service program in the same ways available to a
program object. In other words, you can:
v Update the service program (using UPDSRVPGM)
v Change the optimization level (using CHGSRVPGM)
v Remove observability (using CHGSRVPGM)
v Reduce the size (using CPROBJ)

For more information on any of the above points, see “Changing a Module or
Program” on page 91.

Related CL commands
The following CL commands are also used with service programs:
v Change Service Program (CHGSRVPGM)
v Display Service Program (DSPSRVPGM)
v Delete Service Program (DLTSRVPGM)
v Update Service Program (UPDSRVPGM)
v Work with Service Program (WRKSRVPGM)

Sample Service Program
The following example shows how to create a service program CVTTOHEX which
converts character strings to their hexadecimal equivalent. Two parameters are
passed to the service program:
1. a character field (InString) to be converted
2. a character field (HexString) which will contain the 2-byte hexadecimal

equivalent

Creating a Service Program Using CRTSRVPGM

Chapter 8. Creating a Service Program 97

The field HexString is used to contain the result of the conversion and also to
indicate the length of the string to be converted. For example, if a character string
of 30 characters is passed, but you are only interested in converting the first ten,
you would pass a second parameter of 20 bytes (2 times 10). Based on the length
of the passed fields, the service program determines the length to handle.

Figure 43 on page 99 shows the source for the service program. Figure 44 on page
101 shows the /COPY member containing the prototype for CvtToHex.

The basic logic of the procedure contained within the service program is listed
below:
1. Operational descriptors are used to determine the length of the passed

parameters.
2. The length to be converted is determined: it is the lesser of the length of the

character string, or one-half the length of the hex string field.
3. Each character in the string is converted to a two-byte hexadecimal equivalent

using the subroutine GetHex.
Note that GetHex is coded as a subroutine rather than a subprocedure, in order
to improve run-time performance. An EXSR operation runs much faster than a
bound call, and in this example, GetHex is called many times.

4. The procedure returns to its caller.

The service program makes use of operational descriptors, which is an ILE
construct used when the precise nature of a passed parameter is not known ahead
of time, in this case the length. The operational descriptors are created on a call to
a procedure when you specify the operation extender (D) on the CALLB operation,
or when OPDESC is specified on the prototype.

To use the operational descriptors, the service program must call the ILE bindable
API, CEEDOD (Retrieve Operational Descriptor). This API requires certain
parameters which must be defined for the CALLB operation. However, it is the last
parameter which provides the information needed, namely, the length. For more
information on operational descriptors, see “Using Operational Descriptors” on
page 144.

Sample Service Program

98 ILE RPG Programmer’s Guide

===
* CvtToHex - convert input string to hex output string
===
H COPYRIGHT('(C) Copyright MyCompany 1995')
D/COPY RPGGUIDE/QRPGLE,CVTHEXPR

* Main entry parameters
* 1. Input: string character(n)
* 2. Output: hex string character(2 * n)

D CvtToHex PI OPDESC
D InString 16383 CONST OPTIONS(*VARSIZE)
D HexString 32766 OPTIONS(*VARSIZE)

* Prototype for CEEDOD (Retrieve operational descriptor)

D CEEDOD PR
D ParmNum 10I 0 CONST
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 10I 0
D 12A OPTIONS(*OMIT)

* Parameters passed to CEEDOD
D DescType S 10I 0
D DataType S 10I 0
D DescInfo1 S 10I 0
D DescInfo2 S 10I 0
D InLen S 10I 0
D HexLen S 10I 0

* Other fields used by the program *

D HexDigits C CONST('0123456789ABCDEF')
D IntDs DS
D IntNum 5I 0 INZ(0)
D IntChar 1 OVERLAY(IntNum:2)
D HexDs DS
D HexC1 1
D HexC2 1
D InChar S 1
D Pos S 5P 0
D HexPos S 5P 0

Figure 43. Source for Service Program CvtToHex (Part 1 of 2)

Sample Service Program

Chapter 8. Creating a Service Program 99

* Use the operational descriptors to determine the lengths of *
* the parameters that were passed. *

C CALLP CEEDOD(1 : DescType : DataType :
C DescInfo1 : DescInfo2: Inlen :
C *OMIT)
C CALLP CEEDOD(2 : DescType : DataType :
C DescInfo1 : DescInfo2: HexLen :
C *OMIT)

* Determine the length to handle (minimum of the input length *
* and half of the hex length) *

C IF InLen > HexLen / 2
C EVAL InLen = HexLen / 2
C ENDIF

* For each character in the input string, convert to a 2-byte *
* hexadecimal representation (for example, '5' --> 'F5') *

C EVAL HexPos = 1
C DO InLen Pos
C EVAL InChar = %SUBST(InString : Pos :1)
C EXSR GetHex
C EVAL %SUBST(HexString : HexPos : 2) = HexDs
C EVAL HexPos = HexPos + 2
C ENDDO

* Done; return to caller. *

C RETURN

===
* GetHex - subroutine to convert 'InChar' to 'HexDs' *
* *
* Use division by 16 to separate the two hexadecimal digits. *
* The quotient is the first digit, the remainder is the second. *
===
C GetHex BEGSR
C EVAL IntChar = InChar
C IntNum DIV 16 X1 5 0
C MVR X2 5 0

* Use the hexadecimal digit (plus 1) to substring the list of *
* hexadecimal characters '012...CDEF'. *

C EVAL HexC1 = %SUBST(HexDigits:X1+1:1)
C EVAL HexC2 = %SUBST(HexDigits:X2+1:1)
C ENDSR

Figure 43. Source for Service Program CvtToHex (Part 2 of 2)

Sample Service Program

100 ILE RPG Programmer’s Guide

When designing this service program, it was decided to make use of binder
language to determine the interface, so that the program could be more easily
updated at a later date. Figure 45 shows the binder language needed to define the
exports of the service program CVTTOHEX. This source is used in the EXPORT,
SRCFILE and SRCMBR parameters of the CRTSRVPGM command.

The parameter SIGNATURE on STRPGMEXP identifies the interface that the
service program will provide. In this case, the export identified in the binder
language is the interface. Any program bound to CVTTOHEX will make use of this
signature.

The binder language EXPORT statements identify the exports of the service
program. You need one for each procedure whose exports you want to make
available to the caller. In this case, the service program contains one module which
contains one procedure. Hence, only one EXPORT statement is required.

For more information on binder language and signatures, see ILE Concepts.

Creating the Service Program
To create the service program CVTTOHEX, follow these steps:
1. Create the module CVTTOHEX from the source in Figure 43 on page 99, by

entering:
CRTRPGMOD MODULE(MYLIB/CVTTOHEX) SRCFILE(MYLIB/QRPGLESRC)

2. Create the service program using the module CVTTOHEX and the binder
language shown in Figure 45.

CRTSRVPGM SRVPGM(MYLIB/CVTTOHEX) MODULE(*SRVPGM)
EXPORT(*SRCFILE) SRCFILE(MYLIB/QSRVSRC)
SRCMBR(*SRVPGM)

The last three parameters in the above command identify the exports which the
service program will make available. In this case, it is based on the source
found in the member CVTTOHEX in the file QSRVSRC in the library MYLIB.
Note that a binding directory is not required here because all modules needed
to create the service program have been specified with the MODULE
parameter.

===
* CvtToHex - convert input string to hex output string
*
* Parameters
* 1. Input: string character(n)
* 2. Output: hex string character(2 * n)
===
D CvtToHex PR OPDESC
D InString 16383 CONST OPTIONS(*VARSIZE)
D HexString 32766 OPTIONS(*VARSIZE)

Figure 44. Source for /COPY Member with Prototype for CvtToHex

STRPGMEXP SIGNATURE('CVTHEX')
EXPORT SYMBOL('CVTTOHEX')

ENDPGMEXP

Figure 45. Source for Binder Language for CvtToHex

Sample Service Program

Chapter 8. Creating a Service Program 101

The service program CVTTOHEX will be created in the library MYLIB. It can be
debugged using a statement view; this is determined by the default DBGVIEW
parameter on the CRTRPGMOD command. No binder listing is produced.

Binding to a Program
To complete the example, we will create an ’application’ consisting of a program
CVTHEXPGM which is bound to the service program. It uses a seven-character
string which it passes to CVTTOHEX twice, once where the value of the hex string
is 10 (that is, convert 5 characters) and again where the value is 14, that is, the
actual length.

Note that the program CVTHEXPGM serves to show the use of the service
program CVTTOHEX. In a real application the caller of CVTTOHEX would have
another primary purpose other than testing CVTTOHEX. Furthermore, a service
program would normally be used by many other programs, or many times by a
few programs; otherwise the overhead of initial call does not justify making it into
a service program.

To create the application follow these steps:
1. Create the module from the source in Figure 46 on page 103, by entering:

CRTRPGMOD MODULE(MYLIB/CVTHEXPGM) SRCFILE(MYLIB/QRPGLESRC)

2. Create the program by typing
CRTPGM PGM(MYLIB/CVTHEXPGM)

BNDSRVPGM(MYLIB/CVTTOHEX)
DETAIL(*BASIC)

When CVTHEXPGM is created, it will include information regarding the
interface it uses to interact with the service program. This is the same as
reflected in the binder language for CVTTOHEX.

3. Call the program, by typing:
CALL CVTHEXPGM

During the process of making CVTHEXPGM ready to run, the system verifies
that:
v The service program CVTTOHEX in library MYLIB can be found
v The public interface used by CVTHEXPGM when it was created is still valid

at run time.
If either of the above is not true, then an error message is issued.

The output of CVTHEXPGM is shown below. (The input string is ’ABC123*’.)
Result14++++++
Result10++
C1C2C3F1F2 10 character output
C1C2C3F1F2F35C 14 character output

Sample Service Program

102 ILE RPG Programmer’s Guide

Updating the Service Program
Because of the binder language, the service program could be updated and the
program CVTHEXPGM would not have to be re-compiled. For example, there are
two ways to add a new procedure to CVTTOHEX, depending on whether the new
procedure goes into the existing module or into a new one.

To add a new procedure to an existing module, you would:

--
* Program to test Service Program CVTTOHEX *
* *
* 1. Use a 7-character input string *
* 2. Convert to a 10-character hex string (only the first five *
* input characters will be used because the result is too *
* small for the entire input string) *
* 3. Convert to a 14-character hex string (all seven input *
* characters will be used because the result is long enough) *
--
FQSYSPRT O F 80 PRINTER
* Prototype for CvtToHex
D/COPY RPGGUIDE/QRPGLE,CVTHEXPR
D ResultDS DS
D Result14 1 14
D Result10 1 10
D InString S 7
D Comment S 25
C EVAL InString = 'ABC123*'

--
* Pass character string and the 10-character result field *
* using a prototyped call. Operational descriptors are *
* passed, as required by the called procedure CvtToHex. *
--
C EVAL Comment = '10 character output'
C CLEAR ResultDS
C CALLP CvtToHex(Instring : Result10)
C EXCEPT

--
* Pass character string and the 14-character result field *
* using a CALLB(D). The operation extender (D) will create *
* operational descriptors for the passed parameters. CALLB *
* is used here for comparison with the above CALLP. *
--
C EVAL Comment = '14 character output'
C CLEAR ResultDS
C CALLB(D) 'CVTTOHEX'
C PARM InString
C PARM Result14
C EXCEPT
C EVAL *INLR = *ON

OQSYSPRT H 1P
O 'Result14++++++'
OQSYSPRT H 1P
O 'Result10++'
OQSYSPRT E
O ResultDS
O Comment +5

Figure 46. Source for Test Program CVTHEXPGM

Sample Service Program

Chapter 8. Creating a Service Program 103

1. Add the new procedure to the existing module.
2. Recompile the changed module.
3. Modify the binder language source to handle the interface associated with the

new procedure. This would involve adding any new export statements following
the existing ones.

4. Recreate the service program using CRTSRVPGM.

To add a new procedure using a new module, you would:
1. Create a module object for the new procedure.
2. Modify the binder language source to handle the interface associated with the

new procedure, as mentioned above.
3. Bind the new module to service program CVTTOHEX by re-creating the service

program.

With either method, new programs can access the new function. Since the old
exports are in the same order they can still be used by the existing programs. Until
it is necessary to also update the existing programs, they do not have to be
re-compiled.

For more information on updating service programs, see ILE Concepts.

Sample Binder Listing
Figure 47 on page 105 shows a sample binder listing for the CVTHEXPGM. The
listing is an example of a basic listing. For more information on binder listings, see
“Using a Binder Listing” on page 90 and also ILE Concepts.

Sample Service Program

104 ILE RPG Programmer’s Guide

Create Program Page 1
5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02

23:24:00
Program . : CVTHEXPGM
Library . : MYLIB

Program entry procedure module : *FIRST
Library . :

Activation group : *NEW
Creation options : *GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF
Listing detail : *BASIC
Allow Update : *YES
User profile : *USER
Replace existing program : *YES
Authority . : *LIBCRTAUT
Target release : *CURRENT
Allow reinitialization : *NO
Text . : *ENTMODTXT
Module Library Module Library Module Library Module Library
CVTHEXPGM MYLIB
Service Service Service Service
Program Library Program Library Program Library Program Library
CVTTOHEX MYLIB
Binding Binding Binding Binding
Directory Library Directory Library Directory Library Directory Library
*NONE

Create Program Page 2
5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02

23:24:00
Brief Summary Table

Program entry procedures : 1
Symbol Type Library Object Identifier

*MODULE MYLIB CVTHEXPGM _QRNP_PEP_CVTHEXPGM
Multiple strong definitions : 0
Unresolved references : 0

* * * * * E N D O F B R I E F S U M M A R Y T A B L E * * * * *
Create Program Page 3

5769WDS V5R2M0 020719 MYLIB/CVTHEXPGM ISERIES1 08/15/02
23:24:00

Binding Statistics
Symbol collection CPU time : .016
Symbol resolution CPU time : .004
Binding directory resolution CPU time : .175
Binder language compilation CPU time : .000
Listing creation CPU time : .068
Program/service program creation CPU time : .234
Total CPU time . : .995
Total elapsed time . : 3.531

* * * * * E N D O F B I N D I N G S T A T I S T I C S * * * * *
*CPC5D07 - Program CVTHEXPGM created in library MYLIB.

* * * * * E N D O F C R E A T E P R O G R A M L I S T I N G * * * * *

Figure 47. Basic Binder listing for CVTHEXPGM

Sample Service Program

Chapter 8. Creating a Service Program 105

Sample Service Program

106 ILE RPG Programmer’s Guide

Chapter 9. Running a Program

This chapter shows you how to:
v Run a program and pass parameters using the CL CALL command
v Run a program from a menu-driven application
v Run a program using a user-created command
v Manage activation groups
v Manage run-time storage.

In addition, you can run a program using:
v The Programmer Menu. The CL Programming, SC41-5721-06 manual contains

information on this menu.
v The Start Programming Development Manager (STRPDM) command. The

ADTS/400: Programming Development Manager manual contains information on
this command.

v The QCMDEXC program. The CL Programming manual contains information on
this program.

v A high-level language. Chapter 10, “Calling Programs and Procedures,” on page
133 provides information on running programs from another HLL or calling
service programs and procedures.,

Note: Use IBM WebSphere Development Studio Client for System i. This is the
recommended method and documentation about running a program
appears in that product’s online help.

Running a Program Using the CL CALL Command
You can use the CL CALL command to run a program (type *PGM). You can use
the command interactively, as part of a batch job, or include it in a CL program. If
you need prompting, type CALL and press F4 (Prompt). If you need help, type
CALL and press F1 (Help).

For example, to call the program EMPRPT from the command line, type:
CALL EMPRPT

The program object specified must exist in a library and this library must be
contained in the library list *LIBL. You can also explicitly specify the library in the
CL CALL command as follows:
CALL MYLIB/EMPRPT

For further information about using the CL CALL command, see the CL and APIs
section of the Programming category in the i5/OS Information Center at this Web
site - http://www.ibm.com/systems/i/infocenter/.

Once you call your program, the IBM i system performs the instructions found in
the program.

Passing Parameters using the CL CALL Command
You use the PARM option of the CL CALL command to pass parameters to the ILE
program when you run it.

© Copyright IBM Corp. 1994, 2010 107

http://www.ibm.com/systems/i/infocenter/

CALL PGM(program-name)
PARM(parameter-1 parameter-2 ... parameter-n)

You can also type the parameters without specifying any keywords:
CALL library/program-name (parameter-1 parameter-2 ... parameter-n)

Each parameter value can be specified as a CL program variable or as one of the
following:
v A character string constant
v A numeric constant
v A logical constant

If you are passing parameters to a program where an ILE RPG procedure is the
program entry procedure, then that program must have one and only one *ENTRY
PLIST specified. The parameters that follow (in the PARM statements) should
correspond on a one-to-one basis to those passed through the CALL command.

Refer to the CALL Command in the section on ″Passing Parameters between
Programs″ in the CL Programming manual for a full description of how parameters
are handled.

For example, the program EMPRPT2 requires the correct password to be passed to
it when it first started; otherwise it will not run. Figure 48 shows the source.
1. To create the program, type:

CRTBNDRPG PGM(MYLIB/EMPRPT2)

2. To run the program, type:
CALL MYLIB/EMPRPT2 (HELLO)

When the CALL command is issued, the contents of the parameter passed by
the command is stored and the program parameter PSWORD points to its
location. The program then checks to see if the contents of PSWORD matches
the value stored in the program, ('HELLO'). In this case, the two values are the
same, and so the program continues to run.

===
* PROGRAM NAME: EMPRPT2 *
* RELATED FILES: EMPMST (PHYSICAL FILE) *
* PRINT (PRINTER FILE) *
* DESCRIPTION: This program prints employee information *
* stored in the file EMPMST if the password *
* entered is correct. *
* Run the program by typing "CALL library name/ *
* EMPRPT2 (PSWORD)" on the command line, where *
* PSWORD is the password for this program. *
* The password for this program is 'HELLO'. *
===
FPRINT O F 80 PRINTER
FEMPMST IP E K DISK
IEMPREC 01

Figure 48. ILE RPG Program that Requires Parameters at Run Time (Part 1 of 2)

Running a Program Using the CL CALL Command

108 ILE RPG Programmer’s Guide

Figure 49 shows the DDS that is referenced by the EMPRPT2 source.

Running a Program From a Menu-Driven Application
Another way to run an ILE program is from a menu-driven application. The
workstation user selects an option from a menu, which in turn calls a particular
program. Figure 50 on page 110 illustrates an example of an application menu.

* The entry parameter list is specified in this program. *
* There is one parameter, called PSWORD, and it is a *
* character field 5 characters long. *

C *ENTRY PLIST
C PARM PSWORD 5

* The password for this program is 'HELLO'. The field PSWORD *
* is checked to see whether or not it contains 'HELLO'. *
* If it does not, the last record indicator (LR) and *IN99 *
* are set on. *IN99 controls the printing of messages. *

C PSWORD IFNE 'HELLO'
C SETON LR99
C ENDIF
OPRINT H 1P 2 6
O 50 'EMPLOYEE INFORMATION'
O H 1P
O 12 'NAME'
O 34 'SERIAL #'
O 45 'DEPT'
O 56 'TYPE'
O D 01N99
O ENAME 20
O ENUM 32
O EDEPT 45
O ETYPE 55
O D 99
O 16 '***'
O 40 'Invalid Password Entered'
O 43 '***'

Figure 48. ILE RPG Program that Requires Parameters at Run Time (Part 2 of 2)

A***
A* DESCRIPTION: This is the DDS for the physical file EMPMST. *
A* It contains one record format called EMPREC. *
A* This file contains one record for each employee *
A* of the company. *
A***
A*
A R EMPREC
A ENUM 5 0 TEXT('EMPLOYEE NUMBER')
A ENAME 20 TEXT('EMPLOYEE NAME')
A ETYPE 1 TEXT('EMPLOYEE TYPE')
A EDEPT 3 0 TEXT('EMPLOYEE DEPARTMENT')
A ENHRS 3 1 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 49. DDS for EMPRPT2

Running a Program Using the CL CALL Command

Chapter 9. Running a Program 109

The menu shown in Figure 50 is displayed by a menu program in which each
option calls a separate ILE program. You can create the menu by using STRSDA
and selecting option 2 (’Design menus’).

Figure 51 on page 111 shows the DDS for the display file of the above PAYROLL
DEPARTMENT MENU. The source member is called PAYROL and has a source
type of MNUDDS. The file was created using SDA.

PAYROLL DEPARTMENT MENU
Select one of the following:

1. Inquire into employee master
2. Change employee master
3. Add new employee

Selection or command
===> ___

F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=Information Assistant F16=AS/400 main menu

Figure 50. Example of an Application Menu

Running a Program From a Menu-Driven Application

110 ILE RPG Programmer’s Guide

Figure 52 shows the source of the application menu illustrated in Figure 50 on page
110. The source member is called PAYROLQQ and has a source type of MNUCMD.
It was also created using SDA.

You run the menu by entering:
GO library name/PAYROL

If the user enters 1, 2, or 3 from the application menu, the source in Figure 52 calls
the programs RPGINQ, RPGCHG, or RPGADD respectively.

A* Free Form Menu: PAYROL
A*
A DSPSIZ(24 80 *DS3 -
A 27 132 *DS4)
A CHGINPDFT
A INDARA
A PRINT(*LIBL/QSYSPRT)
A R PAYROL
A DSPMOD(*DS3)
A LOCK
A SLNO(01)
A CLRL(*ALL)
A ALWROL
A CF03
A HELP
A HOME
A HLPRTN
A 1 34'PAYROLL DEPARTMENT MENU'
A DSPATR(HI)
A 3 2'Select one of the following:'
A COLOR(BLU)
A 5 7'1.'
A 6 7'2.'
A 7 7'3.'
A* CMDPROMPT Do not delete this DDS spec.
A 019 2'Selection or command -
A '
A 5 11'Inquire'
A 5 19'into'
A 5 24'employee'
A 5 33'master'
A 6 11'Change'
A 6 18'employee'
A 6 27'master'
A 7 11'Add'
A 7 15'new'
A 7 19'employee'

Figure 51. Data Description Specification of an Application Menu

PAYROLQQ,1
0001 call RPGINQ
0002 call RPGCHG
0003 call RPGADD

Figure 52. Source for Menu Program

Running a Program From a Menu-Driven Application

Chapter 9. Running a Program 111

Running a Program Using a User-Created Command
You can create a command to run a program by using a command definition. A
command definition is an object (type *CMD) that contains the definition of a
command (including the command name, parameter descriptions, and
validity-checking information), and identifies the program that performs the
function requested by the command.

For example, you can create a command, PAY, that calls a program, PAYROLL,
where PAYROLL is the name of an RPG program that you want to run. You can
enter the command interactively, or in a batch job. See the CL Programming manual
for further information about using command definitions.

Replying to Run-Time Inquiry Messages
When you run a program with ILE RPG procedures, run-time inquiry messages
may be generated. They occur when the default error handler is invoked for a
function check in a cycle-main procedure. See “Exception Handling within a
Cycle-Main Procedure” on page 288. The inquiry messages require a response
before the program continues running.

Note: Inquiry messages are never issued for subprocedures (including those
designated as linear-main procedures), since the default error handling for a
function check in a subprocedure causes the subprocedure to be cancelled,
causing the exception to percolate to the caller of the subprocedure. See
Exception Handling within Subprocedures.

If the caller of the subprocedure is an RPG procedure, the call will fail with status
00202, independent of the status code associated with the actual exception. If the
failed call causes an RPG cycle-main procedure to invoke its default handler,
inquiry message RNQ0202 will be issued.

You can add the inquiry messages to a system reply list to provide automatic
replies to the messages. The replies for these messages may be specified
individually or generally. This method of replying to inquiry messages is especially
suitable for batch programs, which would otherwise require an operator to issue
replies.

Running a Program Using a User-Created Command

112 ILE RPG Programmer’s Guide

#
#
#
#
#

#
#
#
#
#

#
#
#
#

You can add the following ILE RPG inquiry messages to the system reply list:

Table 35. ILE RPG Inquiry Messages
RNQ0100
RNQ0101
RNQ0102
RNQ0103
RNQ0104
RNQ0112
RNQ0113
RNQ0114
RNQ0115
RNQ0120
RNQ0121
RNQ0122
RNQ0123
RNQ0202
RNQ0211
RNQ0221
RNQ0222

RNQ0231
RNQ0232
RNQ0299
RNQ0301
RNQ0302
RNQ0303
RNQ0304
RNQ0305
RNQ0306
RNQ0333
RNQ0401
RNQ0402
RNQ0411
RNQ0412
RNQ0413
RNQ0414
RNQ0415

RNQ0421
RNQ0425
RNQ0426
RNQ0431
RNQ0432
RNQ0450
RNQ0501
RNQ0502
RNQ0802
RNQ0803
RNQ0804
RNQ0805
RNQ0907
RNQ1011
RNQ1021
RNQ1022

RNQ1023
RNQ1024
RNQ1031
RNQ1041
RNQ1042
RNQ1051
RNQ1071
RNQ1201
RNQ1211
RNQ1215
RNQ1216
RNQ1217
RNQ1218
RNQ1221
RNQ1222
RNQ1231

RNQ1235
RNQ1241
RNQ1251
RNQ1255
RNQ1261
RNQ1271
RNQ1281
RNQ1282
RNQ1284
RNQ1285
RNQ1286
RNQ1287
RNQ1299
RNQ1331
RNQ9998
RNQ9999

Note: ILE RPG inquiry messages have a message id prefix of RNQ.

To add inquiry messages to a system reply list using the Add Reply List Entry
command enter:
ADDRPYLE sequence-no message-id

where sequence-no is a number from 1-9999, which reflects where in the list the
entry is being added, and message-id is the message number you want to add.
Repeat this command for each message you want to add.

Use the Change Job (CHGJOB) command (or other CL job command) to indicate
that your job uses the reply list for inquiry messages. To do this, you should
specify *SYSRPYL for the Inquiry Message Reply (INQMSGRPY) attribute.

The reply list is only used when an inquiry message is sent by a job that has the
Inquiry Message Reply (INQMSGRPY) attribute specified as
INQMSGRPY(*SYSRPYL). The INQMSGRPY parameter occurs on the following CL
commands:
v Change Job (CHGJOB)
v Change Job Description (CHGJOBD)
v Create Job Description (CRTJOBD)
v Submit Job (SBMJOB).

You can also use the Work with Reply List Entry (WRKRPYLE) command to
change or remove entries in the system reply list. For details of the ADDRPYLE
and WRKRPYLE commands, see the CL and APIs section of the Programming
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/.

Ending an ILE Program
When an ILE program ends normally, the system returns control to the caller. The
caller could be a workstation user or another program (such as the menu-handling
program).

Replying to Run-Time Inquiry Messages

Chapter 9. Running a Program 113

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

If an ILE program ends abnormally and the program was running in a different
activation group than its caller, then the escape message CEE9901

Error message-id caused program to end.

is issued and control is returned to the caller.

A CL program can monitor for this exception by using the Monitor Message
(MONMSG) command. You can also monitor for exceptions in other ILE
languages.

If the ILE program is running in the same activation group as its caller and it ends
abnormally, then the message issued will depend on why the program ends. If it
ends with a function check, then CPF9999 will be issued. If the exception is issued
by an RPG procedure, then it will have a message prefix of RNX.

For more information on exception messages, see “Exception Handling Overview”
on page 285.

Managing Activation Groups
An activation group is a substructure of a job and consists of system resources (for
example, storage, commitment definitions, and open files) that are allocated to run
one or more ILE or OPM programs. Activation groups make it possible for ILE
programs running in the same job to run independently without intruding on each
other (for example, commitment control and overrides). The basic idea is that all
programs activated within one activation group are developed as one cooperative
application.

You identify the activation group that your ILE program will run in at the time of
program creation. The activation group is determined by the value specified on the
ACTGRP parameter when the program object was created. (OPM programs always
run in the default activation group; you cannot change their activation group
specification.) Once an ILE program (object type *PGM) is activated, it remains
activated until the activation group is deleted.

The remainder of this section tells you how to specify an activation group and how
to delete one. For more information on activation groups, refer to ILE Concepts.

Specifying an Activation Group
You control that activation group your ILE program will run in by specifying a
value for the ACTGRP parameter when you create your program (using CRTPGM
or CRTBNDRPG) or service program (using CRTSRVPGM).

Note: If you are using the CRTBNDRPG command, you can only specify a value
for ACTGRP if the value of DFTACTGRP is *NO.

You can choose one of the following values:
v a named activation group

A named activation group allows you to manage a collection of ILE programs
and service programs as one application. The activation group is created when
the first program that specified the activation group name on creation is called.
It is then used by all programs and service programs that specify the same
activation group name.

Ending an ILE Program

114 ILE RPG Programmer’s Guide

A named activation group ends when it is deleted using the CL command
RCLACTGRP. This command can only be used when the activation group is no
longer in use. When it is ended, all resources associated with the programs and
service programs of the named activation group are returned to the system.
The named activation group QILE is the default value of the ACTGRP parameter
on the CRTBNDRPG command. However, because activation groups are
intended to correspond to applications, it is recommended that you specify a
different value for this parameter. For example, you may want to name the
activation group after the application name.

v *NEW
When *NEW is specified, a new activation group is created whenever the
program is called. The system creates a name for the activation group. The name
is unique within your job.
An activation group created with *NEW always ends when the program(s)
associated with it end. For this reason, if you plan on returning from your
program with LR OFF in order to keep your program active, then you should
not specify *NEW for the ACTGRP parameter.

Note: This value is not valid for service programs. A service program can only
run in a named activation group or the activation group of its caller.

*NEW is the default value for the ACTGRP parameter on the CRTPGM
command.
If you create an ILE RPG program with ACTGRP(*NEW), you can then call the
program as many times as you want without returning from earlier calls. With
each call, there is a new copy of the program. Each new copy will have its own
data, open its files, etc.. However, you must ensure that there is some way to
end the calls to ’itself’; otherwise you will just keep creating new activation
groups and the programs will never return.

v *CALLER
The program or service program will be activated into the activation group of
the calling program. If an ILE program created with ACTGRP(*CALLER) is
called by an OPM program, then it will be activated into the OPM default
activation group (*DFTACTGRP).

Running in the OPM Default Activation Group
When an IBM i job is started, the system creates an activation group to be used by
OPM programs. The symbol used to represent this activation group is
*DFTACTGRP. You cannot delete the OPM default activation group. It is deleted by
the system when your job ends.

OPM programs automatically run in the OPM default activation group. An ILE
program will also run in the OPM default activation group when one of the
following occurs:
v The program was created with DFTACTGRP(*YES) on the CRTBNDRPG

command.
v The program was created with ACTGRP(*CALLER) at the time of program

creation and the caller of the program runs in the default activation group. Note
that you can only specify ACTGRP(*CALLER) on the CRTBNDRPG command if
DFTACTGRP(*NO) is also specified.

Note: The resources associated with a program running in the OPM default
activation group via *CALLER will not be deleted until the job ends.

Managing Activation Groups

Chapter 9. Running a Program 115

Maintaining OPM RPG/400 and ILE RPG Program
Compatibility

If you have an OPM application that consists of several RPG programs, you can
ensure that the migrated application will behave like an OPM one if you create the
ILE application as follows:
1. Convert each OPM source member using the CVTRPGSRC command, making

sure to convert the /COPY members.
See “Converting Your Source” on page 454 for more information.

2. Using the CRTBNDRPG command, compile and bind each converted source
member separately into a program object, specifying DFTACTGRP(*YES).

For more information on OPM-compatible programs. refer to “Strategy 1:
OPM-Compatible Application” on page 23.

Deleting an Activation Group
When an activation group is deleted, its resources are reclaimed. The resources
include static storage and open files. A *NEW activation group is deleted when the
program it is associated with returns to its caller.

Named activation groups (such as QILE) are persistent activation groups in that
they are not deleted unless explicitly deleted or unless the job ends. The storage
associated with programs running in named activation groups is not released until
these activation groups are deleted.

An ILE RPG program created DFTACTGRP(*YES) will have its storage released
when it ends with LR on or abnormally.

Note: The storage associated with ILE programs running in the default activation
group via *CALLER is not released until you sign off (for an interactive job)
or until the job ends (for a batch job).

If many ILE RPG programs are activated (that is called at least once) system
storage may be exhausted. Therefore, you should avoid having ILE programs that
use large amounts of static storage run in the OPM default activation group, since
the storage will not be reclaimed until the job ends.

The storage associated with a service program is reclaimed only when the
activation group it is associated with ends. If the service program is called into the
default activation group, its resources are reclaimed when the job ends.

You can delete a named activation group using the RCLACTGRP command. Use
this command to delete a nondefault activation group that is not in use. The
command provides options to either delete all eligible activation groups or to
delete an activation group by name.

For more information on the RCLACTGRP command, refer to the see the CL and
APIs section of the Programming category in the i5/OS Information Center at this
Web site - http://www.ibm.com/systems/i/infocenter/. For more information on
the RCLACTGRP and activation groups, refer to ILE Concepts.

Reclaim Resources Command
The Reclaim Resources (RCLRSC) command is designed to free the resources for
programs that are no longer active. The command works differently depending on

Managing Activation Groups

116 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

how the program was created. If the program is an OPM program or was created
with DFTACTGRP(*YES), then the RCLRSC command will close open files and free
static storage.

For ILE programs or service programs that were activated into the OPM default
activation group because they were created with *CALLER, files will be closed
when the RCLRSC command is issued. For programs, the storage will be
re-initialized; however, the storage will not be released. For service programs, the
storage will neither be re-initialized nor released.

Note: This means that if you have a service program that ran in the default
activation group and left files open, and a RCLRSC is issued, when you call
the service program again, the files will still appear to be open, so so any
I/O operations will result in an error.

For ILE programs associated with a named activation group, the RCLRSC
command has no effect. You must use the RCLACTGRP command to free resources
in a named activation group.

For more information on the RCLRSC command, refer to the CL and APIs section
of the Programming category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/. For more information on the
RCLRSC and activation groups, refer to ILE Concepts.

Managing Dynamically-Allocated Storage
ILE allows you to directly manage run-time storage from your program by
managing heaps. A heap is an area of storage used for allocations of dynamic
storage. The amount of dynamic storage required by an application depends on the
data being processed by the programs and procedures that use the heap.

To manage heaps, you can use:
v The ALLOC, REALLOC, and DEALLOC operation codes
v The %ALLOC and %REALLOC built-in functions
v The ILE bindable APIs

You are not required to explicitly manage run-time storage. However, you may
want to do so if you want to make use of dynamically allocated run-time storage.
For example, you may want to do this if you do not know exactly how large an
array or multiple-occurrence data structure should be. You could define the array
or data structure as BASED, and acquire the actual storage for the array or data
structure once your program determines how large it should be.

Managing Activation Groups

Chapter 9. Running a Program 117

#
#
#
#

http://www.ibm.com/systems/i/infocenter/

There are two types of heaps available on the system: a default heap and a
user-created heap. The RPG storage management operations use the default heap.
The following sections show how to use RPG storage management operations with
the default heap, and also how to create and use your own heap using the storage
management APIs. For more information on user-created heaps and other ILE
storage management concepts refer to ILE Concepts.

* Two counters are kept:
* 1. The current number of array elements
* 2. The number of array elements that are allocated for the array
D arrInfo DS QUALIFIED
D pArr * INZ(*NULL)
D numElems 10I 0 INZ(0)
D numAlloc 10I 0 INZ(0)
D arr S 20A VARYING DIM(32767)
D BASED(arrInfo.pArr)
D i S 10I 0
/free

// Allocate storage for a few array elements
// (The number of elements that the array is considered to
// actually have remains zero.)
arrInfo.numAlloc = 2;
arrInfo.pArr = %alloc(arrInfo.numAlloc * %size(arr));

// Add two elements to the array
if arrInfo.numAlloc < arrInfo.numElems + 2;

// There is no room for the new elements.
// Allocate a few more elements.
arrInfo.numAlloc += 10;
arrInfo.pArr = %realloc (arrInfo.pArr

: arrInfo.numAlloc * %size(arr));
endif;
arrInfo.numElems += 1;
arr(arrInfo.numElems) = 'XYZ Electronics';
arrInfo.numElems += 1;
arr(arrInfo.numElems) = 'ABC Tools';

// Search the array
i = %lookup ('XYZ Electronics' : arr : 1 : arrInfo.numElems);
// i = 1

// Sort the array
sorta %subarr(arr : 1 : arrInfo.numElems);

// Search the array again
i = %lookup ('XYZ Electronics' : arr : 1 : arrInfo.numElems);
// Now, i = 2, since the array is now sorted

// Remove the last element from the array
arrInfo.numElems -= 1;

// Clear the array
// This can be done simply by setting the current number of
// elements to zero. It is not necessary to actually clear
// the data in the previously used elements.
arrInfo.numElems = 0;

// Free the storage for the array
dealloc arrInfo.pArr;
reset arrInfo;

return;

Figure 53. Allocating, sorting and searching dynamically-allocated arrays

Managing Dynamically-Allocated Storage

118 ILE RPG Programmer’s Guide

Managing the Default Heap Using RPG Operations
The first request for dynamic storage within an activation group results in the
creation of a default heap from which the storage allocation takes place.
Additional requests for dynamic storage are met by further allocations from the
default heap. If there is insufficient storage in the heap to satisfy the current
request for dynamic storage, the heap is extended and the additional storage is
allocated.

Allocated dynamic storage remains allocated until it is explicitly freed or until the
heap is discarded. The default heap is discarded only when the owning activation
group ends.

Programs in the same activation group all use the same default heap. If one
program accesses storage beyond what has be allocated, it can cause problems for
another program. For example, assume that two programs, PGM A and PGM B are
running in the same activation group. 10 bytes are allocated for PGM A, but 11
bytes are changed by PGM A. If the extra byte was in fact allocated for PGM B,
problems may arise for PGM B.

You can use the following RPG operations on the default heap:
v The ALLOC operation code and the %ALLOC built-in function allocate storage

within the default heap.
v The DEALLOC operation code frees one previous allocation of heap storage

from any heap.
v The REALLOC operation code and the %REALLOC built-in function change the

size of previously allocated storage from any heap.

Note: Although ALLOC and %ALLOC work only with the default heap,
DEALLOC, REALLOC, and %REALLOC work with both the default heap
and user-created heaps.

Figure 54 on page 120 shows an example of how the memory management
operation codes can be used to build a linked list of names.

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 119

* Prototypes for subprocedures in this module *

D AddName PR
D name_parm 40A
D Display PR
D Free PR

* Each element in the list contains a pointer to the *
* name and a pointer to the next element *

D elem DS BASED(elem@)
D name@ *
D next@ *
D name_len 5U 0
D nameVal S 40A BASED(name@)
D elemSize C %SIZE(elem)

* The first element in the list is in static storage. *
* The name field of this element is not set to a value. *

D first DS
D * INZ(*NULL)
D * INZ(*NULL)
D 5U 0 INZ(0)

* This is the pointer to the current element. *
* When elem@ is set to the address of <first>, the list is *
* empty. *

D elem@ S * INZ(%ADDR(first))

* Put 5 elements in the list *

C DO 5
C 'Name?' DSPLY name 40
C CALLP AddName(name)
C ENDDO

* Display the list and then free it. *

C CALLP Display
C CALLP Free
C EVAL *INLR = '1'

Figure 54. Memory Management - Build a Linked List of Names (Part 1 of 5)

Managing Dynamically-Allocated Storage

120 ILE RPG Programmer’s Guide

* S U B P R O C E D U R E S *

* AddName - add a name to the end of the list *

P AddName B
D AddName pi
D name 40A

* Allocate a new element for the array, pointed at by the *
* 'next' pointer of the current end of the list. *
* *
* Before: *
* *
* .-------------. *
* | | *
* | name *--->abc *
* | name_len 3 | *
* | next *-------||| *
* | | *
* '-------------' *
* *

C ALLOC elemSize next@

* *
* After: Note that the old element is still the current one *
* because elem@ is still pointing to the old element *
* *
* .-------------. .--------------. *
* | | .------>| | *
* | name *--->abc | | | *
* | name_len 3 | | | | *
* | next *----------' | | *
* | | | | *
* '-------------' '--------------' *
* *
* Now set elem@ to point to the new element *

C EVAL elem@ = next@

Figure 54. Memory Management - Build a Linked List of Names (Part 2 of 5)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 121

* *
* After: Now the names name@, name_len and next@ refer *
* to storage in the new element *
* *
* .-------------. .--------------. *
* | | .------>| | *
* | *--->abc | | name * | *
* | 3 | | | name_len | *
* | *----------' | next * | *
* | | | | *
* '-------------' '--------------' *
* *
* Now set the values of the new element. *
* The next pointer is set to *NULL to indicate that it is the *
* end of the list. *

C EVAL next@ = *NULL

* Save the length of the name (not counting trailing blanks)

C EVAL name_len = %len(%trimr(name))

* Storage is allocated for the name and then set to the value of
* the name.

C ALLOC name_len name@
C EVAL %SUBST(nameVal:1:name_len) = name

* *
* After: *
* *
* .-------------. .--------------. *
* | | .------>| | *
* | *--->abc | | name *--->newname *
* | 3 | | | name_len nn | *
* | *----------' | next *--->||| *
* | | | | *
* '-------------' '--------------' *

P AddName E

Figure 54. Memory Management - Build a Linked List of Names (Part 3 of 5)

Managing Dynamically-Allocated Storage

122 ILE RPG Programmer’s Guide

* Display - display the list *

P Display B
D saveElem@ S *
D dspName S 40A

* Save the current elem pointer so the list can be restored after *
* being displayed and set the list pointer to the beginning of *
* the list. *

C EVAL saveElem@ = elem@
C EVAL elem@ = %ADDR(first)

* Loop through the elements of the list until the next pointer is *
* *NULL *

C DOW next@ <> *NULL
C EVAL elem@ = next@
C EVAL dspName = %SUBST(nameVal:1:name_len)
C 'Name: ' dsply dspName
C ENDDO

* Restore the list pointer to its former place

C EVAL elem@ = saveElem@
P Display E

Figure 54. Memory Management - Build a Linked List of Names (Part 4 of 5)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 123

Heap Storage Problems
Figure 55 on page 125 shows possible problems associated with the misuse of heap
storage.

* Free - release the storage used by the list *

P Free B
D prv@ S *

* Loop through the elements of the list until the next pointer is *
* *NULL, starting from the first real element in the list *

C EVAL elem@ = %ADDR(first)
C EVAL elem@ = next@
C DOW elem@ <> *NULL

* Free the storage for name *

C DEALLOC name@

* Save the pointer to current elem@

C EVAL prv@ = elem@

* Advance elem@ to the next element

C EVAL elem@ = next@

* Free the storage for the current element

C DEALLOC prv@
C ENDDO

* Ready for a new list:

C EVAL elem@ = %ADDR(first)
P Free E

Figure 54. Memory Management - Build a Linked List of Names (Part 5 of 5)

Managing Dynamically-Allocated Storage

124 ILE RPG Programmer’s Guide

Similarly, errors can occur in the following cases:
v A similar error can be made if a pointer is copied before being reallocated or

deallocated. Great care must be taken when copying pointers to allocated
storage, to ensure that they are not used after the storage is deallocated or
reallocated.

v If a pointer to heap storage is copied, the copy can be used to deallocate or
reallocate the storage. In this case, the original pointer should not be used until
it is set to a new value.

v If a pointer to heap storage is passed as a parameter, the callee could deallocate
or reallocate the storage. After the call returns, attempts to access the pointer
could cause problems.

v If a pointer to heap storage is set in the *INZSR, a later RESET of the pointer
could cause the pointer to get set to storage that is no longer allocated.

v Another type of problem can be caused if a pointer to heap storage is lost (by
being cleared, or set to a new pointer by an ALLOC operation, for example).
Once the pointer is lost, the storage it pointed to cannot be freed. This storage is
unavailable to be allocated since the system does not know that the storage is no
longer addressable.
The storage will not be freed until the activation group ends.

Managing Your Own Heap Using ILE Bindable APIs
You can isolate the dynamic storage used by some programs and procedures
within an activation group by creating one or more user-created heaps. For
information on creating a user-created heap refer to ILE Concepts.

The following example shows you how to manage dynamic storage for a run-time
array with a user-created heap from an ILE RPG procedure. In this example, the
procedures in the module DYNARRAY dynamically allocate storage for a
practically unbounded packed array. The procedures in the module perform the
following actions on the array:

*..1....+....2....+....3....+....4....+....5....+....6....+....7...+....

* Heap Storage Misuse *

D Fld1 S 25A BASED(Ptr1)
D Ptr1 S *

/FREE
Ptr1 = %ALLOC(25);
DEALLOC Ptr1;

// After this point, Fld1 should not be accessed since the
// basing pointer Ptr1 no longer points to allocated storage.

SomePgm();

// During the previous call to 'SomePgm', several storage allocations
// may have been done. In any case, it is extremely dangerous to
// make the following assignment, since 25 bytes of storage will
// be filled with 'a'. It is impossible to know what that storage
// is currently being used for.

Fld1 = *ALL'a';
/END-FREE

Figure 55. Heap Storage Misuse

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 125

v Initialize the array
v Add an element to the array
v Return the value of an element
v Release the storage for the array.

DYNARRAY performs these actions using the three ILE bindable storage APIs,
CEECRHP (Create Heap), CEEGTST (Get Storage), and CEEDSHP (Discard Heap),
as well as the REALLOC operation code. For specific information about the storage
management bindable APIs, refer to the CL and APIs section of the Programming
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/.

Figure 56 shows the /COPY file DYNARRI containing the prototypes for the
procedures in DYNARRAY. This /COPY file is used by the DYNARRAY module as
well as any other modules that call the procedures in DYNARRAY.

DYNARRAY has been defined for use with a (15,0) packed decimal array. It could
easily be converted to handle a character array simply by changing the definition
of DYNA_TYPE to a character field.

Figure 57 on page 127 shows the beginning of module DYNARRAY containing the
Control specification, and Definition specifications.

*===
* DYNARRAY : Handle a (practically) unbounded run-time
* Packed(15,0) array. The DYNARRAY module contains
* procedures to allocate the array, return or set
* an array value and deallocate the array.
*===
D DYNA_TYPE S 15P 0
D DYNA_INIT PR
D DYNA_TERM PR
D DYNA_SET PR
D Element VALUE LIKE(DYNA_TYPE)
D Index 5I 0 VALUE
D DYNA_GET PR LIKE(DYNA_TYPE)
D Index 5I 0 VALUE

Figure 56. /COPY file DYNARRI containing prototypes for DYNARRAY module

Managing Dynamically-Allocated Storage

126 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

*===
* DYNARRAY : Handle a (practically) unbounded run-time
* Packed(15,0) array. This module contains
* procedures to allocate the array, return or set
* an array value and deallocate the array.
*===
H NOMAIN
*---
* Prototypes for the procedures in this module.
*---
/COPY DYNARRI
*---
* Interface to the CEEGTST API (Get Heap Storage).
* 1) HeapId = Id of the heap.
* 2) Size = Number of bytes to allocate
* 3) RetAddr= Return address of the allocated storage
* 4) *OMIT = The feedback parameter. Specifying *OMIT here
* means that we will receive an exception from
* the API if it cannot satisfy our request.
* Since we do not monitor for it, the calling
* procedure will receive the exception.
*---
D CEEGTST PR
D HeapId 10I 0 CONST
D Size 10I 0 CONST
D RetAddr *
D Feedback 12A OPTIONS(*OMIT)
*---
* Interface to the CEECRHP API (Create Heap).
* 1) HeapId = Id of the heap.
* 2) InitSize = Initial size of the heap.
* 3) Incr = Number of bytes to increment if heap must be
* enlarged.
* 4) AllocStrat = Allocation strategy for this heap. We will
* specify a value of 0 which allows the system
* to choose the optimal strategy.
* 5) *OMIT = The feedback parameter. Specifying *OMIT here
* means that we will receive an exception from
* the API if it cannot satisfy our request.
* Since we do not monitor for it, the calling
* procedure will receive the exception.
*---
D CEECRHP PR
D HeapId 10I 0
D InitSize 10I 0 CONST
D Incr 10I 0 CONST
D AllocStrat 10I 0 CONST
D Feedback 12A OPTIONS(*OMIT)

Figure 57. Global variables and local prototypes for DYNARRAY (Part 1 of 2)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 127

Figure 58 on page 129 shows the subprocedures in DYNARRAY.

*---
* Interface to the CEEDSHP API (Discard Heap).
* 1) HeapId = Id of the heap.
* 2) *OMIT = The feedback parameter. Specifying *OMIT here
* means that we will receive an exception from
* the API if it cannot satisfy our request.
* Since we do not monitor for it, the calling
* procedure will receive the exception.
*---
D CEEDSHP PR
D HeapId 10I 0
D Feedback 12A OPTIONS(*OMIT)
*---
* Global variables.
*---
D HeapVars DS
D HeapId 10I 0
D DynArr@ *
*---
* Define the dynamic array. We code the number of elements
* as the maximum allowed, noting that no storage will actually
* be declared for this definition (because it is BASED).
*---
D DynArr S DIM(32767) BASED(DynArr@)
D LIKE(DYNA_TYPE)
*---
* Global to keep track of the current number of elements
* in the dynamic array.
*---
D NumElems S 10I 0 INZ(0)

*---
* Initial number of elements that will be allocated for the
* array, and minimum number of elements that will be added
* to the array on subsequent allocations.
*---
D INITALLOC C 100
D SUBSALLOC C 100

Figure 57. Global variables and local prototypes for DYNARRAY (Part 2 of 2)

Managing Dynamically-Allocated Storage

128 ILE RPG Programmer’s Guide

*===
* DYNA_INIT: Initialize the array.
*
* Function: Create the heap and allocate an initial amount of
* storage for the run time array.
*===
P DYNA_INIT B EXPORT
*---
* Local variables.
*---
D Size S 10I 0
*
* Start with a pre-determined number of elements.
*
C Z-ADD INITALLOC NumElems
*
* Determine the number of bytes needed for the array.
*
C EVAL Size = NumElems * %SIZE(DynArr)
*
* Create the heap
*
C CALLP CEECRHP(HeapId : Size : 0 : 0 : *OMIT)

*
* Allocate the storage and set the array basing pointer
* to the pointer returned from the API.
*
* Note that the ALLOC operation code uses the default heap so
* we must use the CEEGTST API to specify a different heap.
*
C CALLP CEEGTST(HeapId : Size : DynArr@ : *OMIT)

*
* Initialize the storage for the array.
*
C 1 DO NumElems I 5 0
C CLEAR DynArr(I)
C ENDDO
P DYNA_INIT E

*===
* DYNA_TERM: Terminate array handling.
*
* Function: Delete the heap.
*===
P DYNA_TERM B EXPORT
C CALLP CEEDSHP(HeapId : *OMIT)
C RESET HeapVars
P DYNA_TERM E

Figure 58. DYNARRAY Subprocedures (Part 1 of 4)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 129

*===
* DYNA_SET: Set an array element.
*
* Function: Ensure the array is big enough for this element,
* and set the element to the provided value.
*===
P DYNA_SET B EXPORT
*---
* Input parameters for this procedure.
*---
D DYNA_SET PI
D Element VALUE LIKE(DYNA_TYPE)
D Index 5I 0 VALUE
*---
* Local variables.
*---
D Size S 10I 0
*---
* If the user selects to add to the array, then first check
* if the array is large enough, if not then increase its
* size. Add the element.
*---
C Index IFGT NumElems
C EXSR REALLOC
C ENDIF
C EVAL DynArr(Index) = Element
*===
* REALLOC: Reallocate storage subroutine
*
* Function: Increase the size of the dynamic array
* and initialize the new elements.
*===
C REALLOC BEGSR

*
* Remember the old number of elements
*
C Z-ADD NumElems OldElems 5 0

Figure 58. DYNARRAY Subprocedures (Part 2 of 4)

Managing Dynamically-Allocated Storage

130 ILE RPG Programmer’s Guide

The logic of the subprocedures is as follows:

*
* Calculate the new number of elements. If the index is
* greater than the current number of elements in the array
* plus the new allocation, then allocate up to the index,
* otherwise, add a new allocation amount onto the array.
*
C IF Index > NumElems + SUBSALLOC
C Z-ADD Index NumElems
C ELSE
C ADD SUBSALLOC NumElems
C ENDIF
*
* Calculate the new size of the array
*
C EVAL Size = NumElems * %SIZE(DynArr)
*
* Reallocate the storage. The new storage has the same value
* as the old storage.
*
C REALLOC Size DynArr@
*
* Initialize the new elements for the array.
*
C 1 ADD OldElems I
C I DO NumElems I 5 0
C CLEAR DynArr(I)
C ENDDO
C ENDSR
P DYNA_SET E

Figure 58. DYNARRAY Subprocedures (Part 3 of 4)

*===
* DYNA_GET: Return an array element.
*
* Function: Return the current value of the array element if
* the element is within the size of the array, or
* the default value otherwise.
*===
P DYNA_GET B EXPORT
*---
* Input parameters for this procedure.
*---
D DYNA_GET PI LIKE(DYNA_TYPE)
D Index 5I 0 VALUE
*---
* Local variables.
*---
D Element S LIKE(DYNA_TYPE) INZ
*---
* If the element requested is within the current size of the
* array then return the element's current value. Otherwise
* the default (initialization) value can be used.
*---
C Index IFLE NumElems
C EVAL Element = DynArr(Index)
C ENDIF
C RETURN Element
P DYNA_GET E

Figure 58. DYNARRAY Subprocedures (Part 4 of 4)

Managing Dynamically-Allocated Storage

Chapter 9. Running a Program 131

1. DYNA_INIT creates the heap using the ILE bindable API CEECRHP (Create
Heap), storing the heap Id in a global variable HeapId. It allocates heap storage
based on initial value of the array (in this case 100) by calling the ILE bindable
API CEEGTST (Get Heap Storage).

2. DYNA_TERM destroys the heap using the ILE bindable API CEEDSHP
(Discard Heap).

3. DYNA_SET sets the value of an element in the array.
Before adding an element to the array, the procedure checks to see if there is
sufficient heap storage. If not, it uses operation code REALLOC to acquire
additional storage.

4. DYNA_GET returns the value of a specified element. The procedure returns to
the caller either the element requested, or zeros. The latter occurs if the
requested element has not actually been stored in the array.

To create the module DYNARRAY, type:
CRTRPGMOD MODULE(MYLIB/DYNARRAY) SRCFILE(MYLIB/QRPGLESRC)

The procedure can then be bound with other modules using CRTPGM or
CRTSRVPGM.

Figure 59 shows another module that tests the procedures in DYNARRAY.

*===
* DYNTEST: Test program for DYNARRAY module.
*===
/COPY EXAMPLES,DYNARRI
D X S LIKE(DYNA_TYPE)
* Initialize the array
C CALLP DYNA_INIT
* Set a few elements
C CALLP DYNA_SET (25 : 3)
C CALLP DYNA_SET (467252232 : 1)
C CALLP DYNA_SET (-2311 : 750)
* Retrieve a few elements
C EVAL X = DYNA_GET (750)
C '750' DSPLY X
C EVAL X = DYNA_GET (8001)
C '8001' DSPLY X
C EVAL X = DYNA_GET (2)
C '2' DSPLY X

* Clean up
C CALLP DYNA_TERM
C SETON LR

Figure 59. Sample module using procedures in DYNARRAY

Managing Dynamically-Allocated Storage

132 ILE RPG Programmer’s Guide

Chapter 10. Calling Programs and Procedures

In ILE, it is possible to call either a program or procedure. Furthermore, ILE RPG
provides the ability to call prototyped or non-prototyped programs and
procedures. (A prototype is an external definition of the call interface that allows
the compiler to check the interface at compile time.)

The recommended way to call a program or procedure is to use a prototyped call.
The syntax for calling and passing parameters to prototyped procedures or
programs uses the same free-form syntax that is used with built-in functions or
within expressions. For this reason, a prototyped call is sometimes referred to as a
’free-form’ call.

In cases where there will be no RPG callers of a program or procedure, or where
the procedure is not exported from the module, it is optional to specify the
prototype. The RPG compiler can generate the prototype from the procedure
interface, or from the lack of the procedure interface if the procedure has no return
value and no parameters. It is still considered a prototyped call to call such a
procedure that does not have an explicit prototype.

Use the CALL or CALLB operations to call a program or procedure when:
v You have an extremely simple call interface
v You require the power of the PARM operation with factor 1 and factor 2.
v You want more flexibility than is allowed by prototyped parameter checking.

This chapter describes how to:
v Call a program or procedure
v Use a prototyped call
v Pass prototyped parameters
v Use a fixed-form call
v Return from a program or procedure
v Use ILE bindable APIs
v Call a Graphics routine
v Call special routines

Program/Procedure Call Overview
Program processing within ILE occurs at the procedure level. ILE programs consist
of one or more modules which in turn consist of one or more procedures. An ILE
RPG module contains an optional main procedure and zero or more
subprocedures. In this chapter, the term ’procedure’ applies to both main
procedures and subprocedures.

An ILE ’program call’ is a special form of procedure call; that is, it is a call to the
program entry procedure. A program entry procedure is the procedure that is
designated at program creation time to receive control when a program is called. If
the entry module of the program is an ILE RPG module, then the main procedure
of that module is called by the program entry procedure immediately after the
program is called.

© Copyright IBM Corp. 1994, 2010 133

|
|
|
|
|
|

This section contains general information on:
v Program call compared to procedure call
v Call stack (or how a series of calls interact)
v Recursion
v Parameter passing considerations

Calling Programs
You can call OPM or ILE programs by using program calls. A program call is a call
that is made to a program object (*PGM). The called program’s name is resolved to
an address at run time, just before the calling program passes control to the called
program for the first time. For this reason, program calls are often referred to as
dynamic calls.

Calls to an ILE program, an EPM program, or an OPM program are all examples
of program calls. A call to a non-bindable API is also an example of a program call.

You use the CALLP operation or both the CALL and PARM operations to make a
program call. If you use the CALL and PARM operations, then the compiler cannot
perform type checking on the parameters, which may result in run-time errors.

When an ILE program is called, the program entry procedure receives the program
parameters and is given initial control for the program. In addition, all procedures
within the program become available for procedure calls.

Calling Procedures
Unlike OPM programs, ILE programs are not limited to using program calls. ILE
programs can also use static procedure calls or procedure pointer calls to call other
procedures. Procedure calls are also referred to as bound calls.

A static procedure call is a call to an ILE procedure where the name of the
procedure is resolved to an address during binding — hence, the term static. As a
result, run-time performance using static procedure calls is faster than run-time
performance using program calls. Static calls allow operational descriptors, omitted
parameters, and they extend the limit (to 399) on the number of parameters that
are passed.

Procedure pointer calls provide a way to call a procedure dynamically. For
example, you can pass a procedure pointer as a parameter to another procedure
which would then run the procedure that is specified in the passed parameter. You
can also manipulate arrays of procedure names or addresses to dynamically route
a procedure call to different procedures. If the called procedure is in the same
activation group, the cost of a procedure pointer call is almost identical to the cost
of a static procedure call.

Using either type of procedure call, you can call:
v A procedure in a separate module within the same ILE program or service

program.
v A procedure in a separate ILE service program.

Any procedure that can be called by using a static procedure call can also be called
through a procedure pointer.

Program/Procedure Call Overview

134 ILE RPG Programmer’s Guide

For a list of examples using static procedure calls, see “Examples of Free-Form
Call” on page 141 and “Examples of CALL and CALLB” on page 156. For
examples of using procedure pointers, see the section on the procedure pointer
data type in IBM Rational Development Studio for i: ILE RPG Reference.

You use the CALLP or both the CALLB and PARM operations to make a
procedure call. You can also call a prototyped procedure with an expression if the
procedure returns a value. If you use the CALLB and PARM operations, then the
compiler cannot perform type checking on the parameters, which may result in
run-time errors.

The Call Stack
The call stack is a list of call stack entries, in a last-in-first-out (LIFO) order. A call
stack entry is a call to a program or procedure. There is one call stack per job.

When an ILE program is called, the program entry procedure is first added to the
call stack. The system then automatically performs a procedure call, and the
associated user’s procedure (the main procedure) is added. When a procedure is
called, only the user’s procedure (a main procedure or subprocedure) is added;
there is no overhead of a program entry procedure.

Figure 60 shows a call stack for an application consisting of an OPM program
which calls an ILE program. The RPG main procedure of the ILE program calls an
RPG subprocedure, which in turn calls a C procedure. Note that in the diagrams in
this book, the most recent entry is at the bottom of the stack.

Note: In a program call, the calls to the program entry procedure and the user
entry procedure (UEP) occur together, since the call to the UEP is automatic.

Figure 60. Program and Procedure Calls on the Call Stack

Program/Procedure Call Overview

Chapter 10. Calling Programs and Procedures 135

Therefore, from now on, the two steps of a program call will be combined in
later diagrams involving the call stack in this and remaining chapters.

Recursive Calls
Recursive calls are allowed for subprocedures. A recursive call is one where
procedure A calls itself or calls procedure B which then calls procedure A again.
Each recursive call causes a new invocation of the procedure to be placed on the
call stack. The new invocation has new storage for all data items in automatic
storage, and that storage is unavailable to other invocations because it is local. (A
data item that is defined in a subprocedure uses automatic storage unless the
STATIC keyword is specified for the definition.) Note also that the automatic
storage that is associated with earlier invocations is unaffected by later invocations.
The new invocation uses the same static storage as the previous invocation, both
the global static storage of the module, and the local static storage in the
procedure.

Recursive calls are also allowed for programs whose main procedure is a
linear-main procedure. A linear-main procedure can only be called through a
program call, so when a linear-main procedure calls itself recursively, the program
containing the linear-main procedure is called again. Otherwise, the behavior for a
linear-main procedure calling itself recursively is the same as for an ordinary
subprocedure calling itself recursively.

A cycle-main procedure that is on the call stack cannot be called until it returns to
its caller. Therefore, be careful not to call a procedure that might call an already
active cycle-main procedure.

Try to avoid situations that might inadvertently lead to recursive calls. For
example, suppose there are three modules, as shown in Figure 61.

You are running a program where procedure A in module X calls procedure B in
module Y. You are not aware of what procedure B does except that it processes
some fields. Procedure B in turn calls procedure C, which in turn calls procedure
A. Once procedure C calls procedure A, a recursive call has been made. The call
stack sequence is shown in Figure 62 on page 137. Note that the most recent call
stack entry is at the bottom.

Figure 61. Three Modules, each with subprocedures

Program/Procedure Call Overview

136 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#

So while subprocedures can be called recursively, if you are not aware that
recursion is occurring, you may exhaust system resources.

Figure 62. Recursive Call Stack To Be Avoided

Program/Procedure Call Overview

Chapter 10. Calling Programs and Procedures 137

Attention!
Unconditional recursive calls can lead to infinite recursion which leads to
excessive use of system resources. Infinite recursion can be avoided with
proper programming. In general, a proper recursive procedure begins with a
test to determine if the desired result has been obtained. If it has been
obtained, then the recursive procedure returns to the most recent caller.

Parameter-Passing Considerations
When designing a call interface, you must make a number of decisions in terms of
how parameters will be passed. On the other hand, if you are the caller then most
of the decisions have already been made for you. The following lists some of the
parameter-passing considerations to keep in mind when you are designing a call
interface.
v Compile-time parameter checking

The call interface of a prototyped call is checked at compile time. This checking
ensures that:
– the data types are correctly used
– correct files are passed to file parameters
– all required parameters are passed
– *OMIT is only passed where it is allowed.

v Parameter passing method
Each HLL provides one or more ways of passing parameters. These may
include: passing a pointer to the parameter value, passing a copy of the value,
or passing the value itself.

v Passing operational descriptors
Sometimes you may not be sure of the exact format of the data that is being
passed to you. In this case you may request that operational descriptor be
passed to provide additional information regarding the format of the passed
parameters.

v Number of parameters
In general, you should pass the same number of parameters as expected by the
called program or procedure. If you pass fewer parameters than are expected,
and the callee references a parameter for which no data was passed, then the
callee will get an error.

v Passing less data
If you pass a parameter and you pass too little data, your application may not
work correctly. If changing the parameter, you may overwrite storage. If using
the parameter, you may misinterpret the parameter. By prototyping the
parameter, the compiler will check to see that the length is appropriate for the
parameter.
If the callee has indicated (through documentation or through that prototype)
that a parameter can be shorter than the maximum length, you can safely pass
shorter parameters. (Note, however, that the called procedure must be written in
a way to handle less data than required.)

v Order of evaluation
There is no guaranteed order for evaluation of parameters on a prototyped call.
This fact may be important, if a parameter occurs more than once in the
parameter list, and there is the possibility of side effects.

Program/Procedure Call Overview

138 ILE RPG Programmer’s Guide

#

v Interlanguage call considerations
Different HLLs support different ways of representing data as well as different
ways of sending and receiving data between programs and procedures. In
general, you should only pass data which has a data type common to the calling
and called program or procedure, using a method supported by both.
RPG file parameters are not related to file parameters of other HLLs; you can
only pass an RPG file parameter to another RPG program or procedure.

Table 36 associates the above considerations with the two types parameters:
prototyped or non-prototyped.

Table 36. Parameter Passing Options

Parameter Option Prototyped Not
Prototyped

See Page

Compile-time parameter checking Yes 141

Pass by reference Yes Yes 142

Pass by value Yes (b) 142

Pass by read-only reference Yes 142

Pass operational descriptors Yes (b) Yes (b) 144

Pass *OMIT Yes Yes (b) 146

Control parameter omission Yes Yes 146

Get number of passed parameters Yes Yes 147

Disallow incorrect parameter
length

Yes 152

Pass file parameters Yes “Passing File
Parameters” on

page 153

Note: (b) – applies to bound procedures only.

Using a Prototyped Call
A prototyped call is one for which there is a prototype that is available to do
parameter checking. The prototype may be explicitly specified, or it may be
implicitly generated by the compiler from the procedure interface, if the procedure
is specified in the same module as the call. A prototyped call has a much simpler
call interface and offers more function. For example, using a prototyped call you
can call (with the same syntax):
v Programs that are on the system at run time
v Exported procedures in other modules or service programs that are bound in the

same program or service program
v Subprocedures in the same module

In RPG, prototyped calls are also known as free-form calls. Free-form call refers to
the call syntax where the arguments for the call are specified using free-form
syntax, much like the arguments for built-in functions. It contrasts with fixed-form
call, where the arguments are placed in separate specifications. There are two ways
to make a free-form call, depending on whether there is a return value that is to be
used. If there is no return value, use the CALLP operation. If there is one, and you
want to use the value that is returned, then place the prototyped procedure within

Program/Procedure Call Overview

Chapter 10. Calling Programs and Procedures 139

#
#

|
|
|
|
|
|

|

|
|

|

an expression, for example, with EVAL. If you use CALLP to a procedure that
returns a value, the return value is ignored.

Note: Only prototyped procedures can return values; prototyped programs cannot.

You can optionally code parentheses on procedure calls that do not have any
parameters. This makes it easier to distinguish procedure calls from scalar variable
names.

For information on passing prototyped parameters, see “Passing Prototyped
Parameters” on page 141.

Using the CALLP Operation
You use the CALLP (Call a Prototyped procedure) operation to call a prototyped
program or procedure written in any language. The CALLP operation uses the
following extended-factor 2 syntax:

C CALLP NAME{ (PARM1 {:PARM2 ...}) }

In free-form calculations, you can omit CALLP if there are no operation extenders.
The free-form operation can use either of the following forms:

/free
callp name { (parm1 { :parm2 ...}) };
name({parm1 {:parm2 ... }});

/end-free

To call a prototyped program or procedure follow these general steps:
1. Include the prototype of the program or procedure to be called in the definition

specifications. This step is optional if the procedure is in the same module as
the call, and there are no other modules that call the procedure.

2. Enter the prototype name of the program or procedure in the extended Factor-2
field, followed by the parameters if any, within parentheses. Separate the
parameters with a colon (:). Factor 1 must be blank.

The following example shows a call to a procedure Switch, which changes the state
of the indicator that is passed to it, in this case *IN10..

C CALLP Switch(*in10)

A maximum of 255 parameters are allowed on a program call, and a maximum of
399 for a procedure call.

You can use CALLP from anywhere within the module. If the keyword EXTPGM is
specified on the prototype, the call will be a dynamic external call; otherwise it will
be a bound procedure call.

Note that if CALLP is used to call a procedure which returns a value, that value
will not be available to the caller. If the value is required, call the prototyped
procedure within an expression.

Calling within an Expression
If a prototyped procedure is defined to return a value then you must call the
procedure within an expression if you want to make use of the return value. Use
the procedure name in a manner that is consistent with the data type of the

Using a Prototyped Call

140 ILE RPG Programmer’s Guide

|
|
|

specified return value. For example, if a procedure is defined to return a numeric,
then the call to the procedure within an expression must be where a numeric
would be expected.

Figure 63 shows the prototype for a procedure CVTCHR that takes a numeric input
parameter and returns a character string. Figure 64 shows how the procedure
might be used in an expression.

Examples of Free-Form Call
For examples of using the CALLP operation, see:
v Figure 22 on page 41
v Figure 44 on page 101
v Figure 131 on page 280
v Figure 72 on page 151
v Figure 144 on page 310

For examples of calling by using an expression, see:
v Figure 4 on page 10
v Figure 19 on page 39
v Figure 39 on page 83
v Figure 131 on page 280

Passing Prototyped Parameters
When you pass prototyped parameters:
v The compiler verifies, when compiling both the caller and the callee, that the

parameter definitions match, provided that both are compiled using the same
prototype.

v Fewer specifications are needed, since you do not need the PARM operations.

This section discusses the various options that are available when defining
prototyped parameters, and the impact of these options on the call interface.

* Prototype for CVTCHR
* - returns a character representation of the numeric parameter
* Examples: CVTCHR(5) returns '5 '
* CVTCHR(15-124) returns '-109 '
D CVTCHR PR 31A
D NUM 30P 0 VALUE

Figure 63. Prototype for CVTCHR

C EVAL STRING = 'Address: ' +
C %TRIM(CVTCHR(StreetNum))
C + ' ' + StreetName
* If STREETNUM = 427 and STREETNAME = 'Mockingbird Lane', after the
* EVAL operation STRING = 'ADDRESS: 427 Mockingbird Lane'

Figure 64. Calling a Prototyped Procedure within an Expression

Using a Prototyped Call

Chapter 10. Calling Programs and Procedures 141

#
#
#

Parameter Passing Styles
Program calls, including system API calls, require that parameters be passed by
reference. However, there is no such requirement for procedure calls. ILE RPG
allows three methods for passing and receiving prototyped parameters:
v By reference
v By value
v By read-only reference

Parameters that are not prototyped may only be passed by reference.

Passing by Reference
The default parameter passing style for ILE RPG is to pass by reference.
Consequently, you do not have to code any keywords on the parameter definition
to pass the parameter by reference. You should pass parameters by reference to a
procedure when you expect the callee to modify the field passed. You may also
want to pass by reference to improve run-time performance, for example, when
passing large character fields. Note also that parameters that are passed on external
program calls can only be passed by reference.

Passing by Value
With a prototyped procedure, you can pass a parameter by value instead of by
reference. When a parameter is passed by value, the compiler passes the actual
value to the called procedure.

When a parameter is passed by value, the called program or procedure can change
the value of the parameter, but the caller will never see the changed value.

To pass a parameter by value, specify the keyword VALUE on the parameter
definition in the prototype, as shown in the figures below.

Note: IBM i program calls require that parameters be passed by reference.
Consequently, you cannot pass a parameter by value to a program.

Passing by Read-Only Reference
An alternative means of passing a parameter to a prototyped procedure or
program is to pass it by read-only reference. Passing by read-only reference is
useful if you must pass the parameter by reference and you know that the value of
the parameter will not be changed during the call. For example, many system APIs
have read-only parameters specifying formats, or lengths.

Passing a parameter by read-only reference has the same advantages as passing by
value. In particular, this method allows you to pass literals and expressions. It is
important, however, that you know that the parameter would not be changed
during the call.

When a parameter is passed by read-only reference, the compiler may copy the
parameter to a temporary field and pass the address of the temporary. Some
conditions that would cause this are: the passed parameter is an expression or the
passed parameter has a different format.

Note: If the called program or procedure is compiled using a prototype in a
language that enforces the read-only reference method (either ILE RPG
using prototypes, or C), then the parameter will not be changed. If the called
program or procedure does not use a prototype, then the compiler cannot

Passing Prototyped Parameters

142 ILE RPG Programmer’s Guide

ensure that the parameter is not changed. In this case, the person defining
the prototype must be careful when specifying this parameter-passing
method.

To pass a parameter by read-only reference, specify the keyword CONST on the
definition specification of the parameter definition in the prototype. Figure 67 on
page 144 shows an example of a prototype definition for the ILE CEE API
CEETSTA (Test for omitted argument).

Advantages of passing by value or read-only reference
Passing by value or read-only reference allows you to:
v Pass literals and expressions as parameters.
v Pass parameters that do not match exactly the type and length that are expected.
v Pass a variable that, from the caller’s perspective, will not be modified.

One primary use for passing by value or read-only reference is that you can allow
less stringent matching of the attributes of the passed parameter. For example, if
the definition is for a numeric field of type packed-decimal and length 5 with 2
decimal positions, you must pass a numeric value, but it can be:
v A packed, zoned or binary constant or variable, with any number of digits and

number of decimal positions
v A built-in function returning a numeric value
v A procedure returning a numeric value
v A complex numeric expression such as

2 * (Min(Length(First) + Length(Last) + 1): %size(Name))

If the prototype requires an array of 4 elements, the passed parameter can be:
v An array with fewer than 4 elements. In this case, the remaining elements in the

received parameter will contain the default value for the type.
v An array with 4 elements. In this case, each element of the received parameter

will correspond to an element of the passed parameter.
v An array with more than 4 elements. In this case, some of the elements of the

passed array will not be passed to the received parameter.
v A non-array. In this case, each element of the received parameter will contain the

passed parameter value.

Choosing between parameter passing styles
If you are calling an existing program or procedure, you must pass the parameters
in the way the procedure expects them, either by reference or by value. If the
parameter must be passed by reference, and it will not be modified by the called
procedure program or procedure, pass it by read-only reference (using the CONST
keyword). When you are free to choose between passing by value or by read-only
reference, pass by read-only reference for large parameters. Use the following
general guideline:
v If the parameter is numeric or pointer, and it is not an array, pass it by

read-only reference or by value. Passing these data types by value may have a
very slight performance benefit.

v Otherwise, pass it by read-only reference.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 143

The second parameter passed to CEETSTA can be any numeric field, a literal, a
built-in function, or expression.

Using Operational Descriptors

Sometimes it is necessary to pass a parameter to a procedure even though the data
type is not precisely known to the called procedure, (for example, different types
of strings). In these instances you can use operational descriptors to provide
descriptive information to the called procedure regarding the form of the

*---
* The procedure returns a value of a 10-digit integer value.
* The 3 parameters are all 5-digit integers passed by value.
*---
D MyFunc PR 10I 0 EXTPROC('DO_CALC')
D 5I 0 VALUE
D 5I 0 VALUE
D 5I 0 VALUE
....

Figure 65. Prototype for Procedure DO_CALC with VALUE Parameters

P DO_CALC B EXPORT
*---
* This procedure performs a function on the 3 numeric values
* passed to it as value parameters. It also returns a value.
*---
D DO_CALC PI 10I 0
D Term1 5I 0 VALUE
D Term2 5I 0 VALUE
D Term3 5I 0 VALUE
D Result S 10I 0
C EVAL Result = Term1 ** 2 * 17
C + Term2 * 7
C + Term3
C RETURN Result * 45 + 23
P E

Figure 66. Procedure Interface Definition for DO_CALC Procedure

*--
* CEETSTA (Test for omitted argument) -- ILE CEE API
* 1. Presence flag Output Binary(4)
* 2. Argument number Input Binary(4)
*--
D CEETSTA PR EXTPROC('CEETSTA')
D Present 10I 0
D ArgNum 10I 0 CONST
D Feedback 12A OPTIONS(*OMIT)
...
D HaveParm S 10I 0
...
C CALLP CEETSTA(HaveParm : 3 : *OMIT)
C IF HaveParm = 1
* do something with third parameter
C ENDIF

Figure 67. Prototype for ILE CEE API CEETSTA with CONST Parameter

Passing Prototyped Parameters

144 ILE RPG Programmer’s Guide

parameter. The additional information allows the procedure to properly interpret
the string. You should only use operational descriptors when they are expected by
the called procedure.

Many ILE bindable APIs expect operational descriptors. If any parameter is
defined as ’by descriptor’, then you should pass operational descriptors to the API.
An example of this is the ILE CEE API CEEDATM (Convert Seconds to Character
Timestamp). The second and third parameters require an operational descriptor.

Note: Currently, the ILE RPG compiler only supports operational descriptors for
character and graphic types. Operational descriptors are not available for
arrays or tables, or for data of type numeric, date, timestamp, basing pointer
or procedure pointer. In addition, operational descriptors are not available
for data structures for non-protototyped calls made using CALLB. However,
for prototyped calls, data structures are considered to be character data, and
operational descriptors are available.

Operational descriptors have no effect on the parameters being passed or in the
way that they are passed. When a procedure is passed operational descriptors
which it does not expect, the operational descriptors are simply ignored.

You can request operational descriptors for both prototyped and non-prototyped
parameters. For prototyped parameters, you specify the keyword OPDESC on the
prototype definition. For non-prototyped parameters, you specify (D) as the
operation code extender of the CALLB operation. In either case, operational
descriptors are then built by the calling procedure and passed as hidden
parameters to the called procedure. Operational descriptors will not be built for
omitted parameters.

You can retrieve information from an operational descriptor using the ILE bindable
APIs Retrieve Operational Descriptor Information (CEEDOD) and Get Descriptive
Information About a String Argument (CEESGI).

Note that operational descriptors are only allowed for bound calls. Furthermore,
for non-prototyped calls, an error message will be issued by the compiler if the ’D’
operation code extender is specified on a CALL operation.

Figure 68 shows an example of the keyword OPDESC.

For an example of how to use operational descriptors see “Sample Service
Program” on page 97. The example consists of a service program which converts
character strings which are passed to it to their hexadecimal equivalent. The
service program uses operational descriptors to determine the length of the
character string and the length to be converted.

*---
* Len returns a 10-digit integer value. The parameter
* is a character string passed by read-only reference.
* Operational descriptors are required so that Len knows
* the length of the parameter.
* OPTIONS(*VARSIZE) is required so that the parameter can
* be less than 32767 bytes.
*---
D Len PR 10I 0 OPDESC
D 32767A OPTIONS(*VARSIZE) CONST

Figure 68. Requesting Operational Descriptors for a Prototyped Procedure

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 145

Omitting Parameters
When calling a program or procedure, you may sometimes want to leave out a
parameter. It may be that it is not relevant to the called procedure. For example,
this situation might arise when you are calling the ILE bindable APIs. Another
reason might be that you are calling an older procedure that does not handle this
particular parameter. If you need to omit a parameter on a call, you have two
choices:
v Specify OPTIONS(*OMIT) and pass *OMIT
v Specify OPTIONS(*NOPASS) and do not pass the parameter.

The primary difference between the two methods has to do with how you check to
see if a parameter has been omitted. In either case, an omitted parameter cannot be
referenced by the called procedure; if it is, unpredictable results will occur. So if
the called procedure is designed to handle different numbers of parameters, you
will have to check for the number of parameters passed. If *OMIT is passed, it will
’count’ as a parameter.

Passing *OMIT
You can pass *OMIT for a prototyped parameter if the called procedure is aware
that *OMIT might be passed. In other words, you can pass *OMIT if the keyword
OPTIONS(*OMIT) is specified on the corresponding parameter definition in the
prototype. When *OMIT is specified, the compiler will generate the necessary code
to indicate to the called procedure that the parameter has been omitted.

Note: *OMIT can only be specified for parameters passed by reference.

To determine if *OMIT has been passed to an ILE RPG procedure, use the %ADDR
built-in function to check the address of the parameter in question. If the address is
*NULL, then *OMIT has been passed. You can also use the CEETSTA (Check for
Omitted Argument) bindable API. (See Figure 67 on page 144 for a brief example.)

The following is a simple example of how *OMIT can be used. In this example, a
procedure calls the ILE bindable API CEEDOD in order to decompose an
operational descriptor. The CEEDOD API expects to receive seven parameters; yet
only six have been defined in the calling procedure. The last parameter of
CEEDOD (and of most bindable APIs) is the feedback code which can be used to
determine how the API ended. However, the calling procedure has been designed
to receive any error messages via an exception rather than this feedback code.
Consequently, on the call to CEEDOD, the procedure must indicate that the
parameter for the feedback code has been omitted.

See “Sample Service Program” on page 97 for an example of using *OMIT.

Leaving Out Parameters
The other way to omit a parameter is to simply leave it out on the call. This must
be expected by the called procedure, which means that it must be indicated on the
prototype. To indicate that a prototyped parameter does not have to be passed on
a call, specify the keyword OPTIONS(*NOPASS) on the corresponding parameter
definition. Note that all parameters following the first *NOPASS one must also be
specified with OPTIONS(*NOPASS).

You can specify both *NOPASS and *OMIT for the same parameter, in either order,
that is, OPTIONS(*NOPASS:*OMIT) or OPTIONS(*OMIT:*NOPASS).

Passing Prototyped Parameters

146 ILE RPG Programmer’s Guide

As an example of OPTIONS(*NOPASS), consider the system API QCMDEXC
(Execute Command) which has an optional third parameter. To allow for this
parameter, the prototype for QCMDEXC could be written as shown in Figure 69.

Checking for the Number of Passed Parameters
At times it may be necessary to check for the number of parameters that are
passed on a call. Depending on how the procedure has been written, this number
may allow you to avoid references to parameters that are not passed. For example,
suppose that you want to write a procedure which will sometimes be passed three
parameters and sometimes four parameters. This might arise when a new
parameter is required. You can write the called procedure to process either number
depending on the value that is returned by the built-in function %PARMS. New
calls may pass the parameter. Old calls can remain unchanged.

%PARMS does not take any parameters. The value returned by %PARMS also
includes any parameters for which *OMIT has been passed, and it also includes
the additional first parameter that handles the return value for a procedure that
has the RTNPARM keyword specified. For a cycle-main procedure, %PARMS
returns the same value as contained in the *PARMS field in a PSDS, although to
use the *PARMS field, you must also code the PSDS.

If you want to check whether a particular parameter was passed to a procedure,
you can use the %PARMNUM built-in function to obtain the number of the
parameter. The value returned by %PARMNUM reflects the true parameter
number if the RTNPARM keyword was coded for the procedure.

For both *PARMS and %PARMS, if the number of passed parameters is not known,
the value -1 is returned. (In order to determine the number of parameters passed, a
minimal operational descriptor must be passed. ILE RPG always passes one on a
call; however other ILE languages may not.) If the main procedure is not active,
*PARMS is unreliable. It is not recommended to reference *PARMS from a
subprocedure.

Using %PARMS
In this example, a procedure FMTADDR has been changed several times to allow
for a change in the address information for the employees of a company.
FMTADDR is called by three different procedures. The procedures differ only in
the number of parameters they use to process the employee information. That is,
new requirements for the FMTADDR have arisen, and to support them, new
parameters have been added. However, old procedures calling FMTADDR are still
supported and do not have to be changed or recompiled.

*---
* This prototype for QCMDEXC defines three parameters:
* 1- a character field that may be shorter in length
* than expected
* 2- any numeric field
* 3- an optional character field
*---
D qcmdexc PR EXTPGM('QCMDEXC')
D cmd 3000A OPTIONS(*VARSIZE) CONST
D cmdlen 15P 5 CONST
D 3A CONST OPTIONS(*NOPASS)

Figure 69. Prototype for System API QCMDEXC with Optional Parameter

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 147

|
|
|
|
|
|

|
|
|
|

The changes to the employee address can be summarized as follows:
v Initially only the street name and number were required because all employees

lived in the same city. Thus, the city and province could be supplied by default.
v At a later point, the company expanded, and so the city information became

variable for some company-wide applications.
v Further expansion resulted in variable province information.

The procedure processes the information based on the number of parameters
passed. The number may vary from 3 to 5. The number tells the program whether
to provide default city or province values or both. Figure 70 on page 149 shows the
source for this procedure. Figure 71 on page 150 shows the source for /COPY
member containing the prototype.

The main logic of FMTADDR is as follows:
1. Check to see how many parameters were passed by using %PARMS. This

built-in function returns the number of passed parameters.
v If the number is greater than 4, then the default province is replaced with the

actual province supplied by the fifth parameter P_Province.
v If the number is greater than 3, then the default city is replaced with the

actual city supplied by the fourth parameter P_City.
2. Correct the street number for printing using the subroutine GetStreet#.
3. Concatenate the complete address.
4. Return.

Passing Prototyped Parameters

148 ILE RPG Programmer’s Guide

===
* FMTADDR - format an address
*
* Interface parameters
* 1. Address character(70)
* 2. Street number packed(5,0)
* 3. Street name character(20)
* 4. City character(15) (some callers do not pass)
* 5. Province character(15) (some callers do not pass)
===
* Pull in the prototype from the /COPY member
/COPY FMTADDRP
DFmtAddr PI
D Address 70
D Street# 5 0 CONST
D Street 20 CONST
D P_City 15 OPTIONS(*NOPASS) CONST
D P_Province 15 OPTIONS(*NOPASS) CONST

* Default values for parameters that might not be passed.

D City S 15 INZ('Toronto')
D Province S 15 INZ('Ontario')

* Check whether the province parameter was passed. If it was,
* replace the default with the parameter value.

C IF %PARMS > 4
C EVAL Province = P_Province
C ENDIF

* Check whether the city parameter was passed. If it was, *
* replace the default with the parameter value. *

C IF %PARMS > 3
C EVAL City = P_City
C ENDIF

* Set 'CStreet#' to be character form of 'Street#' *

C EXSR GetStreet#

* Format the address as Number Street, City, Province *

C EVAL ADDRESS = %TRIMR(CSTREET#) + ' ' +
C %TRIMR(CITY) + ' ,' +
C %TRIMR(PROVINCE)
C RETURN

Figure 70. Source for procedure FMTADDR (Part 1 of 2)

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 149

Figure 72 on page 151 shows the source for the procedure PRTADDR. This
procedure serves to illustrate the use of FMTADDR. For convenience, the three
procedures which would each call FMTADDR are combined into this single
procedure. Also, for the purposes of the example, the data is program-described.

Since PRTADDR is 'three procedures-in-one', it must define three different address
data structures. Similarly, there are three parts in the calculation specifications, each
one corresponding to programs at each stage. After printing the address, the
procedure PRTADDR ends.

===
* SUBROUTINE: GetStreet#
* Get the character form of the street number, left-adjusted *
* and padded on the right with blanks. *
===
C GetStreet# BEGSR
C MOVEL Street# CStreet# 10

* Find the first non-zero. *

C '0' CHECK CStreet# Non0 5 0

* If there was a non-zero, substring the number starting at *
* non-zero. *

C IF Non0 > 0
C SUBST(P) CStreet#:Non0 CStreet#

* If there was no non-zero, just use '0' as the street number. *

C ELSE
C MOVEL(P) '0' CStreet#
C ENDIF
C ENDSR

Figure 70. Source for procedure FMTADDR (Part 2 of 2)

===
* Prototype for FMTADDR - format an address
===
DFmtAddr PR
D addr 70
D strno 5 0 CONST
D st 20 CONST
D cty 15 OPTIONS(*NOPASS) CONST
D prov 15 OPTIONS(*NOPASS) CONST

Figure 71. Source for /COPY member with Prototype for Procedure FMTADDR

Passing Prototyped Parameters

150 ILE RPG Programmer’s Guide

===
* PRTADDR - Print an address
* Calls FmtAddr to format the address
===
FQSYSPRT O F 80 PRINTER

* Prototype for FmtAddr

DFmtAddr PR
D addr 70
D strno 5 0
D st 20
D cty 15 OPTIONS(*NOPASS)
D prov 15 OPTIONS(*NOPASS)
DAddress S 70

* Stage1: Original address data structure.
* Only street and number are variable information.

D Stage1 DS
D Street#1 5P 0 DIM(2) CTDATA
D StreetNam1 20 DIM(2) ALT(Street#1)

* Stage2: Revised address data structure as city information
* now variable.

D Stage2 DS
D Street#2 5P 0 DIM(2) CTDATA
D Addr2 35 DIM(2) ALT(Street#2)
D StreetNam2 20 OVERLAY(Addr2:1)
D City2 15 OVERLAY(Addr2:21)

* Stage3: Revised address data structure as provincial
* information now variable.

D Stage3 DS
D Street#3 5P 0 DIM(2) CTDATA
D Addr3 50 DIM(2) ALT(Street#3)
D StreetNam3 20 OVERLAY(Addr3:1)
D City3 15 OVERLAY(Addr3:21)
D Province3 15 OVERLAY(Addr3:36)

* 'Program 1'- Use of FMTADDR before city parameter was added.

C DO 2 X 5 0
C CALLP FMTADDR (Address:Street#1(X):StreetNam1(X))
C EXCEPT
C ENDDO

Figure 72. Source for procedure PRTADDR (Part 1 of 2)

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 151

To create these programs, follow these steps:
1. To create FMTADDR, using the source in Figure 70 on page 149, type:

CRTRPGMOD MODULE(MYLIB/FMTADDR)

2. To create PRTADDR, using the source in Figure 72 on page 151, type:
CRTRPGMOD MODULE(MYLIB/PRTADDR)

3. To create the program, PRTADDR, type:
CRTPGM PGM(MYLIB/PRTADDR) MODULE(PRTADDR FMTADDR)

4. Call PRTADDR. The output is shown below:
123 Bumble Bee Drive, Toronto, Ontario
1243 Hummingbird Lane, Toronto, Ontario
3 Cowslip Street, Toronto, Ontario
1150 Eglinton Avenue, North York, Ontario
12 Jasper Avenue, Edmonton, Alberta
27 Avenue Road, Sudbury, Ontario

Passing Less Data Than Required
When a parameter is prototyped, the compiler will check to see that the length is
appropriate for the parameter. If the callee has indicated (through documentation
or through that prototype) that a parameter can be shorter than the maximum
length, you can safely pass shorter parameters.

Figure 73 on page 153 shows the prototype for QCMDEXC, where the first
parameter is defined with OPTIONS(*VARSIZE) meaning that you can pass
parameters of different lengths for the first parameter. Note that OPTIONS
*VARSIZE can only be specified for a character field, a UCS-2 field, a graphic field,

* 'Program 2'- Use of FMTADDR before province parameter was added.*

C DO 2 X 5 0
C CALLP FMTADDR (Address:Street#2(X):
C StreetNam2(X):City2(X))
C EXCEPT
C ENDDO

* 'Program 3' - Use of FMTADDR after province parameter was added.*

C DO 2 X 5 0
C CALLP FMTADDR (Address:Street#3(X):
C StreetNam3(X):City3(X):Province3(X))
C EXCEPT
C ENDDO
C SETON LR

* Print the address. *

OQSYSPRT E
O Address

**
00123Bumble Bee Drive
01243Hummingbird Lane
**
00003Cowslip Street Toronto
01150Eglinton Avenue North York
**
00012Jasper Avenue Edmonton Alberta
00027Avenue Road Sudbury Ontario

Figure 72. Source for procedure PRTADDR (Part 2 of 2)

Passing Prototyped Parameters

152 ILE RPG Programmer’s Guide

or an array.

Passing File Parameters
You can use the LIKEFILE keyword to indicate that a prototyped parameter is a
file. When make a call using the prototype, the file that you pass must either be
the file that was specified on the LIKEFILE parameter of the prototype, or it must
be a file that is related through LIKEFILE File-specification keywords to that file.
For example, if you specify LIKEFILE(MYFILE) on the prototype, and you have
another File specification that defines file OTHERFILE using LIKEFILE(MYFILE),
then you can pass either MYFILE or OTHERFILE on the call. See

For more information on file parameters and variables associated with files see the
chapter about general file considerations in the ″WebSphere Development Studio
ILE RPG Reference.″

Order of Evaluation
There is no guaranteed order for evaluation of parameters on a prototyped call.
This fact may be important when using parameters that cause side effects, as the
results may not be what you would expect.

A side effect occurs if the processing of the parameter changes:
v The value of a reference parameter
v The value of a global variable
v An external object, such as a file or data area

If a side effect occurs, then, if the parameter is used elsewhere in the parameter
list, then the value used for the parameter in one part of the list may not be the
same as the value used in another part. For example, consider this call statement.

CALLP procA (fld : procB(fld) : fld)

Assume that procA has all value parameters, and procB has a reference parameter.
Assume also that fld starts off with the value 3, and that procB modifies fld to be 5,
and returns 10. Depending on the order in which the parameters are evaluated,
procA will receive either 3, 10, and 5 or possibly, 3, 10, and 3. Or possibly, 5, 10,
and 3; or even 5, 10, and 5.

In short, it is important to be aware of the possibility of side effects occurring. In
particular, if you are providing an application for third-party use, where the end
user may not know the details of some of the procedures, it is important ensure
that the values of the passed parameters are the expected ones.

*---
* This prototype for QCMDEXC defines three parameters. The
* first parameter can be passed character fields of
* different lengths, since it is defined with *VARSIZE.
*---
D qcmdexc PR EXTPGM('QCMDEXC')
D cmd 3000A OPTIONS(*VARSIZE) CONST
D cmdlen 15P 5 CONST
D 3A CONST OPTIONS(*NOPASS)

Figure 73. Prototype for System API QCMDEXC with *VARSIZE Parameter

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 153

#

#
#
#
#
#
#
#

#
#
#

Interlanguage Calls
When passing or receiving data from a program or procedure written in another
language, it is important to know whether the other language supports the same
parameter passing methods and the same data types as ILE RPG. Table 37 shows
the different parameter passing methods allowed by ILE RPG and, where
applicable, how they would be coded in the other the ILE languages. The table
also includes the OPM RPG/400® compiler for comparison.

Table 37. RPG Parameter Passing Methods

Passing By Reference

ILE RPG – prototype D proc PR
D parm 1A
C CALLP proc(fld)

ILE C void proc(char *parm);
proc(&fld);

ILE COBOL CALL PROCEDURE "PROC" USING BY REFERENCE PARM

RPG – non-prototyped C CALL 'PROC'
C PARM FLD

ILE CL CALL PROC (&FLD)

Passing By Value

ILE RPG – prototype D proc PR
D parm 1A VALUE
C CALLP proc('a')

ILE C void proc(char parm);
proc('a');

ILE COBOL CALL PROCEDURE "PROC" USING BY VALUE PARM

RPG – non-prototyped N/A

ILE CL N/A

Passing By Read-Only Reference

ILE RPG – prototype D proc PR
D parm 1A CONST
C CALLP proc(fld)

ILE C void proc(const char *parm);
proc(&fld);

ILE COBOL N/A1

RPG – non-prototyped N/A

ILE CL N/A

Notes:

1. Do not confuse passing by read-only reference with COBOL’s passing BY CONTENT.
In RPG terms, to pass Fld1 by content, you would code:

C PARM Fld1 TEMP

Fld1 is protected from being changed, but TEMP is not. There is no expectation that the
parameter will not be changed.

For information on the data types supported by different HLLs, consult the
appropriate language manual.

Passing Prototyped Parameters

154 ILE RPG Programmer’s Guide

Interlanguage Calling Considerations
1. To ensure that your RPG procedure will communicate correctly with an ILE CL

procedure, code EXTPROC(*CL:'procedurename') on the prototype for the ILE
CL procedure or on the prototype for the RPG procedure that is called by the
ILE CL procedure.

2. To ensure that your RPG procedure will communicate correctly with an ILE C
procedure, code EXTPROC(*CWIDEN:'procedurename') or
EXTPROC(*CNOWIDEN:'procedurename') on the prototype for the ILE C procedure
or on the prototype for the RPG procedure that is called by the ILE C
procedure. Use *CNOWIDEN if the ILE C source contains #pragma
argument(procedure-name,nowiden) for the procedure; otherwise, use
*CWIDEN.

3. If you want your RPG procecure to be used successfully by every ILE
language, do not specify any special value on the EXTPROC keyword. Instead,
avoid the following types for parameters that are passed by value or return
values:
v Character of length 1 (1A or 1N)
v UCS-2 of length 1 (1C)
v Graphic of length 1 (1G)
v 4-byte float (4F)
v 1-byte or 2-byte integer or unsigned (3I, 3U, 5I, or 5U)

4. RPG procedures can interact with ILE C/C++ procedures that use 8-byte
pointers. However, the ILE C/C++ procedures must use 16-byte pointers for
parameters. See the IBM Rational Development Studio for i: ILE C/C++ Compiler
Reference.

5. RPG file parameters prototyped with the LIKEFILE keyword are not
interchangeable with file parameters from other languages. For example, you
cannot pass an RPG file to a C function that is expecting a FILE or RFILE
parameter. Similarly, a C function cannot pass a FILE or RFILE parameter to an
RPG procedure if the RPG parameter was prototyped with the LIKEFILE
keyword.

Using the Fixed-Form Call Operations
You use the CALL (Call a Program) operation to make a program call and the
CALLB (Call a Bound Procedure) operation to make a procedure call to programs
or procedures that are not prototyped. The two call operations are very similar in
their syntax and their use. To call a program or procedure, follow these general
steps:
1. Identify the object to be called in the Factor 2 entry.
2. Optionally code an error indicator (positions 73 and 74) or an LR indicator

(positions 75 and 76) or both.
When a called object ends in error the error indicator, if specified, is set on.
Similarly, if the called object returns with LR on, the LR indicator, if specified,
is set on.

3. To pass parameters to the called object, either specify a PLIST in the Result
field of the call operation or follow the call operation immediately by PARM
operations.

Either operation transfers control from the calling to the called object. After the
called object is run, control returns to the first operation that can be processed after
the call operation in the calling program or procedure.

Passing Prototyped Parameters

Chapter 10. Calling Programs and Procedures 155

|
|
|
|

#
#
#
#
#
#

The following considerations apply to either call operation:
v The Factor 2 entry can be a variable, literal, or named constant. Note that the

entry is case-sensitive.
For CALL only: The Factor 2 entry can be library name/program name, for
example, MYLIB/PGM1. If no library name is specified, then the library list is
used to find the program. The name of the called program can be provided at
run time by specifying a character variable in the Factor 2 entry.
For CALLB only: To make a procedure pointer call you specify the name of the
procedure pointer which contains the address of the procedure to be called.

v A procedure can contain multiple calls to the same object with the same or
different PLISTs specified.

v When an ILE RPG procedure (including a program entry procedure) is first
called, the fields are initialized and the procedure is given control. On
subsequent calls to the same procedure, if it did not end on the previous call,
then all fields, indicators, and files in the called procedure are the same as they
were when it returned on the preceding call.

v The system records the names of all programs called within an RPG procedure.
When an RPG procedure is bound into a program (*PGM) you can query these
names using DSPPGMREF, although you cannot tell which procedure or module
is doing the call.
If you call a program using a variable, you will see an entry with the name
*VARIABLE (and no library name).
For a module, you can query the names of procedures called using DSPMOD
DETAIL(*IMPORT). Some procedures on this list will be system procedures; the
names of these will usually begin with underscores or contain blanks and you
do not have to be concerned with these.

v For CALLB only: The compiler creates an operational descriptor indicating the
number of parameters passed on the CALLB operation and places this value in
the *PARMS field of the called procedure’s program status data structure. This
number includes any parameters which are designated as omitted (*OMIT on
the PARM operation).
If the (D) operation extender is used with the CALLB operation the compiler
also creates an operational descriptor for each character and graphic field and
subfield.
For more information on operational descriptors, see “Using Operational
Descriptors” on page 144.

v There are further restrictions that apply when using the CALL or CALLB
operation codes. For a detailed description of these restrictions, see the IBM
Rational Development Studio for i: ILE RPG Reference.

Examples of CALL and CALLB
For examples of using the CALL operation, see:
v “Sample Source for Debug Examples” on page 279, for example of calling an

RPG program.

For examples of using the CALLB operation, see:
v Figure 46 on page 103, for an example of calling a procedure in a service

program.
v Figure 58 on page 129, for an example of calling bindable APIs.
v “CUSMAIN: RPG Source” on page 412, for an example of a main inquiry

program calling various RPG procedures.

Using the Fixed-Form Call Operations

156 ILE RPG Programmer’s Guide

Passing Parameters Using PARM and PLIST
When you pass parameters using fixed-form call, you must pass parameters using
the PARM and PLIST operations. All parameters are passed by reference. You can
specify that an operational descriptor is to be passed and can also indicate that a
parameter is omitted.

Using the PARM operation
The PARM operation is used to identify the parameters which are passed from or
received by a procedure. Each parameter is defined in a separate PARM operation.
You specify the name of the parameter in the Result field; the name need not be
the same as in the calling/called procedure.

The Factor 1 and factor 2 entries are optional and indicate variables or literals
whose value is transferred to or received from the Result Field entry depending on
whether these entries are in the calling program/procedure or the called
program/procedure. Table 38 shows how factor 1 and factor 2 are used.

Table 38. Meaning of Factor 1 and Factor 2 Entries in PARM Operation

Status Factor 1 Factor 2

In calling
procedure

Value transferred from Result Field
entry upon return.

Value placed in Result Field entry
when call occurs.

In called
procedure

Value transferred from Result Field
entry when call occurs.

Value placed in Result Field entry
upon return.

Note: The moves to either the factor 1 entry or the result-field entry occur only
when the called procedure returns normally to its caller. If an error occurs
while attempting to move data to either entry, then the move is not
completed.

If insufficient parameters are specified when calling a procedure, an error occurs
when an unresolved parameter is used by the called procedure. To avoid the error,
you can either:
v Check %PARMS to determine the number of parameters passed. For an example

using %PARMS, see “Checking for the Number of Passed Parameters” on page
147.

v Specify *OMIT in the result field of the PARM operations of the unpassed
parameters. The called procedure can then check to see if the parameter has
been omitted by checking to see if the parameter has value of *NULL, using
%ADDR(parameter) = *NULL. For more information, refer to “Omitting
Parameters” on page 146.

Keep in mind the following when specifying a PARM operation:
v One or more PARM operations must immediately follow a PLIST operation.
v One or more PARM operations can immediately follow a CALL or CALLB

operation.
v When a multiple occurrence data structure is specified in the Result field of a

PARM operation, all occurrences of the data structure are passed as a single
field.

v Factor 1 and the Result field of a PARM operation cannot contain a literal, a
look-ahead field, a named constant, or a user-date reserved word.

v The following rules apply to *OMIT for non-prototyped parameters:

Using the Fixed-Form Call Operations

Chapter 10. Calling Programs and Procedures 157

– *OMIT is only allowed in PARM operations that immediately follows a
CALLB operation or in a PLIST used with a CALLB.

– Factor 1 and Factor 2 of a PARM operation must be blank, if *OMIT is
specified.

– *OMIT is not allowed in a PARM operation that is part of a *ENTRY PLIST.
v There are other restrictions that apply when using the PARM operation code. For

a detailed description of these restrictions, see the IBM Rational Development
Studio for i: ILE RPG Reference.

For examples of the PARM operation see:
v Figure 48 on page 108
v Figure 43 on page 99
v Figure 143 on page 307

Using the PLIST Operation
The PLIST operation:
v Defines a name by which a list of parameters can be referenced. The list of

parameters is specified by PARM operations immediately following the PLIST
operation.

v Defines the entry parameter list (*ENTRY PLIST).

Factor 1 of the PLIST operation must contain the PLIST name. This name can be
specified in the Result field of one or more call operations. If the parameter list is
the entry parameter list of a called procedure, then Factor 1 must contain *ENTRY.

Multiple PLISTs can appear in a procedure. However, only one *ENTRY PLIST can
be specified, and only in the main procedure.

For examples of the PLIST operation see Figure 48 on page 108 and Figure 143 on
page 307.

Returning from a Called Program or Procedure
When a program or procedure returns, its call stack entry is removed from the call
stack. (If it is a program, the program entry procedure is removed as well.) A
procedure ends abnormally when something outside the procedure ends its
invocation. For example, this would occur if an ILE RPG procedure X calls another
procedure (such as a CL procedure) that issues an escape message directly to the
procedure calling X. This would also occur if the procedure gets an exception that
is handled by an exception handler (a *PSSR or error indicator) of a procedure
further up the call stack.

Because of the cycle code associated with main procedures, their return is also
associated with certain termination routines. This section discusses the different
ways that main procedures and subprocedures can return, and the actions that
occur with each.

Returning from a Main Procedure
A return from a main procedure causes the following to occur:
v If it is a cycle-main procedure, and LR is on, then global files are closed and

other resources are freed.
v The procedure’s call stack entry is removed from the call stack.

Using the Fixed-Form Call Operations

158 ILE RPG Programmer’s Guide

#
#

v If the procedure was called by the program entry procedure, then that program
entry procedure is also removed from the call stack.

A cycle-main procedure returns control to the calling procedure in one of the
following ways:
v With a normal end
v With an abnormal end
v Without an end.

A description of the ways to return from a called cycle-main procedure follows.

For a detailed description of where the LR, H1 through H9, and RT indicators are
tested in the RPG program cycle, see the section on the RPG program cycle in the
IBM Rational Development Studio for i: ILE RPG Reference.

Normal End for a Cycle-Main Procedure
A cycle-main procedure ends normally and control returns to the calling procedure
when the LR indicator is on and the H1 through H9 indicators are not on. The LR
indicator can be set on:
v implicitly, as when the last record is processed from a primary or secondary file

during the RPG program cycle
v explicitly, as when you set LR on.

A cycle-main procedure also ends normally if:
v The RETURN operation (with a blank factor 2) is processed, the H1 through H9

indicators are not on, and the LR indicator is on.
v The RT indicator is on, the H1 through H9 indicators are not on, and the LR

indicator is on.

When a cycle-main procedure ends normally, the following occurs:
v The Factor-2-to-Result-field move of a *ENTRY PARM operation is performed.
v All arrays and tables with a ’To file name’ specified on the Definition

specifications, and all locked data area data structures are written out.
v Any data areas locked by the procedure are unlocked.
v All global files that are open are closed.
v A return code is set to indicate to the caller that the procedure has ended

normally, and control then returns to the caller.

On the next call to the cycle-main procedure, with the exception of exported
variables, a fresh copy is available for processing. (Exported variables are
initialized only once, when the program is first activated in an activation group.
They retain their last assigned value on a new call, even if LR was on for the
previous call. If you want to re-initialize them, you have to reset them manually.)

Returning from a Called Program or Procedure

Chapter 10. Calling Programs and Procedures 159

#
#

#

#

#

#

#
#
#
#

#
#

#

#

#
#

#
#

#

#

#
#

#

#

#
#

#
#
#
#
#

TIP
If you are accustomed to ending with LR on to cause storage to be released,
and you are running in a named (persistent) activation group, you may want
to consider returning without an end. The reasons are:
v The storage is not freed until the activation group ends so there is no

storage advantage to ending with LR on.
v Call performance is improved if the program is not re-initialized for each

call.

You would only want to do this if you did not need your program
re-initialized each time.

Abnormal End for a Cycle-Main Procedure
A cycle-main procedure ends abnormally and control returns to the calling
procedure when one of the following occurs:
v The cancel option is taken when an ILE RPG inquiry message is issued.
v An ENDSR *CANCL operation in a *PSSR or INFSR error subroutine is

processed. (For further information on the *CANCL return point for the *PSSR
and INFSR error subroutines, see “Specifying a Return Point in the ENDSR
Operation” on page 305).

v An H1 through H9 indicator is on when a RETURN operation (with a blank
factor 2) is processed.

v An H1 through H9 indicator is on when last record (LR) processing occurs in the
RPG cycle.

When a cycle-main procedure ends abnormally, the following occurs:
v All global files that are open are closed.
v Any data areas locked by the procedure are unlocked.
v If the cycle-main procedure ended because of a cancel reply to an inquiry

message, then it was a function check that caused the abnormal end. In this case,
the function check is percolated to the caller. If it ended because of an error
subroutine ending with ’*CANCL’, then escape message RNX9001 is issued
directly to the caller. Otherwise the caller will see whatever exception caused the
abnormal end.

On the next call to the procedure, a fresh copy is available for processing. (For
more information on exception handlers, see “Using RPG-Specific Handlers” on
page 294.)

Returning without Ending for a Cycle-Main Procedure
A cycle-main procedure can return control to the calling procedure without ending
when none of the LR or H1 through H9 indicators are on and one of the following
occurs:
v The RETURN operation (with a blank factor 2) is processed.
v The RT indicator is on and control reaches the *GETIN part of the RPG cycle, in

which case control returns immediately to the calling procedure. (For further
information on the RT indicator, see the IBM Rational Development Studio for i:
ILE RPG Reference)

Returning from a Called Program or Procedure

160 ILE RPG Programmer’s Guide

#
#
#

#

#
#
#
#

#
#

#
#

#

#

#

#
#
#
#
#
#

#
#
#
#

#

#
#
#
#

If you call a cycle-main procedure and it returns without ending, when you call
the procedure again, all fields, indicators, and files in the procedure will hold the
same values they did when you left the procedure. However, there are three
exceptions:
v This is not true if the program is running in a *NEW activation group, since the

activation group is deleted when the program returns. In that case, the next time
you call your program will be the same as if you had ended with LR on.

v If you are sharing files, the state of the file may be different from the state it
held when you left the procedure.

v If another procedure in the same module was called in between, then the results
are unpredictable.

You can use either the RETURN operation (with a blank factor 2) or the RT
indicator in conjunction with the LR indicator and the H1 through H9 indicators.
Be aware of the testing sequence in the RPG program cycle for the RETURN
operation, the RT indicator, and the H1 through H9 indicators. A return will cause
an end if the LR indicator or any of the halt indicators is on and either of the
following conditions is true:
v A RETURN operation is done
v The RT would cause a return without an end

Returning from a Subprocedure
This section applies to ordinary subprocedures and to linear-main procedures.

A subprocedure returns normally when a RETURN operation is performed
successfully or when the last statement in the procedure (not a RETURN
operation) is processed. If the subprocedure has any local files in automatic
storage, they will be closed when the subprocedure ends. Otherwise, other than the
removal of the subprocedure from the call stack no termination actions are
performed until the cycle-main procedure, if any, of the program ends. In other
words, all the actions listed for the normal end of a cycle-main procedure take
place only for the main procedure.

A subprocedure ends abnormally and control returns to the calling procedure
when an unhandled exception occurs. Any local files in automatic storage are
closed. Other than that, no further actions occur until the cycle-main procedure
ends.

If the module is a cycle module, and the main procedure is never called (and
therefore cannot end) then any files, data areas, etcetera, will not be closed. If you
think this might arise for a subprocedure, you should code a termination
procedure that gets called when the subprocedure ends. This is especially true if
the subprocedure is in a module with NOMAIN specified on the control
specification.

Returning using ILE Bindable APIs
You can end a procedure normally by using the ILE bindable API CEETREC.
However, the API will end all call stack entries that are in the same activation
group up to the control boundary. When a procedure is ended using CEETREC it
follows normal termination processing as described above for main procedures and
subprocedures. On the next call to the procedure, a fresh copy is available for
processing.

Returning from a Called Program or Procedure

Chapter 10. Calling Programs and Procedures 161

#
#
#
#

#
#
#

#
#

#
#

#

#

#
#
#
#
#
#
#
#

#
#
#
#

#
#
#
#
#
#

Similarly, you can end a procedure abnormally using the ILE bindable API
CEE4ABN. The procedure will then follow abnormal termination as described
above.

Note: You cannot use either of these APIs in a program created with
DFTACTGRP(*YES), since procedure calls are not allowed in these
procedures.

Note that if the cycle-main procedure is not active, or if there is no cycle-main,
then nothing will get closed or freed. In this case, you should enable an ILE cancel
handler, using CEERTX. If the cancel handler is in the same module, it can close
the files, unlock the data areas, and perform the other termination actions.

For more information on CEETREC and CEE4ABN, refer to the CL and APIs
section of the Programming category in the i5/OS Information Center at this Web
site - http://www.ibm.com/systems/i/infocenter/.

Using Bindable APIs
Bindable application programming interfaces (APIs) are available to all ILE
languages. In some cases they provide additional function beyond that provided
by a specific ILE language. They are also useful for mixed-language applications
because they are HLL independent.

The bindable APIs provide a wide range of functions including:
v Activation group and control flow management
v Storage management
v Condition management
v Message services
v Source Debugger
v Math functions
v Call management
v Operational descriptor access

You access ILE bindable APIs using the same call mechanisms used by ILE RPG to
call procedures, that is, the CALLP operation or the CALLB operation. If the API
returns a value and you want to use it, call the API in an expression. For the
information required to define a prototype for an API, see the description of the
API in the CL and APIs section of the Programming category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/. Figure 74 on page 163 shows a sample ’call’ to a bindable API.

Returning from a Called Program or Procedure

162 ILE RPG Programmer’s Guide

#
#
#
#

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

where
v CEExxxx is the name of the bindable API
v parm1, parm2, ... parmn are omissible or required parameters passed to or

returned from the called API.
v feedback is an omissible feedback code that indicates the result of the bindable

API.

Note: Bindable APIs cannot be used if DFTACTGRP(*YES) is specified on the
CRTBNDRPG command.

For more information on bindable APIs, refer to the CL and APIs section of the
Programming category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

Examples of Using Bindable APIs
For examples of using bindable APIs, see:
v “Sample Service Program” on page 97, for an example of using CEEDOD
v “Managing Your Own Heap Using ILE Bindable APIs” on page 125. for an

example of using CEEGTST, CEEFRST, and CEECZST.
v “Using a Condition Handler” on page 306, for an example of using CEEHDLR

and CEEHDLU.
v “Using Cancel Handlers” on page 312, for an example of using CEERTX and

CEEUTX.

Calling a Graphics Routine
ILE RPG supports the use of the CALL or CALLP operation to call IBM i Graphics,
which includes the Graphical Data Display Manager (GDDM®, a set of graphics
primitives for drawing pictures), and Presentation Graphics Routines (a set of
business charting routines). Factor 2 must contain the literal or named constant
’GDDM’ (not a variable). Use the PLIST and PARM operations to pass the
following parameters:
v The name of the graphics routine you want to run.
v The appropriate parameters for the specified graphics routine. These parameters

must be of the data type required by the graphics routine and cannot have a
float format.

The procedure that processes the CALL does not implicitly start or end IBM i
graphics routines.

D CEExxxx PR EXTPROC('CEExxxx')
D parm1 ...
D ...
C CALLP CEExxxx(parm1 : parm2 : ... :

parmn : feedback)
or
C CALLB 'CEExxxx'
C PARM parm1
C PARM parm2

...
C PARM parmn
C PARM feedback

Figure 74. Sample Call Syntax for ILE Bindable APIs

Using Bindable APIs

Chapter 10. Calling Programs and Procedures 163

http://www.ibm.com/systems/i/infocenter/

For more information on IBM i Graphics, graphics routines and parameters, see the
GDDM Programming Guide manual and the GDDM Reference.

Note: You can call IBM i Graphics using the CALL operation. You can also use
CALLP if you define a prototype for the routine and specify the EXTPGM
keyword on the prototype. You cannot use the CALLB operation. You
cannot pass Date, Time, Timestamp, or Graphic fields to GDDM®, nor can
you pass pointers to it.

Calling Special Routines
ILE RPG supports the use of the following special routines using the CALL and
PARM operations or the CALLP operation:
v Message-retrieving routine (SUBR23R3)
v Moving Bracketed Double-byte Data and Deleting Control Characters

(SUBR40R3)
v Moving Bracketed Double-byte Data and Adding Control Characters

(SUBR41R3).

Note: You cannot use the CALLB operation to call these special subroutines. You
can use CALLP if you define a prototype for the subroutines.

While the message retrieval routine is still supported, it is recommended that you
use the QMHRTVM message API, which is more powerful.

Similarly, the routines SUBR40R3 and SUBR41R3 are being continued for
compatibility reasons only. They will not be updated to reflect the level of graphic
support provided by RPG IV via the new graphic data type.

Storage Model
The integrated language environment (ILE) offers two storage models, single-level
and teraspace. Modules, programs and service programs can be created to use one
of these storage models, or they can be created to inherit their caller’s storage
model.

All the programs and service programs called into an activation group must use
the same storage model. If the first program or service program called into an
activation group uses the single-level storage model, then all other programs and
service programs in the same activation group must use either the single-level or
the inherit storage model. Simiarly, if the first program or service program called
into an activation group uses the teraspace storage model, then all other programs
and service programs in the same activation group must use either the teraspace or
the inherit storage model.

A program or service program may be created from modules that use the
single-level storage model and the inherit storage model, or from modules that use
the teraspace storage model and the inherit storage model. A program or service
program cannot be created from modules that use both the single-level storage
model and the teraspace storage model.

Considerations for the single-level storage model
v There is a limitation of 16MB of automatic storage for a single procedure.

Calling a Graphics Routine

164 ILE RPG Programmer’s Guide

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

v There is a limitation of a total of 16MB automatic storage for all the procedures
on the call stack.

Considerations for the teraspace storage model
v There are no practical limits to automatic storage.
v Using the teraspace storage model provides access to service programs written

in C and C++ that use faster 8 byte pointers. However, the C or C++ functions
in the service program must use 16 byte pointers for parameters. See the IBM
Rational Development Studio for i: ILE C/C++ Compiler Reference.

Considerations for the inherit storage model
v The activation group must be *CALLER.
v A program or service program with the inherit storage model can be called from

a program or service program that uses any storage model.
v The actual storage model is determined at runtime by the storage model of the

caller.
v There is a limit of 16MB automatic storage for a single procedure at compile

time.
v The runtime limits on automatic storage depend on the actual storage model at

runtime.

Recommendations for the storage model of programs and
service programs

v Consider using STGMDL(*INHERIT) for ACTGRP(*CALLER) programs and
service programs, unless the benefits of the teraspace storage model are always
required by the program or service program.

v If programs and service programs are created with named activation groups,
consider using a naming convention to identify teraspace activation groups. For
example, you could end the teraspace activation group names with TS. This
conforms to the way the activation group name is chosen when you specify
ACTGRP(*STGMDL) for CRTBNDRPG or CRTPGM; in that case QILETS is used
for teraspace storage model and QILE is chosen for single-level storage model.

v Avoid creating teraspace storage model and single-level storage model programs
with the same activation group attribute. For example, assume that TERAPGM is
a teraspace storage model program and SLSPGM is a single-level storage model
program, and both TERAPGM and SLSPGM are compiled to use
ACTGRP(MYACTGRP). If TERAPGM is called first, then activation group
MYACTGRP would be created as a teraspace storage model activation group
and any attempt to call SLSPGM would fail due to a storage model mismatch.
Similarly, if SLSPGM is called first, then activation group MYACTGRP would be
created as a single-level storage model activation group and any attempt to call
TERAPGM would fail due to a storage model mismatch.

See ILE Concepts for more information.

Multithreading Considerations
When you run in a multithreaded environment, there are many thread-safety
issues that you must consider. Before you embark on writing a multithreaded
application, you should become familiar with the concepts of multithreading; see
information on multithreaded applications at: http://www.ibm.com/systems/
infocenter/. You should also become familiar with the common programming

Considerations for the single-level storage model

Chapter 10. Calling Programs and Procedures 165

|
|

|

|

|
|
|
|

|

|

|
|

|
|

|
|

|
|

|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

#
#
#
#
#

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

errors that are made when coding multithreaded applications; see common
multithreaded programming errors at: http://www.ibm.com/systems/infocenter/. Pay
special attention to the problems you may encounter using database files, and
using commitment control in a multithreaded environment.

One important issue for thread safety is the handling of static storage. There are
two ways of ensuring thread-safe handling of static storage in your ILE RPG
modules. You can have separate static storage for each thread by specifying
THREAD(*CONCURRENT), or you can limit access to the module to only one
thread at a time by specifying THREAD(*SERIALIZE). See “Multithreaded
Applications” on page 21 for a comparison of the two modes of thread-safety.

The remainder of this discussion assumes that you are familiar with these
concepts.

Running Concurrently in Multiple Threads
When you specify THREAD(*CONCURRENT), two or more threads could be
running different procedures in the same module, the same procedure, or even the
same statement. When two or more threads are running in the same module or in
the same procedure, they each default to having their own instance of the static
storage in the module and its procedures. This storage is referred to as thread-local
storage. For example, if the two threads happen to be running in the loop below,
one thread could be processing the ″IF″ statement after reading the twentieth
record of the file, with variable ″count″ having a value of 7; the other thread could
be processing the ″READ″ statement after reading the fourth record of the file,
with variable ″count″ having a value of 1.

read rec ds;
count = 0;
dow not %eof(file);
if (ds.amtOwing > ds.max.Owing);

handleAccount (ds);
count += 1;

endif;
read rec ds;

enddo;

If you have chosen to define a variable with STATIC(*ALLTHREAD), then all
threads will use the same instance of that variable.

CAUTION:
RPG does not provide any protection against two threads trying to change an
all-thread static variable at the same time, or against one thread trying to change
the variable while another thread is checking its value. See “All-Thread Static
Variables” on page 169 for more information.

If you want to ensure that some code is only used by one thread at a time, you can
place the code in a serialized procedure (SERIALIZE keyword on the
Procedure-Begin specification). Note that each serialized procedure has its own
serialization mechanism; one thread can be running in one serialized procedure
while another thread is running in a different serialized procedure in the same
module.

Another way to ensure that the code is only used by one thread at a time is to put
the code in a procedure to a thread-serialized module.

Multithreading Considerations

166 ILE RPG Programmer’s Guide

#
#
#
#

#
#
#
#
#
#

#

#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#

#
#
#
#
#

#
#
#
#
#
#

#
#

http://www.ibm.com/systems/i/infocenter/

Running Serialized in Multiple Threads
Specifying THREAD(*SERIALIZE) will protect most of your variables and all your
internal control structures from being accessed improperly by multiple threads. The
thread-serialized module will be locked when a thread starts running any
procedure in the module, and only unlocked when the thread is no longer running
in the module. When the module is locked, no other thread can run a procedure in
the module. If another thread is trying to call a procedure in the module, it must
wait for the module to be unlocked before it can run the procedure. This serialized
access ensures that only one thread is active in a thread-serialized module, within
an activation group, at any one time.

Activation Group Considerations for the THREAD keyword
v Avoid running in the default activation group when the THREAD keyword is

specified.
– With THREAD(*CONCURRENT), a program compiled with

DFTACTGRP(*YES) cannot return with LR on or return abnormally if the
program is currently running in another thread. When the program tries to
deactivate itself, the deactivation will fail with MCH4405.

– With THREAD(*SERIALIZE), or THREAD(*CONCURRENT) where the
SERIALIZE keyword is specified on a procedure specification, if the program
runs in the default activation group, the RPG runtime cannot destroy the
mutex used to serialize access to the module or the procedure. In some cases,
after the RPG program has ended, the pointer in the module’s static storage
that points to the mutex will be deallocated or overwritten. This situation can
cause a storage leak, because the system’s storage associated with the mutex
is not freed when the pointer to the mutex is lost. If the RPG program is
called again, it will create a new mutex.
This situation can arise in the following ways:
- The program is compiled with THREAD(*SERIALIZE) and

DFTACTGRP(*YES), and the program ends with LR on, or it ends
abnormally, which causes the program to be deactivated. When the
program is deactivated, its static storage is deallocated.

- The RCLRSC command is used, and a program that uses a mutex to
serialize a module or a procedure ran in the default activation group. A
program will run in the default activation group if it is compiled with
DFTACTGRP(*YES) or with ACTGRP(*CALLER), where the caller is in the
default activation group.

v Avoid compiling with ACTGRP(*NEW) for programs that will run in a
secondary thread. When a program compiled with ACTGRP(*NEW) ends in a
secondary thread, the job will end with message CEE0200.

Storage that is Shared Among Multiple Threads
Two or more threads can access the same storage if any of the following are true:
v Variables are defined with the STATIC(*ALLTHREAD) keyword
v EXPORT/IMPORT keywords are used on the definition specifications in a

thread-serialized module
v Data is based on a pointer where the pointer is available to more than one

module
v Files are created or overridden with SHARE(*YES). In this case, it is the feedback

areas that represent the shared storage. RPG always refers to the feedback areas
during file operations, so you should synchronize access to the file itself.

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 167

#

#
#
#
#
#
#
#
#
#

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

#

#

#

#
#

#
#

#
#
#

It is up to the programmer to handle thread safety for storage that is shared across
modules. This is done by adding logic in the application to synchronize access to
the storage. To synchronize access to this shared storage, you can do one or both of
the following:
v Structure the application such that the shared resources are not accessed

simultaneously from multiple threads.
v If you are going to access resources simultaneously from separate threads,

synchronize access using facilities such as semaphores or mutexes. For more
information, see “Using thread-related APIs” on page 172.

How to Avoid Deadlock Between Modules
In some situations, it may be necessary for you to control the synchronization of
modules using facilities other than a thread-serialized module or a serialized
procedure. For example, consider the situation shown in Figure 75, where two
threads are each running a procedure in different thread-serialized modules:
procedure PROC1 in module MOD1 and procedure PROC3 in module MOD2.
MOD1 also has procedure PROC2 and MOD2 also has procedure PROC4. Even
though there is no actual recursive calling; if PROC1 calls PROC4, it will wait for
MOD2 to unlock; and if PROC3 calls PROC2, it will wait for MOD1 to unlock. The
procedures will not be able to complete their calls, since each module will be
locked by the thread in the other module. This type of problem can occur even
with serialization of calls to a module, and is referred to as deadlock.

This example shows how deadlock can occur if you try to access more than one
procedure in the same thread-serialized module at the same time.

To avoid the problem in the above example and ensure thread safe applications,
you can control the synchronization of modules using the techniques described in
“Using thread-related APIs” on page 172. Any callers of PROC1 or PROC3 for each
thread should do the following:
1. Restrict access to the modules for all threads except the current thread, always

in the same order (MOD1 then MOD2)
2. In the current thread, call the required procedure (PROC1 or PROC3)
3. Relinquish access to the modules for all threads in the reverse order of step 1

(MOD2 then MOD1).

One thread would be successful in restricting access to MOD1. Since all users of
MOD1 and MOD2 use the protocol of restricting access to MOD1 and MOD2 in
that order, no other thread can call procedures in MOD1 or MOD2 while the first
thread has restricted access to the modules. In this situation you have access to

MOD1

PROC1

CALLP PROC4

PROC2

thread-1

MOD2

PROC3

CALLP PROC2

PROC4

thread-2

Figure 75. Deadlock Example in a THREAD(*SERIALIZE) module

Multithreading Considerations

168 ILE RPG Programmer’s Guide

#

#
#
#

#
#
#
#

#
#

#
#
#

#
#
#
#
#
#
#
#
#
#
#
#

#
#

#
#
#
#

#
#

#

#
#

more than one procedure in the same module at the same time, but since it is only
available to the current thread, it is thread safe.

This method should also be used to synchronize access to shared storage.

All-Thread Static Variables
When you define a variable with the STATIC(*ALLTHREAD) keyword, you are
responsible for ensuring that the variable is used in a thread-safe way. Depending
on the scope of the variable and usage of the variable, you may need to have
additional variables to help synchonize access to the variables:
v If the variable is local to a serialized procedure, then only one thread can access

the variable at one time due to the serialization, so you do not need to add any
extra synchronization for it.

v If the variable is global to the module, and you can guarantee that it is changed
in only one place in your code, and you can further guarantee that the code that
changes the variable will run before any other thread can use the variable, then
you do not need to add any synchronization for the variable.

v Otherwise, you must add an additional variable to be used with a
synchronization technique such as a mutex or a semaphore. See information
about Threads at: http://www.ibm.com/systems/infocenter/ and in “Using
thread-related APIs” on page 172.

If you need to add a synchronization variable to synchronize access to another
variable you must ensure the following:
v The synchronization variable must be initialized before the variable is ever

accessed.
v Whenever you work with the variable, you must first gain access to it, by

locking the semaphore or mutex; when you are finished working with the
variable, you must unlock the semaphore or mutex.

v If the variable is exported from the module, you must ensure that all modules
that import the variable can also use the the synchronization variable. You can
do this by exporting the synchronization variable, or by adding exported lock
and unlock procedures in your exporting module that can be called by any
module that needs to use the variable.
Tip: Establish a naming convention for your variables that require
synchronization and for their synchronization variables or lock and unlock
procedures. Your convention might be to prefix a variable that requires
synchronization with SN_, and to use the same name for its synchronization
variable or procedures, but with different prefixes. For example, variable
SN_nextIndex might have lock and unlock procedures LOCK_nextIndex and
UNLOCK_nextIndex. By using such a convention, and by rigidly enforcing its
use, you can reduce the possibility that a programmer will use a variable that
requires synchronization without observing the correct synchronization protocol.

v You must avoid deadlock situations. For example, if one thread has a lock for
FLD1 and tries to obtain a lock for FLD2, while another thread has a lock on
FLD2 and tries to obtained a lock on FLD1, then both threads will wait forever.

When to use a serialized procedure
You can use a serialized procedure to synchronize access to a shared resource. You
may need to add additional manual synchronization if the shared resources are
used elsewhere in your job.

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 169

#

#
#
#
#

#
#
#

#
#
#
#

#
#
#
#

#
#

#
#

#
#
#

#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#

#

#
#
#

In the following example, a global all-thread static variable is loaded from a file
once, and all other uses in the application only refer to the value of the variable.
Recall that it is necessary to control access to an all-thread static variable if it might
be changed by multiple threads at the same time, or if one thread might be
changing the value while another thread is using the value. However, in the
special case of a variable that is changed only once in ″first-time-only setup″ code,
a serialized procedure is sufficient to control the access by multiple threads. All
threads call the first-time-only setup procedure, and the procedure itself uses a
local all-thread static variable to keep track of whether the setup has already been
done. No manual synchronization is required to control the access to a local
all-thread-static variable in a serialized procedure, because the procedure is
serialized to allow only one thread to be running the procedure at one time

The getCustList procedure is an example of a first-time-only setup procedure; the
shared resources that it is controlling are two global all-thread-static variables,
ATS_custList and ATS_numCusts. The procedure is defined with the SERIALIZE
keyword. It reads a file containing a list of customers and saves the list in an array.
It uses a local all-thread static variable, ATS_done, to keep track of whether the list
has already been obtained, and if it has been obtained already, it returns
immediately. If more than one thread tries to call the procedure at the same time
before the list has been obtained, one thread will get control and the other threads
will wait until the first thread has completed the procedure. When the other
threads finally get control, one at a time, they will return immediately because they
will find that ATS_done has the value *ON.
* !!! Warning !!!
* These global ATS_xxx variables are in all-thread static storage.
* They are setup in getCustList().
* They should not be used before that procedure is called,
* and they should not be changed after that procedure is called.
D ATS_custList S 100A VARYING DIM(500)
D STATIC(*ALLTHREAD)
D ATS_numCusts S 10I 0 INZ(0)
D STATIC(*ALLTHREAD)
/free

// Ensure that the all-thread static variables ATS_custList
// and ATS_numCusts have been set up
getCustList();

// Search for the customer name in the customer list
if %lookup(custname : ATS_custList : 1 : ATS_numCusts);

...
/end-free

P getCustList B SERIALIZE
FcustList IF E DISK
D custInfo DS LIKEREC(custRec)
* ATS_done is shared by all threads running this procedure.
* It doesn't need special thread-control because the procedure
* is serialized.
D ATS_done S N INZ(*OFF)
D STATIC(*ALLTHREAD)
/free

// Only load the customer array once
if ATS_done;

return;
endif;
// Fetch the list of customers into the ATS_custList array
read custList custInfo;
dow not %eof(custList);

ATS_numCusts += 1;
ATS_custList(ATS_numCusts) = %trim(custInfo.custName);

Multithreading Considerations

170 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

read custList custInfo;
enddo;

// Set on the "first-time-only" indicator
ATS_done = *ON;

/end-free
P getCustList E

When a serialized procedure does not provide sufficient
protection

If you have a global all-thread static variable, it may seem like a good idea to
control access to it by having serialized ″get″ and ″set″ procedures for the variable.
Unfortunately, this does not give adequate protection, because the procedures are
serialized independently, each having its own separate control mechanism. If one
thread is running the ″get″ procedure, another could be running the ″set″
procedure at the same time.

If you want to use ″get″ and ″set″ procedures, you will need to add code to both
procedures to manually synchronize access to the variable.

An alternative is to combine both ″get″ and ″set″ in one get-set procedure. It could
have a separate parameter to indicate the required function, or it could have an
optional parameter, which if passed, would provide the ″set″ function; the ″get″
function would always be provided since the procedure would always return a
value.

However, even using a single ″get-set″ procedure may not provide adequate
thread-safety for the variable. If you want to modify a variable using its previous
value, such as adding one to the variable, you might think that getting the value of
the variable, and then setting it to a new value in the same statement would work.
However, another thread might call the procedure between your two calls to the
procedure. Your second ″set″ call to the procedure would incorrectly overwrite the
value that had been set by the other thread.

// If myFld has the value 2 before this statement is run, the first call
// would return 2. The second call would set the value to 3. If another
// thread had set the value to 15 in between the calls, the second call
// should logically set it to 16, not to 3.
getSetMyFld // second call to getSetMyFld, to set the value

(getSetMyFld() + 1); // first call to getSetMyFld, to get the value

If you need to perform more than one access to a variable without another thread
being able to get or set the variable while you are performing the operation, you
must use some manual synchronization to control all access to the variable. All
users of that variable must use the same synchronization mechanism.

Difficulty of manually synchronizing access to shared
resources

It is very difficult to successfully control access to a shared resource. All users of
the shared resource must agree to use the same synchronization mechanism. The
wider the scope of visibility of the shared resource, the more difficult it is to
control the access. For example, it is quite easy to have thread-safe access to a local
all-thread static variable, since only that procedure can access it. It is very difficult
to have thread-safe access to an exported all-thread static variable, since any
procedure can access it.

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 171

#
#
#
#
#
#
#

#

#

#
#
#
#
#
#

#
#

#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

#

#

#
#
#
#
#
#
#

Using thread-related APIs
You can call system APIs to start threads and wait for threads to complete, and to
synchronize access to shared resources.

The following example creates several threads, and uses two different
synchronization techniques to control access to some shared variables. To fully
understand the examples, you should refer to the Multithreaded Applications at:
http://www.ibm.com/systems/infocenter/. The examples are similar to the C
examples that show how to use semaphores and mutexes.

The semaphore example shows how to pass a parameter to a thread-start
procedure threadSem. Normally a thread-start procedure parameter is a data
structure, whose subfields take the place of the parameters and return value that a
normal procedure would use. The example has two subfields; the ″val″ subfield is
input to the thread-start procedure, and the ″result″ subfield is output by the
procedure. In the example, the thread-start procedure sets the result to the input
value multiplied by two.

How to build the examples
1. Copy the source for the examples into a source member. The rest of these

instructions assume that they are in file MYLIB/MYSRCFILE, in members
THREADMTX and THREADSEM RPGLE.

2. Compile the programs.
v CRTBNDRPG MYLIB/THREADMTX SRCFILE(MYLIB/MYSRCFILE)
v CRTBNDRPG MYLIB/THREADSEM SRCFILE(MYLIB/MYSRCFILE)

How to run the examples
The sample programs must be run in a multithread-capable job. You can use
SBMJOB to call the programs, specifying ALWMLTTHD(*YES) to allow multiple
threads in the job:
v SBMJOB CMD(CALL MYLIB/THREADMTX) ALWMLTTHD(*YES)
v SBMJOB CMD(CALL MYLIB/THREADSEM) ALWMLTTHD(*YES)

Multithreading Considerations

172 ILE RPG Programmer’s Guide

#

#
#

#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#

#

#

#

#
#
#
#

#

#

#

/UNDEFINE LOG_ALL_RESULTS

H THREAD(*CONCURRENT) MAIN(threadMtx)
H BNDDIR('QC2LE')
/IF DEFINED(*CRTBNDRPG)
H DFTACTGRP(*NO)
/ENDIF
H OPTION(*SRCSTMT : *NOUNREF)

/COPY QSYSINC/QRPGLESRC,PTHREAD
D NUMTHREADS C 3

D threadMtx PR EXTPGM('THREADMTX')

D mtxThread PR * EXTPROC('mtxThread')
D parm * VALUE

D handleThreads PR EXTPROC('handleThreads')

D checkResults PR EXTPROC('checkResults')
D string 1000A VARYING CONST
D val 10I 0 VALUE

D threadMsg PR EXTPROC('threadMsg')
D string 1000A VARYING CONST

D print PR EXTPROC('print')
D msg 1000A VARYING CONST

D CEETREC PR
D cel_rc_mod 10I 0 OPTIONS(*OMIT)
D user_rc 10I 0 OPTIONS(*OMIT)

D sleep PR EXTPROC(*CWIDEN:'sleep')
D secs 10I 0 VALUE

D fmtThreadId PR 17A VARYING

Figure 76. RPG source file THREADMTX (Part 1 of 5)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 173

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

*---
* Thread-scoped static variables (the STATIC keyword
* is implied because the definition is global)
*---
D psds SDS
D pgmName 10A OVERLAY(psds : 334)

*---
* Job-scoped static variables
*---

* Shared data that will be protected by the mutex
D sharedData S 10I 0 INZ(0)
D STATIC(*ALLTHREAD)
D sharedData2 S 10I 0 INZ(0)
D STATIC(*ALLTHREAD)

* A mutex to control the shared data
D mutex DS LIKEDS(pthread_mutex_t)
D STATIC(*ALLTHREAD)

// Program entry procedure
P threadMtx B
/free

print ('Enter ' + pgmName);
handleThreads ();
print ('Exit ' + pgmName);

/end-free
P threadMtx E

P handleThreads B
D handleThreads PI

D thread DS LIKEDS(pthread_t)
D DIM(NUMTHREADS)
D rc S 10I 0 INZ(0)
D i S 10I 0 INZ(0)
/free

print ('"handleThreads" starting');

Figure 76. RPG source file THREADMTX (Part 2 of 5)

Multithreading Considerations

174 ILE RPG Programmer’s Guide

#

print ('Test using a mutex');

// Initialize the mutex
mutex = PTHREAD_MUTEX_INITIALIZER;

print ('Hold Mutex to prevent access to shared data');
rc = pthread_mutex_lock (mutex);

checkResults('pthread_mutex_lock()' : rc);

print ('Create/start threads');
for i = 1 to NUMTHREADS;

rc = pthread_create(thread(i) : *OMIT
: %paddr(mtxThread) : *NULL);

checkResults ('pthread_create()' : rc);
endfor;

print ('Wait a bit until we are "done" with the shared data');
sleep(3);
print ('Unlock shared data');
rc = pthread_mutex_unlock (mutex);
checkResults('pthread_mutex_unlock()' : rc);

print ('Wait for the threads to complete, '
+ 'and release their resources');

for i = 1 to NUMTHREADS;
rc = pthread_join (thread(i) : *OMIT);
checkResults('pthread_join(' + %char(i) + ')' : rc);

endfor;
print ('Clean up the mutex');
rc = pthread_mutex_destroy (mutex);

print ('"handleThreads" completed');
return;

/end-free
P handleThreads E

P mtxThread B
D mtxThread PI *
D parm * VALUE

Figure 76. RPG source file THREADMTX (Part 3 of 5)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 175

#

D rc S 10I 0
D
/free

threadMsg ('Entered');

rc = pthread_mutex_lock (mutex);
checkResults ('pthread_mutex_lock()' : rc);
//********** Critical Section Begin *******************
threadMsg ('Start critical section, holding lock');

// Access to shared data goes here
sharedData += 1;
sharedData2 -= 1;

threadMsg ('End critical section, release lock');
//********** Critical Section End *******************

rc = pthread_mutex_unlock (mutex);
checkResults ('pthread_mutex_unlock()' : rc);

return *NULL;
/end-free
P mtxThread E

P checkResults B EXPORT
D checkResults PI
D string 1000A VARYING CONST
D val 10I 0 VALUE
D msg S 1000A VARYING
/FREE

if val <> 0;
print (string + ' failed with ' + %char(val));
CEETREC (*OMIT : *OMIT);

else;
/if defined(LOG_ALL_RESULTS)

print (string + ' completed normally with ' + %char(val));
/endif

endif;
/END-FREE
P checkResults E

Figure 76. RPG source file THREADMTX (Part 4 of 5)

Multithreading Considerations

176 ILE RPG Programmer’s Guide

#

P threadMsg B EXPORT
D threadMsg PI
D string 1000A VARYING CONST
/FREE

print ('Thread(' + fmtThreadId() + ') ' + string);
/END-FREE
P threadMsg E

P print B EXPORT
D print PI
D msg 1000A VARYING CONST
D printf PR * EXTPROC('printf')
D template * VALUE OPTIONS(*STRING)
D string * VALUE OPTIONS(*STRING)
D dummy * VALUE OPTIONS(*NOPASS)
D NEWLINE C x'15'
/free

printf ('%s' + NEWLINE : msg);
/end-free
P print E

P fmtThreadId B EXPORT
D fmtThreadId PI 17A VARYING
D pthreadId DS LIKEDS(pthread_id_np_t)
D buf S 1000A
D sprintf PR * EXTPROC('sprintf')
D buf * VALUE
D template * VALUE OPTIONS(*STRING)
D num1 10U 0 VALUE
D num2 10U 0 VALUE
D dummy * OPTIONS(*NOPASS)
/FREE

pthreadId = pthread_getthreadid_np();
// get the hex form of the 2 parts of the thread-id
// in "buf", null-terminated
sprintf (%addr(buf)

: '%.8x %.8x'
: pthreadId.intId.hi
: pthreadId.intId.lo);

return %str(%addr(buf));
/END-FREE
P fmtThreadId E

Figure 76. RPG source file THREADMTX (Part 5 of 5)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 177

#

#

/UNDEFINE LOG_ALL_RESULTS

H THREAD(*CONCURRENT) MAIN(threadSem)
H BNDDIR('QC2LE')
/IF DEFINED(*CRTBNDRPG)
H DFTACTGRP(*NO)
/ENDIF
H OPTION(*SRCSTMT : *NOUNREF)

/COPY QSYSINC/QRPGLESRC,PTHREAD
/COPY QSYSINC/QRPGLESRC,SYSSEM
/COPY QSYSINC/QRPGLESRC,SYSSTAT
D NUMTHREADS C 3

D threadSem PR EXTPGM('THREADSEM')

D semThreadParm_t...
D DS QUALIFIED TEMPLATE
D val 10I 0
D result 10I 0
D semThread PR * EXTPROC('semThread')
D parm LIKEDS(semThreadParm_t)

D handleThreads PR EXTPROC('handleThreads')

D checkResults PR EXTPROC('checkResults')
D string 1000A VARYING CONST
D val 10I 0 VALUE

D checkResultsErrno...
D PR EXTPROC('checkResultsErrno')
D string 1000A VARYING CONST
D cond N VALUE

D threadMsg PR EXTPROC('threadMsg')
D string 1000A VARYING CONST

D print PR EXTPROC('print')
D msg 1000A VARYING CONST

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 1 of 7)

Multithreading Considerations

178 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

D CEETREC PR
D cel_rc_mod 10I 0 OPTIONS(*OMIT)
D user_rc 10I 0 OPTIONS(*OMIT)

D sleep PR EXTPROC(*CWIDEN:'sleep')
D secs 10I 0 VALUE

D fmtThreadId PR 17A VARYING

*---
* Thread-scoped static variables (the STATIC keyword
* is implied because the definition is global)
*---
D psds SDS
D pgmName 10A OVERLAY(psds : 334)

*---
* Job-scoped static variables
*---

* Shared data that will be protected by the mutex
D sharedData S 10I 0 INZ(0)
D STATIC(*ALLTHREAD)
D sharedData2 S 10I 0 INZ(0)
D STATIC(*ALLTHREAD)

* A semaphore to control the shared data
D semaphoreId S 10I 0 STATIC(*ALLTHREAD)

* Simple lock operation. 0=which-semaphore, -1=decrement, 0=noflags
* Will be set to { 0, -1, 0} in main procedure before threads are created
D lockOperation DS LIKEDS(struct_sembuf)
D DIM(1)
D STATIC(*ALLTHREAD)

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 2 of 7)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 179

#

* Simple unlock operation. 0=which-semaphore, 1=increment, 0=noflags
* Will be set to { 0, 1, 0} in main procedure before threads are created
D unlockOperation...
D DS LIKEDS(struct_sembuf)
D DIM(1)
D STATIC(*ALLTHREAD)

// Program entry procedure
P threadSem B
/free

print ('Enter ' + pgmName);
handleThreads ();
print ('Exit ' + pgmName);

/end-free
P threadSem E

P handleThreads B
D handleThreads PI

D thread DS LIKEDS(pthread_t)
D DIM(NUMTHREADS)
D rc S 10I 0 INZ(0)
D i S 10I 0 INZ(0)
D parms DS LIKEDS(semThreadParm_t)
D DIM(NUMTHREADS)
/free

print ('"handleThreads" starting');

print ('Test using a semaphore');

lockOperation(1).sem_num = 0;
lockOperation(1).sem_op = -1;
lockOperation(1).sem_flg = 0;

unlockOperation(1).sem_num = 0;
unlockOperation(1).sem_op = 1;
unlockOperation(1).sem_flg = 0;

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 3 of 7)

Multithreading Considerations

180 ILE RPG Programmer’s Guide

#

// Create a private semaphore set with 1
// semaphore that only I can use
semaphoreId = semget(IPC_PRIVATE : 1 : 0 + S_IRUSR + S_IWUSR);
checkResultsErrno ('semget' : semaphoreId >= 0);

// Set the semaphore count to 1.
// Simulate a mutex
rc = semctl(semaphoreId : 0 : CMD_SETVAL : 1);
checkResults('semctl(SETVAL)' : rc);

print ('Wait on semaphore to prevent access to shared data');
rc = semop(semaphoreId : lockOperation(1) : 1);
checkResultsErrno('main semop(lock)': rc = 0);

parms(1).val = 5;
parms(2).val = -10;
parms(3).val = 421;

print ('Create/start threads');
for i = 1 to NUMTHREADS;

rc = pthread_create(thread(i) : *OMIT
: %paddr(semThread) : %addr(parms(i)));

checkResults ('pthread_create()' : rc);
endfor;

print ('Wait a bit until we are "done" with the shared data');
sleep (3);
print ('Unlock shared data');
rc = semop (semaphoreId : unlockOperation(1) : 1);
checkResultsErrno ('main semop(unlock)' : rc = 0);

print ('Wait for the threads to complete, '
+ 'and release their resources');

for i = 1 to NUMTHREADS;
rc = pthread_join (thread(i) : *OMIT);
checkResults('pthread_join(' + %char(i) + ')' : rc);

endfor;
print ('Clean up the semaphore');
rc = semctl(semaphoreId : 0 : IPC_RMID);
checkResults ('semctl(removeID)' : rc);

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 4 of 7)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 181

#

print ('Result(1) = ' + %char(parms(1).result));
print ('Result(2) = ' + %char(parms(2).result));
print ('Result(3) = ' + %char(parms(3).result));

print ('"handleThreads" completed');
return;

/end-free
P handleThreads E

P semThread B
D semThread PI *
D parm LIKEDS(semThreadParm_t)

D rc S 10I 0
D
/free

threadMsg ('Entered + parm.val = ' + %char(parm.val));
// Set the output subfields of the parameter
parm.result = parm.val * 2;

rc = semop (semaphoreId : lockOperation(1) : 1);
checkResultsErrno ('thread semop(lock)' : rc = 0);

//********** Critical Section Begin *******************
threadMsg ('Start critical section, holding semaphore');

// Access to shared data goes here
sharedData += 1;
sharedData2 -= 1;

threadMsg ('End critical section, release semaphore');
//********** Critical Section End *******************

rc = semop (semaphoreId : unlockOperation(1) : 1);
checkResultsErrno ('thread semop(unlock)' : rc = 0);

threadMsg ('Exiting');

return *NULL;
/end-free

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 5 of 7)

Multithreading Considerations

182 ILE RPG Programmer’s Guide

#

P semThread E

P checkResults B EXPORT
D checkResults PI
D string 1000A VARYING CONST
D val 10I 0 VALUE
D msg S 1000A VARYING
/FREE

if val <> 0;
print (string + ' failed with ' + %char(val));
CEETREC (*OMIT : *OMIT);

else;
/if defined(LOG_ALL_RESULTS)

print (string + ' completed normally with ' + %char(val));
/endif

endif;
/END-FREE
P checkResults E

P checkResultsErrno...
P B
D checkResultsErrno...
D PI
D string 1000A VARYING CONST
D cond N VALUE
D getErrnoPtr PR * EXTPROC('__errno')
D errnoVal S 10I 0 based(threadErrnoPtr)
/FREE

if not cond;
threadErrnoPtr = getErrnoPtr();
print (string + ' Errno(' + %char(errnoVal) + ')');
CEETREC (*OMIT : *OMIT);

else;
/if defined(LOG_ALL_RESULTS)

print (string + ' completed normally');
/endif

endif;
/END-FREE
P checkResultsErrno...
P E

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 6 of 7)

Multithreading Considerations

Chapter 10. Calling Programs and Procedures 183

#

P threadMsg B EXPORT
D threadMsg PI
D string 1000A VARYING CONST
/FREE

print ('Thread(' + fmtThreadId() + ') ' + string);
/END-FREE
P threadMsg E
P print B EXPORT
D print PI
D msg 1000A VARYING CONST
D printf PR * EXTPROC('printf')
D template * VALUE OPTIONS(*STRING)
D string * VALUE OPTIONS(*STRING)
D dummy * VALUE OPTIONS(*NOPASS)
D NEWLINE C x'15'
/free

printf ('%s' + NEWLINE : msg);
/end-free
P print E

P fmtThreadId B EXPORT
D fmtThreadId PI 17A VARYING
D pthreadId DS LIKEDS(pthread_id_np_t)
D buf S 1000A
D sprintf PR * EXTPROC('sprintf')
D buf * VALUE
D template * VALUE OPTIONS(*STRING)
D num1 10U 0 VALUE
D num2 10U 0 VALUE
D dummy * OPTIONS(*NOPASS)
/FREE

pthreadId = pthread_getthreadid_np();
// get the hex form of the 2 parts of the thread-id
// in "buf", null-terminated
sprintf (%addr(buf)

: '%.8x %.8x'
: pthreadId.intId.hi
: pthreadId.intId.lo);

return %str(%addr(buf));
/END-FREE
P fmtThreadId E

Figure 77. RPG program THREADSEM showing the use of a semaphore (Part 7 of 7)

Multithreading Considerations

184 ILE RPG Programmer’s Guide

#

#

Chapter 11. RPG and the eBusiness World

This chapter describes how you can use ILE RPG as part of an eBusiness solution.
It includes:
v “RPG and XML”
v “RPG and MQSeries” on page 191
v “RPG and Java” on page 191

RPG and XML
The Extensible Markup Language (XML) is a subset of SGML that is developed by
the World Wide Web Consortium (W3C). Its goal is to enable generic SGML to be
served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability
with both SGML and HTML.

For more information about XML, see http://www.w3.org/XML

You can use the XML-INTO and XML-SAX operation codes to process your XML
documents. For more information, see “Processing XML Documents.”

XML Toolkit for iSeries (5733XT1) allows your ILE RPG programs to create new
XML documents and parse existing ones. You can use XML as both a datastore and
I/O mechanism.

Processing XML Documents
You can process XML documents from your RPG program by using the
XML-INTO or XML-SAX statements. These statements are the RPG language
interface to the high-speed XML parser. The parser currently being used by RPG is
a non-validating parser, although it checks XML documents for many
well-formedness errors. See the ″XML Conformance″ section in the ″XML Reference
Material″ appendix of the ILE COBOL Programmer’s Guide for more information on
the XML parser.

The XML documents can be in a character or UCS-2 RPG variable, or they can be
in an Integrated File System file.

The parser is a SAX parser. A SAX parser operates by reading the XML document
character by character. Whenever it has located a fragment of the XML document,
such as an element name, or an attribute value, it calls back to a handling
procedure provided by the caller of the parser, passing it information about the
fragment of XML that it has found. For example, when the parser has found an
XML element name, it calls the handling procedure indicating that the ″event″ is a
″start element″ event and passing it the name of the element.

The handling procedure processes the information and returns to the parser which
continues to read the XML document until it has enough information to call the
handling procedure with another event. This process repeats until the entire XML
document has been parsed, or until the handling procedure indicates that parsing
should end.

For example, consider the following XML document:

© Copyright IBM Corp. 1994, 2010 185

#

#

#
#
#
#
#

#
#

#
#
#
#
#

#

#
#

#
#
#

#

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#
#

#
#
#
#
#

#

<email type="text">
<sendto>JohnDoe@there</sendto>

</email>

The following are the fragments of text that the parser would read, the events that
it would generate, and the data associated with each event. Note: The term
″whitespace″ refers to end-of-line characters, tab characters and blanks.

Parsed text Event Event data

start document

<email start element ″email″

type= attribute name ″type″

″text″ attribute value ″text″

>whitespace element content the whitespace

<sendto> start element ″sendto″

JohnDoe@there element content ″JohnDoe@there″

</sendto> end element ″sendto″

whitespace element content the whitespace

</email> end element ″email″

end document

The XML-SAX and XML-INTO operation codes allow you to use the XML parser.
1. The XML-SAX operation allows you to specify an event handling procedure to

handle every event that the parser generates. This is useful if you do not know
in advance what an XML document may contain.
For example, if you know that an XML document will contain an XML attribute
with the name type, and you want to know the value of this attribute, your
handling procedure can wait for the ″attribute name″ event to have a value of
″type″. Then the next time the handler is called, it should be an ″attribute
value″ event, with the required data (″text″ in the example above).

2. The XML-INTO operation allows you to read the contents of an XML document
directly into an RPG variable. This is useful if you know the format of the XML
document and you know that the names of the XML elements in the document
will be the same as the names you have given to your RPG variables.
For example, if you know that the XML document will always have the form of
the document above, you can define an RPG data structure with the name
″email″, and with subfields ″type″ and ″sendto″. Then you can use the
XML-INTO operation to read the XML document directly into the data
structure. When the operation is complete, the ″type″ subfield would have the
value ″text″ and the ″sendto″ subfield would have the value ″JohnDoe@there″.

3. The XML-INTO operation also allows you to obtain the values of an unknown
number of repeated XML elements. You provide a handling procedure that
receives the values of a fixed number of elements each time the handling
procedure is called. This is useful if you know that the XML document will
contain a series of identical XML elements, but you don’t know in advance
how many there will be.

The XML data is always returned by the parser in text form. If the data is known
to represent other data types such as numeric data, or date data, the XML-SAX
handling procedure must use conversion functions such as %INT or %DATE to
convert the data.

186 ILE RPG Programmer’s Guide

#
#
#

#
#
#

####

###

###

###

###

###

###

###

###

###

###

###
#

#

#
#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#

#
#
#
#
#
#

#
#
#
#

The XML-INTO operation will automatically convert the character data to the type
of the field or subfield specified as the receiver.

Both the XML-SAX and XML-INTO operations allow you to specify a series of
options that control the operation. The options are specified in a single character
expression in the form
'opt1=val1 opt2=val2'

Each operation has its own set of valid options. The options that are common to
both operation codes are

doc
The ″doc″ option specifies whether the XML document that you provide to the
operation is the name of an Integrated File System file containing the
document, or the document itself. The default is ″doc=string″ indicating that
you have provided an actual XML document. You use the option ″doc=file″ to
indicate that you have provided the name of a file containing the actual XML
document.

ccsid
The ″ccsid″ option specifies the CCSID in which the XML parser will return
data. For the XML-SAX operation, you can specify any CCSID that the parser
supports. For the XML-INTO operation, you can only control whether the
parsing will be done in single-byte character or UCS-2. See the information in
the ILE RPG Reference for more information on the ″ccsid″ option for each of
these operation.

XML Parser Error Codes
If the XML parser detects an error in the XML document during parsing, message
RNX0351 will be issued. From the message, you can get the specific error code
associated with the error, as well as the offset in the document where the error was
discovered.

The following table shows the meaning of each parser error code:

XML
Parser
Error Code Description

1 The parser found an invalid character while scanning white space outside
element content.

2 The parser found an invalid start of a processing instruction, element,
comment, or document type declaration outside element content.

3 The parser found a duplicate attribute name.

4 The parser found the markup character ’<’ in an attribute value.

5 The start and end tag names of an element did not match.

6 The parser found an invalid character in element content.

7 The parser found an invalid start of an element, comment, processing
instruction, or CDATA section in element content.

8 The parser found in element content the CDATA closing character sequence
’]]>’ without the matching opening character sequence ’<![CDATA[’.

9 The parser found an invalid character in a comment.

10 The parser found in a comment the character sequence ’--’ (two hyphens) not
followed by ’>’.

Chapter 11. RPG and the eBusiness World 187

#
#

#
#
#

#

#
#

#
#
#
#
#
#
#

#
#
#
#
#
#
#

#
#
#
#
#

#

##
#
##

##
#

##
#

##

##

##

##

##
#

##
#

##

##
#

XML
Parser
Error Code Description

11 The parser found an invalid character in a processing instruction data
segment.

12 A processing instruction target name was ’xml’ in lowercase, uppercase or
mixed case.

13 The parser found an invalid digit in a hexadecimal character reference (of the
form �, for example ັ).

14 The parser found an invalid digit in a decimal character reference (of the form
&#dddd;).

15 A character reference did not refer to a legal XML character.

16 The parser found an invalid character in an entity reference name.

17 The parser found an invalid character in an attribute value.

18 The parser found a possible invalid start of a document type declaration.

19 The parser found a second document type declaration.

20 An element name was not specified correctly. The first character was not a
letter, ’_’, or ’:’, or the parser found an invalid character either in or following
the element name.

21 An attribute was not specified correctly. The first character of the attribute
name was not a letter, ’_’, or ’:’, or a character other than ’=’ was found
following the attribute name, or one of the delimiters of the value was not
correct, or an invalid character was found in or following the name.

22 An empty element tag was not terminated by a ’>’ following the ’/’.

23 The element end tag was not specified correctly. The first character was not a
letter, ’_’, or ’:’, or the tag was not terminated by ’>’.

24 The parser found an invalid start of a comment or CDATA section in element
content.

25 A processing instruction target name was not specified correctly. The first
character of the processing instruction target name was not a letter, ’_’, or ’:’,
or the parser found an invalid character in or following the processing
instruction target name.

26 A processing instruction was not terminated by the closing character sequence
’?>’.

27 The parser found an invalid character following ’&’ in a character reference or
entity reference.

28 The version information was not present in the XML declaration.

29 The ’version’ in the XML declaration was not specified correctly. ’version’ was
not followed by ’=’, or the value was missing or improperly delimited, or the
value specified a bad character, or the start and end delimiters did not match,
or the parser found an invalid character following the version information
value closing delimiter in the XML declaration.

30 The parser found an invalid attribute instead of the optional encoding
declaration in the XML declaration.

31 The encoding declaration value in the XML declaration was missing or
incorrect. The value did not begin with lowercase or uppercase A through Z,
or ’encoding’ was not followed by ’=’, or the value was missing or improperly
delimited or it specified a bad character, or the start and end delimiters did
not match, or the parser found an invalid character following the closing
delimiter.

188 ILE RPG Programmer’s Guide

#
#
##

##
#

##
#

##
#

##
#

##

##

##

##

##

##
#
#

##
#
#
#

##

##
#

##
#

##
#
#
#

##
#

##
#

##

##
#
#
#
#

##
#

##
#
#
#
#
#

XML
Parser
Error Code Description

32 The parser found an invalid attribute instead of the optional standalone
declaration in the XML declaration.

33 The ’standalone’ attribute in the XML declaration was not specified correctly.
’standalone’ was not followed by a ’=’, or the value was either missing or
improperly delimited, or the value was neither ’yes’ nor ’no’, or the value
specified a bad character, or the start and end delimiters did not match, or the
parser found an invalid character following the closing delimiter.

34 The XML declaration was not terminated by the proper character sequence
’?>’, or contained an invalid attribute.

35 The parser found the start of a document type declaration after the end of the
root element.

36 The parser found the start of an element after the end of the root element.

300 The parser reached the end of the document before the document was
complete.

301 The %HANDLER procedure for XML-INTO or XML-SAX returned a non-zero
value, causing the XML parsing to end.

302 The parser does not support the requested CCSID value or the first character
of the XML document was not ’<’.

303 The document was too large for the parser to handle. The parser attempted to
parse the incomplete document, but the data at the end of the document was
necessary for the parsing to complete.

500-999 Internal error in the external parser. Please report the error to your service
representative.

10001-
19999

Internal error in the parser. Please report the error to your service
representative.

Limitations of the XML Parser
v An RPG character variable can only be 16773104 bytes long. If your program has

a pointer to XML data that is longer than that, for example from an MQSeries®

call, you will have to write the XML data to a temporary file in the Integrated
File System, and parse the XML data from your temporary file. See Figure 78 on
page 190 for a sample procedure that does this.

v If the parsing is done in a single-byte character CCSID, the maximum number of
characters that the parser can handle is 2147483408.

v If the parsing is done in UCS-2, the maximum number of UCS-2 characters that
the parser can handle is 1073741704.

v The parser does not support every CCSID. If your job CCSID is one of the
CCSIDs that the parser does not handle, you must parse your document in
UCS-2.
– The following EBCDIC CCSIDs are supported: 1047, 37, 1140, 273, 1141, 277,

1142, 278, 1143, 280, 1144, 284, 1145, 285, 1146, 297, 1147, 500, 1148, 871, and
1149.

– The following ASCII CCSIDs are supported: 819, 813, 920.
– The following Unicode CCSIDs are supported: 1200, 13488, 17584.

v The parser does not support entity references. When it encounters an entity
reference, it generates either an ″unknown reference″ or ″unknown attribute
reference″ event. The value of the event is the reference in the form ″&name;″.

Chapter 11. RPG and the eBusiness World 189

#
#
##

##
#

##
#
#
#
#

##
#

##
#

##

##
#

##
#

##
#

##
#
#

##
#

#
#
#
#
#

#
#
#
#
#
#

v The parser does not parse the DOCTYPE declaration. The text of the DOCTYPE
declaration is passed as the data value for the ″DOCTYPE declaration″ event.

v The parser does not support name spaces. It ignores the colons in XML element
and attribute names.

v The parser does not generate ″start prefix mapping″ and ″end prefix mapping″
events. It ignores the colons in XML element and attribute names.

* Parameters:
* 1. path : a pointer to a null-terminated string containing
* the path to the file to be written
* 2. dataPtr : a pointer to the data to be written
* 3. dataLen : the length of the data in bytes
* 4. dataCcsid : the CCSID of the data
* 5. fileCcsid : the desired CCSID of the file
* Sample RPG coding:
* ifsWrite ('/home/mydir/temp.xml' : xmlPtr : xmlLen : 37 : 37);
* xml-into ds %xml('/home/mydir/temp.xml' : 'doc=file');
* To delete the file, use the system command
* rmvlnk '/home/mydir/temp.xml'

* Note: This module requires BNDDIR(QC2LE)
P ifsWrite B EXPORT
D ifsWrite PI
D path * VALUE OPTIONS(*STRING)
D dataPtr * VALUE
D dataLen 10I 0 VALUE
D dataCcsid 10I 0 VALUE
D fileCcsid 10I 0 VALUE

D O_CREAT C x'00000008'
D O_TRUNC C x'00000040'
D O_WRONLY C x'00000002'
D O_RDWR C x'00000004'
D O_CCSID C x'00000020'
D O_TEXT_CREAT C x'02000000'
D O_TEXTDATA C x'01000000'
D O_SHARE_NONE C x'00080000'

D S_IRUSR C x'0100'
D S_IROTH C x'0004'
D S_IRGRP C x'0020'
D S_IWUSR C x'0080'
D S_IWOTH C x'0002'

Figure 78. Writing data to an Integrated File System file (Part 1 of 2)

190 ILE RPG Programmer’s Guide

RPG and MQSeries
With MQSeries®, a program can communicate with other programs on the same
platform or a different platform using the same messaging product. MQSeries
manages network interfaces, assures delivery, deals with communications
protocols, and handles recovery after system problems. MQSeries is available on
over 35 platforms.

RPG and Java

Introduction to Java and RPG
The Java programming language is a high-level object-oriented language
developed by Sun Microsystems. Java programs can be developed using the
VisualAge® for Java component of WebSphere Development Studio for System i.

D ssize_t S 10I 0
D size_t S 10U 0

D open PR 10I 0 EXTPROC('open')
D path * VALUE OPTIONS(*STRING)
D flag 10I 0 VALUE
D mode 10I 0 VALUE
D fileCcsid 10I 0 VALUE options(*nopass)
D dataCcsid 10I 0 VALUE options(*nopass)
D writeFile PR LIKE(ssize_t)
D EXTPROC('write')
D handle 10I 0 VALUE
D data * VALUE
D len VALUE LIKE(size_t)
D closeFile PR 10I 0 EXTPROC('close')
D handle 10I 0 VALUE

D oflag S 10I 0
D omode S 10I 0
D handle S 10I 0
D rc S 10I 0

D sysErrno PR * EXTPROC('__errno')
D errno S 10I 0 BASED(pErrno)
/FREE

pErrno = sysErrno();
oflag = 0 + O_WRONLY + O_CREAT + O_TEXT_CREAT + O_TRUNC

+ O_CCSID + O_TEXTDATA + O_SHARE_NONE;
omode = 0 + S_IRUSR + S_IWUSR + S_IRGRP + S_IROTH;

handle = open(path : oflag : omode : fileCcsid : dataCcsid);

// insert error handling if handle is less than zero

rc = writeFile (handle : dataPtr : dataLen);
// insert error handling if rc is not zero

rc = closeFile (handle);
// insert error handling if rc is not zero

/END-FREE
P ifswrite E

Figure 78. Writing data to an Integrated File System file (Part 2 of 2)

Chapter 11. RPG and the eBusiness World 191

In object-oriented programming, a ″method″ is a programmed procedure that is
defined as part of a ″class″, which is a collection of methods and variables. Java
methods can be called from your RPG program. While most Java methods are
written in Java, a method can also be written in another high-level language, such
as RPG. This is known as a ″native method″. This section includes information on
calling Java methods from RPG and on writing RPG native methods.

The Object Data Type and CLASS Keyword
Fields that can store objects are declared using the O data type. To declare a field
of type O, code O in column 40 of the D-specification and use the CLASS keyword
to provide the class of the object. The CLASS keyword accepts two parameters:
CLASS(*JAVA:class_name)

*JAVA identifies the object as a Java object. Class_name specifies the class of the
object. It must be a character literal or named constant, and the class name must be
fully qualified. The class name is case sensitive.

For example, to declare a field that will hold an object of type BigDecimal:
D bdnum S O CLASS(*JAVA:'java.math.BigDecimal')

To declare a field that will hold an object of type String:
D string S O CLASS(*JAVA:'java.lang.String')

Note that both class names are fully qualified and that their case exactly matches
that of the Java class.

Fields of type O cannot be defined as subfields of data structures. It is possible to
have arrays of type O fields, but pre-runtime and compile-time tables and arrays
of type O are not allowed.

Prototyping Java Methods
Like subprocedures, Java methods must be prototyped in order to call them
correctly. The ILE RPG compiler must know the name of the method, the class it
belongs to, the data types of the parameters and the data type of the returned
value (if any), and whether or not the method is a static method.

The extended EXTPROC keyword can be used to specify the name of the method
and the class it belongs to. When prototyping a Java method, the expected format
of the EXTPROC keyword is:
EXTPROC(*JAVA:class_name:method_name)

Both the class name and the method name must be character constants. The class
name must be a fully qualified Java class name and is case sensitive. The method
name must be the name of the method to be called, and is case sensitive.

Use *JAVA when creating a prototype for either a method written in Java or a
native method written in RPG. Use the STATIC keyword to indicate that a method
is static.

Java and RPG Definitions and Data Types: The data types of the parameters and
the returned value of the method are specified in the same way as they are when
prototyping a subprocedure, but the data types actually map to Java data types.
The following table shows the mappings of ILE RPG data types to and from Java
data types.

192 ILE RPG Programmer’s Guide

If you copy the JNI member in QSYSINC/QRPGLESRC, you can use LIKE to
define your RPG variables and parameters like definitions in that file. For example,
to define a variable like the Java ″int″ type, define it LIKE(jint). In the remainder of
the discussion about RPG and Java, any definitions defined with LIKE(jxxxx) are
assumed to have a /COPY for QSYSINC/QRPGLESRC,JNI in the module. See the
section “Additional RPG Coding for Using Java” on page 207 for more information
about using this /COPY file.

Table 39.

Java Data Type ILE RPG Data Type RPG Definitions

boolean indicator N

byte 1 integer 3I 0

character 1A

byte[] character length > 1 (See 3.) nA

array of character length=1 (See 4.) 1A DIM(x)

date D

time T

timestamp Z

short 2–byte integer 5I 0

char UCS-2 length=1 1C

char[] UCS-2 length>1 (See 3.) nC

array of UCS-2 length=1 (See 4.) 1C DIM(x)

int 4–byte integer 10I 0

long 8–byte integer 20I 0

float 4–byte float 4F

double 8–byte float 8F

any object object O CLASS(x)

any array array of equivalent type (See 4.) DIM(x)

Notes:

1. When a Java byte type is converted to or from a character (1A) data type,
ASCII conversion occurs. When a Java byte type is converted to or from an
integer (3I) data type, ASCII conversion does not occur.

2. For arrays of any type in Java, you can declare an array of the equivalent type
in RPG. However, note that you cannot use an array of character length greater
than 1 or UCS-2 length greater than 1 data types.

3. For UCS-2 length greater than 1 and character length greater than 1 data types,
the VARYING keyword is allowed. In general, it’s recommended to use the
VARYING keyword, since Java byte[] and char[] cannot be declared with a
fixed length.

4. For RPG array data types, OPTIONS(*VARSIZE) should normally be coded for
array parameters, since Java arrays cannot be declared with a fixed length.

Zoned, Packed, Binary, and Unsigned data types are not available in Java. If you
pass a Zoned, Packed, Binary, or Unsigned field as a parameter, the compiler will
do the appropriate conversion, but this may result in truncation and/or loss of
precision.

Chapter 11. RPG and the eBusiness World 193

#
#
#
#
#
#
#

When calling a method, the compiler will accept arrays as parameters only if the
parameter is prototyped using the DIM keyword.

If the return value or a parameter of a method is an object, you must provide the
class of the object by coding the CLASS keyword on the prototype. The class name
specified will be that of the object being returned or the parameter being passed.
(Use the EXTPROC keyword to specify the class of the method being called.)

If the method being called is a static method, then you must specify the STATIC
keyword on the prototype. If the method is a constructor, you must specify
*CONSTRUCTOR as the name of the method.

In Java, the following data types can only be passed by value:
boolean
byte
int
short
long
float
double

Parameters of these types must have the VALUE keyword specified for them on
the prototype.

Note that objects can only be passed by reference. The VALUE keyword cannot be
specified with type O. Since arrays are seen by Java as objects, parameters
mapping to arrays must also be passed by reference. This includes character and
byte arrays. The CONST keyword can be used.

Examples of Prototyping Java Methods: This section presents some examples of
prototyping Java methods.

Example 1: The Java Integer class contains a static method called toString, which
accepts an int parameter, and returns a String object. It is declared in Java as
follows:
static String Integer.toString(int)

This method would be prototyped as follows:
D tostring PR O EXTPROC(*JAVA:
D 'java.lang.Integer':
D 'toString')
D CLASS(*JAVA:'java.lang.String')
D STATIC
D num 10I 0 VALUE

The EXTPROC keyword identifies the method as a Java method. It also indicates
that the method name is ’toString’, and that it is found in class ’java.lang.Integer’.

The O in column 40 and the CLASS keyword tell the compiler that the method
returns an object, and the class of that object is ’java.lang.String’.

The STATIC keyword indicates that the method is a static method, meaning that an
Integer object is not required to call the method.

The data type of the parameter is specified as 10I, which maps to the Java int data
type. Because the parameter is an int, it must be passed by value, and the VALUE
keyword is required.

194 ILE RPG Programmer’s Guide

Example 2: The Java Integer class contains a static method called getInteger, which
accepts String and Integer objects as parameters, and returns an Integer object. It is
declared in Java as follows:
static Integer Integer.getInteger(String, Integer)

This method would be prototyped as follows:
D getint PR O EXTPROC(*JAVA:
D 'java.lang.Integer':
D 'getInteger')
D CLASS(*JAVA:'java.lang.Integer')
D STATIC
D string O CLASS(*JAVA:'java.lang.String') CONST
D num O CLASS(*JAVA:'java.lang.Integer') CONST

This method accepts two objects as parameters. O is coded in column 40 of the
D-specification and the CLASS keyword specifies the class of each object
parameter. Because both parameters are input-only, the CONST keyword is
specified.

Example 3: The Java Integer class contains a method called shortValue, which
returns the short representation of the Integer object used to invoke the method. It
is declared in Java as follows:
short shortValue()

This method would be prototyped as follows:
D shortval PR 5I 0 EXTPROC(*JAVA:
D 'java.lang.Integer':
D 'shortValue'

The STATIC keyword is not specified because the method is not a static method.
The method takes no parameters, so none are coded. When you call this method,
you will specify the Integer instance as the first parameter. The returned value is
specified as 5I, which maps to the Java short data type.

Example 4: The Java Integer class contains a method called equals, which accepts
an Object as parameter and returns a boolean. It is declared in Java as follows:
boolean equals(Object)

This method would be prototyped as follows:
D equals PR N EXTPROC(*JAVA:
D 'java.lang.Integer':
D 'equals')
D obj O CLASS(*JAVA:'java.lang.Object')

The returned value is specified as N, which maps to the Java boolean data type.
Because this is not a static method, a call to this method will have two parameters
with the instance parameter coded first.

Calling Java Methods from ILE RPG
This section describes how to call Java methods from ILE RPG programs.

If the method is not a static method, then it is called an ″instance method″ and an
object instance must be coded as an extra first parameter in order to call the
method. For example, if an instance method is prototyped with one parameter, you
must call it with two parameters, the first being the instance parameter.

The following steps describe the call from ILE RPG to a Java method:

Chapter 11. RPG and the eBusiness World 195

1. Java methods can be called using existing operation codes CALLP (when no
return value is expected) and EVAL (when a return value is expected). When
your RPG procedure attempts to make call to a Java method, RPG will check to
see if the Java Virtual Machine (JVM) has been started. If not, RPG will start
the JVM for you. It is also possible to start JVM yourself using the JNI function
described in “Creating the Java Virtual Machine (JVM)” on page 211

2. If you are using your own classes (or any classes outside the normal java.xxx
classes), be sure to have your CLASSPATH environment variable setup before
you call any Java methods. When RPG starts up the JVM for you, it will add
the classes in your CLASSPATH environment variable to the standard
classpath, so when you use your own classes, Java will be able to find them.
Set the CLASSPATH environment variable interactively like this:
===>ADDENVVAR ENVVAR(CLASSPATH)

VALUE('/myclasses/:/xyzJava/classes/')

The directories must be separated by colons.
3. Normally, Java does its own garbage collection, detecting when an object is no

longer needed. When you create objects by calling Java constructors from your
non-native RPG procedure, Java has no way of knowing that the object can be
destroyed, so it never destroys them. You can enable garbage collection for
several objects at once by calling the JNI functions described in “Telling Java to
free several objects at once” on page 208. If you know you are not going to
need an object any more, you should tell this to Java by calling the JNI function
described in “Telling Java you are finished with a temporary object” on page
209.

CAUTION:
Since Java uses threads, the THREAD keyword must be coded in all modules
that interact with Java. RPG relies heavily on static storage even in
subprocedures that apparently only use automatic storage. THREAD keyword is
necessary to ensure the correct handling of this static storage. This applies not
only to modules that contain calls to Java methods, but also to any modules that
might be called during interactions with Java, when the Java part of the
application might be running with multiple threads.

See “Additional RPG Coding for Using Java” on page 207 for more information
about the various JNI functions.

Example 1

In this example, the goal is to add two BigDecimal values together. In order to do
this, two BigDecimal objects must be instantiated by calling the constructor for the
BigDecimal class, fields must be declared to store the BigDecimal objects, and the
add() method in the BigDecimal class must be called.

196 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#

* Prototype the BigDecimal constructor that accepts a String
* parameter. It returns a new BigDecimal object.
* Since the string parameter is not changed by the constructor, we will
* code the CONST keyword. This will make it more convenient
* to call the constructor.
*
D bdcreate1 PR O EXTPROC(*JAVA:
D 'java.math.BigDecimal':
D *CONSTRUCTOR)
D str O CLASS(*JAVA:'java.lang.String')
D CONST
*
* Prototype the BigDecimal constructor that accepts a double
* parameter. 8F maps to the Java double data type and so must
* be passed by VALUE. It returns a BigDecimal object.
*
D bdcreate2 PR O EXTPROC(*JAVA:
D 'java.math.BigDecimal':
D *CONSTRUCTOR)
D double 8F VALUE

Figure 79. RPG Code Example Calling BigDecimal Java Class (Part 1 of 2)

Chapter 11. RPG and the eBusiness World 197

Here is the code that does the call.

* Define fields to store the BigDecimal objects.
*
D bdnum1 S O CLASS(*JAVA:'java.math.BigDecimal')
D bdnum2 S O CLASS(*JAVA:'java.math.BigDecimal')
*
* Since one of the constructors we are using requires a String object,
* we will also need to construct one of those. Prototype the String
* constructor that accepts a byte array as a parameter. It returns
* a String object.
*
D makestring PR O EXTPROC(*JAVA:
D 'java.lang.String':
D *CONSTRUCTOR)
D bytes 30A CONST VARYING
*
* Define a field to store the String object.
*
D string S O CLASS(*JAVA:'java.lang.String')
*
* Prototype the BigDecimal add method. It accepts a BigDecimal object
* as a parameter, and returns a BigDecimal object (the sum of the parameter
* and of the BigDecimal object used to make the call).
*
D add PR O EXTPROC(*JAVA:
D 'java.math.BigDecimal':
D 'add')
D CLASS(*JAVA:'java.math.BigDecimal')
D bd1 O CLASS(*JAVA:'java.math.BigDecimal')
D CONST
*
* Define a field to store the sum. *
D sum S O CLASS(*JAVA:'java.math.BigDecimal')
D
D double S 8F INZ(1.1)
D fld1 S 10A
* Define a prototype to retrieve the String version of the BigDecimal
D getBdString PR O CLASS(*JAVA:'java.lang.String')
D EXTPROC(*JAVA:
D 'java.lang.BigDecimal':
D 'toString')
* Define a prototype to retrieve the value of a String
D getBytes PR 65535A VARYING
D EXTPROC(*JAVA:
D 'java.lang.String':
D 'getBytes')
* Define a variable to hold the value of a BigDecimal object
D bdVal S 63P 5

Figure 79. RPG Code Example Calling BigDecimal Java Class (Part 2 of 2)

198 ILE RPG Programmer’s Guide

Example 2

This example shows how to perform a TRIM in Java by using the trim() method as
an alternative to the ILE RPG %TRIM built-in function. The trim() method in the
String class is not a static method, so a String object is needed in order to call it.

* Call the constructor for the String class, to create a String
* object from fld1. Since we are calling the constructor, we
* do not need to pass a String object as the first parameter.
*
C EVAL string = makestring('123456789012345678901234567890')
*
* Call the BigDecimal constructor that accepts a String
* parameter, using the String object we just instantiated.
*
C EVAL bdnum1 = bdcreate1(string)
*
* Call the BigDecimal constructor that accepts a double
* as a parameter.
*
C EVAL bdnum2 = bdcreate2(double)

*
* Add the two BigDecimal objects together by calling the
* add method. The prototype indicates that add accepts
* one parameter, but since add is not a static method, we
* must also pass a BigDecimal object in order to make the
* call, and it must be passed as the first parameter.
* bdnum1 is the object we are using to make the
* call, and bdnum2 is the parameter.
*
C EVAL sum = add(bdnum1:bdnum2)
* sum now contains a BigDecimal object with the value
* bdnum1 + bdnum2.
C EVAL bdVal = %DECH(getBdString(sum) : 63 : 5)
* val now contains a value of the sum.
* If the value of the sum is larger than the variable "val" can
* hold, an overflow exception would occur.

Figure 80.

* Define a field to store the String object we wish to trim
*
D str S O CLASS(*JAVA:'java.lang.String')
D makestring PR O EXTPROC(*JAVA:
D 'java.lang.String':
D *CONSTRUCTOR)
D CLASS(*JAVA:'java.lang.String')
D parm 65535A CONST VARYING
*
* Prototype the String method getBytes which converts a String to a byte
* array. We can then store this byte array in an alpha field.
*
D getBytes PR 65535A EXTPROC(*JAVA:
D 'java.lang.String':
D 'getBytes') VARYING
*
* Prototype the String method trim. It doesn't take any parameters,
* but since it is not a static method, must be called using a String
* object.
*
D trimstring PR O EXTPROC(*JAVA:
D 'java.lang.String':
D 'trim')
D fld S 10A INZ(' hello ') VARYING

Figure 81. RPG Code Example Using trim() Java Method

Chapter 11. RPG and the eBusiness World 199

#
#
#
#
#
#

#
#
#
#

The call is coded as follows:

Static methods are called in the same way, except that an object is not required to
make a call. If the getBytes() method above was static, the call would look like the
example below.
C EVAL fld = getBytes()

If the method does not return a value, use the CALLP operation code.

Creating Objects
In order to call a non-static method, an object is required. The class of the object
must be the same as the class containing the method. You may already have an
object available, but you may sometimes need to instantiate a new object. You do
this by calling a class constructor. A class constructor is neither a static method nor
an instance method, and therefore it does not need an instance parameter. The
special method name *CONSTRUCTOR is used when prototyping a constructor.

For example, class BigDecimal has a constructor that accepts a float parameter.

This constructor would be prototyped as follows:
D bdcreate PR O EXTPROC(*JAVA:
D 'java.math.BigDecimal':
D *CONSTRUCTOR)
D dnum 4F VALUE

Note that the parameter must be passed by value because it maps to the Java float
data type.

You would call this constructor like this:
D bd S O CLASS(*JAVA:
D 'java.math.BigDecimal')
/free

bd = bdcreate(5.2E9);
/end-free

The class of the returned object is the same as the class of the constructor itself, so
the CLASS keyword is redundant for a constructor, but it may be coded.

Calling methods in your own classes
When you use your own Java classes, the class that you specify in the EXTPROC
and CLASS keywords is simply the name of the class. If the class is part of a
package, you include the package information in the keywords. For example,

* Call the String constructor
*
C EVAL str = makestring(fld)
*
* Trim the string by calling the String trim() method.
* We will reuse the str field to store the result.
*
C EVAL str = trimstring(str)
*
* Convert the string back to a byte array and store it
* in fld.
*
C EVAL fld = getBytes(str)

Figure 82. RPG Call to the String constructor

200 ILE RPG Programmer’s Guide

consider the following two classes:

If the Simple class file is /home/myclasses/Simple.class, you would specify the
directory /home/myclasses in your CLASSPATH environment variable, and you
would specify ’Simple’ as the class name in your RPG keywords.

If the PkgClass class file is /home/mypackages/MyPkg/PkgClass.class, you
would specify the directory /home/mypackages (the directory containing the
package) in your CLASSPATH environment variable, and you would specify
’MyPkg.PkgClass’ (the package-qualified Java class) as the class name in your RPG
keywords.

The class name for your RPG keywords is the same name as you would specify in
your import statements in your Java classes. You use the CLASSPATH environment
variable to specify the location of the class files, or the location of the directory
containing the package.

Note: Note: If you have classes in a jar file, you specify the jar file itself in your
classpath.

===> ADDENVVAR CLASSPATH '/home/myclasses:/home/mypackages:/home/myjarfiles/j1.jar'

class Simple
{

static void method (void)
{

System.out.println ("Simple method");
}

}

package MyPkg;

class PkgClass
{

static void method (void)
{

System.out.println ("PkgClass method");
}

}

Figure 83.

D simpleMethod PR EXTPROC(*JAVA
D : 'Simple'
D : 'method')
D STATIC
D pkgMethod PR EXTPROC(*JAVA
D : 'Pkg.PkgClass'
D : 'method')
D STATIC

Figure 84. Creating an RPG prototype for a Java method in a package

Chapter 11. RPG and the eBusiness World 201

Controlling how the Java Virtual Machine is set up
When RPG starts the Java Virtual Machine (JVM), there are several options that
control how the JVM is started. See the Java System Properties section in the i5/OS
Information Center.
v You can place these options in the SystemDefault.properties file.
v You can use the CLASSPATH environment variable to specify the classpath (see

above).
v You can place these options in an environment variable called

QIBM_RPG_JAVA_PROPERTIES. Any options placed in this environment
variable will override the options in the SystemDefault.properties file. If you
specify the java.class.path option in this environment variable, and you also
specified the CLASSPATH environment variable, it is undefined which value
will take precedence for the classpath.
To specify options in the QIBM_RPG_JAVA_PROPERTIES environment variable,
you code the options in a string, one after the other, separated by any character
that does not appear in any of the options. Then you end the string with the
separator character. For example, if you want to specify the options
java.version=1.4
os400.stderr=file:stderr.txt

then you would add the environment variable using the following command:
ADDENVVAR ENVVAR(QIBM_RPG_JAVA_PROPERTIES)
VALUE('-Djava.version=1.4;-Dos400.stderr=file:stderr.txt;')

If the options string is not valid, Java may reject one of the options. Message
JVAB55A will appear in the joblog indicating which option was not valid. If this
happens, RPG will try to start the JVM again without any of the options, but still
including the java.class.path option if it came from the CLASSPATH environment
variable.

Some parameters and return values require conversion between the job CCSID and
the CCSID that Java uses for byte arrays. The file.encoding Java property is used
by RPG to obtain the CCSID that Java uses. Ensure that the file.encoding property
is set correctly for your job CCSID. You can allow Java to set the property
implicitly using attributes of your job, or you can set the property explicitly using
one of the mechanisms above. For example, you could add
’-Dfile.encoding=ISO8859_1’ or ’-Dfile.encoding=Cp948’ to your
QIBM_RPG_JAVA_PROPERTIES environment variable. For more information about
the file.encoding property, see the IBM Developer Kit for Java topic in the
Information Center.

RPG Native Methods
To define an RPG native method, you code the prototype the same way as you
would code the prototype for an ordinary Java method. Then, you write the RPG
subprocedure normally. You must code the EXPORT keyword on the
Procedure-Begin Specification for the native method.

You must have your native methods in a service program in your library list. In
your Java class that is calling your native methods, you must have a static
statement like this:

static
{

System.loadLibrary ("MYSRVPGM");
}

202 ILE RPG Programmer’s Guide

|
|
|
|
|
|
|
|
|
|

This will enable Java to find your native methods. Aside from adding *JAVA and
the class to the EXTPROC keyword for the prototype of a native method, you
write your native method like any subprocedure. Figure 85 is an example of a Java
class that calls a native method.

CAUTION:
If you are using environment variables to control how the JVM is started, you
must be sure that the environment variables exist in the job before any RPG
programs call Java methods. If you use ADDENVVAR LEVEL(*SYS), the
environment variable will be added at the system level, and by default, every
job will start with that environment variable set. If you do this, be sure that the
classpath includes all the directories containing the Java classes that may be
needed by any application on the system.

Figure 86 is a prototype of an RPG native method.

The native method itself is coded just like any subprocedure. Figure 87 is an
example of a native method coded in RPG.

class MyClass
{

static
{

System.loadLibrary ("MYSRVPGM");
}

native boolean checkCust (byte custName[]);

void anotherMethod ()
{

boolean found;
// call the native method
found = checkCust (str.getBytes());

}
}

Figure 85. Java Class Calling a Native Method

D checkCust PR N EXTPROC(*JAVA
D : 'MyClass'
D : 'checkCust')
D custName 100A VARYING CONST

Figure 86. RPG Native Method Prototype

P checkCust B EXPORT
D checkCust PI N
D custName 100A VARYING CONST
/free chain custName rec;

return %found;
/end-free
P checkCust E

Figure 87. Native Method Coded in RPG

Chapter 11. RPG and the eBusiness World 203

Java calls your service program from the default activation group. If your service
program is created with activation group *CALLER, it will run in the default
activation group. This can sometimes cause problems:
v If you are debugging your native methods, and you want to make a change to

the code, you will have to sign off and sign back on again before Java will see
the new version.

v If you are calling other procedures in the service program from other RPG code
that is not running in the default activation group, then you will not be able to
share any global variables between the ″ordinary procedures″ and the native
methods. This scenario can arise if a procedure in your RPG service program
sets up some global variables, and then calls a Java class which then calls a
native method in that service program. Those native methods will not see the
same data that the first procedure set up.

If you create any Java objects in your native methods, by default they will be
destroyed by Java when the native method returns. If you want the object to be
available after the native method returns (for example, if you want to use it from
another native method later), then you must tell Java that you want to make a
global reference, by calling the JNI wrapper procedure getNewGlobalRef . When
you are finished with the global reference, you will call JNI wrapper procedure
freeGlobalRef, so Java can reclaim the object. See “Telling Java you want an object
to be permanent” on page 209 and “Telling Java you are finished with a permanent
object” on page 210 for more information about these wrapper procedures.

If your RPG native method ends abnormally with an unhandled exception, the
RPG compiler will throw an exception to Java. The exception is of class
java.lang.Exception, and has the form RPG nnnnn, where nnnnn is the RPG status
code.

try
{

nativeMethod ();
}
catch (Exception exc)
{

...
}

Getting the Instance Parameter in Non-Static Native Methods
When a non-static native method is called, one of the parameters that Java passes
to the native method is the object that the method applies to. This is called the
″instance parameter″, referred to as ″this″ in a Java method. Within the native
method itself, you can use the built-in function %THIS to get the instance
parameter. You do not code this parameter in your Procedure Interface.

Passing Character Parameters from Java to Native Methods
You have two choices when dealing with character parameters:
v If you want your Java code to be a simple as possible, define the parameter as a

String in your Java native method declaration. Your RPG code would have to
retrieve the value of the string itself (see “Using String Objects in RPG” on page
205).

v If you want the character data to be immediately available to your RPG
program, code the parameter in the Java native method declaration as a byte
array or a char array, and code it in your RPG prototype as a character field,
UCS-2 field, or a Date, Time or Timestamp. That way, RPG will handle the
conversion for you.

204 ILE RPG Programmer’s Guide

Using String Objects in RPG: If you have a String object in your RPG code, you
can retrieve its length and contents using the code in Figure 88.

You can define the returned value from the getBytes method as character data of
any length, either varying or non-varying, choosing the length based on your own
knowledge of the length of data in the Java String. You can also define the return
value as a Date, Time or Timestamp, if you are sure that the String object will have
the correct format.

Alternately, you can retrieve the string value as a UCS-2 value, by calling the
getChars method instead of getBytes.

Coding Errors when calling Java from RPG

Incorrectly specifying the method parameters in the RPG
prototype
When coding the prototype for a Java method, if you do not specify the types of
the return value and parameters correctly, the RPG compiler will build the method
signature incorrectly. When the program is run, either the wrong method will be
called, or the call will fail with a NoSuchMethodError Java exception.

If the call fails with a NoSuchMethodError Java exception, the RPG error message
will indicate the signature that was used for the method call. The following table
shows the mappings between Java types and method signature values. Refer to
Table 39 on page 193 to see the mapping between Java types and RPG types.

Java type Signature

boolean Z

byte B

char C

short S

int I

long J

float F

D stringBytes PR 100A VARYING
D EXTPROC(*JAVA
D : 'java.lang.String'
D : 'getBytes')
D stringLength PR like(jint)
D EXTPROC(*JAVA
D : 'java.lang.String'
D : 'length')
D string S like(jstring)
D len S like(jint)
D data S 100A VARYING
/free len = stringLength (string);

data = stringBytes (string);
if (len > %len(data));

error ('Actual string was too long');
endif;

/end-free

Figure 88. Retrieving String object length and contents from Java

Chapter 11. RPG and the eBusiness World 205

Java type Signature

double D

any object Lclass;

any array [type

To see the list of valid signatures for the methods in the Java class, use the QSH
command
javap -s classname

where classname is specified with the package, for example java.lang.String. If the
class is not in the standard classpath, you can specify a classpath option for javap:
javap -s classname -classpath classlocation

By comparing the valid signatures for the method with the signature being used
by RPG for your method call, and working from the mapping tables, you should
be able to determine the error in your prototype.

Failure to free Java resources
When you create a Java object by calling a constructor, or by calling a method that
returns an object, that object will remain in existence until it is freed. It is freed
when:
1. The RPG program calls a JNI function to free the object (see “Additional RPG

Coding for Using Java” on page 207).
2. When the native method returns, if the object was created during a call from

Java to a native method.
3. When the JVM ends.

If the RPG procedure calling the Java method is not itself an RPG native method,
and the RPG procedure does not take care to free objects it has created, then the
job may eventually be unable to create any more objects.

Consider the following code fragment:
strObject = newString ('abcde');
strObject = trim (strObject);
data = getBytes (strObject);
freeLocalRef (strObject);

It appears that this code is taking care to free the object, but in fact this code
creates two objects. The first object is created by the called to newString(), and the
second is created by the call to trim(). Here are two ways to correct this code
fragment:
1. By freeing several objects at once:

beginObjGroup();
strObject = newString ('abcde');
strObject = trim (strObject);
data = getBytes (strObject);
endObjGroup();

2. By keeping track of all objects used, and freeing them individually:
strObject = newString ('abcde');
trimmedStrObject = trim (strObject);
data = getBytes (trimmedStrObject);
freeLocalRef (strObject);
freeLocalRef (trimmedStrObject);

206 ILE RPG Programmer’s Guide

Another problem can be created by calling Java methods as parameters to other
Java methods. In the following example, the program is creating a BigDecimal
object from the constructor that takes a String parameter:

bigDec = newBigDecimal (newString ('12.345'));
...
freeLocalRef (bigDec);

The problem with this code is that a String object has been created for the
parameter, but it can never be freed by the RPG procedure. This problem can be
corrected by calling beginObjGroup() before the RPG code that calls Java and
calling endObjGroup() after, or by coding as follows:

tempObj = newString ('12.2345');
bigDec = newBigDecimal (tempObj);
freeLocalRef (tempObj);
...
freeLocalRef (bigDec);

Using objects that no longer exist
If you have static Object variables in your native method (STATIC keyword on the
definition), or your native method uses static global Object variables (variables
declared in the main source section), then the Object variables will retain their
values between calls to the native method. However, by default, Java will free any
objects created during a call to a native method. (See “Additional RPG Coding for
Using Java” on page 207 to see how to prevent Java from freeing objects.)

An RPG ″Object″ is really a numeric object reference. When a Java object is freed,
the numeric object reference can be reused. If the RPG native method refers to a
static Object variable that has not been explicitly protected from being freed, one of
two things can happen:
1. The object reference may be invalid, if the numeric object reference has not

been reused.
2. The object reference may have been reused, but since it refers to a different

object, any attempt to use it in the RPG native method will probably be
incorrect.

To prevent problems with attempting to reuse objects illegally, the RPG
programmer may do one or more of the following:
v Avoid declaring any Object variables in static storage. Instead, declare all Object

variables in local storage of subprocedures, without using the STATIC keyword.
v Before returning from a native method, explicitly set all static object references to

*NULL.
v Upon entering a native method, explicitly set all static object references to some

initial values.

Additional RPG Coding for Using Java
When you are using ILE RPG with Java, there are some functions normally
handled by Java that must be handled by your RPG code. The RPG compiler takes
care of some of these for you, but you must handle some of them yourself. This
section shows you some sample RPG wrappers to do this work, explains how and
when to call them, and suggests how to handle JNI exceptions.

The module that you create to hold these JNI wrapper functions should begin with
the following statements:

Chapter 11. RPG and the eBusiness World 207

H thread(*serialize)
H nomain
H bnddir('QC2LE')
/define OS400_JVM_12
/copy qsysinc/qrpglesrc,jni
/copy JAVAUTIL

The following RPG wrappers for JNI functions are described. See Figure 94 on
page 214 below for a complete working example. See Figure 93 on page 213. for
the copy file containing the prototypes and constants for the wrapper functions.
v “Telling Java to free several objects at once”
v “Telling Java you are finished with a temporary object” on page 209
v “Telling Java you want an object to be permanent” on page 209
v “Telling Java you are finished with a permanent object” on page 210
v “Creating the Java Virtual Machine (JVM)” on page 211
v “Obtaining the JNI environment pointer” on page 211

Telling Java to free several objects at once
You can free many local references at once by calling the JNI function
PushLocalFrame before a section of RPG code that uses Java and then calling
PopLocalFrame at the end of the section of RPG code. When you call
PopLocalFrame, any local references created since the call to PushLocalFrame will
be freed. For more information about the parameters to these JNI functions, see the
JNI documentation at http://java.sun.com.
*--
* beginObjGroup - start a new group of objects that can all
* be deleted together later
*--
P beginObjGroup b export
D beginObjGroup pi 10i 0
D env * const
D capacityParm 10i 0 value options(*nopass)
D rc s 10i 0
D capacity s 10i 0 inz(100)
/free
JNIENV_p = env;
if (%parms >= 2);
capacity = capacityParm;
endif;
rc = PushLocalFrame (JNIENV_p : capacity);
if (rc <> 0);
return JNI_GROUP_NOT_ADDED;
endif;
return JNI_GROUP_ADDED;
/end-free
P beginObjGroup e
*--
* endObjGroup - end the group of objects that was started
* most recently
*--
P endObjGroup b export
D endObjGroup pi 10i 0
D env * const
D refObjectP o class(*java:'java.lang.Object')
D const
D options(*nopass)
D newObjectP o class(*java:'java.lang.Object')
D options(*nopass)
D retVal s o class(*java:'java.lang.Object')
D refObject s like(refObjectP) inz(*null)
D newObject s like(newObjectP)
/free
JNIENV_p = env;

208 ILE RPG Programmer’s Guide

#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

if %parms() >= 2;
refObject = refObjectP;
endif;
newObject = PopLocalFrame (JNIENV_p : refObject);
if %parms() >= 3;

newObjectP = newObject;
endif;
return JNI_GROUP_ENDED;
/end-free
P endObjGroup e

Note: You need the JNI environment pointer (described in “Obtaining the JNI
environment pointer” on page 211 below) to call this wrapper.

Telling Java you are finished with a temporary object
If you have created an object using a Java constructor, or if you have called a Java
method that returned an object to you, this object will only be available to be
destroyed by Java’s garbage collection when it knows you do not need the object
any more. This will happen for a native method (called by java) when the native
method returns, but otherwise it will never happen unless you explicitly inform
Java that you no longer need the object. You do this by calling the RPG wrapper
procedure freeLocalRef.
CALLP freeLocalRef (JNIEnv_P : string);

Figure 89 contains the sample source code for freeLocalRef.

Note: You need the JNI environment pointer (described in “Obtaining the JNI
environment pointer” on page 211 below) to call this wrapper.

Telling Java you want an object to be permanent
If you have a reference to a Java object that was either passed to you as a
parameter or was created by calling a Java method or constructor, and you want to
use that object after your native method returns, you must tell Java that you want
the object to be permanent, or ″global″. Do this by calling the RPG wrapper
procedure getNewGlobalRef and saving the result in a global variable.
EVAL globalString = getNewGlobalRef (JNIENV_P : string);

/*--*/
/* freeLocalRef */
/*--*/
P freeLocalRef...
P B EXPORT
D freeLocalRef...
D PI
D env * VALUE
D localRef O CLASS(*JAVA
D : 'java.lang.Object')
D VALUE

/free
jniEnv_P = env;
DeleteLocalRef (env : localRef);

/end-free

P freeLocalRef...
P E

Figure 89. Source Code for freeLocalRef

Chapter 11. RPG and the eBusiness World 209

#
#
#
#
#
#
#
#
#
#

#

Figure 90 contains the sample source code for getNewGlobalRef.

Note: You need the JNI environment pointer (described in “Obtaining the JNI
environment pointer” on page 211 below) to call this wrapper.

Telling Java you are finished with a permanent object
If you have created a global reference, and you know that you no longer need this
object, then you should tell Java that as far as you are concerned, the object can be
destroyed when Java next performs its garbage collection. (The object will only be
destroyed if there are no other global references to it, and if there are no other
references within Java itself.) To tell Java that you no longer need the reference to
the object, call the RPG wrapper procedure freeGlobalRef .
CALLP freeGlobalRef (JNIEnv_P : globalString);

Figure 91 contains sample source code for freeGlobalRef.

/*--*/
/* getNewGlobalRef */
/*--*/
P getNewGlobalRef...
P B EXPORT
D getNewGlobalRef...
D PI O CLASS(*JAVA
D : 'java.lang.Object')
D env * VALUE
D localRef O CLASS(*JAVA
D : 'java.lang.Object')
D VALUE

/free
jniEnv_P = env;
return NewGlobalRef (env : localRef);

/end-free
P getNewGlobalRef...
P E

Figure 90. Source Code for getNewGlobalRef

/*--*/
/* freeGlobalRef */
/*--*/
P freeGlobalRef...
P B EXPORT
D freeGlobalRef...
D PI
D env * VALUE
D globalRef O CLASS(*JAVA
D : 'java.lang.Object')
D VALUE

/free
jniEnv_P = env;
DeleteGlobalRef (env : globalRef);
/end-free

P freeGlobalRef...
P E

Figure 91. Source Code for freeGlobalRef

210 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Note: You need the JNI environment pointer (described in “Obtaining the JNI
environment pointer” below) to call this wrapper.

Creating the Java Virtual Machine (JVM)
If the JVM has not already been created when your RPG code is ready to call a
Java method, RPG will create the JVM for you. See “Controlling how the Java
Virtual Machine is set up” on page 202for information on the ways you can control
the Java class path and other Java properties that will be set when the JVM is
started.

Obtaining the JNI environment pointer
If you need to call any JNI functions, use the /COPY file JNI from
QSYSINC/QRPGLESRC. Most of the JNI functions are called through a procedure
pointer. The procedure pointers are part of a data structure that it itself based on a
pointer called the ″JNI environment pointer″. This pointer is called JNIEnv_P in the
JNI /COPY file. To obtain this pointer, call the JNI wrapper procedure getJniEnv.
EVAL JNIEnv_P = getJniEnv();

Figure 92 on page 212 contains sample source code for getJniEnv.

Chapter 11. RPG and the eBusiness World 211

#
#
#
#
#

*--
* getJniEnv - get the JNI environment pointer
* Note: This procedure will cause the JVM to be created if
* it was not already created.
*--
P getJniEnv b export
D getJniEnv pi *

D attachArgs ds likeds(JavaVMAttachArgs)
D env s * inz(*null)
D jvm s like(JavaVM_p) dim(1)
D nVms s like(jsize)
D rc s 10i 0
D obj s o class(*java
D : 'java.lang.Integer')
D newInteger pr o extproc(*java
D : 'java.lang.Integer'
D : *constructor)
D value 10i 0 value
/free

monitor;
// Get the current JVM
rc = JNI_GetCreatedJavaVMs(jvm : 1 : nVms);
if (rc <> 0);

// Some error occurred
return *null;

endif; if (nVms = 0);
// The JVM is not created yet. Call a Java
// method to get the RPG runtime to start the JVM
obj = newInteger(5);

// Try again to get the current JVM
rc = JNI_GetCreatedJavaVMs(jvm : 1 : nVms);
if (rc <> 0
or nVms = 0);

// Some error occurred
return *null;

endif;
endif;
// Attach to the JVM
JavaVM_P = jvm(1);
attachArgs = *allx'00';
attachArgs.version = JNI_VERSION_1_2;
rc = AttachCurrentThread (jvm(1) : env

: %addr(attachArgs));
if (rc <> 0);

return *null;
endif;

// Free the object if we created it above while
// getting the RPG runtime to start the JVM
if obj <> *null;

freeLocalRef (env : obj);
endif;

on-error;
return *null;

endmon;
return env;

/end-free
P getJniEnv e

Figure 92. Source Code for getJniEnv

212 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

*--
* Copy file JAVAUTIL
*--
/if defined(JAVAUTIL_COPIED)
/eof
/endif
/define JAVAUTIL_COPIED
D JNI_GROUP_ADDED...
D c 0
D JNI_GROUP_NOT_ADDED...
D c -1
D JNI_GROUP_ENDED...
D c 0
D beginObjGroup pr 10i 0 extproc('beginObjGroup')
D env * const
D capacityParm 10i 0 value options(*nopass)
D endObjGroup pr 10i 0 extproc('endObjGroup')
D env * const
D refObjectP o class(*java:'java.lang.Object')
D const
D options(*nopass)
D freeLocalRef...
D pr extproc('freeLocalRef')
D env * value
D localRef o CLASS(*JAVA
D : 'java.lang.Object')
D value
D getNewGlobalRef...
D pr o class(*JAVA
D : 'java.lang.Object')
D extproc('getnewGlobalRef')
D env * value
D localRef o class(*JAVA
D : 'java.lang.Object')
D value
D freeGlobalRef...
D pr extproc('freeGlobalRef')
D env * value
D globalRef O class(*JAVA
D : 'java.lang.Object')
D value
D getJniEnv pr * extproc('getJniEnv')

Figure 93. Copy-file JAVAUTIL

Chapter 11. RPG and the eBusiness World 213

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

Java class

class TestClass{
String name = "name not set";

TestClass (byte name[]) {
this.name = new String(name);

}

void setName (byte name[]) {
this.name = new String(name);

}

String getName () {
return this.name;

}
}

RPG program

H THREAD(*SERIALIZE)
H BNDDIR('JAVAUTIL')
// (JAVAUTIL is assumed to the binding directory that lists
// the service program containing the procedures described
// below)
/copy JAVAUTIL
// (JAVAUTIL is assumed to be the source member containing the
// prototypes for the procedures described below)

D TestClass C 'TestClass'
D StringClass C 'java.lang.String'
D newTest PR O EXTPROC(*JAVA : TestClass
D : *CONSTRUCTOR)
D name 25A VARYING CONST

D getName PR O CLASS(*JAVA : StringClass)

D extproc(*JAVA : TestClass
D : 'getName')

D setName PR extproc(*JAVA : TestClass
D : 'setName')
D newName 25A VARYING CONST

D newString PR O EXTPROC(*JAVA : StringClass
D : *CONSTRUCTOR)
D value 65535A VARYING CONST

D nameValue PR 25A VARYING
D extproc(*JAVA : StringClass
D : 'getBytes')

D myTestObj S LIKE(newTest)
D myString S LIKE(newString)
D env S LIKE(getJniEnv)
/free

// Get the JNI environment pointer so that JNI functions
// can be called.

Figure 94. Using the wrappers for the JNI functions (Part 1 of 2)

214 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

env = getJniEnv();

// Set the beginning marker for an "object group"
// so that any objects created between now and the
// "end object group" can be freed all at once.
beginObjGroup (env);

// Create a Test object to work with
// We do not want this object to be freed with the
// other objects in the object group, so we make it
// a permanent object
myTestObj = newTest ('RPG Dept');
myTestObj = getNewGlobalRef (env : myTestObj);

// Get the current "name" from the Test object
// This creates a local reference to the Name object
myString = getName (myTestObj);
dsply (nameValue(myString));

// Change the name
setName (myTestObj : 'RPG Department');

// Get the current "name" again. This will cause
// access to the previous local reference to the old name
// to be lost, making it impossible for this RPG
// program to explicitly free the object. If the object
// is never freed by this RPG program, Java could never
// do garbage-collection on it, even though the old String
// object is not needed any more. However, endObjGroup
// will free the old reference, allowing garbage collection
myString = getName (myTestObj);
dsply (nameValue(myString));

// End the object group. This will free all local
// references created since the previous beginObjGroup call.
// This includes the two references created by the calls
// to getName.
endObjGroup (env);

// Since the original Test object was made global, it can
// still be used.
setName (myTestObj : 'RPG Compiler Dept');

// The original Test object must be freed explicitly
// Note: An alternative way to handle this situation
// would be to use nested object groups, removing
// the need to create a global reference
// beginObjGroup ------------.
// create myTestObj |
// beginObjGroup ---------. |
// ... | |
// endObjGroup ---------' |
// use myTestObj again |
// endObjGroup ------------'
freeGlobalRef (env : myTestObj);

return;

/end-free

Figure 94. Using the wrappers for the JNI functions (Part 2 of 2)

Chapter 11. RPG and the eBusiness World 215

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Handling JNI Exceptions
In ILE RPG, an exception causes an exception message to be signaled. Programs do
not need to check explicitly for exceptions; instead, you can code exception
handlers to get control when an exception occurs. You only have to handle JNI
exceptions yourself when you are making your own JNI calls. When a call to a JNI
function results in an unhandled Java exception, there is no accompanying
exception message. Instead, the JNI programmer must check whether an exception
occurred after each call to a JNI function. This is done by calling the
ExceptionOccurred JNI function, which returns a Java Exception object (or the Java
null object which has a value of 0 in the JNI). Once you have determined that an
exception has occurred, the only JNI calls you can make are ExceptionClear and
ExceptionDescribe. After you have called ExceptionClear, you are free to make JNI
calls again. If you make a non-exception JNI call before calling ExceptionClear, the
exception will disappear, and you will not be able to get any further details. RPG
always converts a JNI exception into an RPG exception (it signals one of the
RNX030x messages, depending on the RPG function that was being done at the
time).

Tip!
You may want to include this type of exception-handling code in your
versions of the JNI wrapper procedures above.

Additional Considerations

Common Runtime Errors
The compiler will not attempt to resolve classes at compile time. If a class cannot
be located at run time, a runtime error will occur. It will indicate that an
UnresolvedLinkException object was received from the Java environment.

The compiler does no type checking of parameters at compile time. If there is a
conflict between the prototype and the method being called, an error will be
received at run time.

Debugging Hints
A Java object is viewed as an object reference in RPG. This object reference is an
integer value, which behaves like a pointer. Normal object references are positive
values, assigned in increasing order from 1. Global references, which can be
created using JNI function NewGlobalRef , are negative values. These values are
assigned in increasing order from the smallest negative number (-2147483647).

Normally, these values are not visible within the RPG code. However, this
information may be useful when debugging RPG code.

Creating String objects in RPG
If you need a String object to pass to a Java method, you can create it like this:
D newString PR O EXTPROC(*JAVA
D : 'java.lang.String'
D : *CONSTRUCTOR)
D value 65535A CONST VARYING
D string S like(jstring)

/free
string = newString ('abcde');
...

/end-free

216 ILE RPG Programmer’s Guide

If you want to create a string with UCS-2 data or graphic data, use this code:
D newStringC PR O EXTPROC(*JAVA
D : 'java.lang.String'
D : *CONSTRUCTOR)
D value 16383C CONST VARYING
D string S like(jstring)
D graphicData S 15G
D ucs2Data S 100C

/free
string = newStringC (%UCS2(graphicData));
...
string = newStringC (ucs2Data);

/end-free

Getting information about exceptions thrown by called Java
methods
When RPG calls a Java method that ends with an exception, RPG handles the Java
exception and signals escape message RNX0301. This message has the string value
of the Exception, but it does not have the trace information that is normally
available when Java calls a method that ends with an exception.

If you want to see the Java exception trace information, do the following:
1. ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(’Y’)

Note: This step must be done before the JVM is started.
2. Ensure that the os400.stderr option in your SystemProperties.default file is set

to file:myfilename, for example os400.stderr=file:/home/mydir/stderr.txt. See
“Controlling how the Java Virtual Machine is set up” on page 202.

Note: This step must be done before the JVM is started.
3. ADDENVVAR ENVVAR(QIBM_RPG_JAVA_EXCP_TRACE) VALUE(’Y’)

Note: This step can be done at any time. To stop the exception trace being
done by RPG, you can remove the environment variable, or set it to a
value other than ’Y’.

4. After the exception has occurred, the trace information will be in the file that
you specified in the os400.stderr option.

Advanced JNI Coding
The RPG IV compiler support for calling Java methods and for writing RPG native
methods hides almost all the JNI coding from the RPG programmer. However,
RPG’s support is not necessarily the most efficient. For example, it always converts
arrays between RPG and Java on calls and on entry and exit from native methods,
but you may want to handle your own array conversions to improve performance.

The RPG support only gives you access to Java methods. If you want to access the
fields in a class, you would have to add ″get″ and ″set″ methods to the Java class,
or do JNI coding (see “Accessing Fields in Java Classes” on page 220).

Figure 95 on page 218 is an example of a JNI call in RPG.

Chapter 11. RPG and the eBusiness World 217

Note that the pointer JNIEnv_P is defined in the JNI /COPY file.

Setting an Object Reference in the jvalue Structure
The jvalue structure looks like this:

D jvalue DS QUALIFIED
D BASED(jvalue_P)
... more subfields ...
D l LIKE(jint)
D OVERLAY(jvalue:1)

The ″l″ subfield of the jvalue structure represents an Object reference, but RPG
does not support subfields of type Object. Since Object references are actually
4-byte integers, the ″l″ subfield of the ″jvalue″ data structure is defined as a 4-byte
integer rather than as an Object. To assign an RPG Object type to the jvalue.l
subfield, you must write a procedure and a ″spoofing″ prototype that will trick the
RPG compiler into treating an object reference as an integer. You create one
procedure that simply takes an integer parameter and returns an integer
(procedure ″refIntConv″ in the example below. Then you create two prototypes
that call this procedure using a procedure pointer; one procedure defines the
return type as type Object (procedure ″intToRef″ in the example below), and the
other procedure defines the parameter as type Object (procedure ″refToInt″ in the
example below). To convert between Object and Integer types, you call either
prototype refToInt or IntToRef.

/COPY JNI
D objectId s like(jobject)
D methodId s like(jmethodID)
D string s like(jstring)
D parms ds likeds(jvalue) dim(3)

/free
parms(1).i = 10; // parameter 1 is an int
parms(2).l = refToInt(string); // parameter 2 is an object
parms(3).d = 2.5e3; // parameter 3 is a double
CallVoidMethodA (JNIEnv_P : objectId : methodId : parms);
/end-free

Figure 95. JNI Call in RPG

218 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#
#
#

#

#
#
#
#
#
#
#
#
#
#
#
#
#

*--
* refIntConv_procptr:
* This procedure pointer is set to the address of a
* procedure that takes an integer parameter and returns
* an integer.
* Since an object refererence is actually an integer, we
* can define prototypes that define either the return value
* or the parameter as an object reference, to trick the RPG
* compiler into allowing the Object reference to be passed
* to or returned from the procedure.
* Note: This type of trickery is not normally recommended,
* but it is necessary in this case to circumvent the RPG
* restriction against Object subfields.
*--
D refIntConv_name...
D c 'refIntConv'
D refIntConv_procptr...
D s * procptr
D inz(%paddr(refIntConv_name))
*--
* refToInt - convert an object reference to an integer
*--
D refToInt pr 10i 0 extproc(refIntConv_procptr)
D ref o class(*java:'java.lang.Object')
D value

*--
* intToRef - convert an integer to an object reference
*--
D intToRef pr o class(*java:'java.lang.Object')
D extproc(refIntConv_procptr)
D int 10i 0 value

Figure 96. /COPY JNICONV_PR with prototypes for spoofing procedures to convert between
Object and integer types

H NOMAIN

/COPY JNICONV_PR

*--
* refIntConv is used with prototypes refToInt and intToRef
* to convert between Object and integer types in RPG.
* See JNICONV_PR for more details.
*--
D refIntConv pr 10i 0 extproc(refIntConv_name)
D parm 10i 0 value

*--
* The procedure simply returns its parameter.
*--
P refIntConv B export
D refIntConv pi 10i 0
D parm 10i 0 value
/free

return parm;
/end-free
P refIntConv E

Figure 97. Procedure to convert between Object and integer types

Chapter 11. RPG and the eBusiness World 219

Converting Java Character Data
In Java, character data is ASCII rather than EBCDIC, so you will have to ensure
that class names, method names, and field names are in ASCII for calls to JNI
functions like FindClass. Character data that comes from Java is ASCII. To use it in
your RPG program, you will probably want to convert it to EBCDIC. The RPG
compiler handles these conversions for you, but if you are making the JNI calls
yourself, you will have to do the conversions between ASCII and EBSDIC.

Accessing Fields in Java Classes
RPG only supports calling Java methods; it does not support accessing Java fields.
Normally, fields can be accessed through ″get″ and ″set″ methods, but it is also
possible to access fields using JNI calls. Here is an example showing JNI calls
necessary to access the fields of a Java class or object.

Note: This example is intended to be an example of using the JNI. It is not
intended to be a recommendation to access fields directly rather than using
″get″ and ″set″ methods.

/copy QSYSINC/QRPGLESRC,JNI
/copy JNICONV_PR
D jvals ds likeds(jvalue) dim(5)
D myString s o class(*java:'java.lang.String')
D newString pr o extproc(*java:'java.lang.String'
D : *constructor)
D val 100a const varying /free

myString = newString('Hello');
// Set the myString reference in the first jvalue element
jvals(1).l = refToInt (myString);
. . .
// Set the myString reference from the second jvalue element
myString = intToRef(jvals(2).l);
. . .
return;

Figure 98. Using the conversion prototypes

*--
* This example shows how to use JNI to access the fields of a
* class or an object.
*
* This program creates a Rectangle object and accesses the
* width and height variables directly, using JNI calls.
*
* In this particular case, the getWidth(), getHeight,
* setWidth() and setHeight() methods could have been used
* to access these fields, avoiding the use of JNI calls.
*--
H THREAD(*SERIALIZE)
/DEFINE JNI_COPY_FIELD_FUNCTIONS
/COPY JNI
/COPY JAVAUTIL
*--
* JAVA classes and methods
*--

Figure 99. Using JNI to Access Fields of Java Classes and Objects (Part 1 of 3)

220 ILE RPG Programmer’s Guide

#
#
#
#
#

D Rectangle C 'java.awt.Rectangle'
D NewRectangle PR O EXTPROC(*JAVA
D : Rectangle
D : *CONSTRUCTOR)
D x 10I 0 VALUE
D y 10I 0 VALUE
D width 10I 0 VALUE
D height 10I 0 VALUE
*--
* Constants with ASCII representations of Java names
*--
* One way to determine these values is to use %UCS2 to convert
* a character value to UCS-2, and display the result in hex
* in the debugger.
*
* The ASCII value is in every second byte of the UCS-2 characters.
*
* For example, %UCS2('abc') = X'006100620063'
* -- -- --
* The ASCII representation of 'abc' is X'616263'
*--
D ASCII_I C x'49'
D ASCII_x C x'78'
D ASCII_y C x'79'
D ASCII_width C X'7769647468'
D ASCII_height C X'686569676874'
* Note that this is 'java/awt/Rectangle', not 'java.awt.Rectangle'
* because the JNI uses slash as a separator.
D ASCII_Rectangle...
D C X'6A6176612F6177742F52656-
D 374616E676C65'
*--
* Cancel handling
*--
D EnableCanHdlr PR EXTPROC('CEERTX')
D Handler * CONST PROCPTR
D CommArea * CONST OPTIONS(*OMIT)
D Feedback 12A OPTIONS(*OMIT)
D CanHdlr PR
D CommArea * CONST
*--
* Variables and procedures
*--
D rect s O CLASS(*JAVA : Rectangle)
D x S 10I 0
D y S 10I 0
D rectClass S LIKE(jclass)
D fieldId S LIKE(jfieldID)
D msg S 52A
D Cleanup PR
*--
* Enable the cancel handler to ensure cleanup is done
*--
C CALLP EnableCanHdlr (%PADDR(CanHdlr)
C : *OMIT : *OMIT)
*--
* Create a new rectangle with x,y co-ordinates (5, 15),
* width 100 and height 200.
*--
C EVAL rect = NewRectangle (5 : 15 : 100 : 200)
*--
* Prepare to call JNI functions to access the Rectangle's fields
*--

Figure 99. Using JNI to Access Fields of Java Classes and Objects (Part 2 of 3)

Chapter 11. RPG and the eBusiness World 221

Calling Java Methods Using the JNI Rather than RPG *JAVA
Prototypes
The first three parameters are always the same:
1. the JNI environment pointer
2. the object (for instance methods) or the class (for static methods)
3. the method

C EVAL JNIEnv_P = getJniEnv ()
C EVAL rectClass = FindClass (JNIEnv_P
C : ASCII_Rectangle)
*--
* Call JNI functions to retrieve the Rectangle's width and height
*--
C eval fieldId = GetFieldID (JNIEnv_P
C : rectClass
C : ASCII_width
C : ASCII_I)
C eval width = GetIntField (JNIEnv_P
C : rect
C : fieldId)
C eval fieldId = GetFieldID (JNIEnv_P
C : rectClass
C : ASCII_height
C : ASCII_I)
C eval height = GetIntField (JNIEnv_P
C : rect
C : fieldId)
C eval msg = 'The rectangle has dimensions ('
C + %trim(%editc(width : '1'))
C + ', '
C + %trim(%editc(height : '1'))
C + ')'
C msg dsply
*--
* Call the Cleanup procedure
*--
C callp Cleanup()
C eval *INLR = '1'
*--
* Cleanup. * - Free objects if necessary
*--
P Cleanup B
C if rect <> *NULL and
C JNIEnv_P <> *NULL
C callp DeleteLocalRef(JNIEnv_P : rect)
C endif
C eval rect = *NULL
C eval JNIEnv_P = *NULL
P Cleanup E
*--
* Cancel handler. Ensures that cleanup is done.
*--
P CanHdlr B
D CanHdlr PI
D CommArea * CONST
C callp Cleanup()
P CanHdlr E

Figure 99. Using JNI to Access Fields of Java Classes and Objects (Part 3 of 3)

222 ILE RPG Programmer’s Guide

The method-specific parameters are coded after these three parameters, in one of
three different ways. For example, if the method does not return a value (the
return type is ″void″),

CallVoidMethod:
Choose this way if you are going to call the same method many times,
since it makes the method very easy to call. This expects the parameters to
be passed normally. To call this JNI function, an RPG programmer would
copy the CallVoidMethod prototype from the JNI /COPY file, and code
additional parameters. These functions require at least one parameter to be
coded with OPTIONS(*NOPASS). If you don’t want to make the method
parameters optional, add an extra “dummy” parameter with
OPTIONS(*NOPASS). For example, for the method
void mymethod (int len, String str);

you could code the following prototype for CallVoidMethod:

CallVoidMethodA:
Choose this way if you do not want to create a separate prototype for
calling a method. This expects an array of jvalue structures, with each
element of the array holding one parameter. Figure 95 on page 218 above is
an example of this.

CallVoidMethodV:
Do not use this in RPG code. It expects a C construct that is extremely
awkward to code in RPG.

The actual function to call depends on the type of the return value. For example, if
the method returns an integer, you would use CallIntMethodA. To get the class
and methodID parameters for these functions, use the FindClass and GetMethodID
or GetStaticMethodID.

Note: When calling the JNI directly, the class names must be specified with a slash
(/) rather than a period (.) as the separator. For example, use
’java/lang/String’ rather than ’java.lang.String’.

Calling RPG programs from Java using PCML
An RPG program or procedure can be called from Java using a Program Call
Markup Language (PCML) source file that describes the parameters for the RPG
program or procedure. The Java application can use PCML by constructing a
ProgramCallDocument object with a reference to the PCML source file.

D CallMyMethod PR EXTPROC(*CWIDEN
D : JNINativeInterface.
D CallVoidMethod_P)
D env LIKE(JNIEnv_P) VALUE
D obj LIKE(jobject) VALUE
D methodID LIKE(jmethodID) VALUE
D len LIKE(jint) VALUE
D str LIKE(jstring) CONST
D dummy 1a OPTIONS (*NOPASS)

...

CallMyMethod (JNIEnv_P : objectId : methodId : 10 : string);

Figure 100. Sample RPG Code for Calling CallVoidMethod

Chapter 11. RPG and the eBusiness World 223

The ILE RPG compiler will generate PCML information for your ILE RPG program
or module when you specify the PGMINFO(*PCML) compiler parameter on your
command or Control specification. You can have the PCML information generated
into a stream file if you specify the *STMF or *ALL for the Location part of the
PGMINFO parameter on the command; you specify the name of the stream file in
the INFOSTMF command parameter. You can have the PCML information
generated directly into the module if you specify *MODULE or *ALL for the
Location part of the PGMINFO parameter on the command, or if you specify the
PGMINFO keyword on the Control specification; you can later retrieve the
information using the QBNRPII API.

For CRTBNDRPG, PCML is generated based on the contents of the *ENTRY PLIST
or the Procedure Interface of the main procedure. For CRTRPGMOD, PCML is also
generated based on the Procedure Interfaces of any exported subprocedures
(except Java native methods).

When you use CRTRPGMOD, and create a service program, you specify the
service program in your Java code using the setPath(String) method of the
ProgramCallDocument class. For example:

AS400 as400;
ProgramCallDocument pcd;
String path = "/QSYS.LIB/MYLIB.LIB/MYSRVPGM.SRVPGM";
as400 = new AS400 ();
pcd = new ProgramCallDocument (as400, "myModule");
pcd.setPath ("MYFUNCTION", path);
pcd.setValue ("MYFUNCTION.PARM1", "abc");
rc = pcd.callProgram("MYFUNCTION");

PCML Restrictions
The following are restrictions imposed by PCML regarding parameter and return
value types.
v The following data types are not supported by PCML:

– Date
– Time
– Timestamp
– Pointer
– Procedure Pointer
– 1-Byte Integer
– 8-byte Unsigned Integer

v Return values and parameters passed by value can only be 4 byte integers (10i
0).

v Varying-length arrays, and data structures containing varying-length subfields
are not supported.

v When a data structure is used as a parameter for a *ENTRY PLIST, or a
prototyped parameter is defined with LIKEDS, some PCML restrictions apply:
– The data structure may not have any overlapping subfields.
– The subfields must be coded in order; that is, the start position of each

subfield must follow the end position of the previous subfield.
– If there are gaps between the subfields, the generated PCML for the structure

will have subfields named ″_unnamed_1″, ″_unnamed_2″ etc, of type ″char″.
v RPG does not have the concept of output-only parameters. Any parameters that

do not have CONST or VALUE coded have a usage of ″inputoutput″. For
inputoutput parameters, the ProgramCallDocument class requires the input

224 ILE RPG Programmer’s Guide

#
#
#
#
#
#
#
#
#
#

#
#
#
#

values for the parameter to be set before the program can be called. If the
parameter is truly an output parameter, you should edit the PCML to change
″inputoutput″ to ″output″.

The compile will fail if you generate PCML for a program or module that violates
one of the restrictions. The PCML will be generated, but it will contain error
messages as comments. For example, if you use a Date field as a parameter, the
PCML for that parameter might look like this:
<data name="DATE" type=" " length="10" usage="input" />
<!-- Error: unsupported data type -->

Chapter 11. RPG and the eBusiness World 225

226 ILE RPG Programmer’s Guide

Part 3. Debugging and Exception Handling

This section describes how to:
v Debug an Integrated Language Environment application by using the Integrated

Language Environment source debugger
v Write programs that handle exceptions
v Obtain a dump

© Copyright IBM Corp. 1994, 2010 227

228 ILE RPG Programmer’s Guide

Chapter 12. Debugging Programs

Debugging allows you to detect, diagnose, and eliminate run-time errors in a
program. You can debug ILE and OPM programs using the ILE source .

Use WebSphere Development Studio Client for System i. This is the recommended
method and documentation about debugging programs appears in that product’s
online help. With the integrated i5/OS you can debug your program running on
the System i from a graphical user interface on your workstation. You can also set
breakpoints directly in your source before running the debugger. The integrated
i5/OS client user interface also enables you to control program execution. For
example, you can run your program, set line, watch, and service entry point
breakpoints, step through program instructions, examine variables, and examine
the call stack. You can also debug multiple applications, even if they are written in
different languages, from a single window. Each session you debug is listed
separately in the Debug view.

This chapter describes how to use the ILE source to:
v Prepare your ILE RPG program for debugging
v Start a debug session
v Add and remove programs from a debug session
v View the program source from a debug session
v Set and remove breakpoints and watch conditions
v Step through a program
v Display and change the value of fields
v Display the attributes of fields
v Equate a shorthand name to a field, expression, or debug command

While debugging and testing your programs, ensure that your library list is
changed to direct the programs to a test library containing test data so that any
existing real data is not affected.

You can prevent database files in production libraries from being modified
unintentionally by using one of the following commands:
v Use the Start Debug (STRDBG) command and retain the default *NO for the

UPDPROD parameter
v Use the Change Debug (CHGDBG) command and specify the *NO value of the

UPDPROD parameter
v Use the SET debug command in the Display Module Source display and specify

UPDPROD NO

See the chapter on debugging in ILE Concepts for more information on the ILE
source (including authority required to debug a program or service program and
the effects of optimization levels).

If you are unfamiliar with using the , follow these steps to create and debug a
program. The source for the program PROOF is available in QGPL on all systems.
1. ===> CRTBNDRPG QTEMP/PROOF DBGVIEW(*ALL)
2. ===> STRDBG QTEMP/PROOF

© Copyright IBM Corp. 1994, 2010 229

3. Set a breakpoint on one of the calculation lines by putting your cursor on the
line and pressing F6

4. Exit the DSPMODSRC screen with F12
5. ===> CALL QTEMP/PROOF

You will see the source again, with your breakpoint line highlighted .
6. Move your cursor over one of the variables in the program source (Definition,

Input, Calculation or Output Specifications) and press F11. The value of the
variable will appear at the bottom of the screen

7. Step through the rest of the program by pressing F10, or run to the end with
F12

8.

After setting breakpoints, you do not have to call the program directly. You can
start an application that will eventually call the program.

If you step through the whole program, it will step through the Input and Output
specifications. If you prefer to skip over Input and Output specifications, you can
specify OPTION(*NODEBUGIO) in your Header specification or when you
compile your program.

More details on these steps will be given in the rest of this chapter.

The ILE Source
The ILE source is used to detect errors in and eliminate errors from program
objects and service programs. Using debug commands with any ILE program that
contains debug data you can:
v View the program source or change the debug view
v Set and remove breakpoints and watch conditions
v Step through a specified number of statements
v Display or change the value of fields, structures, and arrays
v Equate a shorthand name with a field, expression, or debug command

Before you can use the source , you must select a debug view when you create a
module object or program object using CRTRPGMOD or CRTBNDRPG. After
starting the you can set breakpoints and then call the program.

When a program stops because of a breakpoint or a step command, the pertinent
module object’s view is shown on the display at the point where the program
stopped. At this point you can perform other actions such as displaying or
changing field values.

Note: If your program has been optimized, you can still display fields, but their
values may not be reliable. To ensure that the content of fields or data
structures contain their correct (current) values, specify the NOOPT keyword
on the appropriate Definition specification. To change the optimization level,
see “Changing the Optimization Level” on page 92.

Debug Commands
Many debug commands are available for use with the ILE source . The debug
commands and their parameters are entered on the debug command line displayed
on the bottom of the Display Module Source and Evaluate Expression displays.
These commands can be entered in uppercase, lowercase, or mixed case.

230 ILE RPG Programmer’s Guide

Note: The debug commands entered on the debug command line are not CL
commands.

The debug commands are listed below.

Command Description

ATTR Permits you to display the attributes of a variable. The attributes
are the size and type of the variable as recorded in the debug
symbol table.

BREAK Permits you to enter either an unconditional or conditional job
breakpoint at a position in the program being tested. Use BREAK
line-number WHEN expression to enter a conditional job breakpoint.

CLEAR Permits you to remove conditional and unconditional breakpoints,
or to remove one or all active watch conditions.

DISPLAY Allows you to display the names and definitions assigned by using
the EQUATE command. It also allows you to display a different
source module than the one currently shown on the Display
Module Source display. The module object must exist in the current
program object.

EQUATE Allows you to assign an expression, variable, or debug command
to a name for shorthand use.

EVAL Allows you to display or change the value of a variable or to
display the value of expressions, records, structures, or arrays.

QUAL Allows you to define the scope of variables that appear in
subsequent EVAL or WATCH commands. Currently, it does not
apply to ILE RPG.

SET Allows you to change debug options, such as the ability to update
production files, specify if find operations are to be case sensitive,
or to enable OPM source debug support.

STEP Allows you to run one or more statements of the procedure being
debugged.

TBREAK Permits you to enter either an unconditional or conditional
breakpoint in the current thread at a position in the program being
tested.

THREAD Allows you to display the Work with Debugged Threads display or
change the current thread.

WATCH Allows you to request a breakpoint when the contents of a
specified storage location is changed from its current value.

FIND Searches forwards or backwards in the module currently displayed
for a specified line number or string or text.

UP Moves the displayed window of source towards the beginning of
the view by the amount entered.

DOWN Moves the displayed window of source towards the end of the
view by the amount entered.

LEFT Moves the displayed window of source to the left by the number
of columns entered.

RIGHT Moves the displayed window of source to the right by the number
of columns entered.

The ILE Source

Chapter 12. Debugging Programs 231

TOP Positions the view to show the first line.

BOTTOM Positions the view to show the last line.

NEXT Positions the view to the next breakpoint in the source currently
displayed.

PREVIOUS Positions the view to the previous breakpoint in the source
currently displayed.

HELP Shows the online help information for the available source
commands.

The online help for the ILE source describes the debug commands, explains their
allowed abbreviations, and provides syntax diagrams for each command. It also
provides examples in each of the ILE languages of displaying and changing
variables using the source .

Follow these steps to access the online help information for ILE RPG:
1. Enter STRDBG library-name/program-name where program-name is any ILE

program with debug data in library library-name.
2. Enter DSPMODSRC to show the source view if this screen does not appear

following step 1.
3. Enter PF1 (Help)

4. Put your cursor on EVAL and press enter to bring up the EVAL command help.
5. Put your cursor on Expressions and press enter to bring up help for

expressions.
6. Put your cursor on RPG language and press enter to bring up RPG language

examples.
7. From the help panel which appears, you can select a number of topics

pertaining to RPG, such as displaying variables, displaying table, and
displaying multiple-occurrence data structures.

Preparing a Program for Debugging
A program or module must have debug data available if you are to debug it. Since
debug data is created during compilation, you specify whether a module is to
contain debug data when you create it using CRTBNDRPG or CRTRPGMOD. You
use the DBGVIEW parameter on either of these commands to indicate what type of
data (if any) is to be created during compilation.

The type of debug data that can be associated with a module is referred to as a
debug view. You can create one of the following views for each module that you
want to debug. They are:
v Root source view
v COPY source view
v Listing view
v Statement view

The default value for both CRTBNDRPG and CRTRPGMOD is to create a
statement view. This view provides the closest level of debug support to previous
releases.

The ILE Source

232 ILE RPG Programmer’s Guide

If you do not want debug data to be included with the module or if you want
faster compilation time, specify DBGVIEW(*NONE) when the module is created.
However, a formatted dump will not list the values of program variables when no
debug data is available.

Note also that the storage requirements for a module or program will vary
somewhat depending on the type of debug data included with it. The following
values for the DBGVIEW parameter are listed in increasing order based on their
effect on secondary storage requirements:
1. *NONE
2. *STMT
3. *SOURCE
4. *COPY
5. *LIST
6. *ALL

Once you have created a module with debug data and bound it into a program
object (*PGM), you can start to debug your program.

Note: An OPM program must be compiled with OPTION(*SRCDBG) or
OPTION(*LSTDBG) in order to debug it using the ILE source . For more
information, see “Starting the ILE Source” on page 236

The debug views are summarized in the following table:

Table 40. Debug Views

Debug View Debug Data DBGVIEW Parameter
Value

None No debug data *NONE

Statement view
(default)

No source displayed (use statement numbers
in source section of compiler listing)

*STMT

Root source view Root source member information *SOURCE

COPY source view Root source member and /COPY members
information

*COPY

Listing view Compiler listing (dependent on OPTION
parameter)

*LIST

All Data from root source, COPY source, and
listing views

*ALL

Creating a Root Source View
A root source view contains text from the root source member. This view does not
contain any /COPY members. Furthermore, it is not available if the root source
member is a DDM file.

You create a root source view to debug a module by using the *SOURCE, *COPY
or *ALL options on the DBGVIEW parameter for either the CRTRPGMOD or
CRTBNDRPG commands when you create the module.

The compiler creates the root source view while the module object (*MODULE) is
being compiled. The root source view is created using references to locations of
text in the root source member rather than copying the text of the member into the
module object. For this reason, you should not modify, rename, or move root

Preparing a Program for Debugging

Chapter 12. Debugging Programs 233

source members between the module creation of these members and the
debugging of the module created from these members. If you do, the views for
these source members may not be usable.

For example, to create a root source view for a program DEBUGEX when using
CRTBNDRPG, type:
CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('ILE RPG/400 program DEBUGEX')
DBGVIEW(*SOURCE)

To create a root source view for a module DBGEX when using CRTRPGMOD,
type:
CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('Entry module for program DEBUGEX')
DBGVIEW(*SOURCE)

Specifying DBGVIEW(*SOURCE) with either create command creates a root source
view for debugging module DBGEX. By default, a compiler listing with /COPY
members and expanded DDS, as well as other additional information is produced.

Creating a COPY Source View
A COPY source view contains text from the root source member, as well as the
text of all /COPY members expanded into the text of the source. When you use
the COPY view, you can debug the root source member of the program using the
root source view and the /COPY members of the program using the COPY source
view.

The view of the root source member generated by DBGVIEW(*COPY) is the same
view generated by DBGVIEW(*SOURCE). As with the root source view, a COPY
source view is not available if the source file is a DDM file.

You create a COPY source view to debug a module by using the *COPY or *ALL
option on the DBGVIEW parameter.

The compiler creates the COPY view while the module object (*MODULE) is being
compiled. The COPY view is created using references to locations of text in the
source members (both root source member and /COPY members) rather than
copying the text of the members into the view. For this reason, you should not
modify, rename, or move source members between the time the module object is
created and the debugging of the module created from these members. If you do,
the views for these source members may not be usable.

For example, to create a source view of a program TEST1 that contains /COPY
members type:
CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

TEXT('ILE RPG/400 program TEST1')
DBGVIEW(*COPY)

Specifying DBGVIEW(*COPY) with either create command creates a root source
view with /COPY members for debugging module TEST1. By default, a compiler
listing is produced. The compiler listing will include /COPY members as well,
since OPTION(*SHOWCPY) is a default value.

Preparing a Program for Debugging

234 ILE RPG Programmer’s Guide

Creating a Listing View
A listing view contains text similar to the text in the compiler listing that is
produced by the ILE RPG compiler. The information contained in the listing view
is dependent on whether OPTION(*SHOWCPY), OPTION(*EXPDDS), and
OPTION(*SRCSTMT) are specified for either create command.
OPTION(*SHOWCPY) includes /COPY members in the listing;
OPTION(*EXPDDS) includes externally described files. OPTION(*SRCSTMT)
allows the program object to be debugged using the Statement Numbers instead of
the Line Numbers of the compiler listing.

Note: Some information that is available in the compiler listing will not appear on
the listing view. For example, if you specify indentation in the compiler
listing (via the INDENT parameter), the indentation will not appear in the
listing view. If you specify OPTION(*SHOWSKP) in the compiler listing, the
skipped statements will not appear in the listing view.

You create a listing view to debug a module by using the *LIST or *ALL options
on the DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG
commands when you create a module.

You can encrypt the listing view so that the listing information cannot be viewed
during a debug session unless the person knows the encryption key. You specify
the encryption key using the DBGENCKEY parameter of the CRTBNDRPG,
CRTRPGMOD, or CRTSQLRPGI command. You specify the same key when
debugging the program to view the text of the listing view.

The compiler creates the listing view while the module object (*MODULE) is being
generated. The listing view is created by copying the text of the appropriate source
members into the module object. There is no dependency on the source members
upon which it is based, once the listing view is created.

For example, to create a listing view for a program TEST1 that contains expanded
DDS type:
CRTBNDRPG PGM(MYLIB/TEST1) SRCFILE(MYLIB/QRPGLESRC)

SRCMBR(TEST1) OUTPUT(*PRINT)
TEXT('ILE RPG/400 program TEST1')
OPTION(*EXPDDS) DBGVIEW(*LIST)

Specifying DBGVIEW(*LIST) for the DBGVIEW parameter and *EXPDDS for the
OPTION parameter on either create command creates a listing view with expanded
DDS for debugging the source for TEST1. Note that OUTPUT(*PRINT) and
OPTION(*EXPDDS) are both default values.

Creating a Statement View
A statement view allows the module object to be debugged using statement
numbers and the debug commands. Since the source will not be displayed, you
must make use of statement numbers which are shown in the source section of the
compiler listing. In other words, to effectively use this view, you will need a
compiler listing. In addition, the statement numbers generated for debugging are
dependent on whether *SRCSTMT or *NOSRCSTMT is specified for the OPTION
parameter. *NOSRCSTMT means that statement numbers are assigned sequentially
and are displayed as Line Numbers on the left-most column of the source section
of the compiler listing. *SRCSTMT allows you to request that the compiler use SEU

Preparing a Program for Debugging

Chapter 12. Debugging Programs 235

|
|
|
|
|

sequence numbers and source IDs when generating statement numbers for
debugging. The Statement Numbers are shown on the right-most column of the
source section of the compiler listing.

You create a statement view to debug a module by using the *STMT option on the
DBGVIEW parameter for either the CRTRPGMOD or CRTBNDRPG commands
when you create a module.

Use this view when:
v You have storage constraints, but do not want to recompile the module or

program if you need to debug it.
v You are sending compiled objects to other users and want to be able to diagnose

problems in your code using the , but you do not want these users to see your
actual code.

For example, to create a statement view for the program DEBUGEX using
CRTBNDRPG, type:
CRTBNDRPG PGM(MYLIB/DEBUGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('ILE RPG/400 program DEBUGEX')

To create a statement view for a module using CRTRPGMOD, type:
CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC)

TEXT('Entry module for program DEBUGEX')

By default a compiler listing and a statement view are produced. Using a compiler
listing to obtain the statement numbers, you debug the program using the debug
commands.

If the default values for either create command have been changed, you must
explicitly specify DBGVIEW(*STMT) and OUTPUT(*PRINT).

Starting the ILE Source
Once you have created the debug view (statement, source, COPY, or listing), you
can begin debugging your application. To start the ILE source , use the Start Debug
(STRDBG) command. Once the is started, it remains active until you enter the End
Debug (ENDDBG) command.

Initially you can add as many as 20 program objects to a debug session by using
the Program (PGM) parameter on the STRDBG command. They can be any
combination of OPM or ILE programs. (Depending on how the OPM programs
were compiled and also on the debug environment settings, you may be able to
debug them by using the ILE source .) In addition, you can initially add as many
as 20 service program objects to a debug session by using the Service Programs
(SRVPGM) parameter on the STRDBG command. The rules for debugging a service
program are the same as those for debugging a program:
v The program or service program must have debug data.
v You must have *CHANGE authority to a program or service program object to

include it in a debug session.

Note: If debugging a program using the COPY or root source view, the source
code must be on the same system as the program object being debugged. In
addition, the source code must be in a library/file(member) with the same
name as when it was compiled.

Preparing a Program for Debugging

236 ILE RPG Programmer’s Guide

For an ILE program, the entry module is shown if it has debug data; otherwise, the
first module bound to the ILE program with debug data is shown.

For an OPM program, the first program specified on the STRDBG command is
shown if it has debug data, and the OPMSRC parameter is *YES. That is, if an
OPM program is in a debug session, then you can debug it using the ILE source if
the following conditions are met:
1. The OPM program was compiled with OPTION(*LSTDBG) or

OPTION(*SRCDBG). (Three OPM languages are supported: RPG, COBOL, and
CL. RPG and COBOL programs can be compiled with *LSTDBG or *SRCDBG,
but CL programs must be compiled with *SRCDBG.

2. The ILE debug environment is set to accept OPM programs. You can do this by
specifying OPMSRC(*YES) on the STRDBG command. (The system default is
OPMSRC(*NO).)

If these two conditions are not met, then you must debug the OPM program with
the OPM system .

If an OPM program compiled without *LSTDBG or *SRCDBG is specified and a
service program is specified, the service program is shown if it has debug data. If
there is no debug data, then the DSPMODSRC screen will be empty. If an ILE
program and a service program are specified, then the ILE program will be shown.

STRDBG Example
To start a debug session for the sample debug program DEBUGEX and a called
OPM program RPGPGM, type:
STRDBG PGM(MYLIB/DEBUGEX MYLIB/RPGPGM) OPMSRC(*YES)

The Display Module Source display appears as shown in Figure 101 on page 238.
DEBUGEX consists of two modules, an RPG module DBGEX and a C module
cproc. See “Sample Source for Debug Examples” on page 279 for the source for
DBGEX, cproc, and RPGPGM.

If the entry module has a root source, COPY, or listing view, then the display will
show the source of the entry module of the first program. In this case, the program
was created using DBGVIEW(*ALL) and so the source for the main module,
DBGEX, is shown.

Starting the ILE Source

Chapter 12. Debugging Programs 237

Note: Up to 20 service programs can initially be added to the debug session by
using the Service Program (SRVPGM) parameter on the STRDBG command.
You can also add ILE service programs to a debug session by using option 1
(Add) on the Work with Module List display (F14) or by letting the source
add it as part of a STEP INTO debug command.

Setting Debug Options

After you start a debug session, you can set or change the following debug
options:
v Whether database files can be updated while debugging your program. (This

option corresponds to the UPDPROD parameter of the STRDBG command.)
v Whether text searches using FIND are case-sensitive.
v Whether OPM programs are to be debugged using the ILE source . (This option

corresponds to the OPMSRC parameter.)

Changing the debug options using the SET debug command affects the value for
the corresponding parameter, if any, specified on the STRDBG command. You can
also use the Change Debug (CHGDBG) command to set debug options. However,
the OPMSRC option can not be changed by the CHGDBG command. OPMSRC can
only be changed by the debug SET command.

Suppose you are in a debug session working with an ILE program and you decide
you should also debug an OPM program that has debug data available. To enable
the ILE source to accept OPM programs, follow these steps:
1. After entering STRDBG, if the current display is not the Display Module Source

display, type:
DSPMODSRC

The Display Module Source display appears.
2. Type

SET

3. The Set Debug Options display appears. On this display type Y (Yes) for the
OPM source debug support field, and press Enter to return to the Display Module
Source display.

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

1 *===
2 * DEBUGEX - Program designed to illustrate use of ILE source
3 * with ILE RPG source. Provides a
4 * sample of different data types and data structures.
5 *
6 * Can also be used to produce sample formatted dumps.
7 *===
8
9 *---
10 * The DEBUG keyword enables the formatted dump facility.
11 *---
12 H DEBUG
13
14 *---
15 * Define standalone fields for different ILE RPG data types.

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 101. Display Module Source display for program DEBUGEX

Starting the ILE Source

238 ILE RPG Programmer’s Guide

You can now add the OPM program, either by using the Work with Module
display, or by processing a call statement to that program.

Adding/Removing Programs from a Debug Session
You can add more programs to, and remove programs from a debug session, after
starting a debug session. You must have *CHANGE authority to a program to add
it to or remove it from a debug session.

For ILE programs, you use option 1 (Add program) on the Work with Module List
display of the DSPMODSRC command. To remove an ILE program or service
program, use option 4 (Remove program) on the same display. When an ILE
program or service program is removed, all breakpoints for that program are
removed. There is no limit to the number of ILE programs or service programs
that can be in or removed from a debug session at one time.

For OPM programs, you have two choices depending on the value specified for
OPMSRC. If you specified OPMSRC(*YES), by using either STRDBG, the SET
debug command, or CHGDBG, then you add or remove an OPM program using
the Work With Module Display. (Note that there will not be a module name listed
for an OPM program.) There is no limit to the number of OPM programs that can
be included in a debug session when OPMSRC(*YES) is specified.

If you specified OPMSRC(*NO), then you must use the Add Program (ADDPGM)
command or the Remove Program (RMVPGM) command. Only 20 OPM programs
can be in a debug session at one time when OPMSRC(*NO) is specified.

Note: You cannot debug an OPM program with debug data from both an ILE and
an OPM debug session. If OPM program is already in an OPM debug
session, you must first remove it from that session before adding it to the
ILE debug session or stepping into it from a call statement. Similarly, if you
want to debug it from an OPM debug session, you must first remove it from
an ILE debug session.

Example of Adding a Service Program to a Debug Session
In this example you add the service program CVTTOHEX to the debug session
which already previously started. (See “Sample Service Program” on page 97 for a
discussion of the service program).
1. If the current display is not the Display Module Source display, type:

DSPMODSRC

The Display Module Source display appears.
2. Press F14 (Work with module list) to show the Work with Module List display

as shown in Figure 102 on page 240.
3. To add service program CVTTOHEX, on the first line of the display, type: 1

(Add program), CVTTOHEX for the Program/module field, MYLIB for the Library
field. Change the default program type from *PGM to *SRVPGM and press
Enter.

4. Press F12 (Cancel) to return to the Display Module Source display.

Starting the ILE Source

Chapter 12. Debugging Programs 239

Example of Removing ILE Programs from a Debug Session
In this example you remove the ILE program CVTHEXPGM and the service
program CVTTOHEX from a debug session.
1. If the current display is not the Display Module Source display, type:

DSPMODSRC

The Display Module Source display appears.
2. Press F14 (Work with module list) to show the Work with Module List display

as shown in Figure 103.
3. On this display type 4 (Remove program) on the line next to CVTHEXPGM

and CVTTOHEX, and press Enter.
4. Press F12 (Cancel) to return to the Display Module Source display.

Viewing the Program Source
The Display Module Source display shows the source of an ILE program object one
module object at a time. The source of an ILE module object can be shown if the
module object was compiled using one of the following debug view options:
v DBGVIEW(*SOURCE)

Work with Module List
System: AS400S1

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
1 cvttohex mylib *SRVPGM

RPGPGM MYLIB *PGM
DEBUGEX MYLIB *PGM

DBGEX *MODULE Selected
CPROC *MODULE

Bottom
Command
===> __
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 102. Adding an ILE Service Program to a Debug Session

Work with Module List
System: AS400S1

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

4 CVTHEXPGM MYLIB *PGM
CVTHEXPG *MODULE

4 CVTTOHEX MYLIB *SRVPGM
CVTTOHEX *MODULE

RPGPGM MYLIB *PGM
DEBUGEX MYLIB *PGM

DBGEX *MODULE Selected
CPROC *MODULE

Bottom
Command
===> __
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 103. Removing an ILE Program from a Debug Session

Adding/Removing Programs from a Debug Session

240 ILE RPG Programmer’s Guide

v DBGVIEW(*COPY)
v DBGVIEW(*LIST)
v DBGVIEW(*ALL)

The source of an OPM program can be shown if the following conditions are met:
1. The OPM program was compiled with OPTION(*LSTDBG) or

OPTION(*SRCDBG). (Only RPG and COBOL programs can be compiled with
*LSTDBG.)

2. The ILE debug environment is set to accept OPM programs; that is the value of
OPMSRC is *YES. (The system default is OPMSRC(*NO).)

There are two methods to change what is shown on the Display Module Source
display:
v Change to a different module
v Change the view of a module

When you change a view, the ILE source maps to equivalent positions in the view
you are changing to. When you change the module, the runnable statement on the
displayed view is stored in memory and is viewed when the module is displayed
again. Line numbers that have breakpoints set are highlighted. When a breakpoint,
step, or message causes the program to stop, and the display to be shown, the
statement where the breakpoint occurred is highlighted.

Viewing a Different Module
To change the module object that is shown on the Display Module Source display,
use option 5 (Display module source) on the Work with Module List display. You
access the Work with Module List display from the Display Module Source display
by pressing F14 (Work with Module List).

If you use this option with an ILE program object, the entry module with a root
source, COPY, or listing view is shown (if it exists). Otherwise, the first module
object bound to the program object with debug data is shown. If you use this
option with an OPM program object, then the source or listing view is shown (if
available).

An alternate method of viewing a different module object is to use the DISPLAY
debug command. On the debug command line, type:
DISPLAY MODULE module-name

The module object module-name is shown. The module object must exist in a
program object that has been added to the debug session.

For example, to change from the module DBGEX in Figure 101 on page 238 to the
module cproc using the Display module source option, follow these steps:
1. To work with modules type DSPMODSRC, and press Enter. The Display Module

Source display is shown.
2. Press F14 (Work with module list) to show the Work with Module List display.

Figure 104 on page 242 shows a sample display.
3. To select cproc, type 5 (Display module source) next to it and press Enter. Since

a root source view is available, it is shown, as in Figure 105 on page 242. If a
root source was not available, the first module object bound to the program
object with debug data is shown.

Viewing the Program Source

Chapter 12. Debugging Programs 241

Changing the View of a Module
Several different views of an ILE RPG module can be displayed depending on the
values you specify when you create the module. They are:
v Root source view
v COPY source view
v Listing view

You can change the view of the module object that is shown on the Display
Module Source display through the Select View display. The Select View display
can be accessed from the Display Module Source display by pressing F15 (Select
View). The Select View display is shown in Figure 106 on page 243. The current
view is listed at the top of the window, and the other views that are available are
shown below. Each module object in a program object can have a different set of
views available, depending on the debug options used to create it.

For example, to change the view of the module from root source to listing, follow
these steps:
1. Type DSPMODSRC, and press Enter. The Display Module Source display is shown.

Work with Module List
System: AS400S1

Type options, press enter.
1=Add program 4=Remove program 5=Display module source
8=Work with module breakpoints

Opt Program/module Library Type
*LIBL *PGM

RPGPGM MYLIB *PGM
DEBUGEX MYLIB *PGM

DBGEX *MODULE Selected
5 CPROC *MODULE

Bottom
Command
===> __
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 104. Changing to a Different Module

Display Module Source
Program: DEBUGEX Library: MYLIB Module: CPROC

1 #include <stdlib.h>
2 #include <string.h>
3 #include <stdio.h>
4 extern char EXPORTFLD[6];
5
6 char *c_proc(unsigned int size, char *inzval)
7 {
8 char *ptr;
9 ptr = malloc(size);
10 memset(ptr, *inzval, size);
11 printf("import string: %6s.\n",EXPORTFLD);
12 return(ptr);
13 }

Bottom
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 105. Source View of ILE C procedure cproc

Viewing the Program Source

242 ILE RPG Programmer’s Guide

2. Press F15 (Select view). The Select View window is shown in Figure 106.

The current view is listed at the top of the window, and the other views that
are available are shown below. Each module in a program can have a different
set of views available, depending on the debug options used to create it.

Note: If a module is created with DBGVIEW(*ALL), the Select View window
will show three views available: root source, COPY, and listing. If the
module has no /COPY members, then the COPY view is identical to the
root source view.

3. Type a 1 next to the listing view, and press Enter. The Display Module Source
display appears showing the module with a listing view.

Setting and Removing Breakpoints
You can use breakpoints to halt a program object at a specific point when it is
running. An unconditional breakpoint stops the program object at a specific
statement. A conditional breakpoint stops the program object when a specific
condition at a specific statement is met.

There are two types of breakpoints: job and thread. Each thread in a threaded
application may have it’s own thread breakpoint at the same position at the same
time. Both job and thread breakpoints can be unconditional or conditional. In
general, there is one set of debug commands and Function keys for job breakpoints
and another for thread breakpoints. For the rest of this section on breakpoints, the
word breakpoint refers to both job and thread, unless specifically mentioned
otherwise.

Note: Breakpoints are automatically generated for input and output specifications
if the default OPTION(*DEBUGIO) is specified. If you do not want to
generate breakpoints, specify OPTION(*NODEBUGIO).

You set the breakpoints prior to running the program. When the program object
stops, the Display Module Source display is shown. The appropriate module object

Display Module Source
..
: Select View :
: :
: Current View . . . : ILE RPG Copy View :
: :
: Type option, press Enter. :
: 1=Select :
: :
: Opt View :
: 1 ILE RPG Listing View :
: ILE RPG Source View :
: ILE RPG Copy View :
: :
: Bottom :
: F12=Cancel :
: :
:..:

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 106. Changing a View of a Module

Viewing the Program Source

Chapter 12. Debugging Programs 243

is shown with the source positioned at the line where the breakpoint occurred.
This line is highlighted. At this point, you can evaluate fields, set more
breakpoints, and run any of the debug commands.

You should know the following characteristics about breakpoints before using
them:
v When a breakpoint is set on a statement, the breakpoint occurs before that

statement is processed.
v When a statement with a conditional breakpoint is reached, the conditional

expression associated with the breakpoint is evaluated before the statement is
processed. If the expression is true, the breakpoint takes effect and the program
stops on that line.

v If the line on which you want to set a breakpoint is not a runnable statement,
the breakpoint will be set on the next runnable statement.

v If a breakpoint is bypassed that breakpoint is not processed.
v Breakpoint functions are specified through debug commands. These functions

include:
– Adding breakpoints to program objects
– Removing breakpoints from program objects
– Displaying breakpoint information
– Resuming the running of a program object after a breakpoint has been

reached
– You can either have a job or thread breakpoint on a specified position at the

same time, but not both.

If you change the view of the module after setting breakpoints, then the line
numbers of the breakpoints are mapped to the new view by the source .

If you are debugging a module or program created with a statement view, then
you can set or remove breakpoints using statement numbers obtained from the
compiler listing. For more information on using statement numbers, see “Setting
and Removing Job Breakpoints Using Statement Numbers” on page 250.

Setting and Removing Unconditional Job Breakpoints
You can set or remove an unconditional Job breakpoint by using:
v F6 (Add/Clear breakpoint) or F13 (Work with module breakpoints) from the

Display Module Source display
v The BREAK debug command to set a job breakpoint
v The CLEAR debug command to remove a jobbreakpoint
v The Work with Module Breakpoints display.

The simplest way to set and remove an unconditional job breakpoint is to use F6
(Add/Clear breakpoint). The function key acts as a toggle and so it will remove a
breakpoint from the line your cursor is on, if a breakpoint is already set on that
line.

To remove an unconditional job breakpoint using F13 (Work with module
breakpoints), press F13 (Work with module breakpoints) from the Display Module
Source display. A list of options appear which allow you to set or remove
breakpoints. If you select 4 (Clear), a job breakpoint is removed from the line.

Setting and Removing Breakpoints

244 ILE RPG Programmer’s Guide

An alternate method of setting and removing unconditional job breakpoints is to
use the BREAK and CLEAR debug commands. To set an unconditional job
breakpoint using the BREAK debug command, type:
BREAK line-number

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object on which you want to set a
breakpoint.

To remove an unconditional job breakpoint using the CLEAR debug command,
type:
CLEAR line-number

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object from which you want to remove a
breakpoint. When a job breakpoint is cleared, it is also cleared for all threads.

Example of Setting an Unconditional Job Breakpoint

In this example you set an unconditional job breakpoint using F6 (Add/Clear
breakpoint). The breakpoint is to be set on the first runnable Calculation
specification so that the various fields and data structures can be displayed.
1. To work with a module type DSPMODSRC and press Enter. The Display Module

Source display is shown.
2. If you want to set the job breakpoint in the module shown, continue with step

3. If you want to set a job breakpoint in a different module, type:
DISPLAY MODULE module-name

on the debug command line where module-name is the name of the module that
you want to display.

3. To set an unconditional breakpoint on the first Calculation specification, place
the cursor on line 88.

4. Press F6 (Add/Clear breakpoint). If there is no breakpoint on the line 88, then
an unconditional breakpoint is set on that line, as shown in Figure 107 on page
246. If there is a breakpoint on the line, it is removed.

Note: Because we want the breakpoint on the first Calculation specification, we
could have placed the cursor on any line before the start of the
calculation specifications and the breakpoint would still have been
placed on line 88, since it is the first runnable statement.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 245

5. After the breakpoint is set, press F3 (Exit) to leave the Display Module Source
display. The breakpoint is not removed.

6. Call the program. When a breakpoint is reached, the program stops and the
Display Module Source display is shown again, with the line containing the
breakpoint highlighted. At this point you can step through the program or
resume processing.

Setting and Removing Unconditional Thread Breakpoints
You can set or remove an unconditional thread breakpoint by using:
v The Work with Module Breakpoints display
v The TBREAK debug command to set a thread breakpoint in the current thread
v The CLEAR debug command to remove a thread breakpoint

To set an unconditional thread breakpoint using the Work with Module
Breakpoints display:
v Type 1 (Add) in the Opt field.
v In the Thread field, type the thread identifier.
v Fill in the remaining fields as if it were an unconditional job breakpoint.
v Press Enter.

Note: The Thread field is displayed when the DEBUG option on the SPAWN
command is greater than or equal to one.

The TBREAK debug command has the same syntax as the BREAK debug
command. Where the BREAK debug command sets a job breakpoint at the same
position in all threads, the TBREAK debug command sets a thread breakpoint in a
single thread — the current thread.

The current thread is the thread that is currently being debugged. Debug
commands are issued to this thread. When a debug stop occurs, such as a
breakpoint, the current thread is set to the thread where the debug stop happened.
The debug THREAD command and the ’Work with Debugged Threads’ display
can be used to change the current thread.

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

84 *---
85 * Move 'a's to the data structure DS2. After the move, the
86 * first occurrence of DS2 contains 10 character 'a's.
87 *---
88 C MOVE *ALL'a' DS2
89
90 *---
91 * Change the occurrence of DS2 to 2 and move 'b's to DS2,
92 * making the first 10 bytes 'a's and the second 10 bytes 'b's
93 *---
94 C 2 OCCUR DS2
95 C MOVE *ALL'b' DS2
96
97 *---
98 * Fld1a is an overlay field of Fld1. Since Fld1 is initialized

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint added to line 88.

Figure 107. Setting an Unconditional Job Breakpoint

Setting and Removing Breakpoints

246 ILE RPG Programmer’s Guide

To remove an unconditional thread breakpoint use the CLEAR debug command.
When a thread breakpoint is cleared, it is cleared for the current thread only.

Setting and Removing Conditional Job Breakpoints
You can set or remove a conditional job breakpoint by using:
v The Work with Module Breakpoints display
v The BREAK debug command to set a job breakpoint
v The CLEAR debug command to remove a breakpoint

Note: The relational operators supported for conditional breakpoints are <, >, =,
<=, >=, and <> (not equal).

One way you can set or remove conditional job breakpoints is through the Work
with Module Breakpoints display. You access the Work with Module Breakpoints
display from the Display Module Source display by pressing F13 (Work with
module breakpoints). The display provides you with a list of options which allow
you to either add or remove conditional and unconditional job breakpoints. An
example of the display is shown in Figure 108 on page 248.

To make the job breakpoint conditional, specify a conditional expression in the
Condition field. If the line on which you want to set a job breakpoint is not a
runnable statement, the breakpoint will be set at the next runnable statement.

If a thread column is shown, before pressing Enter, type *JOB in the Thread field.

Once you have finished specifying all of the job breakpoints, you call the program.
You can use F21 (Command Line) from the Display Module Source display to call
the program object from a command line or call the program after exiting from the
display.

When a statement with a conditional job breakpoint is reached, the conditional
expression associated with the job breakpoint is evaluated before the statement is
run. If the result is false, the program object continues to run. If the result is true,
the program object stops, and the Display Module Source display is shown. At this
point, you can evaluate fields, set more breakpoints, and run any of the debug
commands.

An alternate method of setting and removing conditional breakpoints is to use the
BREAK and CLEAR debug commands.

To set a conditional breakpoint using the BREAK debug command, type:
BREAK line-number WHEN expression

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object on which you want to set a
breakpoint and expression is the conditional expression that is evaluated when the
breakpoint is encountered. The relational operators supported for conditional
breakpoints are noted at the beginning of this section.

In non-numeric conditional breakpoint expressions, the shorter expression is
implicitly padded with blanks before the comparison is made. This implicit
padding occurs before any National Language Sort Sequence (NLSS) translation.
See “National Language Sort Sequence (NLSS)” on page 249 for more information
on NLSS.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 247

To remove a conditional breakpoint using the CLEAR debug command, type:
CLEAR line-number

on the debug command line. The variable line-number is the line number in the
currently displayed view of the module object from which you want to remove a
breakpoint.

Example of Setting a Conditional Job Breakpoint Using F13
In this example you set a conditional job breakpoint using F13 (Work with module
breakpoints).
1. To set a conditional job breakpoint press F13 (Work with module breakpoints).

The Work with Module Breakpoints display is shown.
2. On this display type 1 (Add) on the first line of the list to add a conditional

breakpoint.
3. To set a conditional breakpoint at line 127 when *IN02=’1’, type 127 for the Line

field, *IN02=’1’ for the Condition field.
4. If a thread column is shown, before pressing Enter, type *JOB in the thread

field.
Figure 108 shows the Work with Module Breakpoints display after adding the
conditional breakpoint.

A conditional job breakpoint is set on line 127. The expression is evaluated
before the statement is run. If the result is true (in the example, if *IN02=’1’),
the program stops, and the Display Module Source display is shown. If the
result is false, the program continues to run.
An existing breakpoint is always replaced by a new breakpoint entered at the
same location.

5. After the breakpoint is set, press F12 (Cancel) to leave the Work with Module
Breakpoints display. Press F3 (End Program) to leave the ILE source . Your
breakpoint is not removed.

6. Call the program. When a breakpoint is reached, the program stops, and the
Display Module Source display is shown again. At this point you can step
through the program or resume processing.

Example of Setting a Conditional Job Breakpoint Using the
BREAK Command
In this example, we want to stop the program when the date field BigDate has a
certain value. To specify the conditional job breakpoint using the BREAK
command:

Work with Module Breakpoints
System: TORASD80

Program . . . : DEBUGEX Library . . . : MYLIB
Module . . . : DBGEX Type : *PGM

Type options, press Enter.
1=Add 4=Clear

Opt Line Condition
127 *in02='1'
88
102

Bottom
Command
===> __
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
Breakpoint added to line 127.

Figure 108. Setting a Conditional Job Breakpoint

Setting and Removing Breakpoints

248 ILE RPG Programmer’s Guide

1. From the Display Module Source display, enter:
break 128 when BigDate='1994-09-30'

A conditional job breakpoint is set on line 128.
2. After the breakpoint is set, press F3 (End Program) to leave the ILE source .

Your breakpoint is not removed.
3. Call the program. When a breakpoint is reached, the program stops, and the

Display Module Source display is shown again.

National Language Sort Sequence (NLSS)
Non-numeric conditional breakpoint expressions are divided into the following
two types:
v Char- 8: each character contains 8 bits

This corresponds to the RPG data types of character, date, time, and timestamp.
v Char-16: each character contains 16 bits (DBCS)

This corresponds to the RPG graphic data type.

NLSS applies only to non-numeric conditional breakpoint expressions of type
Char-8. See Table 41 on page 250 for the possible combinations of non-numeric
conditional breakpoint expressions.

The sort sequence table used by the source for expressions of type Char-8 is the
sort sequence table specified on the SRTSEQ parameter for the CRTRPGMOD or
CRTBNDRPG commands.

If the resolved sort sequence table is *HEX, no sort sequence table is used.
Therefore, the source uses the hexadecimal values of the characters to determine
the sort sequence. Otherwise, the specified sort sequence table is used to assign
weights to each byte before the comparison is made. Bytes between, and including,
shift-out/shift-in characters are not assigned weights. This differs from the way
ILE RPG handles comparisons; all characters, including the shift-out/shift-in
characters, are assigned weights.

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

122
123 *---
124 * After the following SETON operation, *IN02 = '1'.
125 *---
126 C SETON
127 C IF *IN02
128 C MOVE '1994-09-30' BigDate
129 C ENDIF
130
131 *---
132 * Put a new value in the second cell of Arry.
133 *---
134 C MOVE 4 Arry
135
136 *---

More...
Debug . . . break 128 when BigDate='1994-09-30'______________________________

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Figure 109. Setting a Conditional Job Breakpoint Using the BREAK Command

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 249

Notes:

1. The alternate sequence specified by ALTSEQ (*SRC) on the Control specification
is not available to the ILE source . Instead the source uses the *HEX sort
sequence table.

2. The name of the sort sequence table is saved during compilation. At debug
time, the source uses the name saved from the compilation to access the sort
sequence table. If the sort sequence table specified at compilation time resolves
to something other than *HEX or *JOBRUN, it is important the sort sequence
table does not get altered before debugging is started. If the table cannot be
accessed because it is damaged or deleted, the source uses the *HEX sort
sequence table.

Table 41. Non-numeric Conditional Breakpoint Expressions

Type Possible

Char-8 v Character field compared to character field

v Character field compared to character literal 1

v Character field compared to hex literal 2

v Character literal 1 compared to character field

v Character literal 1 compared to character literal 1

v Character literal 1 compared to hex literal 2

v Hex literal 2 compared to character field 1

v Hex literal 2 compared to character literal 1

v Hex literal 2 compared to hex literal 2

Char-16 v Graphic field compared to graphic field

v Graphic field compared to graphic literal 3

v Graphic field compared to hex literal 2

v Graphic literal 3 compared to graphic field

v Graphic literal 3 compared to graphic literal 3

v Graphic literal 3 compared to hex literal 2

v Hex literal 2 compared to graphic field

v Hex literal 2 compared to graphic literal 3

Notes:

1. Character literal is of the form 'abc'.

2. Hexadecimal literal is of the form X'hex digits'.

3. Graphic literal is of the form G'oK1K2i'. Shift-out is represented as o and shift-in is
represented as i.

Setting and Removing Job Breakpoints Using Statement
Numbers

You set and remove conditional or unconditional job breakpoints using the
statement numbers found in the compiler listing for the module in question. This
is necessary if you want to debug a module which was created with
DBGVIEW(*STMT).

To set an unconditional job breakpoint using the BREAK debug command, type:
BREAK procedure-name/statement-number

on the debug command line. The variable procedure-name is the name of the
procedure in which you are setting the breakpoint. Since ILE RPG allows more

Setting and Removing Breakpoints

250 ILE RPG Programmer’s Guide

than one procedure per module, the procedure-name can be either the name of the
main procedure or one of the subprocedures in a module. The variable
statement-number is the statement number from the compiler listing on which you
want to set a breakpoint.

Note: The statement number in the source listing is labeled as the Line Number
when OPTION(*NOSRCSTMT) is specified, and as the Statement Number
when OPTION(*SRCSTMT) is specified. For example, Figure 110 shows a
sample section of a listing with OPTION(*NOSRCSTMT). Figure 111 shows
the same section with OPTION(*SRCSTMT).

In this example, a Statement View is used to set a breakpoint for the procedure
TEST. To set a breakpoint for the module with the *NOSRCSTMT listing, type:
BREAK TEST/2

To set a breakpoint for the module with the *SRCSTMT listing, type:
BREAK TEST/200

In both cases, the breakpoint is set on the ’SETON LR----’ line.

For all other debug views, the statement numbers can be used in addition to the
program line-numbers in the . For example, to set a breakpoint at the beginning of
subprocedure FmtCust in the Listing View below, type:
BREAK 34

Or
BREAK FmtCust/2600

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

S o u r c e L i s t i n g
1 C MOVE '123' BI_FLD1 000100
2 C SETON LR---- 000200

* * * * * E N D O F S O U R C E * * * * *

Figure 110. Sample Section of the Listing with OPTION(*NOSRCSTMT)

Seq <--------------------- Source Specifications --><---- Comments ----> Statement
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Number

S o u r c e L i s t i n g
000100 C MOVE '123' BI_FLD1 000100
000200 C SETON LR---- 000200

* * * * * E N D O F S O U R C E * * * * *

Figure 111. Sample Section of the Compiler Listing with OPTION(*SRCSTMT)

Display Module Source
Program: TEST Library: MYLIB Module: TEST

(Source not available.)
Bottom

Debug . . . break TEST/2___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint added to statement 2 of procedure TEST.

Figure 112. Setting a Breakpoint Using Statement View

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 251

In both cases, the breakpoint is set on the ’P FmtCust B’ line.

To set a conditional job breakpoint using the BREAK debug command, type:
BREAK procedure-name/statement-number WHEN expression

on the debug command line. The variables procedure-name and statement-number are
the same as for unconditional breakpoints. The variable expression is the conditional
expression that is evaluated when the breakpoint is encountered.

To remove an unconditional or conditional breakpoint using the CLEAR debug
command, type:
CLEAR procedure-name/statement-number

on the debug command line.

Setting and Removing Conditional Thread Breakpoints
You can set or remove a conditional thread breakpoint by using:
v The Work with Module Breakpoints display
v The TBREAK debug command to set a conditional thread breakpoint in the

current thread
v The CLEAR debug command to remove a conditional thread breakpoint.

Using the Work with Module Breakpoints Display
To set a conditional thread breakpoint using the Work with Module Breakpoints
display:
1. Type 1 (Add) in the Opt field.
2. In the Thread field, type the thread identifier.
3. Fill in the remaining fields as if it were a conditional job breakpoint.
4. Press Enter.

Display Module Source
Program: MYPGM Library: MYLIB Module: MYPGM

33 002500 * Begin-procedure
34 002600 P FmtCust B
35 002700 D FmtCust PI 25A
36 002800 * Procedure-interface (same as the prototype)
37 002900 D FirstName 10A
38 003000 D LastName 15A
39 003100 D ValidRec N
40 003200 * Calculations
41 003300 C IF ValidRec = '0'
42 003400 C RETURN %TRIMR(FirstName) + ' ' + Last
43 003500 C ENDIF
44 003600 C RETURN 'Last Customer'
45 003700 * End-procedure
46 003800 P E
47 *MAIN PROCEDURE EXIT

More...
Debug . . . BREAK fmtcust/2600___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint added to line 34.

Figure 113. Setting a Breakpoint using Statement Numbers and a Listing View with
OPTION(*SRCSTMT)

Setting and Removing Breakpoints

252 ILE RPG Programmer’s Guide

To remove a conditional thread breakpoint using the Work with Module
Breakpoints display:
1. Type 4 (Clear) in the Opt field next to the breakpoint you want to remove.
2. Press Enter.

Using the TBREAK or CLEAR Debug Commands
You use the same syntax for the TBREAK debug command as you would for the
BREAK debug command. The difference between these commands is that the
BREAK debug command sets a conditional job breakpoint at the same position in
all threads, while the TBREAK debug command sets a conditional thread
breakpoint in the current thread.

To remove a conditional thread breakpoint, use the CLEAR debug command.
When a conditional thread breakpoint is removed, it is removed for the current
thread only.

Removing All Job and Thread Breakpoints
You can remove all job and thread breakpoints, conditional and unconditional,
from a program object that has a module object shown on the Display Module
Source display by using the CLEAR PGM debug command. To use the debug
command, type:
CLEAR PGM

on the debug command line. The breakpoints are removed from all of the modules
bound to the program.

Setting and Removing Watch Conditions
You use a watch condition to monitor if the current value of an expression or a
variable changes while your program runs. Setting watch conditions is similar to
setting conditional breakpoints, with one important difference:
v Watch conditions stop the program as soon as the value of a watched expression

or variable changes from its current value.
v Conditional job breakpoints stop the program only if a variable changes to the

value specified in the condition.

The watches an expression or a variable through the contents of a storage address,
computed at the time the watch condition is set. When the content at the storage
address is changed from the value it had when the watch condition was set or
when the last watch condition occurred, the program stops.

Note: After a watch condition has been registered, the new contents at the
watched storage location are saved as the new current value of the
corresponding expression or variable. The next watch condition will be
registered if the new contents at the watched storage location change
subsequently.

Characteristics of Watches
You should know the following characteristics about watches before working with
them:
v Watches are monitored system-wide, with a maximum number of 256 watches

that can be active simultaneously. This number includes watches set by the
system.

Setting and Removing Breakpoints

Chapter 12. Debugging Programs 253

Depending on overall system use, you may be limited in the number of watch
conditions you can set at a given time. If you try to set a watch condition while
the maximum number of active watches across the system is exceeded, you
receive an error message and the watch condition is not set.

Note: If an expression or a variable crosses a page boundary, two watches are
used internally to monitor the storage locations. Therefore, the maximum
number of expressions or variables that can be watched simultaneously
system-wide ranges from 128 to 256.

v Watch conditions can only be set when a program is stopped under debug, and
the expression or variable to be watched is in scope. If this is not the case, an
error message is issued when a watch is requested, indicating that the
corresponding call stack entry does not exist.

v Once the watch condition is set, the address of a storage location watched does
not change. Therefore, if a watch is set on a temporary location, it could result in
spurious watch-condition notifications.
An example of this is the automatic storage of an ILE RPG subprocedure, which
can be re-used after the subprocedure ends.
A watch condition may be registered although the watched variable is no longer
in scope. You must not assume that a variable is in scope just because a watch
condition has been reported.

v Two watch locations in the same job must not overlap in any way. Two watch
locations in different jobs must not start at the same storage address; otherwise,
overlap is allowed. If these restrictions are violated, an error message is issued.

Note: Changes made to a watched storage location are ignored if they are made
by a job other than the one that set the watch condition.

v After the command is successfully run, your application is stopped if a program
in your session changes the contents of the watched storage location, and the
Display Module Source display is shown.
If the program has debug data, and a source text view is available, it will be
shown. The source line of the statement that was about to be run when the
content change at the storage-location was detected is highlighted. A message
indicates which watch condition was satisfied.
If the program cannot be debugged, the text area of the display will be blank.

v Eligible programs are automatically added to the debug session if they cause the
watch-stop condition.

v When multiple watch conditions are hit on the same program statement, only
the first one will be reported.

v You can set watch conditions also when you are using service jobs for
debugging, that is when you debug one job from another job.

Setting Watch Conditions
Before you can set a watch condition, your program must be stopped under debug,
and the expression or variable you want to watch must be in scope:
v To watch a global variable, you must ensure that the program in which the

variable is defined is active before setting the watch condition.
v To watch a local variable, you must step into the procedure in which the

variable is defined before setting the watch condition.

You can set a watch condition by using:

Setting and Removing Watch Conditions

254 ILE RPG Programmer’s Guide

v F17 (Watch Variable) to set a watch condition for a variable on which the cursor
is positioned.

v The WATCH debug command with or without its parameters.

Using the WATCH Command
If you use the WATCH command, it must be entered as a single command; no
other debug commands are allowed on the same command line.
v To access the Work With Watch display shown below, type:

WATCH

on the debug command line, without any parameters.

The Work with Watch display shows all watches currently active in the debug
session. You can clear, and display watches from this display. When you select
Option 5 Display, the Display Watch window shown below displays
information about the currently active watch.

v To specify a variable or expression to be watched, type:
WATCH expression

on the debug command line.
This command requests a breakpoint to be set if the value of expression is
changed from its current value.

Work with Watch
System:

Type options, press Enter.
4=Clear 5=Display

Opt Num Variable Address Length
- 1 SALARY 080090506F027004 4

Bottom
Command
===>__
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 114. Example of a Work with Watch Display

Work with Watch
..
: Display Watch :
: :
: Watch Number: 1 :
: Address: 080090506F027004 :
: Length: 4 :
: Number of Hits ..: 0 :
: :
: Scope when watch was set: :
: Program/Library/Type: PAYROLL ABC *PGM :
: :
: Module...: PAYROLL :
: Procedure: PAYROLL :
: Variable.: SALARY :
: :
: F12=Cancel :
: :
..

Bottom
Command
===>__
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel

Figure 115. Example of a Display Watch Window

Setting and Removing Watch Conditions

Chapter 12. Debugging Programs 255

Note: expression is used to determine the address of the storage location to
watch and must resolve to a location that can be assigned to, for example:
%SUBSTR(X 1 5)

The scope of the expression variables in a watch is defined by the most recently
issued QUAL command.

v To set a watch condition and specify a watch length, type:
WATCH expression : watch length

on a debug command line.
Each watch allows you to monitor and compare a maximum of 128 bytes of
contiguous storage. If the maximum length of 128 bytes is exceeded, the watch
condition will not be set, and the issues an error message.
By default, the length of the expression type is also the length of the
watch-comparison operation. The watch-length parameter overrides this default.
It determines the number of bytes of an expression that should be compared to
determine if a change in value has occurred.
For example, if a 4-byte integer is specified as the variable, without the
watch-length parameter, the comparison length is four bytes. However, if the
watch-length parameter is specified, it overrides the length of the expression in
determining the watch length.

Displaying Active Watches
To display a system-wide list of active watches and show which job set them, type:
DSPDBGWCH

on a debug command line. This command brings up the Display Debug Watches
display shown below.

Note: This display does not show watch conditions set by the system.

Removing Watch Conditions
Watches can be removed in the following ways:
v The CLEAR command used with the WATCH keyword selectively ends one or

all watches. For example, to clear the watch identified by watch-number, type:
CLEAR WATCH watch-number

The watch number can be obtained from the Work With Watches display.
To clear all watches for your session, type:
CLEAR WATCH ALL

on a debug command line.

Display Debug Watches
System:

------------Job--------------- NUM LENGTH ADDRESS
MYJOBNAME1 MYUSERPRF1 123456 1 5 080090506F027004
JOB4567890 PRF4567890 222222 1 8 09849403845A2C32
JOB4567890 PRF4567890 222222 2 2 098494038456AA00
JOB PROFILE 333333 14 4 040689578309AF09
SOMEJOB SOMEPROFIL 444444 3 4 005498348048242A

Bottom
Press Enter to continue
F3=Exit F5=Refresh F12=Cancel

Figure 116. Example of a Display Debug Watch Display

Setting and Removing Watch Conditions

256 ILE RPG Programmer’s Guide

Note: While the CLEAR PGM command removes all breakpoints in the program
that contains the module being displayed, it has no effect on watches. You
must explicitly use the WATCH keyword with the CLEAR command to
remove watch conditions.

v The CL End Debug (ENDDBG) command removes watches set in the local job or
in a service job.

Note: ENDDBG will be called automatically in abnormal situations to ensure
that all affected watches are removed.

v The initial program load (IPL) of your System i removes all watch conditions
system-wide.

Example of Setting a Watch Condition
In this example, you watch a variable SALARY in program MYLIB/PAYROLL. To set the
watch condition, type:
WATCH SALARY

on a debug line, accepting the default value for the watch-length.

If the value of the variable SALARY changes subsequently, the application stops and
the Display Module Source display is shown, as illustrated in Figure 117.

v The line number of the statement where the change to the watch variable was
detected is highlighted. This is typically the first executable line following the
statement that changed the variable.

v A message indicates that the watch condition was satisfied.

Note: If a text view is not available, a blank Display Module Source display is
shown, with the same message as above in the message area.

The following programs cannot be added to the ILE debug environment:

Display Module Source
Program: PAYROL Library: MYLIB Module: PAYROLL

52 C eval cnt = 1
53 C dow (cnt < EMPMAX)
54 C eval Pay_exmpt(cnt) = eflag(cnt)
55 C eval cnt = cnt + 1
56 C enddo
57 C
58 C eval index = 1
59 C dow index <= cnt
60 C if Pay_exmpt(index) = 1
61 C eval SALARY = 40 * Pay_wage(index)
62 C eval numexmpt = numexmpt + 1
63 C else
64 C eval SALARY = Pay_hours(index)*Pay_wage(index)
65 C endif
66 C eval index = index + 1
67 C enddo

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Watch number 1 at line 65, variable: SALARY

Figure 117. Example of Message Stating WATCH was Successfully Set

Setting and Removing Watch Conditions

Chapter 12. Debugging Programs 257

1. ILE programs without debug data
2. OPM programs with non-source debug data only
3. OPM programs without debug data

In the first two cases, the stopped statement number is passed. In the third case,
the stopped MI instruction is passed. The information is displayed at the bottom of
a blank Display Module Source display as shown below. Instead of the line
number, the statement or the instruction number is given.

Stepping Through the Program Object
After a breakpoint is encountered, you can run a specified number of statements of
a program object, then stop the program again and return to the Display Module
Source display. You do this by using the step function of the ILE source . The
program object resumes running on the next statement of the module object in
which the program stopped. Typically, a breakpoint is used to stop the program
object.

Breakpoints can be set before the program is called and while you are stepping
through the program. Breakpoints can also be automatically generated for input
and output specifications if the default OPTION(*DEBUGIO) is specified. If this
option is selected, a STEP on a READ statement will stop at the input specification.
You can choose not to generate breakpoints for input and output specifications
with OPTION(*NODEBUGIO).

You can step into an OPM program if it has debug data available and if the debug
session accepts OPM programs for debugging.

You can step through a program object by using:
v F10 (Step) or F22 (Step into) on the Display Module Source display
v The STEP debug command

The simplest way to step through a program object one statement at a time is to
use F10 (Step) or F22 (Step into) on the Display Module Source display. When you
press F10 (Step) or F22 (Step into), then next statement of the module object shown
in the Display Module Source display is run, and the program object is stopped
again.

Note: You cannot specify the number of statements to step through when you use
F10 (Step) or F22 (Step into). Pressing F10 (Step) or F22 (Step into) performs
a single step.

Another way to step through a program object is to use the STEP debug command.
The STEP debug command allows you to run more than one statement in a single
step. The default number of statements to run, using the STEP debug command, is
one. To step through a program object using the STEP debug command, type:
STEP number-of-statements

Display Module Source
(Source not available)
F3=End program F12=Resume F14=Work with module list F18=Work with watch
F21=Command entry F22=Step into F23=Display output
Watch number 1 at instruction 18, variable: SALARY

Figure 118. Example of a Display Module Source Panel

Example of Setting a Watch Condition

258 ILE RPG Programmer’s Guide

on the debug command line. The variable number-of-statements is the number of
statements of the program object that you want to run in the next step before the
program object is halted again. For example, if you type
STEP 5

on the debug command line, the next five statements of your program object are
run, then the program object is stopped again and the Display Module Source
display is shown.

When a call statement to another program or procedure is encountered in a debug
session, you can:
v Step over the call statement, or
v Step into the call statement.

A call statement for ILE RPG includes any of the following operations:
v CALL
v CALLB
v CALLP
v Any operation where there is an expression in the extended-factor 2 field, and

the expression contains a call to a procedure.

If you choose to step over the call statement, then you will stay inside the current
procedure. The call statement is processed as a single step and the cursor moves to
the next step after the call. Step over is the default step mode.

If you choose to step into the call statement, then each statement inside the call
statement is run as a single step. Depending on the number of steps specified, the
step command may end inside the call statement, in which case the source for the
call statement is shown in the Display Module Source display.

Note: You cannot step over or step into RPG subroutines. You can, however, step
over and into subprocedures.

Stepping Over Call Statements
You can step over call statements by using:
v F10 (Step) on the Display Module Source display
v The STEP OVER debug command

You can use F10 (Step) on the Display Module Source display to step over a call
statement in a debug session. If the call statement to be run is a CALL operation to
another program object, then pressing F10 (Step) will cause the called program
object to run to completion before the calling program object is stopped again.
Similarly, if the call statement is an EVAL operation where a procedure is called in
the expression, then the complete EVAL operation is performed, including the call
to the procedure, before the calling program or procedure is stopped again.

Alternately, you can use the STEP OVER debug command to step over a call
statement in a debug session. To use the STEP OVER debug command, type:
STEP number-of-statements OVER

on the debug command line. The variable number-of-statements is the number of
statements that you want to run in the next step before processing is halted again.
If this variable is omitted, the default is 1.

Stepping Through the Program Object

Chapter 12. Debugging Programs 259

Stepping Into Call Statements
You can step into a call statement by using:
v F22 (Step into) on the Display Module Source display
v The STEP INTO debug command

You can use F22 (Step into) on the Display Module Source display to step into a
called program or procedure in a debug session. If the next statement to be run is
a call statement to another program or procedure, then pressing F22 (Step into)
will cause the first runnable statement in the called program or procedure to be
run. The called program or procedure will then be shown in the Display Module
Source display.

Note: The called program or procedure must have debug data associated with it in
order for it to be shown in the Display Module Source display.

Alternately, you can use the STEP INTO debug command to step into a call
statement in a debug session. To use the STEP INTO debug command, type:
STEP number-of-statements INTO

on the debug command line. The variable number-of-statements is the number of
statements that you want to run in the next step before processing is halted again.
If this variable is omitted, the default is 1.

If one of the statements that are run contains a call statement the will step into the
called program or procedure. Each statement in the called program or procedure
will be counted in the step. If the step ends in the called program or procedure,
then the called program or procedure will be shown in the Display Module Source
display. For example, if you type
STEP 5 INTO

on the debug command line, the next five statements of the program object are
run. If the third statement is a CALL operation to another program object, then
two statements of the calling program object are run and the first three statements
of the called program object are run.

In the example of DEBUGEX, if you enter STEP INTO (or press F22) while on the
EVAL operation that calls the procedure c_proc, then you would step into the C
module.

The STEP INTO command works with the CL CALL command as well. You can
take advantage of this to step through your program after calling it. After starting
the source , from the initial Display Module Source display, enter
STEP 1 INTO

This will set the step count to 1. Use the F12 key to return to the command line
and then call the program. The program will stop at the first statement with debug
data.

TIP
In order to display data immediately before or after a subprocedure is run,
place breakpoints on the procedure specifications that begin and end the
subprocedure.

Stepping Through the Program Object

260 ILE RPG Programmer’s Guide

Example of Stepping Into an OPM Program Using F22
In this example, you use the F22 (Step Into) to step into the OPM program
RPGPGM from the program DEBUGEX.
1. Ensure that the Display Module Source display shows the source for DBGEX.
2. To set an unconditional breakpoint at line 102, which is the last runnable

statement before the CALL operation, type Break 102 and press Enter.
3. Press F3 (End program) to leave the Display Module Source display.
4. Call the program. The program stops at breakpoint 102, as shown in Figure 119.

5. Press F22 (Step into). One statement of the program runs, and then the Display
Module Source display of RPGPGM is shown, as in Figure 120 on page 262.
In this case, the first runnable statement of RPGPGM is processed (line 13) and
then the program stops.

Note: You cannot specify the number of statements to step through when you
use F22. Pressing F22 performs a single step.

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

98 * Fld1a is an overlay field of Fld1. Since Fld1 is initialized
99 * to 'ABCDE', the value of Fld1a(1) is 'A'. After the
100 * following MOVE operation, the value of Fld1a(1) is '1'.
101 *---
102 C MOVE '1' Fld1a(1)
103
104 *---
105 * Call the program RPGPGM, which is a separate program object.
106 *---
107 C Plist1 PLIST
108 C PARM PARM1
109 C CALL 'RPGPGM' Plist1
110
111 *---
112 * Call c_proc, which imports ExportFld from the main procedure.

More...
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Breakpoint at line 102.

Figure 119. Display Module Source display of DBGEX Before Stepping Into RPGPGM

Stepping Through the Program Object

Chapter 12. Debugging Programs 261

If the ILE source is not set to accept OPM programs, or if there is no debug data
available, then you will see a blank Display Module Source display with a message
indicating that the source is not available. (An OPM program has debug data if it
was compiled with OPTION(*SRCDBG) or OPTION(*LSTDBG).)

Example of Stepping Into a Subprocedure
In this example, you use the F22 (Step Into) to step into the subprocedure Switch,
which is in the module DEBUGEX.
1. Ensure that the Display Module Source display shows the source for DBGEX.
2. To set an unconditional breakpoint at line 120, which is the last runnable

statement before the CALLP operation, type Break 120 and press Enter.
3. Press F3 (End program) to leave the Display Module Source display.
4. Call the program. The program stops at breakpoint 119.
5. Press F22 (Step into). The call statement is run and then the display moves to

the subprocedure, as in Figure 121 on page 263. The first runnable statement of
RPGPGM is processed (line 13) and then processing stops.

Display Module Source
Program: RPGPGM Library: MYLIB

1 *===
2 * RPGPGM - Program called by DEBUGEX to illustrate the STEP
3 * functions of the ILE source .
4 *
5 * This program receives a parameter InputParm from DEBUGEX,
6 * displays it, then returns.
7 *===
8
9 D InputParm S 4P 3
10
11 C *ENTRY PLIST
12 C PARM InputParm
13 C InputParm DSPLY
14 C SETON

Bottom
Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Step completed at line 13.

Figure 120. Stepping into RPGPGM

Stepping Through the Program Object

262 ILE RPG Programmer’s Guide

Displaying Data and Expressions
You can display the contents of fields, data structures, and arrays, and you can
evaluate expressions. There are two ways to display or evaluate:
v F11 (Display Variable)
v EVAL debug command

For simple qualified names, of the form DS.SUBF, you can use either of these
commands to display or change the variable:
EVAL SUBF OF DS
EVAL DS.SUBF

For complex qualified names, use the dot-qualification form of the name:
EVAL FAMILY.CHILD(2).PETS.PET(3).NAME

The scope of the fields used in the EVAL command can be defined by using the
QUAL command in languages such as ILE C. However, this command does not
currently apply to ILE RPG,

Note: You cannot display return values because there is no external name available
for use with the EVAL debug command.

The easiest way to display data or an expression is to use F11 (Display variable) on
the Display Module Source display. To display a field using F11 (Display variable),
place your cursor on the field that you want to display and press F11 (Display
variable). The current value of the field is shown on the message line at the bottom
of the Display Module Source display.

In cases where you are evaluating structures, records, or arrays, the message
returned when you press F11 (Display variable) may span several lines. Messages
that span several lines are shown on the Evaluate Expression display to show the

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

141
142 *===
143 * Define the subprocedure Switch.
144 *===
145 P Switch B
146 D Switch PI
147 D Parm 1A
148 *---
149 * Define a local variable for debugging purposes.
150 *---
151 D Local S 5A INZ('aaaaa')
152
153 C IF Parm = '1'
154 C EVAL Parm = '0'
155 C ELSE

Debug . . . ___

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
Step completed at line 145.

Figure 121. Stepping into Subprocedure Switch

Stepping Through the Program Object

Chapter 12. Debugging Programs 263

entire text of the message. Once you have finished viewing the message on the
Evaluate Expression display, press Enter to return to the Display Module Source
display.

To display data using the EVAL debug command, type:
EVAL field-name

on the debug command line. The variable field-name is the name of the field, data
structure, or array that you want to display or evaluate. The value is shown on the
message line if the EVAL debug command is entered from the Display Module
Source display and the value can be shown on a single line. Otherwise, it is shown
on the Evaluate Expression display.

Figure 122 shows an example of using the EVAL debug command to display the
contents of a subfield LastName.

Figure 123 on page 265 shows the use of the EVAL command with different types
of RPG fields. The fields are based on the source in Figure 131 on page 280.
Additional examples are also provided in the source online help.

Display Module Source
Program: DEBUGEX Library: MYLIB Module: DBGEX

61 D LastName 10A INZ('Jones ')
62 D FirstName 10A INZ('Fred ')
63
64 *---
65 * Define prototypes for called procedures c_proc and switch
66 *---
67 D c_proc PR * EXTPROC('c_proc')
68 D size 10U 0 VALUE
69 D inzval 1A CONST
70
71 D Switch PR
72 D Parm 1A
73
74 *---
75 * Define parameters for non-prototyped call

More...
Debug . . . eval LastName__

F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
LASTNAME = 'Jones '

Figure 122. Displaying a Field using the EVAL debug command

Stepping Through the Program Object

264 ILE RPG Programmer’s Guide

Unexpected Results when Evaluating Variables
If you specify OPTION(*NOUNREF) on the command or Control specification
keyword, unreferenced variables in your program source are not generated into the
RPG module. If you try to evaluate the unreferenced variable in the debugger, the
debugger will indicate that the variable does not exist.

If you are surprised at the value of variables while debugging, check if any of the
following is true:
v Your module is optimized. If the module is optimized, the may not show the

most current value of a variable. Also if you change a variable using the
debugger, the effects of your change may not be reflected in the way the
program runs.

Scalar Fields RPG Definition
> EVAL String 6A INZ('ABCDEF')

STRING = 'ABCDEF'
> EVAL Packed1D0 5P 2 INZ(-93.4)

PACKED1D0 = -093.40
> EVAL ZonedD3D2 3S 2 INZ(-3.21)

ZONEDD3D2 = -3.21
> EVAL Bin4D3 4B 3 INZ(-4.321)

BIN4D3 = -4.321
> EVAL Int3 3I 0 INZ(-128)

INT3 = -128
> EVAL Int5 5I 0 INZ(-2046)

INT5 = -2046
> EVAL Int10 10I 0 INZ(-31904)

INT10 = -31904
> EVAL Int20 20I 0 INZ(-463972)

INT20 = -463972
> EVAL Unsigned3 3U 0 INZ(128)

UNSIGNED3 = 128
> EVAL Unsigned5 5U 0 INZ(2046)

UNSIGNED5 = 2046
> EVAL Unsigned10 10U 0 INZ(31904)

UNSIGNED10 = 31904
> EVAL Unsigned20 20U 0 INZ(463972)

UNSIGNED20 = 463972
> EVAL DBCSString 3G INZ(G'~BBCCDD~')

DBCSSTRING = '"BBCCDD"'
> EVAL NullPtr * INZ(*NULL)

NULLPTR = SYP:*NULL
Based Fields
> EVAL String 6A INZ('ABCDEF')

STRING = 'ABCDEF'
> EVAL BasePtr * INZ(%ADDR(String))

BASEPTR = SPP:C01947001218
> EVAL BaseString 6A BASED(BasePtr)

BASESTRING = 'ABCDEF'
Date, Time, Timestamp Fields
> EVAL BigDate D INZ(D'9999-12-31')

BIGDATE = '9999-12-31'
> EVAL BigTime T INZ(T'12.00.00')

BIGTIME = '12.00.00'
> EVAL BigTstamp Z INZ(Z'9999-12-31-12.00.00.000000

BIGTSTAMP = '9999-12-31-12.00.00.000000'

Figure 123. Sample EVAL commands based on Module DBGEX

Stepping Through the Program Object

Chapter 12. Debugging Programs 265

#
#
#
#

v Some input fields are not being read from the file. Normally, input fields that are
not used in the program are not affected by an input operation. If you specify
the DEBUG keyword on your control specification with no parameters, or with a
parameter of either *INPUT or *YES, all input fields will be read in.

Displaying the Contents of an Array
Specifying an array name with EVAL will display the full array. To display one
element of an array, specify the index of the element you wish to display in
parentheses.

To display a range of elements use the following range notation:
EVAL field-name (n...m)

The variable field-name is the name of the array, the variable n is a number
representing the start of the range, and the variable m is a number representing the
end of the range.

Figure 124 shows the use of EVAL with the array in DBGEX.

Displaying the Contents of a Table
Using EVAL on a table will result in a display of the current table element. You can
display the whole table using the range notation. For example, to display a
3-element table, type:
EVAL TableA(1..3)

You can change the current element using the %INDEX built-in function. To
determine the value of the table index, enter the following command:
EVAL _QRNU_TABI_name

where name represents the table name in question.

Figure 125 on page 267 shows the use of EVAL with the table in DBGEX.

> EVAL Arry 3S 2 DIM(2) INZ(1.23)
ARRY(1) = 1.23 ** Display full array **
ARRY(2) = 1.23

> EVAL Arry(2) ** Display second element **
ARRY(2) = 1.23

> EVAL Arry(1..2) ** Display range of elements **
ARRY(1) = 1.23
ARRY(2) = 1.23

Figure 124. Sample EVAL commands for an Array

Stepping Through the Program Object

266 ILE RPG Programmer’s Guide

Displaying Data Structures
You display the contents of a data structure or its subfields as you would any
standalone field. You simply use the data structure name after EVAL to see the
entire contents, or the subfield name to see a subset.

If the data structure is qualified, specify the subfields using either of the following
notations:
EVAL subfield-name OF datastructure-name

EVAL datastructure-name.subfield-name:

For example, to display subfield NAME of qualified data structure INFO, type one
of the following:
EVAL NAME OF INFO

EVAL NAME OF INFO EVAL INFO.NAME

When displaying a multiple-occurrence data structure, an EVAL on the data
structure name will show the subfields using the current index. To specify a
particular occurrence, specify the index in parentheses following the data structure
name. For example, to display the contents of the second occurrence of DS1, type:
EVAL DS1(2)

Similarly, to view the contents of a particular occurrence of a subfield, use the
index notation.

To determine the value of the current index, enter the following command:
EVAL _QRNU_DSI_name

where name represents the data structure name in question.

If a subfield is defined as an array overlay of another subfield, to see the contents
of the overlay subfield, you can use the %INDEX built-in function to specify the
occurrence, and the index notation to specify the array.

3 DIM(3) CTDATA
Compile-time data: **

> EVAL TableA ** Show value at aaa
TABLEA = 'aaa' current index bbb

ccc
> EVAL TableA(1) ** Specify index 1 **

TABLEA(1) = 'aaa'
> EVAL TableA(2) ** Specify index 2 **

TABLEA(2) = 'bbb'
> EVAL _QRNU_TABI_TableA ** Display value of current index **

_QRNU_TABI_TABLEA = 1
> EVAL TableA(1..3) ** Specify the whole table **

TABLEA(1) = 'aaa'
TABLEA(2) = 'bbb'
TABLEA(3) = 'ccc'

> EVAL TableA=%INDEX(3) ** Change current index to 3 **
> EVAL TableA

TABLEA = 'ccc'

Figure 125. Sample EVAL commands for a Table

Stepping Through the Program Object

Chapter 12. Debugging Programs 267

An alternative way of displaying a subfield which is an array overlay is to use the
following notation:
EVAL subfield-name(occurrence-index,array-index)

where the variable subfield-name is the name of the subfield you wish to display,
occurrence-index is the number of the array occurrence to display, and array-index is
the number of the element to display.

Figure 126 shows some examples of using EVAL with the the data structures
defined in DBGEX.

To display a data structure for which no subfields have been defined, you must
use the character display function of EVAL which is discussed below.

Displaying Indicators
Indicators are defined as 1-byte character fields. Except for indicators such as
*INLR, you can display indicators either as ’*INxx’ or ’*IN(xx)’. Because the system

** Note that you can enter the data structure name or a subfield name. **
> EVAL DS3

TITLE OF DS3 = 'Mr. ' 5A INZ('Mr. ')
LASTNAME OF DS3 = 'Jones ' 10A INZ('Jones ')
FIRSTNAME OF DS3 = 'Fred ' 10A INZ('Fred ')

> EVAL LastName
LASTNAME = 'Jones '

> EVAL DS1 OCCURS(3)
FLD1 OF DS1 = 'ABCDE' 5A INZ('ABCDE')
FLD1A OF DS1(1) = 'A' 1A DIM(5) OVERLAY(Fld1)
FLD1A OF DS1(2) = 'B' 5B 2 INZ(123.45)
FLD1A OF DS1(3) = 'C'
FLD1A OF DS1(4) = 'D'
FLD1A OF DS1(5) = 'E'
FLD2 OF DS1 = 123.45

> EVAL _QRNU_DSI_DS1 ** Determine current index value **
_QRNU_DSI_DS1 = 1

> EVAL DS1=%INDEX(2) ** Change the occurrence of DS1 **
DS1=%INDEX(2) = 2

> EVAL Fld1 ** Display a Subfield **
FLD1 = 'ABCDE' (current occurrence)

> EVAL fld1(2)
FLD1(2) = 'ABCDE' (second occurrence)

> EVAL Fld1a ** Display an Array Overlay Subfield **
FLD1A OF DS1(1) = 'A' (current occurrence)
FLD1A OF DS1(2) = 'B'
FLD1A OF DS1(3) = 'C'
FLD1A OF DS1(4) = 'D'
FLD1A OF DS1(5) = 'E'

> EVAL Fld1a(2,1) ** Display 2nd occurrence, 1st element **
FLD1A(2,1) = 'A'

> EVAL Fld1a(2,1..2) ** Display 2nd occurrence, 1st - 2nd elements **
FLD1A(2,1) = 'A'
FLD1A(2,2) = 'B'

> EVAL QUALDS.ID_NUM ** Display a subfield of a qualified DS
QUALDS.ID_NUM = 1100022

> EVAL LIKE_QUALDS.ID_NUM ** Display the same subfield in a different DS
LIKE_QUALDS.ID_NUM = 0

> EVAL LIKE_QUALDS.COUNTRY(1) ** An array element from a qualified DS
LIKE_QUALDS.COUNTRY(1) = 'CANADA'

> EVAL cust(1).parts.item(2).Id_Num ** Display a subfield of a complex structure
CUST(1).PARTS.ITEM(2).ID_NUM = 15

Figure 126. Using EVAL with Data Structures

Stepping Through the Program Object

268 ILE RPG Programmer’s Guide

stores indicators as an array, you can display them all or some subset of them
using the range notation. For example, if you enter EVAL *IN, you will get a list of
indicators 01 to 99. To display indicators *IN01 to *IN06 you would enter EVAL
*IN(1..6).

Figure 127 shows each of these ways using the indicators as they were set in
DBGEX.

Displaying Fields as Hexadecimal Values
You can use the EVAL debug command to display the value of fields in
hexadecimal format. To display a variable in hexadecimal format, type:
EVAL field-name: x number-of-bytes

on the debug command line. The variable field-name is the name of the field that
you want to display in hexadecimal format. 'x' specifies that the field is to be
displayed in hexadecimal format. The variable number-of-bytes indicates the number
of bytes displayed. If no length is specified after the 'x', the size of the field is used
as the length. A minimum of 16 bytes is always displayed. If the length of the field
is less than 16 bytes, then the remaining space is filled with zeroes until the 16 byte
boundary is reached.

For example, the field String is defined as six-character string. To find out the
hexadecimal equivalent of the first 3 characters, you would enter:
EVAL String: x 3

Result:
00000 C1C2C3.. - ABC.............

Displaying Fields in Character Format
You can use the EVAL debug command to display a field in character format. To
display a variable in character format, type:
EVAL field-name: c number-of-characters

on the debug command line. The variable field-name is the name of the field that
you want to display in character format. 'c' specifies the number of characters to
display.

> EVAL IN02
Identifier does not exist.

> EVAL *IN02
*IN02 = '1'

> EVAL *IN(02)
*IN(02) = '1'

> EVAL *INLR
*INLR = '0'

> EVAL *IN(LR)
Identifier does not exist.

> EVAL *IN(1..6) ** To display a range of indicators **
*IN(1) = '0'
*IN(2) = '1'
*IN(3) = '0'
*IN(4) = '1'
*IN(5) = '0'
*IN(6) = '1'

Figure 127. Sample EVAL commands for an Array

Stepping Through the Program Object

Chapter 12. Debugging Programs 269

For example, in the program DEBUGEX, data structure DS2 does not have any
subfields defined. Several MOVE operations move values into the subfield.

Because there are no subfields defined, you cannot display the data structure.
Therefore, to view its contents you can use the character display function of EVAL.
EVAL DS2:C 20 Result: DS2:C 20 = 'aaaaaaaaaabbbbbbbbbb'

Displaying UCS-2 Data
The value displayed for UCS-2 fields has been translated into readable characters.
For example, if a UCS-2 field has been set to %UCS2(’abcde’), then the value
displayed for that field would be ’abcde’. You can display UCS-2 data in any field
by using the :u suffix for EVAL.

Displaying Variable-Length Fields
When you use EVAL fldname for a variable length field, only the data portion of
the field is shown. When you use any suffix such as :c or :x for the field, the entire
field including the length is shown. To determine the current length of a variable
length field, use EVAL fldname:x. The length is the first four hexadecimal digits, in
binary format. You must convert this value to decimal form to get the length; for
example, if the result is 003DF1F2..., the length is 003D which is (3 * 16) + 13 = 61.

Displaying Data Addressed by Pointers
If you want to see what a pointer is pointing to, you can use the EVAL command
with the :c or :x suffix. For example, if pointer field PTR1 is pointing to 10 bytes of
character data,
EVAL PTR1:c 10

will show the contents of those 10 bytes.

You can also show the contents in hexadecimal using:
EVAL PTR1:x 10

This would be especially useful when the data that the pointer addresses is not
stored in printable form, such as packed or binary data.

If you have a variable FLD1 based on basing pointer PTR1 that is itself based on a
pointer PTR2, you will not be able to evaluate FLD1 using a simple EVAL
command in the debugger.

Instead, you must explicitly give the debugger the chain of basing pointers:
===> EVAL PTR2->PTR1->FLD1

For example, if you have the following definitions:
D pPointers S *
D pointers DS based(pPointers)
D p1 *
D p2 *
D data1 S 10A based(p1)
D data2 S 10A based(p2)

you can use these commands in the debugger to display or change the values of
DATA1 and DATA2:
===> eval pPointers->p1->data1
===> eval pPointers->p2->data2 = 'new value'

Stepping Through the Program Object

270 ILE RPG Programmer’s Guide

#
#
#

#

#

#

#

#
#

#
#
#

#

#

#

#
#
#
#
#
#

#
#

#
#

To determine the expression to specify in the debugger, you start from the end of
the expression with the value that you want to evaluate:
data1

Then you move to the left and add the name that appears in the BASED keyword
for the definition of data1, which is p1:
p1->data1

Then you move to the left again and add the name that appears in the BASED
keyword for the definition of p1, which is pPointers:
pPointers->p1->data1

The expression is complete when the pointer that you have specified was not
defined with the BASED keyword. In this case, pPointers is not defined as based,
so the debug expression is now complete.
===> eval pPointers->p1->data1

Evaluating Based Variables
When a variable is based on a pointer, the variable might not be available for
evaluation by the debugger using a normal EVAL command. This can happen
when the basing pointer is itself based, or when the basing pointer is an entry
parameter passed by reference (including read-only reference using the CONST
keyword).

For example, in the following program, ″basedFld″ is based on pointer ″parmPtr″
which is an input parameter.

To evaluate ″basedFld″ in the debugger, use one of these methods:

1. Evaluate the basing pointer using the :c or :x notation described in “Displaying
Data Addressed by Pointers” on page 270. For example

===> eval parmPtr:c
===> eval parmPtr:x

Note: this method does not work well with data that has a hexadecimal
representation that does not resemble the natural representation, such as
packed, integer or UCS-2 data.

2. Use the debugger’s ″arrow″ notation to explicitly specify the basing pointer.
This method can also be used to change the variable.

===> eval parmPtr->basedFld
===> eval parmPtr->basedFld = 'abcde'

If a variable has more than two levels of basing pointer, the second method must
be used. For example, in the following program, variable ″basedVal″ has three
levels of basing pointer; it is based on pointer ″p1″ which is based on pointer ″p2″
which is further based on pointer ″p3″. Variable ″basedVal″ cannot be evaluated in
the debugger using simply ″EVAL basedVal″.

/copy myPgmProto
D myPgm pi
D parmPtr *
D basedFld s 5a based(parmPtr)

Stepping Through the Program Object

Chapter 12. Debugging Programs 271

#
#

#

#
#

#

#
#

#

#
#
#

#

#

To display a variable such as ″basedVal″, use the debugger’s p1->p2->name notation
to explicitly specify the basing pointer. To use this notation, specify the variable
you want to display, then working to the left, specify the basing pointer name
followed by an arrow (->). If the basing pointer is itself based, specify the second
basing pointer followed by an arrow, to the left of the previous basing pointer.

For example, to evaluate basedVal:
===> EVAL p3->p2->p1->basedVal

aaaaaaaa
bbbb

cccc
dddd

a. variable name
b. basing pointer of variable ->
c. basing pointer of basing pointer ->
d. and so on

Displaying Null-Capable Fields
You can use the EVAL debug command to display the null indicator of a
null-capable field. The null indicator is an internal variable (similar to the index
variable for multiple-occurrence DS) which is named _QRNU_NULL_fieldname.
The fieldname can be the name of an array if the array is null-capable.

When the debugger displays a null-capable field, the content of the field is
displayed regardless of whether the field is considered null. For example, suppose
FLD1 is null-capable, and is currently null. Then the result of EVAL
_QRNU_NULL_FLD1 is ’1’ and EVAL FLD1 shows the current content of FLD1,
even though its null indicator is on.
EVAL _QRNU_NULL_FLD1 Result: _QRNU_NULL_FLD1 = '1'

EVAL FLD1 Result: FLD1 = 'abcde'

If a data structure has null-capable subfields, the null indicators for all the
null-capable subfields of the data structure are themselves stored as subfields of
the data structure _QRNU_NULL_dsname.

If the data structure is not qualified, the null indicator data structure is not
qualified. The names of the null capable subfields are in the form
_QRNU_NULL_subfieldname.

For example, if qualified data structure DS1 has null-capable subfields FLD1 and
FLD2 and non-null-capable subfield FLD3, then the data structure

D storage s 5a inz('abcde')
D val s 5a
D basedVal s 5a based(p1)
D p1 s * based(p2)
D p2 s * based(p3)
D p3 s *
D ptr1 s * inz(%addr(storage))
D ptr2 s * inz(%addr(ptr1))
D ptr3 s * inz(%addr(ptr2))
C eval p3 = ptr3
C eval p2 = ptr2
C eval p1 = ptr1
C eval val = basedVal

Stepping Through the Program Object

272 ILE RPG Programmer’s Guide

_QRNU_NULL_DS1 would have indicator subfields _QRNU_NULL_NULLFLD1
and NULL2. To display all the null-capable subfields of the data structure, use the
debug command
EVAL _QRNU_NULL_DS1 Result: _QRNU_NULL_FLD1 OF _QRNU_NULL_DS1 = '1'

_QRNU_NULL_FLD1 OF _QRNU_NULL_DS1 = '0'

If the data structure is qualified, the null indicator data structure is qualified. The
names of the null capable subfields are the same as the names of the data structure
subfields.

For example, if qualified data structure DS2 has null-capable subfields F1 and F2
and non-null-capable subfield F3, then the data structure _QRNU_NULL_DS2
would have indicator subfields F1 and F2. To display all the null-capable subfields
of the data structure, use this debug command:
EVAL _QRNU_NULL_DS2 Result: _QRNU_NULL_DS2.F1 = '0'

_QRNU_NULL_DS2.F2 = '1'

To display the null indicator of a variable, use the same EVAL expression in the
debugger as you would use to access the variable itself, replacing the outermost
name with _QRNU_NULL_name.
EVAL FLD1 Result: 'abc'
EVAL _QRNU_NULL_FLD1 Result: '0'

EVAL SUBF2 Result: 0
EVAL _QRNU_NULL_SUBF2 Result: '1'

EVAL ARR(3) Result: 13
EVAL _QRNU_NULL_ARR(3) Result: '1'

EVAL DS3.INFO(2).SUB4 Result: 'xyz'
EVAL _QRNU_NULL_DS3.INFO(2).SUB4 Result: '0'

Using Debug Built-In Functions
The following built-in functions are available while using the ILE source debugger:

%SUBSTR
Substring a string field.

%ADDR
Retrieve the address of a field.

%INDEX
Change the index of a table or multiple-occurrence data structure.

%VARS
Identifies the specified parameter as a variable.

The %SUBSTR built-in function allows you to substring a string variable. The first
parameter must be a string identifier, the second parameter is the starting position,
and the third parameter is the number of single-byte or double-byte characters. In
addition. the second and third parameters must be positive, integer literals.
Parameters are delimited by one or more spaces.

Use the %SUBSTR built-in function to:
v Display a portion of a character field
v Assign a portion of a character field
v Use a portion of a character field on either side of a conditional break

expression.

Stepping Through the Program Object

Chapter 12. Debugging Programs 273

Figure 128 shows some examples of the use of %SUBSTR based on the source in
Figure 131 on page 280.

To change the current index, you can use the %INDEX built-in function, where the
index is specified in parentheses following the function name. An example of
%INDEX is found in the table section of Figure 125 on page 267 and Figure 126 on
page 268.

Note: %INDEX will change the current index to the one specified. Therefore, any
source statements which refer to the table or multiple-occurrence data
structure subsequent to the EVAL statement may be operating with a
different index than expected.

Use the %VARS debug built-in function when the variable name conflicts with any
of the debug command names. For example, EVAL %VAR(EVAL) can be used to
evaluate a variable named EVAL, whereas EVAL EVAL would be a syntax error.

Debugging an XML-SAX Handling Procedure
The second parameter passed to an XML-SAX event handling procedure is a
numeric value indicating which SAX event was discovered by the parser.

In your RPG code, you can test the event value using special values like
*XML_START_ELEMENT and *XML_DOCTYPE_DECL.

However, these special values are not available in the debugger. Instead, you can
use a special array that is made available if you code the DEBUG(*XMLSAX)

> EVAL String
STRING = 'ABCDE '

** Display the first two characters of String **
> EVAL %substr (String 1 2)

%SUBSTR (STRING 1 2) = 'AB'
> EVAL TableA

TABLEA = 'aaa'
** Display the first character in the first table element **
> EVAL %substr(TableA 1 1)

%SUBSTR(TABLEA 1 1) = 'a'
> EVAL BigDate

BIGDATE = '1994-10-23'
** Set String equal to the first four characters of BigDate **
> EVAL String=%substr(BigDate 1 4)

STRING=%SUBSTR(BIGDATE 1 4) = '1994 '
> EVAL Fld1 (5 characters)

FLD1 = 'ABCDE'
> EVAL String (6 characters)

STRING = '123456'
** Set the characters 2-5 of String equal to the

first four characters of Fld1 **
> EVAL %substr(String 2 4) = %substr(Fld1 1 4)

%SUBSTR(STRING 2 4) = %SUBSTR(FLD1 1 4) = 'ABCD'
> EVAL String

STRING = '1ABCD6'
** You can only use %SUBSTR on character or graphic strings! **
> EVAL %substr (Packed1D0 1 2)

String type error occurred.

Figure 128. Examples of %SUBSTR using DBGEX

Stepping Through the Program Object

274 ILE RPG Programmer’s Guide

keyword in your Control specification. The name of the array is _QRNU_XMLSAX;
the values of the array elements are the same as the names of the special words,
minus the leading ″*XML_″.

For example, if the name of the second parameter of your XML-SAX event
handling procedure is ″xmlEvent″, then use the following debugger expression to
determine the name of the event:
EVAL _QRNU_XMLSAX(xmlEvent)

Result: _QRNU_XMLSAX(XMLEVENT) = 'START_DOCUMENT '

The third parameter passed to the event handler is a pointer to the data. See
“Displaying Data Addressed by Pointers” on page 270, using the value of the
fourth parameter to determine the length of the data, in bytes.

For an Exception event, the fifth parameter holds the error code related to the
parsing exception. See “Processing XML Documents” on page 185 for the meanings
of the error codes.

Changing the Value of Fields
You can change the value of fields by using the EVAL command with an
assignment operator (=).

The scope of the fields used in the EVAL command is defined by using the QUAL
command. However, you do not need to specifically define the scope of the fields
contained in an ILE RPG module because they are all of global scope.

To change the value of the field, type:
EVAL field-name = value

on the debug command line. field-name is the name of the variable that you want
to change and value is an identifier, literal, or constant value that you want to
assign to variable field-name. For example,
EVAL COUNTER=3

changes the value of COUNTER to 3 and shows
COUNTER=3 = 3

on the message line of the Display Module Source display.

Use the EVAL debug command to assign numeric, alphabetic, and alphanumeric
data to fields. You can also use the %SUBSTR built-in function in the assignment
expression.

When you assign values to a character field, the following rules apply:
v If the length of the source expression is less than the length of the target

expression, then the data is left justified in the target expression and the
remaining positions are filled with blanks.

v If the length of the source expression is greater than the length of the target
expression, then the data is left justified in the target expression and truncated to
the length of the target expression.

Note: Graphic fields can be assigned any of the following:
v Another graphic field

Stepping Through the Program Object

Chapter 12. Debugging Programs 275

v A graphic literal of the form G'oK1K2i'
v A hexadecimal literal of the form X'hex digits'

UCS-2 fields must be changed using hexadecimal constants. For example, since
%UCS2(’AB’) = U’00410042’, then to set a UCS-2 field to the UCS-2 form of ’AB’ in
the debugger, you would use EVAL ucs2 = X’00410042’.

Variable-length fields can be assigned using, for example, EVAL varfldname =
’abc’. This sets the data part of the field to ’abc’ and the length part to 3. To set the
length part without changing the data, determine the hexadecimal value of the
length (for example 11 is X’000B’), and use EVAL %SUBSTR(varfldname 1 2) =
X’000B’.

When assigning literals to fields, the normal RPG rules apply:
v Character literals should be in quotes.
v Graphic literals should be specified as G’oDDDDi’, where o is shift-out and i is

shift-in.
v Hexadecimal literals should be in quotes, preceded by an 'x'.
v Numeric literals should not be in quotes.

Note: You cannot assign a figurative constant to a field using the EVAL debug
command. Figurative constants are not supported by the EVAL debug
command.

To change the null indicator of a variable, use the same EVAL expression in the
debugger as you would use to access the variable itself, replacing the outermost
name with _QRNU_NULL_name.
EVAL FLD1 = 3
EVAL _QRNU_NULL_FLD1 = '0'

EVAL SUBF2 = 5
EVAL _QRNU_NULL_SUBF2 = '0'

EVAL ARR(3) = 0
EVAL _QRNU_NULL_ARR(3) = '1'

EVAL DS3.INFO(2).SUB4 = 'some value'
EVAL _QRNU_NULL_DS3.INFO(2).SUB4 = '0'

For more information on debugging null-capable fields, see “Displaying
Null-Capable Fields” on page 272. Figure 129 on page 277 shows some examples of
changing field values based on the source in Figure 131 on page 280. Additional
examples are also provided in the source debugger online help.

Changing the Value of Fields

276 ILE RPG Programmer’s Guide

Displaying Attributes of a Field
You can display the attributes of a field using the Attribute (ATTR) debug
command. The attributes are the size (in bytes) and type of the variable as
recorded in the debug symbol table.

Figure 130 on page 278 shows some examples of displaying field attributes based
on the source in Figure 131 on page 280. Additional examples are also provided in
the source debugger online help.

** Target Length = Source Length **
> EVAL String='123456' (6 characters)

STRING='123456' = '123456'
> EVAL ExportFld (6 characters)

EXPORTFLD = 'export'
> EVAL String=ExportFld

STRING=EXPORTFLD = 'export'
** Target Length < Source Length **
> EVAL String (6 characters)

STRING = 'ABCDEF'
> EVAL LastName (10 characters)

LASTNAME='Williamson' = 'Williamson'
> EVAL String=LastName

STRING=LASTNAME = 'Willia'
** Target Length > Source Length **
> EVAL String (6 characters)

STRING = '123456'
> EVAL TableA (3 characters)

TABLEA = 'aaa'
> EVAL String=TableA

STRING=TABLEA = 'aaa '
** Using %SUBSTR **
> EVAL BigDate

BIGDATE = '1994-10-23'
> EVAL String=%SUBSTR(BigDate 1 4)

STRING=%SUBSTR(BIGDATE 1 4) = '1994 '
** Substring Target Length > Substring Source Length **
> EVAL string = '123456'

STRING = '123456' = '123456'
> EVAL LastName='Williamson'

LASTNAME='Williamson' = 'Williamson'
> EVAL String = %SUBSTR(Lastname 1 8)

STRING = %SUBSTR(LASTNAME 1 8) = 'Willia'
** Substring Target Length < Substring Source Length **
> EVAL TableA

TABLEA = 'aaa'
> EVAL String

STRING = '123456'
> EVAL String=%SUBSTR(TableA 1 4)

Substring extends beyond end of string. ** Error **
> EVAL String

STRING = '123456'

Figure 129. Examples of Changing the Values of Fields based on DBGEX

Displaying Attributes of a Field

Chapter 12. Debugging Programs 277

Equating a Name with a Field, Expression, or Command
You can use the EQUATE debug command to equate a name with a field,
expression or debug command for shorthand use. You can then use that name
alone or within another expression. If you use it within another expression, the
value of the name is determined before the expression is evaluated. These names
stay active until a debug session ends or a name is removed.

To equate a name with a field, expression or debug command, type:
EQUATE shorthand-name definition

on the debug command line. shorthand-name is the name that you want to equate
with a field, expression, or debug command, and definition is the field, expression,
or debug command that you are equating with the name.

For example, to define a shorthand name called DC which displays the contents of
a field called COUNTER, type:
EQUATE DC EVAL COUNTER

on the debug command line. Now, each time DC is typed on the debug command
line, the command EVAL COUNTER is performed.

> ATTR NullPtr
TYPE = PTR, LENGTH = 16 BYTES

> ATTR ZonedD3D2
TYPE = ZONED(3,2), LENGTH = 3 BYTES

> ATTR Bin4D3
TYPE = BINARY, LENGTH = 2 BYTES

> ATTR Int3
TYPE = INTEGER, LENGTH = 1 BYTES

> ATTR Int5
TYPE = INTEGER, LENGTH = 2 BYTES

> ATTR Unsigned10
TYPE = CARDINAL, LENGTH = 4 BYTES

> ATTR Unsigned20
TYPE = CARDINAL, LENGTH = 8 BYTES

> ATTR Float4
TYPE = REAL, LENGTH = 4 BYTES

> ATTR Float8
TYPE = REAL, LENGTH = 8 BYTES

> ATTR Arry
TYPE = ARRAY, LENGTH = 6 BYTES

> ATTR tablea
TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES

> ATTR tablea(2)
TYPE = FIXED LENGTH STRING, LENGTH = 3 BYTES

> ATTR BigDate
TYPE = FIXED LENGTH STRING, LENGTH = 10 BYTES

> ATTR DS1
TYPE = RECORD, LENGTH = 9 BYTES

> ATTR SpcPtr
TYPE = PTR, LENGTH = 16 BYTES

> ATTR String
TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES

> ATTR *IN02
TYPE = CHAR, LENGTH = 1 BYTES

> ATTR DBCSString
TYPE = FIXED LENGTH STRING, LENGTH = 6 BYTES

Figure 130. Examples of Displaying the Attributes of Fields based on DBGEX

Equating a Name with a Field, Expression, or Command

278 ILE RPG Programmer’s Guide

The maximum number of characters that can be typed in an EQUATE command is
144. If a definition is not supplied and a previous EQUATE command defined the
name, the previous definition is removed. If the name was not previously defined,
an error message is shown.

To see the names that have been defined with the EQUATE debug command for a
debug session, type:
DISPLAY EQUATE

on the debug command line. A list of the active names is shown on the Evaluate
Expression display.

Source Debug National Language Support for ILE RPG
You should be aware of the following conditions that exist when you are working
with source debug National Language Support for ILE RPG
v When a view is displayed on the Display Module Source display, the source

debugger converts all data to the Coded Character Set Identifier (CCSID) of the
debug job.

v When assigning literals to fields, the source debugger will not perform CCSID
conversion on quoted literals (for example, 'abc'). Also, quoted literals are case
sensitive.

See the chapter on debugging in ILE Concepts for more information on NLS
restrictions.

Sample Source for Debug Examples
Figure 131 on page 280 shows the source for the main procedure of the program
DEBUGEX. Most of the examples and screens shown in this chapter are based on
this source. Figure 132 on page 283 and Figure 133 on page 284 show the source for
the called program RPGPGM and procedure cproc respectively.

The program DEBUGEX is designed to show the different aspects of the ILE source
debugger and ILE RPG formatted dumps. The sample dumps are provided in the
next chapter.

The following steps describe how the program DEBUGEX was created for use in
these examples:
1. To create the module DBGEX using the source in Figure 131 on page 280, type:

CRTRPGMOD MODULE(MYLIB/DBGEX) SRCFILE(MYLIB/QRPGLESRC) DBGVIEW(*ALL)
TEXT('Main module for Sample Debug Program')

DBGVIEW(*ALL) was chosen in order to show the different views available.
2. To create the C module using the source in Figure 133 on page 284, type:

CRTCMOD MODULE(MYLIB/cproc) SRCFILE(MYLIB/QCLESRC) DBGVIEW(*SOURCE)
TEXT('C procedure for Sample Debug Program')

3. To create the program DEBUGEX, type:
CRTPGM PGM(MYLIB/DEBUGEX) MODULE(MYLIB/DBGEX MYLIB/CPROC)

TEXT('Sample Debug Program')

The first module DBGEX is the entry module for this program. The program
will run in a new activation group (that is, *NEW) when it is called.

4. To create the called RPG program using the source in Figure 132 on page 283,
type:

Equating a Name with a Field, Expression, or Command

Chapter 12. Debugging Programs 279

CRTBNDRPG PGM(MYLIB/RPGPGM) DFTACTGRP(*NO)
DBGVIEW(*SOURCE) ACTGRP(*NEW)
TEXT('RPG program for Sample Debug Program')

We could have created RPGPGM to run in the OPM default activation group.
However, we decided to have it run in the same activation group as
DEBUGEX, and since DEBUGEX needs only a temporary activation group,
*NEW was chosen for both programs.

===
* DEBUGEX - Program designed to illustrate use of ILE source
* debugger with ILE RPG source. Provides a
* sample of different data types and data structures.
*
* Can also be used to produce sample formatted dumps.
===

* The DEBUG keyword enables the formatted dump facility.

H DEBUG

* Define standalone fields for different ILE RPG data types.

D String S 6A INZ('ABCDEF')
D Packed1D0 S 5P 2 INZ(-93.4)
D ZonedD3D2 S 3S 2 INZ(-3.21)
D Bin4D3 S 4B 3 INZ(-4.321)
D Bin9D7 S 9B 7 INZ(98.7654321)
D DBCSString S 3G INZ(G'"BBCCDD"')
D UCS2String S 5C INZ(%UCS2('ucs-2'))
D CharVarying S 5A INZ('abc') VARYING
D Int3 S 3I 0 INZ(-128)
D Int5 S 5I 0 INZ(-2046)
D Int10 S 10I 0 INZ(-31904)
D Int20 S 20I 0 INZ(-463972)
D Unsigned3 S 3U 0 INZ(128)
D Unsigned5 S 5U 0 INZ(2046)
D Unsigned10 S 10U 0 INZ(31904)
D Unsigned20 S 20U 0 INZ(463972)
D Float4 S 4f INZ(7.2098)
D Float8 S 8f INZ(-129.0978652)
D DBCSString S 3G INZ(G'"BBCCDD"')

Figure 131. Source for Module DBGEX (Part 1 of 4). DBGEX is the main module of the
program DEBUGEX.

Sample Source for Debug Examples

280 ILE RPG Programmer’s Guide

* Pointers
D NullPtr S * INZ(*NULL)
D BasePtr S * INZ(%ADDR(String))
D ProcPtr S * ProcPtr INZ(%PADDR('c_proc'))
D BaseString S 6A BASED(BasePtr)
D BaseOnNull S 10A BASED(NullPtr)
*
D Spcptr S *
D SpcSiz C 8
* Date, Time, Timestamp
D BigDate S D INZ(D'9999-12-31')
D BigTime S T INZ(T'12.00.00')
D BigTstamp S Z INZ(Z'9999-12-31-12.00.00.000000')
* Array
D Arry S 3S 2 DIM(2) INZ(1.23)
* Table
D TableA S 3 DIM(3) CTDATA

* Define different types of data structures.

D DS1 DS OCCURS(3)
D Fld1 5A INZ('ABCDE')
D Fld1a 1A DIM(5) OVERLAY(Fld1)
D Fld2 5B 2 INZ(123.45)
*
D DS2 DS 10 OCCURS(2)
*
D DS3 DS
D Title 5A INZ('Mr. ')
D LastName 10A INZ('Jones ')
D FirstName 10A INZ('Fred ')

D QUALDS DS QUALIFIED
D Id_Num 8S 0
D Country 20A DIM(10)
D LIKE_QUALDS DS LIKEDS(QUALDS)
D itemInfo DS QUALIFIED
D ID_Num 10I 0
D name 25A
D items DS QUALIFIED
D numItems 10I 0
D item LIKEDS(itemInfo) DIM(10)
D cust DS QUALIFIED DIM(10)
D name 50A
D parts LIKEDS(items)

* Define prototypes for called procedures c_proc and switch

D c_proc PR * EXTPROC('c_proc')
D size 10U 0 VALUE
D inzval 1A CONST
D Switch PR
D Parm 1A

* Define parameters for non-prototyped call
* PARM1 is used when calling RPGPROG program.

D PARM1 S 4P 3 INZ(6.666)
D EXPORTFLD S 6A INZ('export') EXPORT

Figure 131. Source for Module DBGEX (Part 2 of 4). DBGEX is the main module of the
program DEBUGEX.

Sample Source for Debug Examples

Chapter 12. Debugging Programs 281

===
* Now the operation to modify values or call other objects.
===

* Move 'a's to the data structure DS2. After the move, the
* first occurrence of DS2 contains 10 character 'a's.

C MOVE *ALL'a' DS2

* Change the occurrence of DS2 to 2 and move 'b's to DS2,
* making the first 10 bytes 'a's and the second 10 bytes 'b's.

C 2 OCCUR DS2
C MOVE *ALL'b' DS2

* Fld1a is an overlay field of Fld1. Since Fld1 is initialized
* to 'ABCDE', the value of Fld1a(1) is 'A'. After the
* following MOVE operation, the value of Fld1a(1) is '1'.

C MOVE '1' Fld1a(1)

* Call the program RPGPGM, which is a separate program object.

C Plist1 PLIST
C PARM Parm1
C CALL 'RPGPGM' Plist1

* Call c_proc, which imports ExportFld from the main procedure.

C EVAL SpcPtr = c_proc(SpcSiz : 'P')

* Call a local subprocedure Switch, which reverses the value of
* an indicator.

C EVAL *IN10 = '0'
C CALLP Switch(*in10)

Figure 131. Source for Module DBGEX (Part 3 of 4). DBGEX is the main module of the
program DEBUGEX.

Sample Source for Debug Examples

282 ILE RPG Programmer’s Guide

* After the following SETON operation, *IN02 = 1.

C SETON 020406
C IF *IN02 = '1'
C MOVE '1994-09-30' BigDate
C ENDIF

* Put a new value in the second cell of Arry.

C MOVE 4 Arry

* Now start a formatted dump and return, by setting on LR.

C DUMP
C SETON LR
===
* Define the subprocedure Switch.
===
P Switch B
D Switch PI
D Parm 1A

* Define a local variable for debugging purposes.

D Local S 5A INZ('aaaaa')
C IF Parm = '1'
C EVAL Parm = '0'
C ELSE
C EVAL Parm = '1'
C ENDIF
P Switch E
===
* Compile-time data section for Table. *
===

**
aaa
bbb
ccc

Figure 131. Source for Module DBGEX (Part 4 of 4). DBGEX is the main module of the
program DEBUGEX.

===
* RPGPGM - Program called by DEBUGEX to illustrate the STEP *
* functions of the ILE source debugger. *
* *
* This program receives a parameter InputParm from DEBUGEX, *
* displays it, then returns. *
===
D InputParm S 4P 3
C *ENTRY PLIST
C PARM InputParm
C InputParm DSPLY
C SETON LR

Figure 132. Source for OPM Program RPGPGM

Sample Source for Debug Examples

Chapter 12. Debugging Programs 283

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
extern char EXPORTFLD[6];
char *c_proc(unsigned int size, char *inzval)
{

char *ptr;
ptr = malloc(size);
memset(ptr, *inzval, size);
printf("import string: %6s.\n",EXPORTFLD);
return(ptr);

}

Figure 133. Source for C Procedure cproc. cproc is called by DBGEX.

Sample Source for Debug Examples

284 ILE RPG Programmer’s Guide

Chapter 13. Handling Exceptions

This chapter explains how ILE RPG exception handling works, and how to use:
v Exception handlers
v ILE RPG-specific handlers
v ILE condition handlers
v Cancel handlers

ILE RPG supports the following types of exception handlers:
v RPG-specific handlers, for example, the use of an error indicator, an ’E’

operation code extender, a MONITOR group, or a *PSSR or INFSR error
subroutine.

v ILE condition handlers, user-written exception handlers that you register at run
time using the ILE condition handler bindable API CEEHDLR.

v ILE cancel handler which can be used when a procedure ends abnormally.

Most programs benefit from some sort of planned exception handling because it
can minimize the number of unnecessary abnormal ends (namely, those associated
with function checks). ILE condition handlers also allow you to handle exceptions
in mixed-language applications in a consistent manner.

You can use the RPG exception handlers to handle most situations that might arise
in a RPG application. The minimum level of exception handling which RPG
provides is the use of error indicators on certain operations. To learn how to use
them, read the following sections in this chapter:
v “ILE RPG Exception Handling” on page 288
v “Specifying Error Indicators or the ’E’ Operation Code Extender” on page 294
v “Using a File Error (INFSR) Subroutine” on page 298
v “Using a MONITOR Group” on page 295
v “Using a Program Error Subroutine” on page 301

Additionally, to learn how ILE exception handling works, read:
v “Exception Handling Overview” (for general concepts)
v “Using RPG-Specific Handlers” on page 294
v The sections on error handling in ILE Concepts.

For information on exception handling and the RPG cycle, see IBM Rational
Development Studio for i: ILE RPG Reference.

Note: In this book the term ’exception handling’ is used to refer to both exception
handling and error handling. However, for consistency with other RPG
terms, the term ’error’ is used in the context of ’error indicator’ and ’error
subroutine’.

Exception Handling Overview
Exception handling is the process of:
v Examining an exception message which has been issued as a result of a run-time

error

© Copyright IBM Corp. 1994, 2010 285

v Optionally modifying the exception to show that it has been received (that is,
handled)

v Optionally recovering from the exception by passing the exception information
to a piece of code to take any necessary actions.

When a run-time error occurs, an exception message is generated. An exception
message has one of the following types depending on the error which occurred:

*ESCAPE Indicates that a severe error has been detected.

*STATUS Describes the status of work being done by a program.

*NOTIFY Describes a condition requiring corrective action or reply from the
calling program.

Function Check
Indicates that one of the three previous exceptions occurred and
was not handled.

Exception messages are associated with call stack entries. Each call stack entry is in
turn associated with a list of exception handlers defined for that entry. (See “The
Call Stack” on page 135 for further discussion of a call stack.)

Figure 134 on page 287 shows a call stack where an OPM program calls an
ILEprogram consisting of several modules and therefore several procedures. Refer
to this figure in the discussions which follow.

In general, when an exception occurs, the handlers associated with the call stack
entry are given a chance to handle the exception. If the exception is not handled by
any of the handlers on the list then it is considered to be unhandled, at which
point the following default actions are taken for the unhandled exception:
1. If the exception is a function check, the call stack entry is removed from the

stack.
2. The exception is moved (percolated) to the previous call stack entry.
3. The exception handling process is restarted for this call stack entry.

The action of allowing the previous call stack entry to handle an exception is
referred to as percolation. Percolation continues until the exception is handled, or
until the control boundary is reached. A control boundary is a call stack entry for
which the immediately preceding call stack entry is in a different activation group
or is an OPM program. In Figure 134 on page 287 Procedure P1 is the control
boundary.

Exception Handling Overview

286 ILE RPG Programmer’s Guide

In OPM, the exception message is associated with the program which is active on
the call stack. If the exception is not handled by the associated exception handlers,
then a function check is sent to the same call stack entry which received the

Program A

Program A Sending
Terminating
Exception CEE9901

Proc. P1

Proc. P1

Proc. P2

Proc. P2

Proc. P3
exception
occurs

Proc. P3
exception
occurs

Exception
Handlers
for P2

Exception
Handlers
for P2

Percolate
Unhandled
Exception

Percolate
Function
Check
(CPF9999)

for P3

for P3

OPM

OPM

ILE

ILE

Activation

Activation

Pass 1

Pass 2

ILE

ILE

ILE

ILE

Call Stack

Call Stack

Figure 134. Call Stack and Exception Message Percolation

Exception Handling Overview

Chapter 13. Handling Exceptions 287

exception. If it remains unhandled, then the entry is removed and the function
check is percolated. The process repeats until the exception is handled.

In ILE, an exception message is associated with the procedure which is active on the
call stack. When the exception is percolated, it is not converted to a function check.
Each call stack entry is given a chance to handle the original exception until the
control boundary is reached. Only then is the exception converted to a function
check, at which point the exception processing starts all over again beginning with
the procedure which received the exception. This time each call stack entry is given
a chance to handle the function check. If the control boundary is reached and the
exception is still unhandled then a generic failure exception message CEE9901 is
sent to the caller of the procedure at the control boundary. In addition, any call
stack entry which did not to handle the message is removed.

ILE RPG Exception Handling
ILE RPG provides four types of exception handling mechanisms:
v An error indicator or an ’E’ operation code extender handler
v A MONITOR group
v An error subroutine handler
v A default exception handler

RPG categorizes exceptions into two classes, program and file; this determines
which type of error subroutine is called. Some examples of program exceptions are
division by zero, out-of-bounds array index, or SQRT of a negative number. Some
examples of file exceptions are undefined record type or a device error.

There are five ways for you to indicate that RPG should handle an exception. You
can:
1. Specify an error indicator in positions 73 - 74 of the calculation specifications of

the appropriate operation code.
2. Specify the operation code extender ’E’ for the appropriate operation code.
3. Include the code that produces the exception within a MONITOR group.
4. Code a file error subroutine, which is defined by the INFSR keyword on a file

description specification, for file exceptions. The file error subroutine must be
coded in the same scope as the file; a global file in a cycle module must have
its subroutine in the cycle-main procedure, and a local file must have its
subroutine in the same subprocedure as the file. You cannot code an INFSR for
a global file that is used in a subprocedure.

5. Code a program error subroutine, which is named *PSSR, for program
exceptions. Note that a *PSSR is local to the procedure in which it is coded.
This means that a *PSSR in a main procedure will handle only those program
errors associated with the main procedure. Similarly, a *PSSR in a subprocedure
will only handle the errors in that subprocedure.

Exception Handling within a Cycle-Main Procedure
When an exception occurs within a cycle-main procedure ILE RPG does the
following:
1. If an error indicator is present on the calculation specification and the exception

is one that is expected for that operation:
a. The indicator is set on
b. The exception is handled
c. Control resumes with the next ILE RPG operation.

Exception Handling Overview

288 ILE RPG Programmer’s Guide

#
#
#
#
#
#

#

2. If an ’E’ operation code extender is present on the calculation specification and
the exception is one that is expected for that operation:
a. The return values for the built-in funtions %STATUS and %ERROR are set.

Note: %STATUS is set when any exception occurs even if the ’E’ extender is
not specified.

b. The exception is handled
c. Control resumes with the next ILE RPG operation.

3. If no error indicator or ’E’ extender is persent and the code that generates the
exception is in the MONITOR block of a MONITOR group, control will pass to
the on-error section of the MONITOR group.

4. If no error indicator or ’E’ extender is present, no active MONITOR group
could handle the exception, and

v you have coded a *PSSR error subroutine and the exception is a program
exception

or

v you have coded a INFSR error subroutine for the file and the exception is an
I/O exception,

then the exception will be handled and control will resume at the first
statement of the error subroutine.

5. If no error indicator, ’E’ extender, or error subroutine is coded and no active
MONITOR group could handle the exception, then the RPG default error
handler is invoked.
v If the exception is not a function check, then the exception will be percolated.
v If the exception is a function check, then an inquiry message will be

displayed. If the ’G’ or ’R’ option is chosen, the function check will be
handled and control will resume at the appropriate point (*GETIN for ’G’ or
the same calculation specification that received the exception for ’R’) in the
procedure. Otherwise,the function check will be percolated and the
procedure will be abnormally terminated.

See “Unhandled Exceptions” on page 291 for a full description of the RPG default
handler.

Exception Handling within Subprocedures
Exception handling within a subprocedure, including one designated as a
linear-main procedure, differs from exception handling within a cycle-main
procedure in the following ways:
v If you are using a global file, then because you cannot code an INFSR

subroutine for that file, you should handle file errors using error indicators, the
’E’ operation code extender, or a MONITOR group.

v There is no default handler; in other words, users will never see an inquiry
message.

Exception handling within a subprocedure differs from a cycle-main procedure
primarily because there is no RPG cycle code generated for subprocedures. As a
result there is no default exception handler for subprocedures and so situations
where the default handler would be called for a cycle-main procedure correspond
to abnormal end of the subprocedure. This means that:
v Factor 2 of an ENDSR operation for a *PSSR subroutine within a subprocedure

must be blank. A blank factor 2 in a cycle-main procedure would result in
control being passed to the default handler. In a subprocedure, if the ENDSR is

Exception Handling Overview

Chapter 13. Handling Exceptions 289

#
#
#

#
#
#

#
#

#
#
#
#
#

#
#
#

reached, then the subprocedure will end abnormally and RNX9001 will be
signalled to the caller of the subprocedure.

v If there is no *PSSR and a function check occurs, the procedure is removed from
the call stack and the exception is percolated to the caller.

v Since an inquiry message is never issued for an error in a subprocedure, you do
not have access to the ’Retry’ function available for some I/O errors. If you
expect record-lock errors in a subprocedure, you should code an error indicator
or an ’E’ extender and check if the status is related to a record being locked.

Note that the PSDS and INFDS for global files have module scope. Both main
procedures and subprocedures can access them.

TIP
A *PSSR is local to the procedure in which it is coded; therefore, to have a
common error routine, you can code a procedure to handle the error and call
the procedure from each local *PSSR.

Differences between OPM and ILE RPG Exception Handling
For the most part, exception handling behaves the same in OPM RPG and ILE
RPG. The key difference lies in the area of unhandled exceptions.

In OPM, if an exception occurs and there is no RPG-specific handler enabled, then
an inquiry message is issued. In ILE, this will only occur if the exception is a
function check. If it is not, then the exception will be passed to the caller of the
procedure or program, and any eligible higher call stack entries are given a chance
to handle the exception. For example, consider the following example:
v PGM A calls PGM B, which in turn calls PGM C.
v PGM B has an error indicator coded for the call.
v PGM C has no error indicator or *PSSR error subroutine coded.
v PGM C gets an exception.

In OPM, an inquiry message would be issued for PGM C. In ILE, the exception is
percolated to PGM B, since it is unhandled by PGM C. The error indicator in PGM
B is turned on allowing PGM B to handle the error, and in the process PGM C
ends abnormally. There is no inquiry message.

If PGM C has a *PSSR error subroutine coded, then in both OPM and ILE, the
exception is handled by PGM C and the error subroutine is run.

Note: Inquiry messages issued by ILE RPG will start with the prefix ’RNQ’, not
’RPG’, as in OPM RPG.

Certain behavioral differences exist for some specific errors. See Appendix A,
“Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400,” on
page 445 for further information.

Using Exception Handlers
Planning the exception handling capability of your application means making the
following decisions:
1. Decide if you will use the RPG-specific means of handling errors (e.g., error

indicator, ’E’ extender, or error subroutine) or whether you will write a separate

Exception Handling Overview

290 ILE RPG Programmer’s Guide

#
#

#
#

#
#
#
#

#
#

exception handling routine which you will register using the ILE API
CEEHDLR. You might also choose to use both.

2. Decide on the recovery action, that is, where the program will resume
processing if you use a separate exception handling routine.

In addition, keep in mind the following when planning your exception handlers:
v Priority of handlers
v Nested exceptions
v Default actions for unhandled exceptions
v Effect of optimization level

Exception Handler Priority
Exception handler priority becomes important if you use both language-specific
error handling and ILE condition handlers. For an ILE RPG procedure, exception
handlers have the following priority:
1. Either an error indicator or an ’E’ extender handler
2. MONITOR group
3. ILE condition handler
4. I/O error subroutine handler (for file errors) and Program error subroutine

handler (for all other errors)
5. RPG default handler for unhandled exceptions (cycle-main procedure only)

Nested Exceptions
Exceptions can be nested. A nested exception is an exception that occurs while
another exception is being handled. When this happens, the processing of the first
exception is temporarily suspended. Exception handling begins again with the
most recently generated exception.

Unhandled Exceptions
An unhandled exception is one that has not been handled by an exception handler
associated with the call stack entry that first received the exception. When an
exception is unhandled, one of the following actions occurs:

If the message type is a function check (CPF9999) associated with a cycle-main
procedure then the RPG default handler will issue an inquiry message describing
the originating condition.
v If you pick the D(ump) or C(ancel) option then the procedure which first

received the exception terminates and the function check is percolated to the
caller.

v If you pick the R(etry) or G(et Input) option then the function check is handled,
exception processing ends, and the procedure resumes processing at *GETIN
(when G is chosen) or at the I/O operation in which the exception occurred
(when R is chosen). For example, any read operation will be retried if the read
failed because of record locking.

For other types of messages the exception is percolated up the call stack to the
caller of the procedure. That procedure is presented with the exception and given a
chance to handle it. If it does not, then the exception is percolated up the call stack
until it reaches the control boundary, at which point the exception is converted to a
function check, and exception handling starts over as described above.

Using Exception Handlers

Chapter 13. Handling Exceptions 291

#

#
#
#

#
#
#

#
#
#
#
#

Example of Unhandled Escape Message
The following scenario describes the events which occur when an escape message
is issued and cannot be handled by the procedure in which it occurred. This
scenario has the following assumptions:
1. There are two programs, PGM1 and PGM2 which run in the same activation

group. Each contains a procedure, PRC1 and PRC2 respectively.
2. PRC1 calls PGM2 dynamically and PRC2 receives control.
3. The CALL operation code in PRC1 has an error indicator for the call.
4. No RPG exception handlers have been coded in PRC2. That is, there is no error

indicator coded for the SUBST operation and there is no *PSSR error
subroutine.

5. PRC2 has a SUBST operation where the Factor 1 entry is a negative number.

When PGM1 calls PGM2, and the SUBST operation is attempted, an exception
message, RNX0100, is generated. Figure 135 depicts this scenario and the events
which occur.

The following then occurs:
1. Since there is no error indicator, active MONITOR group, or *PSSR error

subroutine coded on the SUBST operation in PRC2, PRC2 cannot handle the
program error, and so it is unhandled.

2. Since it is not a function check, it is percolated (passed up the call stack) to
PRC1.

3. PRC1 receives (handles) the same exception message, and sets on the error
indicator on the CALL operation with the side effect that PRC2 is terminated.

4. Processing then continues in PRC1 with the statement following the CALL
operation.

Note: The same exception handling events described would apply to a procedure
call (CALLB operation) as well.

Example of Unhandled Function Check
The following scenario describes the events which occur when a function check
occurs in a cycle-main procedure and is not handled. This scenario has the
following assumptions:
1. There are two programs, PGM1 and PGM2, each containing a procedure, PRC1

and PRC2 respectively.
2. PRC1 calls PGM2 dynamically and PRC2 receives control.

Procedure PRC2
-1 SUBST

RNX0100 issued

Procedure PRC1
CALL PRC2

Error Ind. Hdlr

RPG default Hdlr

RPG default Hdlr

Active Exception Handler List

Percolate
Unhandled
Exception

Call Stack

Figure 135. Scenario for Unhandled Escape Message

Using Exception Handlers

292 ILE RPG Programmer’s Guide

#
#
#

#
#

#

3. The CALL operation code in PRC1 does not have an error indicator coded.
4. No RPG exception handlers have been coded in PRC2. That is, there is no error

indicator, no active MONITOR group, and no *PSSR error subroutine.
5. PRC2 has a pointer address error.

When PGM1 calls PGM2, a pointer error occurs because the basing pointer is
defined as null. Consequently, MCH1306 is generated. A function check occurs
when PRC2 tries to percolate the exception past the control boundary. Figure 136
depicts this scenario and the events which occur.

The following then occurs:
1. Since there are no error handlers in PRC2, PRC2 cannot handle the function

check, and so it is unhandled.
2. Since it is a function check, an inquiry message is issued describing the

originating condition.
3. Depending on the response to the inquiry message, PRC2 may be terminated

and the exception percolated to PRC1 (response is ’C’) or processing may
continue in PRC2 (response is ’G’).

Procedure PRC2

D FLD S 5A BASED(PTR)
C EVAL PTR=NULL
C EVAL FLD='ABCDE'

MCH3601 issued

Procedure PRC2

D FLD S 5A BASED(PTR)
C EVAL PTR=NULL
C EVAL FLD='ABCDE'

CPF9999 issued

Procedure PRC1
CALL PRC2

Procedure PRC1
CALL PRC2

RPG default Hdlr

RPG default Hdlr

RPG default Hdlr

RPG default Hdlr

Active Exception Handler List

Active Exception Handler List

Percolate
MCH3601

Percolate
CPF9999

PASS 1

PASS 2

Call Stack

Call Stack

Figure 136. Scenario for Unhandled Function Check

Using Exception Handlers

Chapter 13. Handling Exceptions 293

#

#
#

#

Optimization Considerations
While running a *FULL optimized program, the optimizer may keep frequently
used values in machine registers and restore them to storage only at predefined
points during normal program processing. Exception handling may break this
normal processing and consequently program variables contained in registers may
not be returned to their assigned storage locations.

Specifically, variables may not contain their current values if an exception occurs
and you recover from it using one of:
v Monitor group
v *PSSR error subroutine
v INFSR error subroutine
v User-defined exception handler
v The Go (’G’) option from an inquiry message.
v The Retry (’R’) option from an inquiry message.

ILE RPG automatically defines indicators such that they contain their current
values even with full optimization. To ensure that the content of fields or data
structures contain their correct (current) values, specify the NOOPT keyword on
the appropriate Definition specification.

For more information on the NOOPT keyword, see IBM Rational Development Studio
for i: ILE RPG Reference. For more information on optimization, see “Changing the
Optimization Level” on page 92.

Using RPG-Specific Handlers
ILE RPG provides four ways for you to enable HLL-specific handlers and to
recover from the exception:
1. error indicators or ’E’ operation code extender
2. MONITOR group
3. INFSR error subroutine
4. *PSSR error subroutine.

You can obtain more information about the error which occurred by coding the
appropriate data structures and querying the relevant data structure fields.

If you are using the ’E’ extender instead of error indicators, the relevant program
and file error information can be obtained by using the %STATUS and %ERROR
built-in-functions.

This section provides some examples of how to use each of these RPG constructs.
The IBM Rational Development Studio for i: ILE RPG Reference provides more
information on the *PSSR and INFSR error subroutines, on the EXSR operation
code, and on the INFDS and PSDS data structures.

Specifying Error Indicators or the ’E’ Operation Code Extender
Operation codes that allow an error indicator also allow the ’E’ operation code
extender. The CALLP operation also allows the ’E’ extender although it does not
allow an error indicator. This provides two ILE RPG error handling methods that
are essentially the same. Either an error indicator or the ’E’ extender can be used to
handle the exception for the same operation code, not both.

Using Exception Handlers

294 ILE RPG Programmer’s Guide

Note: If an error indicator or and ’E’ extender is coded on an operation, but the
error which occurs is not related to the operation (for example, an
array-index error on a CHAIN operation), any error indicator or ’E’ extender
would be ignored. The error would be treated like any other program error.

To enable the RPG error indicator handler, you specify an error indicator in
positions 73 and 74 for the operation codes listed in Table 42 (except for CALLP). If
an exception occurs on the operation, the indicator is set on, the appropriate data
structure (PSDS or INFDS) is updated, and control returns to the next sequential
instruction. You can then test the indicator to determine what action to take.

To enable the ’E’ operation code extender handler, you specify an ’E’ (or ’e’) with
any of the operation codes in Table 42. Coding the ’E’ extender affects the value
returned by the built-in functions %ERROR and %STATUS for exceptions. Before
the operation begins, the value returned by these built-in functions is set to zero. If
an exception occurs on the operation, the return values for these built-in functions
are updated accordingly, the appropriate data structure (PSDS or INFDS) is
updated, and control returns to the next sequential instruction. You can then use
these built-in functions to test the returned values and determine what action to
take.

Table 42. Operation Codes Allowing Extender ’E’ or an Error Indicator in Positions 73-74

ACQ (e) ADDDUR (e) ALLOC (e) CALL (e)

CALLB(d e) CALLP (e m/r)1 CHAIN (e n) CHECK (e)

CHECKR (e) CLOSE (e) COMMIT (e) DEALLOC(e/n)

DELETE (e) DSPLY (e) EXFMT (e) EXTRCT (e)

FEOD (e) IN (e) NEXT (e) OCCUR (e)

OPEN (e) OUT (e) POST (e) READ (e n)

READC (e) READE (e n) READP (e n) READPE (e n)

REALLOC (e) REL (e) RESET (e) ROLBK (e)

SCAN (e) SETGT (e) SETLL (e) SUBDUR (e)

SUBST (e p) TEST (e d/t/z) UNLOCK (e) UPDATE (e)

WRITE (e) XLATE (e p)

Notes:

1. CALLP (e m/r) is an extended Factor-2 operation code and cannot have an error
indictator. However, program status and error conditions can be determined by
specifying the ’e’ extender with this operation code.

When you specify an error indicator or an ’E’ extender on an operation code, you
can explicitly call a file error subroutine (INFSR) or a program error subroutine
(*PSSR) with the EXSR operation. If either INFSR or *PSSR is explicitly called by
the EXSR operation and Factor 2 of the ENDSR operation is blank or the field
specified has a value of blank, control returns to the next sequential instruction
following the EXSR operation.

Using a MONITOR Group
A MONITOR group performs conditional error handling based on the status code.
If an error occurs, control passes to the appropriate ON-ERROR group within the
MONITOR group.

Chapter 13. Handling Exceptions 295

If all the statements in the MONITOR block are processed without errors, control
passes to the statement following the ENDMON statement.

The MONITOR group can be specified anywhere in calculations. It can be nested
within IF, DO, SELECT, or other MONITOR groups. The IF, DO, and SELECT
groups can be nested within MONITOR groups.

If a MONITOR group is nested within another MONITOR group, the innermost
group is considered first when an error occurs. If that MONITOR group does not
handle the error condition, the next group is considered.

Level indicators can be used on the MONITOR operation, to indicate that the
MONITOR group is part of total calculations. For documentation purposes, you
can also specify a level indicator on an ON-ERROR or ENDMON operation but
this level indicator will be ignored.

Conditioning indicators can be used on the MONITOR statement. If they are not
satisfied, control passes immediately to the statement following the ENDMON
statement of the MONITOR group. Conditioning indicators cannot be used on
ON-ERROR operations individually.

If a MONITOR block contains a call to a subprocedure, and the subprocedure has
an error, the subprocedure’s error handling will take precedence. For example, if
the subprocedure has a *PSSR subroutine, it will get called. The MONITOR group
containing the call will only be considered if the subprocedure fails to handle the
error and the call fails with the error-in-call status of 00202.

The MONITOR group does handle errors that occur in a subroutine. If the
subroutine contains its own MONITOR groups, they are considered first.

Branching operations are not allowed within a MONITOR block, but are allowed
within an ON-ERROR block.

A LEAVE or ITER operation within a MONITOR block applies to any active DO
group that contains the MONITOR block. A LEAVESR or RETURN operation
within a MONITOR block applies to any subroutine, subprocedure, or procedure
that contains the MONITOR block.

On each ON-ERROR statment, you specify which error conditions the ON-ERROR
group handles. You can specify any combination of the following, separated by
colons:

nnnnn A status code

*PROGRAM Handles all program-error status codes, from 00100 to 00999

*FILE Handles all file-error status codes, from 01000 to 09999

*ALL Handles both program-error and file-error codes, from 00100 to
09999. This is the default.

Status codes outside the range of 00100 to 09999, for example codes from 0 to 99,
are not monitored for. You cannot specify these values for an ON-ERROR group.
You also cannot specify any status codes that are not valid for the particular
version of the compiler being used.

296 ILE RPG Programmer’s Guide

If the same status code is covered by more than one ON-ERROR group, only the
first one is used. For this reason, you should specify special values such as *ALL
after the specific status codes.

Any errors that occur within an ON-ERROR group are not handled by the
MONITOR group. To handle errors, you can specify a MONITOR group within an
ON-ERROR group.

Using an Error Subroutine
When you write a error subroutine you are doing two things:
1. Enabling the RPG subroutine error handler

The subroutine error handler will handle the exception and pass control to your
subroutine.

2. Optionally specifying a recovery action.
You can use the error subroutine to take specific actions based on the error
which occurred or you can have a generic action (for example, issuing an
inquiry message for all errors).

The following considerations apply to error subroutines:
v You can explicitly call an error subroutine by specifying the name of the

subroutine in Factor 2 of the EXSR operation.
v You can control the point where processing resumes in a cycle-main procedure

by specifying a value in Factor 2 of the ENDSR operation of the subroutine. In a
subprocedure, factor 2 of the ENDSR must be blank. Use either a GOTO or a
RETURN operation prior to the ENDSR operation to prevent the subprocedure
from ending abnormally.

* The MONITOR block consists of the READ statement and the IF
* group.
* - The first ON-ERROR block handles status 1211 which
* is issued for the READ operation if the file is not open.
* - The second ON-ERROR block handles all other file errors.
* - The third ON-ERROR block handles the string-operation status
* code 00100 and array index status code 00121.
* - The fourth ON-ERROR block (which could have had a factor 2
* of *ALL) handles errors not handled by the specific ON-ERROR
* operations.
*
* If no error occurs in the MONITOR block, control passes from the
* ENDIF to the ENDMON.
C MONITOR
C READ FILE1
C IF NOT %EOF
C EVAL Line = %SUBST(Line(i) :
C %SCAN('***': Line(i)) + 1)
C ENDIF
C ON-ERROR 1211
C ... handle file-not-open
C ON-ERROR *FILE
C ... handle other file errors
C ON-ERROR 00100 : 00121
C ... handle string error and array-index error
C ON-ERROR
C ... handle all other errors
C ENDMON

Figure 137. MONITOR Operation

Chapter 13. Handling Exceptions 297

#
#
#
#
#

v If an error subroutine is called, the RPG error subroutine handler has already
handled the exception. Thus, the call to the error subroutine reflects a return to
program processing. If an exception occurs while the subroutine is running, the
subroutine is called again. The procedure will loop unless you code the
subroutine to avoid this problem.
To see how to code an error subroutine to avoid such a loop, see “Avoiding a
Loop in an Error Subroutine” on page 304.

Using a File Error (INFSR) Subroutine
To handle a file error or exception you can write a file error (INFSR) subroutine.
When a file exception occurs:
1. The INFDS is updated.
2. A file error subroutine (INFSR) receives control if the exception occurs:

v On an implicit (primary or secondary) file operation
v On an explicit file operation that does not have an indicator specified in

positions 73 - 74.

A file error subroutine can handle errors in more than one file.

The following restrictions apply:
v If a file exception occurs during the start or end of a program, (for example, on

an implicit open at the start of the cycle) control passes to the ILE RPG default
exception handler, and not to the error subroutine handler. Consequently, the file
error subroutine will not be processed.

v If an error occurs that is not related to the operation (for example, an
array-index error on a CHAIN operation), then any INFSR error subroutine
would be ignored. The error would be treated like any other program error.

v An INFSR cannot handle errors in a global file used by a subprocedure.

To add a file error subroutine to your program, you do the following steps:
1. Enter the name of the subroutine after the keyword INFSR on a File

Description specification. The subroutine name can be *PSSR, which indicates
that the program error subroutine is given control for the exception on this file.

2. Optionally identify the file information data structure on a File Description
specification using the keyword INFDS.

3. Enter a BEGSR operation where the Factor 1 entry contains the same
subroutine name that is specified for the keyword INFSR.

4. Identify a return point, if any, and code it on the ENDSR operation in the
subroutine. For a discussion of the valid entries for Factor 2, see “Specifying a
Return Point in the ENDSR Operation” on page 305. A Factor 2 is not allowed
for a file error subroutine in a subprocedure.

5. Code the rest of the file error subroutine. While any of the ILE RPG compiler
operations can be used in the file error subroutine, it is not recommended that
you use I/O operations to the same file that got the error. The ENDSR
operation must be the last specification for the file error subroutine.

Figure 138 on page 299 shows an example of exception handling using an INFSR
error subroutine. The program TRNSUPDT is a simple inventory update program.
It uses a transaction file TRANSACT to update a master inventory file PRDMAS. If
an I/O error occurs, then the INFSR error subroutine is called. If it is a record lock
error, then the record is written to a backlog file. Otherwise, an inquiry message is
issued.

298 ILE RPG Programmer’s Guide

#

#

#
#
#
#

Note that the File specification for PRDMAS identifies both the INFDS and
identifies the INFSR to be associated with it.

The following is done for each record in the TRANSACT file:
1. The appropriate record in the product master file is located using the

transaction product number.
2. If the record is found, then the quantity of the inventory is updated.
3. If an error occurs on the UPDATE operation, then control is passed to the

INFSR error subroutine.
4. If the record is not found, then the product number is written to an error

report.

===
* TRNSUPDT: This program is a simple inventory update program. *
* The transaction file (TRANSACT) is processed consecutively. *
* The product number in the transaction is used as key to access *
* the master file (PRDMAS) randomly. *
* 1. If the record is found, the quantity of the inventory will *
* be updated. *
* 2. If the record is not found, an error will be printed on a *
* report. *
* 3. If the record is currently locked, the transaction will be *
* written to a transaction back log file which will be *
* processed later. *
* 4. Any other unexpected error will cause a runtime error *
* message. *
===

* Define the files: *
* 1) PRDMAS - Product master file *
* 2) TRANSACT - Transaction file *
* 3) TRNBACKLG - Transaction backlog file *
* 2) PRINT - Error report. *

FPRDMAS UF E K DISK
F INFSR(PrdInfsr)
F INFDS(PrdInfds)
FTRANSACT IP E DISK
FTRNBACKLG O E DISK
FPRINT O F 80 PRINTER

* Define the file information data structure for file PRDMAS. *
* The *STATUS field is used to determine what action to take. *

D PrdInfds DS
D PrdStatus *STATUS

* List of expected exceptions. *

D ErrRecLock C CONST(1218)

Figure 138. Example of File Exception Handling (Part 1 of 2)

Chapter 13. Handling Exceptions 299

When control is passed to the error subroutine, the following occurs:
v If the error is due to a record lock, then the record is written to a backlog file

and control returns to the main part with the next transaction (via *GETIN as
the return point).

v If the error is due to some other reason, then blanks are moved to ReturnPt. This
will result in the RPG default handler receiving control. The recovery action at
that point will depend on the nature of the error.

Note that the check for a record lock error is done by matching the *STATUS
subfield of the INFDS for PRDMAS against the field ErrRecLock which is defined
with the value of the record lock status code. The INFSR could be extended to
handle other types of I/O errors by defining other errors, checking for them, and
then taking an appropriate action.

* Access the product master file using the transaction product *
* number. *

C TRNPRDNO CHAIN PRDREC 10

* If the record is found, update the quantity in the master file. *

C IF NOT *IN10
C SUB TRNQTY PRDQTY
C UPDATE PRDREC

* If the record is not found, write to the error report *

C ELSE
C EXCEPT NOTFOUND
C ENDIF
C SETON LR

* Error handling routine. *

C PrdInfsr BEGSR

* If the master record is currently locked, write the transaction *
* record to the back log file and skip to next transaction. *

C PrdStatus DSPLY
C IF (PrdStatus = ErrRecLock)
C WRITE TRNBREC
C MOVE '*GETIN' ReturnPt 6

* If unexpected error occurs, cause inquiry message to be issued. *

C ELSE
C MOVE *BLANK ReturnPt
C ENDIF
C ENDSR ReturnPt

* Error report format. *

OPRINT E NOTFOUND
O TRNPRDNO
O 29 'NOT IN PRDMAS FILE'

Figure 138. Example of File Exception Handling (Part 2 of 2)

300 ILE RPG Programmer’s Guide

Using a Program Error Subroutine
To handle a program error or exception you can write a program error subroutine
(*PSSR). When a program error occurs:
1. The program status data structure is updated.
2. If an indicator is not specified in positions 73 and 74 for the operation code, the

error is handled and control is transferred to the *PSSR.
You can explicitly transfer control to a program error subroutine after a file
error by specifying *PSSR after the keyword INFSR on the File Description
specifications.

You can code a *PSSR for any (or all) procedures in the module. Each *PSSR is
local to the procedure in which it is coded.

To add a *PSSR error subroutine to your program, you do the following steps:
1. Optionally identify the program status data structure (PSDS) by specifying an S

in position 23 of the definition specification.
2. Enter a BEGSR operation with a Factor 1 entry of *PSSR.
3. Identify a return point, if any, and code it on the ENDSR operation in the

subroutine. For subprocedures, factor 2 must be blank. For a discussion of the
valid entries for Factor 2, see “Specifying a Return Point in the ENDSR
Operation” on page 305.

4. Code the rest of the program error subroutine. Any of the ILE RPG compiler
operations can be used in the program error subroutine. The ENDSR operation
must be the last specification for the program error subroutine.

Figure 139 on page 302 shows an example of a program error subroutine in a
cycle-main procedure.

Chapter 13. Handling Exceptions 301

#
#

The program-status data structure is defined on the Definition specifications. The
predefined subfields *STATUS, *ROUTINE, *PARMS, and *PROGRAM are
specified, and names are assigned to the subfields.

The *PSSR error subroutine is coded on the calculation specifications. If a program
error occurs, ILE RPG passes control to the *PSSR error subroutine. The subroutine
checks to determine if the exception was caused by a divide operation in which the
divisor is zero. If it was, 1 is added to the divisor (Divisor), and the literal ‘*DETC’
is moved to the field ReturnPt, to indicate that the program should resume
processing at the beginning of the detail calculations routine

If the exception was not a divide by zero, the literal ‘*CANCL’ is moved into the
ReturnPt field, and the procedure ends.

Figure 140 on page 303 and Figure 141 on page 303 show how you would code
similar program error subroutines in a subprocedure. In one example, you code a
GOTO and in the other you code a RETURN operation.

* Define relevant parts of program status data structure *

D Psds SDS
D Loc *ROUTINE
D Err *STATUS
D Parms *PARMS
D Name *PROC

* BODY OF CODE GOES HERE
* An error occurs when division by zero takes place.
* Control is passed to the *PSSR subroutine.

===
* *PSSR: Error Subroutine for the main procedure. We check for a
* division by zero error, by checking if the status is
* 102. If it is, we add 1 to the divisor and continue
* by moving *GETIN to ReturnPt.
===
C *PSSR BEGSR
C IF Err = 102
C ADD 1 Divisor
C MOVE '*GETIN' ReturnPt 6

* An unexpected error has occurred, and so we move
* *CANCL to ReturnPt to end the procedure.

C ELSE
C MOVE '*CANCL' ReturnPt
C ENDIF
C ENDSR ReturnPt

Figure 139. Example of *PSSR Subroutine in Cycle-Main Procedure

302 ILE RPG Programmer’s Guide

* Start of subprocedure definition

P SubProc B
D SubProc PI 5P 0
...

* Body of code goes here including recovery code.

C TryAgain TAG
C X DIV Divisor Result
C Return Result

* An error occurs when division by zero takes place.
* Control is passed to the *PSSR subroutine.

C *PSSR BEGSR

* If this is a divide-by-zero error, add 1 to the divisor
* and try again

C IF Err = 102
C ADD 1 Divisor
C GOTO TryAgain
C ENDIF

* If control reaches ENDSR, the procedure will fail

C ENDSR
P E

Figure 140. Example of Subprocedure *PSSR Subroutine with GOTO

* Start of subprocedure definition

P SubProc B
D SubProc PI 5P 0
...

* Body of code goes here including division operation.

C X DIV Divisor Result
C Return Result

* An error occurs when division by zero takes place.
* Control is passed to the *PSSR subroutine.

C *PSSR BEGSR

* If this is a divide-by-zero error, return 0 from the subprocedure

C IF Err = 102
C RETURN 0
C ENDIF

* If control reaches ENDSR, the procedure will fail

C ENDSR
P E

Figure 141. Example of Subprocedure *PSSR Subroutine with RETURN

Chapter 13. Handling Exceptions 303

Avoiding a Loop in an Error Subroutine
In the previous example, it is unlikely that an error would occur in the *PSSR and
thereby cause a loop. However, depending on how the *PSSR is written, loops may
occur if an exception occurs while processing the *PSSR.

One way to avoid such a loop is to set a first-time switch in the subroutine. If it is
not the first time through the subroutine, you can specify an appropriate return
point, such as *CANCL, for the Factor 2 entry of the ENDSR operation.

Figure 142 shows a program NOLOOP which is designed to generate exceptions in
order to show how to avoid looping within a *PSSR subroutine. The program
generates an exception twice:
1. In the main body of the code, to pass control to the *PSSR
2. Inside the *PSSR to potentially cause a loop.

To create the program and start debugging it, using the source in Figure 142, type:
CRTBNDRPG PGM(MYLIB/NOLOOP) DBGVIEW(*SOURCE)
STRDBG PGM(MYLIB/NOLOOP)

===
* NOLOOP: Show how to avoid recursion in a *PSSR subroutine. *
===

* Array that will be used to cause an error *

D Arr1 S 10A DIM(5)

* Generate an array out of bounds error to pass control to *PSSR. *

C Z-ADD -1 Neg1 5 0
C MOVE Arr1(Neg1) Arr1(Neg1)
C MOVE *ON *INLR
===
* *PSSR: Error Subroutine for the procedure. We use the *
* variable InPssr to detect recursion in the PSSR. *
* If we detect recursion, then we *CANCL the procedure. *
===
C *PSSR BEGSR
C IF InPssr = 1
C MOVE '*CANCL' ReturnPt 6
C Z-ADD 0 InPssr 1 0
C ELSE
C Z-ADD 1 InPssr
* *
* We now generate another error in the PSSR to see *
* how the subroutine cancels the procedure. *
* *

C MOVE Arr1(Neg1) Arr1(Neg1)
* *
* Note that the next two operations will not be *
* processed if Neg1 is still negative. *
* *

C MOVE '*GETIN' ReturnPt
C Z-ADD 0 InPssr
C ENDIF
C ENDSR ReturnPt

Figure 142. Avoiding a Loop in an Error Subroutine

304 ILE RPG Programmer’s Guide

Set a break point on the BEGSR line of the *PSSR subroutine so you can step
through the *PSSR subroutine.

When you call the program, the following occurs:
1. An exception occurs when the program tries to do a MOVE operation on an

array using a negative index. Control is passed to the *PSSR.
2. Since this is the first time through the *PSSR, the variable In_Pssr is not already

set on. To prevent a future loop, the variable In_Pssr is set on.
3. Processing continues within the *PSSR with the MOVE after the ELSE. Again,

an exception occurs and so processing of the *PSSR begins anew.
4. This time through, the variable In_Pssr is already set to 1. Since this indicates

that the subroutine is in a loop, the procedure is canceled by setting the
ReturnPt field to *CANCL.

5. The ENDSR operation receives control, and the procedure is canceled.

The approach used here to avoid looping can also be used within an INFSR error
subroutine.

Specifying a Return Point in the ENDSR Operation
When using an INFSR or *PSSR error subroutine in a cycle-main procedure, you
can indicate the return point at which the program will resume processing, by
entering one of the following as the Factor 2 entry of the ENDSR statement. The
entry must be a six-position character field, literal, named constant, array element,
or table name whose value specifies one of the following return points.

Note: If the return points are specified as literals, they must be enclosed in
apostrophes and entered in uppercase (for example, *DETL, not *detl). If
they are specified in fields or array elements, the value must be left-adjusted
in the field or array element.

*DETL Continue at the beginning of detail lines.

*GETIN Continue at the get input record routine.

*TOTC Continue at the beginning of total calculations.

*TOTL Continue at the beginning of total lines.

*OFL Continue at the beginning of overflow lines.

*DETC Continue at the beginning of detail calculations.

*CANCL Cancel the processing of the program.

Blanks Return control to the ILE RPG default exception handler. This will
occur when Factor 2 is a value of blanks and when Factor 2 is not
specified. If the subroutine was called by the EXSR operation and
Factor 2 is blank, control returns to the next sequential instruction.

After the ENDSR operation of the INFSR or the *PSSR subroutine is run, the ILE
RPG compiler resets the field or array element specified in Factor 2 to blanks.
Because Factor 2 is set to blanks, you can specify the return point within the
subroutine that is best suited for the exception that occurred.

If this field contains blanks at the end of the subroutine, the ILE RPG default
exception handler receives control following the running of the subroutine, unless
the INFSR or the *PSSR subroutine was called by the EXSR operation. If the

Chapter 13. Handling Exceptions 305

#
#
#
#
#

#
#
#
#

##

##

##

##

##

##

##

##
#
#
#

subroutine was called by the EXSR operation and Factor 2 of the ENDSR operation
is blank, control returns to the next sequential instruction following the EXSR
operation.

Note: You cannot specify a factor 2 entry for an ENDSR in a subprocedure. If you
want to resume processing in the subprocedure, you have to use a GOTO
operation to a TAG in the body of the subprocedure. Alternatively, you can
code a RETURN operation in the *PSSR. The subprocedure will then return
to the caller.

ILE Condition Handlers
ILE condition handlers are exception handlers that are registered at run time using
the Register ILE Condition Handler (CEEHDLR) bindable API. They are used to
handle, percolate or promote exceptions. The exceptions are presented to the
condition handlers in the form of an ILE condition. You can register more than one
ILE condition handler. ILE condition handlers may be unregistered by calling the
Unregister ILE Condition Handler (CEEHDLU) bindable API.

There are several reasons why you might want to use an ILE condition handler:
v You can bypass language-specific handling by handling the exception in your

own handler.
This enables you to provide the same exception handling mechanism in an
application with modules in different ILE HLLs.

v You can use this API to scope exception handling to a call stack entry.
The ILE bindable API CEEHDLR is scoped to the invocation that contains it. It
remains in effect until you unregister it, or until the procedure returns.

Note: Any call to the CEEHDLR API from any detail, total or subroutine
calculation will make the condition handler active for the entire
procedure, including all input, calculation, and output operations.
However, it will not affect subprocedures, nor will a subprocedure calling
CEEHDLR affect the cycle-main procedure.

If a subprocedure is called recursively, only the invocation that calls CEEHDLR
is affected by it. If you want the condition handler active for every invocation,
then CEEHDLR must be called by each invocation.

For information on how to use ILE condition handlers, refer to ILE Concepts.

Using a Condition Handler
The following example shows you how to:
1. Code a condition handler to handle the RPG ’out-of-bounds’ error
2. Register a condition handler
3. Deregister a condition handler
4. Code a *PSSR error subroutine.

The example consists of two procedures:
v RPGHDLR, which consists of a user-written condition handler for out-of-bound

substring errors
v SHOWERR, which tests the RPGHDLR procedure.

While SHOWERR is designed primarily to show how RPGHDLR works, the two
procedures combined are also useful for determining ’how’ ILE exception handling

306 ILE RPG Programmer’s Guide

#

works. Both procedures write to QSYSPRT the ’actions’ which occur as they are
processed. You might want to modify these procedures in order to simulate other
aspects of ILE exception handling which you would like to explore.

Figure 143 shows the source for the procedure RPGHDLR. The procedure defines
three procedure parameters: an ILE condition token structure, a pointer to a
communication area between SHOWERR and RPGHDLR, and a field to contain
the possible actions, resume or percolate. (RPGHDLR does not promote any
exceptions).

The basic logic of RPGHDLR is the following:
1. Test to see if it is an out-of-bounds error by testing the message ID

v If it is, and if SHOWERR has indicated that out-of-bounds errors maybe
ignored, it writes ’Handling...’ to QSYSPRT and then sets the action to
’Resume’.

v Otheriwse, it writes out ’Percolating’ to QSYSPRT, and then sets the action to
’Percolate’.

2. Return.

===
* RPGHDLR: RPG exception handling procedure. *
* This procedure does the following: *
* Handles the exception if it is the RPG *
* out of bounds error (RNX0100) *
* otherwise *
* percolates the exception *
* It also prints out what it has done. *
* *
* Note: This is the exception handling procedure for the *
* SHOWERR procedure. *
===
FQSYSPRT O F 132 PRINTER

D RPGHDLR PR
D Parm1 LIKE(CondTok)
D Parm2 *
D Parm3 10I 0
D Parm4 LIKE(CondTok)

* Procedure parameters *
* 1. Input: Condition token structure *
* 2. Input: Pointer to communication area containing *
* a. A pointer to the PSDS of the procedure being handled *
* b. An indicator telling whether a string error is valid *
* 3. Output: Code identifying actions to be performed on the *
* exception *
* 4. Output: New condition if we decide to promote the *
* condition. Since this handler only resumes and *
* percolates, we will ignore this parameter. *

D RPGHDLR PI
D InCondTok LIKE(CondTok)
D pCommArea *
D Action 10I 0
D OutCondTok LIKE(CondTok)

Figure 143. Source for Condition Handler for Out-of-Bounds Substring Error (Part 1 of 2)

ILE Condition Handlers

Chapter 13. Handling Exceptions 307

Figure 144 on page 310 shows the source for the procedure SHOWERR, in which
the condition handler RPGHDLR is registered.

The procedure parameters include a procedure pointer to RPGHDLR and a pointer
to the communication area which contains a pointer to the module’s PSDS and an
indicator telling whether the out-of-bounds string error can be ignored. In
addition, it requires a definition for the error-prone array ARR1, and identification
of the parameter lists used by the ILE bindable APIs CEEHDLR and CEEHDLU.

The basic logic of the program is as follows:

D CondTok DS BASED(pCondTok)
D MsgSev 5I 0
D MsgNo 2A
D 1A
D MsgPrefix 3A
D MsgKey 4A

D CommArea DS BASED(pCommArea)
D pPSDS *
D AllowError 1N

D PassedPSDS DS BASED(pPSDS)
D ProcName 1 10

*
* Action codes are:
*
D Resume C 10
D Percolate C 20

* Point to the input condition token *

C EVAL pCondTok = %ADDR(InCondTok)

* If substring error, then handle else percolate. *
* Note that the message number value (MsgNo) is in hex. *

C EXCEPT
C IF MsgPrefix = 'RNX' AND
C MsgNo = X'0100' AND
C AllowError = '1'
C EXCEPT Handling
C EVAL Action = Resume
C ELSE
C EXCEPT Perclating
C EVAL Action = Percolate
C ENDIF
C RETURN

===
* Procedure Output *
===
OQSYSPRT E
O 'HDLR: In Handler for '
O ProcName
OQSYSPRT E Handling
O 'HDLR: Handling...'
OQSYSPRT E Perclating
O 'HDLR: Percolating...'

Figure 143. Source for Condition Handler for Out-of-Bounds Substring Error (Part 2 of 2)

ILE Condition Handlers

308 ILE RPG Programmer’s Guide

1. Register the handler RPGHDLR using the subroutine RegHndlr. This
subroutine calls the CEEHDLR API, passing it the procedure pointer to
RPGHDLR.

2. Indicate to RPGHDLR that the out-of-bounds error is allowed, and then
generate an out-of-bounds substring error, then set off the indicator so that
RPGHDLR will not allow any unexpected out-of-bounds string errors.
The handler RPGHDLR is automatically called. It handles the exception, and
indicates that processing should resumes in the next machine instruction
following the error. Note that the next machine instruction may not be at the
beginning of the next RPG operation.

3. Generate an out-of-bounds array error.
Again, RPGHDLR is automatically called. However, this time it cannot handle
the exception, and so it percolates it to the next exception handler associated
with the procedure, namely, the *PSSR error subroutine.
The *PSSR cancels the procedure.

4. Unregister the condition handler RPGHDLR via a call to CEEHDLU.
5. Return

As with the RPGHDLR procedure, SHOWERR writes to QSYSPRT to show what is
occurring as it is processed.

ILE Condition Handlers

Chapter 13. Handling Exceptions 309

===
* SHOWERR: Show exception handling using a user-defined *
* exception handler. *
===
FQSYSPRT O F 132 PRINTER

* The following are the parameter definitions for the CEEHDLR *
* API. The first is the procedure pointer to the *
* procedure which will handle the exception. The second *
* is a pointer to a communication area which will be passed *
* to the exception handling procedure. In this example, this *
* area will contain a pointer to the PSDS of this module, and *
* an indicator telling whether an error is allowed. *
* *
* We should make sure this program (SHOWERR) does not ignore any *
* handled errors, so we will check the 'Error' indicator after *
* any operation that might cause an error that RPGHDLR will *
* "allow". We will also check at the end of the program to make *
* sure we didn't miss any errors. *

D pConHdlr S * PROCPTR
D INZ(%paddr('RPGHDLR'))

* Communication area *

D CommArea DS NOOPT
D pPsds * INZ(%ADDR(DSPsds))
D AllowError 1N INZ('0')

* PSDS *

D DSPsds SDS NOOPT
D ProcName *PROC

* Variables that will be used to cause errors *

D Arr1 S 10A DIM(5)
D Num S 5P 0

* CEEHDLR Interface *

D CEEHDLR PR
D pConHdlr * PROCPTR
D CommArea * CONST
D Feedback 12A OPTIONS(*OMIT)

* CEEHDLU Interface *

D CEEHDLU PR
D pConHdlr * PROCPTR
D Feedback 12A OPTIONS(*OMIT)

Figure 144. Source for Registering a Condition Handler (Part 1 of 3)

ILE Condition Handlers

310 ILE RPG Programmer’s Guide

* Register the handler and generate errors *

C EXSR RegHndlr

* Generate a substring error *
* This is an "allowed" error for this example (RPGHDLR *
* handles the exception, allowing control to return to the *
* next instruction after the error). *
* RPGHDLR will not allow the error unless the "AllowError" *
* indicator is set on. This ensures that if, for example, *
* a SCAN operation is added to SHOWERR later, RPGHDLR will *
* not by default allow it to have an error. *

C Z-ADD -1 Num
C EVAL AllowError = '1'
C Num SUBST 'Hello' Examp 10
C EVAL AllowError = '0'

* The exception was handled by the handler and control *
* resumes here. *

C EXCEPT ImBack

* Generate an array out of bounds error *
* This is not an "expected" error for this example. *

C Z-ADD -1 Num
C MOVE Arr1(Num) Arr1(Num)

* The exception was not handled by the handler, so, *
* control does not return here. The exception is *
* percolated and control resumes in the *PSSR. *

* Deregister the handler *
* Note: If an exception occurs before the handler is *
* deregistered, it will be automatically deregistered *
* when the procedure is cancelled. *

C EXSR DeRegHndlr
C SETON LR

===
* RegHdlr - Call the API to register the Handler *
===
C RegHndlr BEGSR
C CALLP CEEHDLR(pConHdlr : %ADDR(CommArea) : *OMIT)
C ENDSR

===
* DeRegHndlr - Call the API to unregister the Handler *
===
C DeRegHndlr BEGSR
C CALLP CEEHDLU(pConHdlr : *OMIT)
C ENDSR

Figure 144. Source for Registering a Condition Handler (Part 2 of 3)

ILE Condition Handlers

Chapter 13. Handling Exceptions 311

If you want to try these procedures, follow these steps:
1. To create the procedure RPGHDLR, using the source shown in Figure 143 on

page 307, type:
CRTRPGMOD MODULE(MYLIB/RPGHDLR)

2. To create the procedure SHOWERR, using the source shown in Figure 144 on
page 310, type:
CRTRPGMOD MODULE(MYLIB/SHOWERR)

3. To create the program, ERRORTEST, type
CRTPGM PGM(MYLIB/ERRORTEST) MODULE(SHOWERR RPGHDLR)

4. To run the program ERRORTEST, type:
OVRPRTF FILE(QSYSPRT) SHARE(*YES)
CALL PGM(MYLIB/ERRORTEST)

The output is shown below:
HDLR: In Handler for SHOWERR
HDLR: Handling...
I'm Back
HDLR: In Handler for SHOWERR
HDLR: Percolating...
In PSSR
Cancelling...

Using Cancel Handlers
Cancel handlers provide an important function by allowing you to get control for
clean-up and recovery actions when call stack entries are terminated by something
other than a normal return. For example, you might want one to get control when
a procedure ends via a system request ’2’, or because an inquiry message was
answered with ’C’ (Cancel).

The Register Call Stack Entry Termination User Exit Procedure (CEERTX) and the
Call Stack Entry Termination User Exit Procedure (CEEUTX) ILE bindable APIs
provide a way of dynamically registering a user-defined routine to be run when
the call stack entry for which it is registered is cancelled. Once registered, the
cancel handler remains in effect until the call stack entry is removed, or until
CEEUTX is called to disable it. For more information on these ILE bindable APIs,

===
* *PSSR: Error Subroutine for the procedure *
===
C *PSSR BEGSR
C EXCEPT InPssr
C EXCEPT Cancelling
C ENDSR '*CANCL'

===
* Procedure Output *
===
OQSYSPRT E ImBack
O 'I''m Back'
OQSYSPRT E InPssr
O 'In PSSR'
OQSYSPRT E Cancelling
O 'Cancelling...'

Figure 144. Source for Registering a Condition Handler (Part 3 of 3)

ILE Condition Handlers

312 ILE RPG Programmer’s Guide

see the CL and APIs section of the Programming category in the System i
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Figure 145 shows an example of enabling and coding a cancel handler for a
subprocedure. (Cancel handlers can also be enabled for cycle-main procedures in
the same way.)

*---
* Define the prototype for the cancel handler. This procedure is
* a local procedure.
*---
D CanHdlr PR
D pMsg *
*---
* Define the prototype for a subprocedure to enable the cancel
* handler.
*---
D Enabler PR
*---
* Define the prototype for a subprocedure to call Enabler
*---
D SubProc PR
*---
* Main procedure. Call SubProc three times.
*---
C CALLP SubProc
C CALLP SubProc
C CALLP SubProc
C SETON LR
*---
* Procedure SubProc. Call Enabler. Since this call will fail,
* define a local *PSSR subroutine to handle the error.
*---
P SubProc B
C CALLP Enabler
*---
* The PSSR has a RETURN operation, so the call from the main
* procedure to SubProc will not fail.
*---
C *PSSR BEGSR
C 'Subproc PSSR'DSPLY
C RETURN
C ENDSR
P SubProc E

Figure 145. Enabling and Coding a Cancel Handler for a Subprocedure (Part 1 of 3)

Chapter 13. Handling Exceptions 313

#
#
#

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

*---
* Procedure Enabler. This procedure enables a cancel handler,
* then gets an error which causes Enabler to be canceled.
*---
P Enabler B
* Local variables
D Handler S * PROCPTR INZ(%PADDR('CANHDLR'))
D Msg S 20A
D pMsg S * INZ(%ADDR(Msg))
D Zero S 5P 0 INZ(0)
D Count S 5I 0 INZ(0) STATIC
D Array S 1A DIM(2)
*---
* Enable the cancel handler. When this procedure gets canceled,
* procedure 'CANHDLR' will be called.
*---
C CALLB 'CEERTX'
C PARM Handler
C PARM pMsg
C PARM *OMIT
*---
* This procedure will be called three times. The first two times
* will get an error while the cancel handler is enabled.
*---
C EVAL Count = Count + 1
C SELECT
C WHEN Count = 1
C EVAL Msg = 'Divide by zero'
C EVAL Zero = Zero / Zero
C WHEN Count = 2
C EVAL Msg = 'String error'
C 'A' SCAN 'ABC':Zero Zero
*---
* On the third call, disable the cancel handler. The array index
* error will cause the procedure to fail, but the handler will
* not be invoked.
*---
C WHEN Count = 3
C CALLB 'CEEUTX'
C PARM Handler
C PARM *OMIT
C EVAL Msg = 'Array index error'
C EVAL Array(Zero) = 'x'
C ENDSL
P Enabler E

Figure 145. Enabling and Coding a Cancel Handler for a Subprocedure (Part 2 of 3)

314 ILE RPG Programmer’s Guide

The following is the output from program CANHDLR. Note that the *PSSR of the
procedure SubProc is called three times but the cancel handler is only called twice
because it was disabled before the third error.

Problems when ILE CL Monitors for Notify and Status Messages
If your ILE RPG procedure is called by an ILE CL procedure in the same activation
group, and the caller is monitoring for status or notify messages, then your ILE CL
caller may get control prematurely because of a notify or status message that the
ILE RPG procedure was trying to ignore.

For example, if the ILE RPG procedure writes a record to a printer file and the
actual printer file has a shorter record length that was declared in the RPG
procedure, notify message CPF4906 is sent to the RPG procedure. The RPG
exception handling percolates this message which causes the default reply of ’I’ to
ignore the message. This should allow the output operation to continue normally,
and the RPG procedure should proceed to the next instruction.

However, when the ILE CL MONMSG gets control, control passes immediately to
the action for the MONMSG or the next statement in the ILE CL procedure.

Note: For this problem to occur, the procedure monitoring for the message does
not have to be the immediate caller of the RPG procedure.

This problem is most likely to occur with a MONMSG in an ILE CL caller, but it
can also occur with other ILE languages that can monitor for notify and status
messages, including ILE RPG using ILE condition handlers enabled using
CEEHDLR.

If you encounter this problem, you have two possible ways to avoid it:

*---
* Define the cancel handler. The parameter is a pointer to the
* 'communication area', a message to be displayed.
*---
P CanHdlr B
D CanHdlr PI
D pMsg *
*---
* Define a field based on the input pointer pMsg.
*---
D Msg S 20A BASED(pMsg)
*---
* Display the message set by the procedure that enabled the
* handler.
*---
C 'Cancel Hdlr 'DSPLY Msg
P CanHdlr E

Figure 145. Enabling and Coding a Cancel Handler for a Subprocedure (Part 3 of 3)

DSPLY Cancel Hdlr Divide by zero
DSPLY Subproc PSSR
DSPLY Cancel Hdlr String error
DSPLY Subproc PSSR
DSPLY Subproc PSSR

Figure 146. Output from CANHDLR program

Chapter 13. Handling Exceptions 315

1. Ensure that the caller is in a different activation group from the ILE RPG
procedure.

2. Enable an ILE condition handler in the RPG procedure. In the handler, if the
message is one that you want to ignore, indicate that the message should be
handled. Otherwise, indicate that it should be percolated.
You could also make this handler more generic, and have it ignore all messages
with a severity of 0 (information) and 1 (warning).
Figure 147 shows an example of a ILE condition handler that ignores CPF4906.

Figure 148 on page 317 shows how you would code the calculations if you
wanted to ignore all status and notify messages. Escape messages and function
checks have a severity of 2 (Error) or higher.

*--
* Handler definitions
*--
D Action S 10I 0
D Token DS
D MsgSev 5I 0
D MsgNo 2A
D 1A
D Prefix 3A
D 4A
*--
* Actions
*--
D Handle C 10
D Percolate C 20
*--
* Severities
*--
D Info C 0
D Warning C 1
D Error C 2
D Severe C 3
D Critical C 4
C *ENTRY PLIST
C PARM Token
C PARM dummy 1
C PARM Action
*--
* If this is CPF4906, handle the notify msg, otherwise percolate
*--
C IF Prefix = 'CPF' AND
C MsgNo = X'4906'
C EVAL Action = Handle
C ELSE
C EVAL Action = Percolate
C ENDIF
C RETURN

Figure 147. ILE Condition Handler that Ignores CPF4906

316 ILE RPG Programmer’s Guide

*--
* Handle information or warning messages, otherwise percolate
*--
C IF MsgSev <= Warning
C EVAL Action = Handle
C ELSE
C EVAL Action = Percolate
C ENDIF
C RETURN

Figure 148. How to Ignore Status and Notify Messages

Chapter 13. Handling Exceptions 317

318 ILE RPG Programmer’s Guide

Chapter 14. Obtaining a Dump

This chapter describes how to obtain an ILE RPG formatted dump and provides a
sample formatted dump.

Obtaining an ILE RPG Formatted Dump
To obtain an ILE RPG formatted dump (printout of storage) for a procedure while
it is running, you can:
v Code one or more DUMP operation codes in the calculation specifications
v Respond to a run-time message with a D or F option. It is also possible to

automatically reply to make a dump available. Refer to the “System Reply List”
discussion in the CL Programming manual.

The formatted dump includes field contents, data structure contents, array and
table contents, the file information data structures, and the program status data
structure. The dump is written to the file called QPPGMDMP. (A system abnormal
dump is written to the file QPSRVDMP.)

If you respond to an ILE RPG run-time message with an F option, the dump also
includes the hexadecimal representation of the open data path (ODP, a data
management control block).

The dump information includes the global data associated with the module.
Depending on whether the cycle-main procedure is active, the global data may not
represent the values assigned during processing of the *INZSR. If a program
consists of more than one procedure, the information in the formatted dump also
reflects information about every procedure that is active at the time of the dump
request. If a procedure is not active, the values of variables in automatic storage
will not be valid. If a procedure has not been called yet, the static storage will not
be initialized yet. If a procedure has been called recursively, only the information
for the most recent invocation will be shown.

There are two occasions when dump data may not be available:
v If the program object was created with debug view *NONE. The dump will

contain only the PSDS, file information, and the *IN indicators.
v If a single variable or structure requires more than 16 MB of dump data. This

typically occurs with variables or structures that are larger than 5 MB.

If you do not want a user to be able to see the values of your program’s variables
in a formatted dump, do one of the following:
v Ensure that debug data is not present in the program by removing observability.
v Give the user sufficient authority to run the program, but not to perform the

formatted dump. This can be done by giving *OBJOPR plus *EXECUTE
authority.

© Copyright IBM Corp. 1994, 2010 319

#

Using the DUMP Operation Code
You can code one or more DUMP operation codes in the calculations of your
source to obtain a ILE RPG formatted dump. A new QPPGMDMP spool file is
created whenever the DUMP operation occurs.

Note the following about the DUMP operation:
v To determine whether a DUMP operation will cause a formatted dump to be

produced, you must check the operation extender on the DUMP operation, and
the DEBUG keyword on the control specification. The formatted dump will be
produced if the (A) extender on the DUMP operation is specified, or if the
DEBUG keyword was specified with no parameter or with a parameter of
*DUMP or *YES. Otherwise, the DUMP operation is checked for errors and the
statement is printed on the listing, but the DUMP is not processed.

v If the DUMP operation is conditioned, it occurs only if the condition is met.
v If a DUMP operation is bypassed by a GOTO operation, the DUMP operation

does not occur.

Example of a Formatted Dump
The following figures show an example of a formatted dump of a module similar
to DBGEX (see “Sample Source for Debug Examples” on page 279). In order to
show how data buffers are handled in a formatted dump we added the output file
QSYSPRT.

The dump for this example is a full-formatted dump; that is, it was created when
an inquiry message was answered with an ’F’.

Program Status Information

Using the DUMP Operation Code

320 ILE RPG Programmer’s Guide

�A� Procedure Identification: the procedure name, the program and library
name, and the module name.

�B� Current status code.

�C� Previous status code.

�D� ILE RPG source statement in error.

�E� ILE RPG routine in which the exception or error occurred.

�F� CPF or MCH for a machine exception.

�G� Information about the last file used in the program before an exception or
error occurred. In this case, no files were used.

�H� Program information. ’*N/A*’ indicates fields for which information is not
available in the program. These fields are only updated if they are
included in the PSDS.

Feedback Areas

Procedure Name
Program Name

Library
Module Name
Program Status
Previous Status
Statement in Error
RPG Routine
Number of Parameters
Message Type
Additional Message Info
Message Data

Program signature violation.
Status that caused RNX9001
Last File Used
Last File Status
Last File Operation
Last File Routine
Last File Statement
Last File Record Name
Job Name
User Name
Job Number
Date Entered System
Date Started
Time Started
Compile Date
Compile Time
Compiler Level
Source File

Library
Member

:
:
:
:
:
:
:
:
:
:
:
:

:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.
.

.

.

.
.
.

.

.
.

.

.

.

DBGEX2
TEST
MYLIB
DBGEX2
00202
00000
00000088
RPGPGM

MCH
4431

.

.

.
.
.

.

.

.
.
.

.

. .

.

.

. .
.

.

.

. .

.

MYUSERID
MYUSERID
002273
09/30/1995
N/A
N/A
123095
153438
0001
QRPGLESRC
MYLIB
DBGEX2

A

F

G

H

B
C
D
E

Program Status Area:

Figure 149. Program Status Information section of Formatted Dump

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 321

�I� This is the file feedback section of the INFDS. Only fields applicable to the
file type are printed. The rest of the INFDS feedback sections are not
dumped, since they are only updated if they have been declared in the
program.

�J� This is the file open feedback information for the file. For a description of
the fields, refer to the DB2 Universal Database for iSeries section of the

INFDS FILE FEEDBACK �I�
File : QSYSPRT
File Open : YES
File at EOF : NO
File Status : 00000
File Operation : OPEN I
File Routine : *INIT
Statement Number : *INIT
Record Name :
Message Identifier :
OPEN FEEDBACK �J�
ODP type : SP
File Name : QSYSPRT

Library : QSYS
Member : Q501383525 .
Spool File : Q04079N002

Library : QSPL
Spool File Number : 7
Primary Record Length : 80
Input Block Length : 0
Output Block Length : 80
Device Class : PRINTER
Lines per Page : 66
Columns per Line : 132
Allow Duplicate Keys : *N/A*
Records to Transfer : 1
Overflow Line : 60
Block Record Increment : 0
File Sharing Allowed : NO
Device File Created with DDS : NO
IGC or graphic capable file. : NO
File Open Count. : 1
Separate Indicator Area. : NO
User Buffers : NO
Open Identifier. : Q04079N002
Maximum Record Length. : 0
ODP Scoped to Job. : NO
Maximum Program Devices. : 1
Current Program Device Defined : 1
Device Name : *N
Device Description Name. : *N
Device Class : '02'X
Device Type. : '08'X

COMMON I/O FEEDBACK �K�
Number of Puts : 0
Number of Gets : 0
Number of Put/Gets : 0
Number of other I/O : 0
Current Operation : '00'X
Record Format :
Device Class and Type. : '0208'X
Device Name : *N
Length of Last Record : 80
Number of Records Retrieved. : 80
Last I/O Record Length : 0
Current Block Count. : 0

PRINTER FEEDBACK:
Current Line Number. : 1
Current Page : 1
Major Return Code. : 00
Minor Return Code. : 00

Output Buffer:
0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0040 00000000 00000000 00000000 00000000 * *

Figure 150. Feedback Areas section of Formatted Dump

Example of a Formatted Dump

322 ILE RPG Programmer’s Guide

Database and File Systems category in the i5/OS Information Center at this
Web site - http://www.ibm.com/systems/i/infocenter/.

�K� This is the common I/O feedback information for the file. For a description
of the fields, see the above Web site.

Information with Full-Formatted Dump

The common open data path and the feedback areas associated with the file are
included in the dump if you respond to an ILE RPG inquiry message with an F
option.

Data Information

Open Data Path:
0000 64800000 00001AF0 00001B00 000000B0 00000140 000001C6 00000280 000002C0 * 0 F *
0020 00000530 00000000 00000000 00000380 00000000 06000000 00000000 00000000 * *
0040 00008000 00000000 003AC02B A00119FF 000006C0 00003033 00000000 00000000 * *
0060 80000000 00000000 003AC005 CF001CB0 00000000 00000000 00000000 00000000 * *
0080 80000000 00000000 003AA024 D0060120 01900000 00010000 00000050 00000000 * & *
00A0 1F000000 00000000 00000000 00000000 E2D7D8E2 E8E2D7D9 E3404040 D8E2E8E2 * SPQSYSPRT QSYS*
00C0 40404040 4040D8F0 F4F0F7F9 D5F0F0F2 * Q04079N002QSPL & *

Open Feedback:
0000 E2D7D8E2 E8E2D7D9 E3404040 D8E2E8E2 40404040 4040D8F0 F4F0F7F9 D5F0F0F2 *SPQSYSPRT QSYS Q04079N002*
0020 D8E2D7D3 40404040 40400007 00500000 D8F5F0F1 F3F8F3F5 F2F50000 00000000 *QSPL & Q501383525 *
0040 00500002 00000000 42008400 00000000 0000D5A4 00100000 00000008 00000000 * & d Nu *
0060 00000000 00000000 00000100 3C000000 0005E000 5CD54040 40404040 40400001 * *N *
0080 00000000 00001300 00000000 00000000 00010001 5CD54040 40404040 40400000 * *N *
00A0 07100000 00000000 00450045 00450045 07A10045 00450045 00700045 00450045 * *
00C0 00450045 00450045 002F0030 00040005 5CD54040 40404040 40400208 00000000 * *N *
00E0 20000000 00000000 00000000 00000000 00000000 00000001 C2200000 00059A00 * B *
0100 00000000 00000000 00000000 00000000 00000000 4040 * *

Common I/O Feedback:
0000 00900000 00000000 00000000 00000000 00000000 00000000 00000000 00000208 * *
0020 5CD54040 40404040 40400000 00500000 00000000 00000000 00000000 00000000 **N & *
0040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0060 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0080 00000000 00000000 00000000 00000000 * *

I/O Feedback for Device:
0000 00010000 00010000 00000000 00000000 00000000 00000000 00000000 00000000 * *
0020 0000F0F0 0001 * 0000 *

Figure 151. Information Provided for Full-Formatted Dump

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 323

http://www.ibm.com/systems/i/infocenter/

ILE RPG FORMATTED DUMP
Module Name. : DBGEX2
Optimization Level : *NONE �L� �M�
Halt Indicators:
H1 '0' H2 '0' H3 '0' H4 '0' H5 '0' H6 '0' H7 '0' H8 '0' H9 '0'
Command/Function Key Indicators:
KA '0' KB '0' KC '0' KD '0' KE '0' KF '0' KG '0' KH '0' KI '0' KJ '0'
KK '0' KL '0' KM '0' KN '0' KP '0' KQ '0' KR '0' KS '0' KT '0' KU '0'
KV '0' KW '0' KX '0' KY '0'
Control Level Indicators:
L1 '0' L2 '0' L3 '0' L4 '0' L5 '0' L6 '0' L7 '0' L8 '0' L9 '0'
Overflow Indicators:
OA '0' OB '0' OC '0' OD '0' OE '0' OF '0' OG '0' OV '0'
External Indicators:
U1 '0' U2 '0' U3 '0' U4 '0' U5 '0' U6 '0' U7 '0' U8 '0'
General Indicators:
01 '0' 02 '1' 03 '0' 04 '1' 05 '0' 06 '1' 07 '0' 08 '0' 09 '0' 10 '0'
11 '0' 12 '0' 13 '0' 14 '0' 15 '0' 16 '0' 17 '0' 18 '0' 19 '0' 20 '0'
21 '0' 22 '0' 23 '0' 24 '0' 25 '0' 26 '0' 27 '0' 28 '0' 29 '0' 30 '0'
31 '0' 32 '0' 33 '0' 34 '0' 35 '0' 36 '0' 37 '0' 38 '0' 39 '0' 40 '0'
41 '0' 42 '0' 43 '0' 44 '0' 45 '0' 46 '0' 47 '0' 48 '0' 49 '0' 50 '0'
51 '0' 52 '0' 53 '0' 54 '0' 55 '0' 56 '0' 57 '0' 58 '0' 59 '0' 60 '0'
61 '0' 62 '0' 63 '0' 64 '0' 65 '0' 66 '0' 67 '0' 68 '0' 69 '0' 70 '0'
71 '0' 72 '0' 73 '0' 74 '0' 75 '0' 76 '0' 77 '0' 78 '0' 79 '0' 80 '0'
81 '0' 82 '0' 83 '0' 84 '0' 85 '0' 86 '0' 87 '0' 88 '0' 89 '0' 90 '0'
91 '0' 92 '0' 93 '0' 94 '0' 95 '0' 96 '0' 97 '0' 98 '0' 99 '0'
Internal Indicators:
LR '0' MR '0' RT '0' 1P '0'
�N�
NAME ATTRIBUTES VALUE
_QRNU_DSI_DS1 INT(10) 1 '00000001'X �O�
_QRNU_DSI_DS2 INT(10) 2 '00000002'X
_QRNU_NULL_ARR CHAR(1) DIM(8) �P�

(1-2) '1' 'F1'X
(3) '0' 'F0'X
(4) '1' 'F1'X
(5-6) '0' 'F0'X
(7) '1' 'F1'X
(8) '0' 'F0'X

_QRNU_NULL_FLDNULL CHAR(1) '1' 'F1'X
_QRNU_TABI_TABLEA INT(10) 1 '00000001'X �Q�
ARR CHAR(2) DIM(8)

(1-3) 'AB' 'C1C2'X
(4-7) ' ' '4040'X
(8) '1' 'F1'X

ARRY ZONED(3,2) DIM(2)
(1-2) 1.24 'F1F2F4'X

BASEONNULL CHAR(10) NOT ADDRESSABLE
BASEPTR POINTER SPP:E30095A62F001208
BASESTRING CHAR(6) 'ABCDEF' 'C1C2C3C4C5C6'X
BIGDATE DATE(10) '1994-09-30' 'F1F9F9F460F0F960F3F0'X
BIGTIME TIME(8) '12.00.00' 'F1F24BF0F04BF0F0'X
BIGTSTAMP TIMESTAMP(26) '9999-12-31-12.00.00.000000'

VALUE IN HEX 'F9F9F9F960F1F260F3F160F1F24BF0F04BF0F04BF0F0F0F0F0F0'X
BIN4D3 BIN(4,3) -4.321 'EF1F'X
BIN9D7 BIN(9,7) 98.7654321 '3ADE68B1'X
DBCSSTRING GRAPHIC(3) ' BBCCDD ' 'C2C2C3C3C4C4'X

Figure 152. Data section of Formatted Dump (Part 1 of 2)

Example of a Formatted Dump

324 ILE RPG Programmer’s Guide

�L� Optimization level

�M� General indicators 1-99 and their current status (’1’ is on, ’0’ is off). Note
that indicators *IN02, *IN04, and *IN06 were not yet set.

�N� Beginning of user variables, listed in alphabetical order, and grouped by
procedure. Data that is local to a subprocedure is stored in automatic

DS1 DS OCCURS(3) �R�
OCCURRENCE(1)

FLD1 CHAR(5) '1BCDE' 'F1C2C3C4C5'X
FLD1A CHAR(1) DIM(5)

(1) '1' 'F1'X
(2) 'B' 'C2'X
(3) 'C' 'C3'X
(4) 'D' 'C4'X
(5) 'E' 'C5'X

FLD2 BIN(5,2) 123.45 '00003039'X
OCCURRENCE(2)

FLD1 CHAR(5) 'ABCDE' 'C1C2C3C4C5'X
FLD1A CHAR(1) DIM(5)

(1) 'A' 'C1'X
(2) 'B' 'C2'X
(3) 'C' 'C3'X
(4) 'D' 'C4'X
(5) 'E' 'C5'X

FLD2 BIN(5,2) 123.45 '00003039'X
OCCURRENCE(3)

FLD1 CHAR(5) 'ABCDE' 'C1C2C3C4C5'X
FLD1A CHAR(1) DIM(5)

(1) 'A' 'C1'X
(2) 'B' 'C2'X
(3) 'C' 'C3'X
(4) 'D' 'C4'X
(5) 'E' 'C5'X

FLD2 BIN(5,2) 123.45 '00003039'X
DS2 CHAR(1O) DIM(2) �S�

(1) 'aaaaaaaaaa' '81818181818181818181'X
(2) 'bbbbbbbbbb' '82828282828282828282'X

DS3 DS �T�
FIRSTNAME CHAR(10) 'Fred ' 'C6998584404040404040'X
LASTNAME CHAR(10) 'Jones ' 'D1969585A24040404040'X
TITLE CHAR(5) 'Mr. ' 'D4994B4040'X

EXPORTFLD CHAR(6) 'export' '85A7979699A3'X
FLDNULL ZONED(3,1) 24.3 'F2F4F3'X
FLOAT1 FLT(4) 1.234500000000E+007 �U�

VALUE IN HEX '4B3C5EA8'X
FLOAT2 FLT(8) 3.962745000000E+047

VALUE IN HEX '49D15A640A93FCFF'X
INT10 INT(10) -31904 'FFFF8360'X
INT5 INT(5) -2046 'F802'X
NEG_INF FLT(8) -HUGE_VAL �V�

VALUE IN HEX 'FFF0000000000000'X
NOT_NUM FLT(4) *NaN �W�

VALUE IN HEX '7FFFFFFF'X
NULLPTR POINTER SYP:*NULL
PACKED1D0 PACKED(5,2) -093.40 '09340D'X
PARM1 PACKED(4,3) 6.666 '06666F'X
POS_INF FLT(8) HUGE_VAL �X�

VALUE IN HEX '7FF0000000000000'X
PROCPTR POINTER PRP:A00CA02EC200 �Y�
SPCPTR POINTER SPP:A026FA0100C0
SPCSIZ BIN(9,0) 000000008. '00000008'X
STRING CHAR(6) 'ABCDEF' 'C1C2C3C4C5C6'X
TABLEA CHAR(3) DIM(3)

(1) 'aaa' '818181'X
(2) 'bbb' '828282'X
(3) 'ccc' '838383'X

UNSIGNED10 UNS(10) 31904 '00007CA0'X
UNSIGNED5 UNS(5) 2046 '07FE'X
ZONEDD3D2 ZONED(3,2) -3.21 'F3F2D1'X
Local variables for subprocedure SWITCH: �Z�
NAME ATTRIBUTES VALUE
_QRNL_PSTR_PARM POINTER SYP:*NULL
LOCAL CHAR(5) ' ' '0000000000'X
PARM CHAR(1) NOT ADDRESSABLE

* * * * * E N D O F R P G D U M P * * * * *

Figure 152. Data section of Formatted Dump (Part 2 of 2)

Example of a Formatted Dump

Chapter 14. Obtaining a Dump 325

storage and is not available unless the subprocedure is active. Note that
the hexadecimal values of all variables are displayed. :nt Names longer
than 131 characters, will appear in the dump listing split across multiple
lines. The entire name will be printed with the characters ’...’ at the end of
the lines. If the final portion of the name is longer than 21 characters, the
attributes and values will be listed starting on the following line.

�O� Internally defined fields which contain indexes multiple-occurrence data
structures.

�P� Internally defined fields which contain the null indicators for null-capable
fields.

�Q� Internally defined fields which contain indexes for tables.

�R� Multiple-occurrence data structure.

�S� Data structures with no subfields are displayed as character strings.

�T� Data structure subfields are listed in alphabetical order, not in the order in
which they are defined. Gaps in the subfield definitions are not shown.

�U� 4-byte and 8-byte float fields.

�V� Indicates negative infinity.

�W� Stands for ’not a number’ indicating that the value is not a valid
floating-point number.

�X� Indicates positive infinity.

�Y� The attribute does not differentiate between basing and procedure pointer.

�Z� The local data inside subprocedures is listed separately from the main
source section.

Example of a Formatted Dump

326 ILE RPG Programmer’s Guide

Part 4. Working with Files and Devices

This section describes how to use files and devices in ILE RPG programs.
Specifically, it shows how to:
v Associate a file with a device
v Define a file (as program-described or externally-described)
v Process files
v Access database files
v Access externally-attached devices
v Write an interactive application

Note: The term ’RPG IV program’ refers to an Integrated Language Environment
program that contains one or more procedures written in RPG IV.

© Copyright IBM Corp. 1994, 2010 327

328 ILE RPG Programmer’s Guide

Chapter 15. Defining Files

Files serve as the connecting link between a program and the device used for I/O.
Each file on the system has an associated file description which describes the file
characteristics and how the data associated with the file is organized into records
and fields.

In order for a program to perform any I/O operations, it must identify the file
description(s) the program is referencing, what type of I/O device is being used,
and how the data is organized. This chapter provides general information on:
v Associating file descriptions with input/output devices
v Defining externally described files
v Defining program-described files
v Data management operations

Information on how to use externally and program-described files with different
device types is found in subsequent chapters.

Associating Files with Input/Output Devices
The key element for all I/O operations on the i5/OS is the file. The system
supports the following file types:

database files
allow storage of data permanently on system

device files
allow access to externally attached devices. Include display files, printer
files, tape files, diskette files, and ICF files.

save files
used to store saved data on disk

DDM files
allow access to data files stored on remote systems.

Each I/O device has a corresponding file description of one of the above types
which the program uses to access that device. The actual device association is
made when the file is processed: the data is read from or written to the device
when the file is used for processing.

RPG also allows access to files and devices not directly supported by the system,
through the use of SPECIAL files. With a SPECIAL file, you must provide a
program that handles the association of the name to the file, and the data
management for the file. With other types of files, this is handled by RPG and the
operating system.

To indicate to the operating system which file description(s) your program will
use, you specify a file name in positions 7 through 16 of a file description
specification for each file used. In positions 36 through 42 you specify an RPG
device name. The device name defines which RPG operations can be used with the
associated file. The device name can be one of: DISK, PRINTER, WORKSTN, SEQ,
or SPECIAL. Figure 153 on page 330 shows a file description specification for a

© Copyright IBM Corp. 1994, 2010 329

display (WORKSTN) file FILEX.

Note that it is the file name, not the device name (specified in positions 36 through
42) which points to the IBM i file description that contains the specifications for the
actual device.

The RPG device types correspond to the above file types as follows:

Table 43. Correlation of RPG Device Types with i5/OS File Types

RPG Device Type i5/OS File Type

DISK database, save, DDM files

PRINTER printer files

WORKSTN display, ICF files

SEQ tape, diskette, save, printer, database

SPECIAL N/A

Figure 154 illustrates the association of the RPG file name FILEX, as coded in
Figure 153, with a system file description for a display file.

At compilation time, certain RPG operations are valid only for a specific RPG
device name. In this respect, the RPG operation is device dependent. One example
of device dependency is that the EXFMT operation code is valid only for a
WORKSTN device.

Other operation codes are device independent, meaning that they can be used with
any device type. For example, WRITE is a device-independent operation.

The SEQ Device

The device SEQ is an independent device type. Figure 155 on page 331 illustrates
the association of the RPG file name FILEY with a system file description for a
sequential device. When the program is run, the actual I/O device is specified in
the description of FILEY. For example, the device might be PRINTER.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FFILEX CF E WORKSTN

Figure 153. Identifying a Display File in an RPG Program

RPG program FILEX

Device type =
DISPLAY

File name = FILEX
Device = WORKSTN

Figure 154. Associating a file name with a display file description

Associating Files with Input/Output Devices

330 ILE RPG Programmer’s Guide

Although the file name and file type are coded in the RPG program, in many cases
you can change the type of file or the device used in a program without changing
the program. To find out how, see “Overriding and Redirecting File Input and
Output” on page 341.

Naming Files
On the i5/OS system, files are made up of members. These files are organized into
libraries. The convention for naming files is library-name/file-name.

In an ILE RPG program, the name used for a file within the source is specified in
positions 7 through 16 in file description specifications. File names can be up to ten
characters long and must be unique within their scope, global or local. The
EXTFILE keyword can be used to locate the file at runtime; if the EXTFILE
keyword is not specified, the same name is used at runtime to locate the file in the
library list. For an externally-described file, the EXTDESC keyword is used to
locate the file at compile time; if you want the same file to be used at runtime, you
can specify EXTFILE(*EXTDESC).

If you do not specify the EXTFILE keyword to locating the file at runtime, or you
do not specify the EXTDESC keyword to locate the file at compile time, you can
use a file override command to specify a particular name, library or member. See
“Overriding and Redirecting File Input and Output” on page 341 for more
information on file overrides.

Types of File Descriptions
When identifying the file description your program will be using, you must
indicate whether it is a program-described file or an externally described file.
v For a program-described file, you can use a data structure to hold the data for

your file operations, or for global files, you can code the descriptions of the
fields within the RPG source member on input and/or output specifications.
The description of the file to the operating system includes information about
where the data comes from and the length of the records in the file.

v For an externally described file, the compiler retrieves the description of the
fields from an external file-description which was created using DDS, IDDU, or
SQL commands. Therefore, you do not have to code the field descriptions on
input and/or output specifications within the RPG source member.
The external description includes information about where the data comes from,
such as the database or a specific device, and a description of each field and its
attributes. The file must exist and be accessible from the library list before you
compile your program.

Externally described files offer the following advantages:

RPG program FILEY

File name - FILEY
Device = SEQ

Device type =
PRINTER

File type =
DEVICE

Figure 155. Associating a file name with a display file description

Associating Files with Input/Output Devices

Chapter 15. Defining Files 331

#
#
#
#
#
#
#
#

#
#
#
#
#

#
#
#

#
#

v Less coding in programs. If the same file is used by many programs, the fields
can be defined once to the operating system and used by all the programs. This
practice eliminates the need to code input and output specifications for RPG
programs that use externally described files.

v Less maintenance activity when the file’s record format is changed. You can
often update programs by changing the file’s record format and then
recompiling the programs that use the files without changing any coding in the
program.

v Improved documentation because programs using the same files use consistent
record-format and field names.

v Improved reliability. If level checking is specified, the RPG program will notify
the user if there are changes in the external description. See “Level Checking” on
page 339 for further information.

If an externally described file (identified by an E in position 22 of the file
description specification) is specified for the devices SEQ or SPECIAL, the RPG
program uses the field descriptions for the file, but the interface to the operating
system is as though the file were a program-described file. Externally described
files cannot specify device-dependent functions such as forms control for PRINTER
files because this information is already defined in the external description.

Using Files with External-Description as Program-Described
A file created from external descriptions can be used as a program-described file in
the program. To use an externally described file as a program-described file,
1. Specify the file as program-described (F in position 22) in the file description

specification of the program.
2. Describe the fields in the records on the input or/and output specifications of

the program, or as subfields of a data structure.

At compile time, the compiler uses the data structure you have defined, or the
field descriptions in any input or/and output specifications that you coded for the
file. It does not retrieve the external descriptions.

Example of Some Typical Relationships between Programs
and Files

�1� The program uses the field-level description of a file that is defined to the
operating system. An externally described file is identified by an E in
position 22 of the file description specifications. At compilation time, the
compiler copies in the external field-level description.

1 2 3 4

Field-Level
Description of
a File

Record-Level
Description of
a File

i5/OS

RPG RPG RPG RPG

i5/OS i5/OS

Field-Level
Description of
a File

Externally
Described File
(E in position 22)

Program-Described
File (F in position
22) - The compiler
does not copy in
field-level description

Program-Described
File (F in position 22)

Externally
Described File
(E in position 22)

Figure 156. Typical Relationships between an RPG Program and Files on the i5/OS System

Types of File Descriptions

332 ILE RPG Programmer’s Guide

#
#

#
#
#

�2� An externally described file (that is, a file with field-level external
description) is used as a program-described file in the program. A
program-described file is identified by an F in position 22 of the file
description specifications. This entry tells the compiler not to copy in the
external field-level descriptions. This file does not have to exist at
compilation time.

�3� A file is described only at the record level to the operating system. The
fields in the record are described within the program; therefore, position 22
of the file description specifications must contain an F. This file does not
have to exist at compilation time.

�4� A file name can be specified at compilation time (that is, coded in the RPG
source member), and a different file name can be specified at run time. The
E in position 22 of the file description specifications indicates that the
external description of the file is to be copied in at compilation time. At
run time, a file override command can be used so that a different file is
accessed by the program. To override a file at run time, you must make
sure that record names in both files are the same. The RPG program uses
the record-format name on the input/output operations, such as a READ
operation where it specifies what record type is expected. See “Overriding
and Redirecting File Input and Output” on page 341 for more information.

Defining Externally Described Files
You can use DDS to describe files to the IBM i system. Each record type in the file
is identified by a unique record-format name.

An E entry in position 22 of the file description specifications identifies an
externally described file. The E entry indicates to the compiler that it is to retrieve
the external description of the file from the system when the program is compiled.

The information in this external description includes:
v File information, such as file type, and file attributes, such as access method (by

key or relative record number)
v Record-format description, which includes the record format name and field

descriptions (names, locations, and attributes).

The information the compiler retrieves from the external description is printed on
the compiler listing as long as OPTION(*EXPDDS) is specified on either the
CRTRPGMOD or CRTBNDRPG command when compiling the source member.
(The default for both of these commands is OPTION(*EXPDDS).)

If your file is defined with the QUALIFIED keyword, the format names are
specified in the program in the form filename.formatname except when you are
specifying the format names in the keywords used to define the file. For example,
assume a file is named MYFILE in your program, and it has formats FMT1, FMT2
and FMT3. To rename FMT3 to NEWFMT3, you specify
RENAME(FMT3:NEWFMT3); to ignore FMT2, you specify IGNORE(FMT2). Within
your calculations, or when specifying the LIKEREC keyword, you use the qualified
form of the names, MYFILE.FMT1 and MYFILE.NEWFMT3.

The following section describes how to use a file description specification to
rename or ignore record formats and how to use input and output specifications to
modify external descriptions. Remember that input and output specifications for

Types of File Descriptions

Chapter 15. Defining Files 333

#
#
#
#
#
#
#
#

#
#
#

global externally described files are optional, and that they are not allowed for
externally described files in subprocedures or for qualified files.

Renaming Record-Format Names
Many of the functions that you can specify for externally described files (such as
the CHAIN operation) operate on either a file name or a record-format name. Each
file and unqualified record-format name in the program must be a unique
symbolic name. If your file is qualified, so that the record formats are specified in
the form filename.fmtname, the names of the formats do not have to be unique
within the program.

To rename a record-format name, use the RENAME keyword on the file
description specifications for the externally described file as shown in Figure 157.
The format is RENAME(old name:new name). Remember that even if the file is
qualified, you do not use the qualified form of the name with the RENAME
keyword.

The RENAME keyword is generally used if the program contains two files which
have the same record-format names. In Figure 157, the record format
ITEMFORMAT in the externally described file ITMMSTL is renamed MSTITM for
use in this program. An alternate solution to the problem of having record formats
from different files with the same name is to define the files as qualified, using the
QUALIFIED keyword. The record formats of a qualified file are specified in the
form filename.formatname, so it does not matter if the format name is the same as
another name within the program.

Renaming Field Names
You can partially rename all fields in an externally described file by using the
PREFIX keyword on the file-description specification for the file. You can either
add a prefix to the existing field name or you can replace part of the existing field
name with a sequence of characters. The format is PREFIX(prefix-string:
{nbr_of_char_replaced}). Figure 158 shows some examples of the use of PREFIX.

Ignoring Record Formats
If a record format in an externally described file is not to be used in a program,
you can use the IGNORE keyword to make the program run as if the record
format did not exist in the file. For logical files, this means that all data associated

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FITMMSTL IP E K DISK RENAME(ITEMFORMAT:MSTITM)
*

Figure 157. RENAME Keyword for Record Format Names in an Externally Described File

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
* Add the prefix MST to each name in the record format
FITMMSTL IP E K DISK PREFIX(MST)
*
* Change the prefix YTD to YE for each name in the record format
FSALESMSTR IP E K DISK PREFIX(YE:3)

Figure 158. Prefix Keyword for Record Format Names in an Externally Described File

Defining Externally Described Files

334 ILE RPG Programmer’s Guide

#
#

#
#
#
#
#
#

#
#
#
#
#

#
#
#
#
#
#
#
#

with that format is inaccessible to the program. Use the IGNORE keyword on a file
description specifications for the externally described file as shown in Figure 159.

The file must have more than one record format, and not all of them can be
ignored; at least one must remain. Except for that requirement, any number of
record formats can be ignored for a file.

Once a record-format is ignored, it cannot be specified for any other keyword
(SFILE, RENAME, or INCLUDE), or for another IGNORE.

Ignored record-format names appear on the cross-reference listing, but they are
flagged as ignored.

To indicate that a record format from an externally described file, is to be ignored,
enter the keyword and parameter IGNORE(record-format name) on the file
description specification in the Keyword field. Remember that even if the file is
qualified, you do not use the qualified form of the name with the IGNORE or
INCLUDE keywords.

Alternatively, the INCLUDE keyword can be used to include only those record
format names that are to be used in a program. All other record formats contained
in the file will be excluded.

Using Input Specifications to Modify an External Description
For a global unqualified file, you can use the input specifications to override
certain information in the external description of an input file or to add RPG
functions to the external description. On the input specifications, you can:
v Assign record-identifying indicators to record formats as shown in Figure 160 on

page 336.
v Rename a field as shown in Figure 160 on page 336.
v Assign control-level indicators to fields as shown in Figure 160 on page 336.
v Assign match-field values to fields for matching record processing as shown in

Figure 161 on page 337.
v Assign field indicators as shown in Figure 161 on page 337.

You cannot use the input specifications to override field locations in an externally
described file. The fields in an externally described file are placed in the records in

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
*
* Assume the file ITMMSTL contains the following record formats:
* EMPLNO, NAME, ADDR, TEL, WAGE. To make the program run as if only the
* EMPLNO and NAME records existed, either of the following two methods
* can be used:
*
FITMMSTL UF E K DISK IGNORE(ADDR:TEL:WAGE)
*
* OR:
*
FITMMSTL UF E K DISK INCLUDE(EMPLNO:NAME)
*

Figure 159. IGNORE Keyword for Record Formats in an Externally Described File

Defining Externally Described Files

Chapter 15. Defining Files 335

#
#
#
#
#

#
#

the order in which they are listed in the data description specifications. Also,
device-dependent functions such as forms control, are not valid in an RPG
program for externally described files.

Note: You can explicitly rename a field on an input specification, even when the
PREFIX keyword is specified for a file. The compiler will recognize (and
require) the name that is first used in your program. For example, if you
specify the prefixed name on an input specification to associate the field
with an indicator, and you then try to rename the field referencing the
unprefixed name, you will get an error. Conversely, if you first rename the
field to something other than the prefixed name, and you then use the
prefixed name on a specification, you will get an error.

�1� To assign a record-identifying indicator to a record in an externally
described file, specify the record-format name in positions 7 through 16 of
the input specifications and assign a valid record-identifying indicator in
positions 21 and 22. A typical use of input specifications with externally
described files is to assign record-identifying indicators.

In this example, record-identifying indicator 01 is assigned to the record
MSTRITEM and indicator 02 to the record MSTRWHSE.

�2� To rename a field in an externally described record, specify the external
name of the field, left-adjusted, in positions 21 through 30 of the
field-description line. In positions 49 through 62, specify the name that is
to be used in the program.

In this example, the field ITEMNUMB in both records is renamed ITEM for
this program.

�3� To assign a control-level indicator to a field in an externally described
record, specify the name of the field in positions 49 through 62 and specify
a control-level indicator in positions 63 and 64.

In this example, the ITEM field in both records MSTRITEM and
MSTRWHSE is specified to be the L1 control field.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
IRcdname+++....In...*
IMSTRITEM 01 �1�
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr......
I ITEMNUMB �2� ITEM L1 �3�
*
IMSTRWHSE 02
I ITEMNUMB ITEM L1
*

Figure 160. Overriding and Adding RPG Functions to an External Description

Defining Externally Described Files

336 ILE RPG Programmer’s Guide

�1� To assign a match value to a field in an externally described record, specify
the record-format name in positions 7 through 16 of the
record-identification line. On the field-description line specify the name of
the field in positions 49 through 62 and assign a match-level value in
positions 65 and 66.

In this example, the CUSTNO field in both records MSTREC and WKREC
is assigned the match-level value M1.

�2� To assign a field indicator to a field in an externally described record,
specify the record-format name in positions 7 through 16 of the
record-identification line. On the field-description line, specify the field
name in positions 49 through 62, and specify an indicator in positions 69
through 74.

In this example, the field BALDUE in the record WKREC is tested for zero
when it is read into the program. If the field’s value is zero, indicator 98 is
set on.

Using Output Specifications
Output specifications are optional for an externally described file; they are not
allowed for local files in subprocedures, or qualified files. RPG supports file
operation codes such as WRITE and UPDATE that use the external record-format
description to describe the output record without requiring output specifications
for the externally described file.

You can use output specification to control when the data is to be written, or to
specify selective fields that are to be written. The valid entries for the
field-description line for an externally described file are output indicators
(positions 21 - 29), field name (positions 30 - 43), and blank after (position 45). Edit
words and edit codes for fields written to an externally described file are specified
in the DDS for the file. Device-dependent functions such as fetch overflow
(position 18) or space/skip (positions 40 - 51) are not valid in an RPG program for
externally described files. The overflow indicator is not valid for externally
described files either. For a description of how to specify editing in the DDS, refer
to the DB2 Universal Database for iSeries section of the Database and File Systems
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/.

If output specifications are used for an externally described file, the record-format
name is specified in positions 7 - 16 instead of the file name.

If all the fields in an externally described file are to be placed in the output record,
enter *ALL in positions 30 through 43 of the field-description line. If *ALL is
specified, you cannot specify other field description lines for that record.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................
IMSTREC 01 �1�
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr......
I CUSTNO M1 �1�
*
IWKREC 02
I CUSTNO M1
I BALDUE 98 �2�
*

Figure 161. Adding RPG Functions to an External Description

Defining Externally Described Files

Chapter 15. Defining Files 337

#
#
#
#
#

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

If you want to place only certain fields in the output record, enter the field name
in positions 30 through 43. The field names you specify in these positions must be
the field names defined in the external record description, unless the field was
renamed on the input specifications. See Figure 162.

You should know about these considerations for using the output specifications for
an externally described file:
v In the output of an update record, only those fields specified in the output field

specifications and meeting the conditions specified by the output indicators are
placed in the output record to be rewritten. Fields not specified in the output
specifications are rewritten using the values that were read. This technique offers
a good method of control as opposed to the UPDATE operation code that
updates all fields.

v In the creation of a new record, the fields specified in the output field
specifications are placed in the record. Fields not specified in the output field
specifications or not meeting the conditions specified by the output indicators
are written as default values, which depend on the data format specified in the
external description (for example: a blank for character fields; zero for numeric
fields).

�1� For an update file, all fields in the record are written to the externally
described record ITMREC using the current values in the program for all
fields in the record.

For the creation of a new record, all fields in the record are written to the
externally described record ITMREC using the current values in the
program for the fields in the record.

�2� To update a record, the fields SLSNAM and COMRAT are written to the
externally described record SLSREC when indicator 30 is on. The field
BONUS is written to the SLSREC record when indicators 30 and 15 are on.
All other fields in the record are written with the values that were read.

To create a new record, the fields SLSNAM and COMRAT are written to
the externally described record SLSREC when indicator 30 is on. The field
BONUS is written when indicators 30 and 15 are on. All other fields in the
record are written as default values, which depend on their data type (for
example: a blank for character fields; zero for numeric fields).

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+............................*
OITMREC D 20
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O *ALL �1�
*
OSLSREC D 30
O SLSNAM �2�
O COMRAT
O 15 BONUS
*

Figure 162. Output Specifications for an Externally Described File

Defining Externally Described Files

338 ILE RPG Programmer’s Guide

Level Checking
HLL programs are dependent on receiving, at run time, an externally described file
whose format agrees with what was copied into the program at compilation time.
For this reason, the system provides a level-check function that ensures that the
format is the same.

The RPG compiler always provides the information required by level checking
when an externally described DISK, WORKSTN, or PRINTER file is used. The
level-check function can be requested on the create, change, and override file
commands. The default on the create file command is to request level checking.

Level checking occurs on a record-format basis when the file is opened unless you
specify LVLCHK(*NO) when you issue a file override command or create a file. If
the level-check values do not match, the program is notified of the error. The RPG
program then handles the OPEN error as described in Chapter 13, “Handling
Exceptions,” on page 285.

The RPG program does not provide level checking for program-described files or
for files using the devices SEQ or SPECIAL.

For more information on how to specify level checking, refer to the DB2 Universal
Database for iSeries section of the Database and File Systems category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Defining Program-Described Files
Program-described files are files whose records and fields are described on
input/output specifications in the program that uses the file. To use a
program-described file in an RPG program you must:
1. Identify the file(s) in the file description specifications.
2. If it is a global input file, describe the record and fields in the input

specifications. The file name in positions 7 through 16 in the input
specifications must be the same as the corresponding name entered in the file
specifications.
On the record-identification entries you indicate whether you want to perform
sequence checking of records within the file.

3. Enter the same file name as in step 1 in the FACTOR 2 field of those calculation
specifications which require it. For example, WRITE operations to a
program-described file require a data structure name in the result field.

4. If it is a global output file, describe the record and fields in the output
specifications. In addition, you specify how the output is to be printed. The file
name in positions 7 through 16 in the output specifications must be the same as
the corresponding name entered in the file specifications.

A program-described file must exist on the system, and be in your library list,
before the program can run. To create a file, use one of the Create File commands,
which can be found in the CL and APIs section of the Programming category in the
System i Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Defining Externally Described Files

Chapter 15. Defining Files 339

#
#
#
#

#
#

#
#
#
#

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

Data Management Operations and ILE RPG I/O Operations
Data management is the part of the operating system that controls the storing and
accessing of data by an application program. Table 44 shows the data management
operations provided by the i5/OS system and their corresponding ILE RPG
operation. It also shows which operations are allowed for which ILE RPG device
type.

Table 44. Data Management Operations and the Corresponding RPG I/O Operation

Data Management Operation ILE RPG I/O Operation

OPEN OPEN

READ
By relative

record number
By key

Sequential
Previous
Next
Invited Device

READ, CHAIN

READ, READE, CHAIN, primary and
secondary file
READ
READP, READPE
READ, READE
READ

WRITE-READ EXFMT

WRITE
By relative

record number
By key
Sequential

WRITE
WRITE, EXCEPT, primary and secondary file
WRITE, EXCEPT

FEOD FEOD

UPDATE
By relative

record number
By key

UPDATE, primary and secondary file
UPDATE, primary and secondary file

DELETE
By relative

record number
By key

DELETE, primary and secondary file
DELETE, primary and secondary file

ACQUIRE ACQ

RELEASE REL

COMMIT COMMIT

ROLLBACK ROLBK

CLOSE CLOSE, LR RETURN

Data Management Operations and ILE RPG I/O Operations

340 ILE RPG Programmer’s Guide

Chapter 16. General File Considerations

This chapter provides information on the following aspects of file processing on
the i5/OS system using RPG:
v overriding and redirecting file input and output
v file locking by an RPG program
v record locking by an RPG program
v sharing an open data path
v i5/OS spooling functions
v using SRTSEQ/ALTSEQ in an RPG program versus a DDS file

Overriding and Redirecting File Input and Output
IBM i commands can be used to override a parameter in the specified file
description or to redirect a file at compilation time or run time. File redirection
allows you to specify a file at run time to replace the file specified in the program
(at compilation time):

In the preceding example, the CL command OVRDBF (Override With Database
File) allows the program to run with an entirely different device file than was
specified at compilation time.

To override a file at run time, you must make sure that record names in both files
are the same. The RPG program uses the record-format name on the input/output
operations, such as a READ operation where it specifies what record type is
expected.

Not all file redirections or overrides are valid. At run time, checking ensures that
the specifications within the RPG program are valid for the file being processed.
The IBM i system allows some file redirections even if device specifics are
contained in the program. For example, if the RPG device name is PRINTER, and

RPG program

Diskette

FILEY

Compile
Time

Override Command:
OVRDBF FILE (FILEY) TOFILE (FILEA)

Execution
Time

FILEA

File name = FILEY
Device = DISK

File type =
DEVICE

Device type =
DISKETTE

File type =
PHYSICAL

Figure 163. Overriding File Input and Output Example

© Copyright IBM Corp. 1994, 2010 341

the actual file the program connects to is not a printer, the IBM i system ignores
the RPG print spacing and skipping specifications.

There are other file redirections that the IBM i system does not allow and that
cause the program to end. For example, if the RPG device name is WORKSTN and
the EXFMT operation is specified in the program, the program is stopped if the
actual file the program connects to is not a display or ICF file.

In ILE, overrides are scoped to the activation group level, job level, or call level.
Overrides that are scoped to the activation group level remain in effect until they
are deleted, replaced, or until the activation group in which they are specified
ends. Overrides that are scoped to the job level remain in effect until they are
deleted, replaced, or until the job in which they are specified ends. This is true
regardless of the activation group in which the overrides were specified. Overrides
that are scoped to the call level remain in effect until they are deleted, replaced, or
until the program or procedure in which they are specified ends.

The default scope for overrides is the activation group. For job-level scope, specify
OVRSCOPE(*JOB) on the override command. For call-level scope, specify
OVRSCOPE(*CALLLVL) on the override command.

For more detailed information on valid file redirections and file overrides, refer to
the DB2 Universal Database for iSeriesAS/400® section of the Database and File
Systems category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

ILE Concepts also contains information about overrides and activation group vs. job
level scope.

Example of Redirecting File Input and Output
The following example shows the use of a file override at compilation time.
Assume that you want to use an externally described file for a TAPE device which
does not have field-level description. You must:
1. Define a physical file named FMT1 with one record format that contains the

description of each field in the record format. The record format is defined on
the data description specifications (DDS). For a tape device, the externally
described file should contain only one record format.

2. Create the file named FMT1 with a Create Physical File CL command.
3. Specify the file name of QTAPE (which is the IBM-supplied device file name

for magnetic tape devices) in the RPG program. This identifies the file as
externally described (indicated by an E in position 22 of the file description
specifications), and specifies the device name SEQ in positions 36 through 42.

4. Use an override command–OVRDBF FILE(QTAPE) TOFILE(FMT1)–at
compilation time to override the QTAPE file name and use the FMT1 file name.
This command causes the compiler to copy in the external description of the
FMT1 file, which describes the record format to the RPG compiler.

5. Create the RPG program using the CRTBNDRPG command or the CRTPGM
command.

6. Call the program at run time. The override to file FMT1 should not be in effect
while the program is running. If the override is in effect, use the CL command
DLTOVR (Delete Override) before calling the program.

Note: You may need to use the CL command OVRTAPF before you call the
program to provide information necessary for opening the tape file.

Overriding and Redirecting File Input and Output

342 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

File Locking
The IBM i system allows a lock state (exclusive, exclusive allow read, shared for
update, shared no update, or shared for read) to be placed on a file used during
the execution of a job. Programs within a job are not affected by file lock states. A
file lock state applies only when a program in another job tries to use the file
concurrently. The file lock state can be allocated with the CL command ALCOBJ
(Allocate Object). For more information on allocating resources and lock states,
refer to the DB2 Universal Database for iSeries section of the Database and File Systems
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/.

The IBM i system places the following lock states on database files when it opens
the files:

File Type Lock State

Input Shared for read

Update Shared for update

Add Shared for update

Output Shared for update

The shared-for-read lock state allows another user to open the file with a lock state
of shared for read, shared for update, shared no update, or exclusive allow read,
but the user cannot specify the exclusive use of the file. The shared-for-update lock
state allows another user to open the file with shared-for-read or shared-for-update
lock state.

The RPG program places an exclusive-allow-read lock state on device files.
Another user can open the file with a shared-for-read lock state.

The lock state placed on the file by the RPG program can be changed if you use
the Allocate Object command.

RPG program

Execution Time:
No Override

File name = QTAPE
Format = E
Device = SEQ

Compile Time:
Override File
QTAPE to
File FMT1

QTAPE

FMT1

File type =
DEVICE

Device type =
TAPE

Figure 164. Redirecting File Input and Output Example

Overriding and Redirecting File Input and Output

Chapter 16. General File Considerations 343

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

Record Locking
When a record is read by a program, it is read in one of two modes: input or
update. If a program reads a record for update, a lock is placed on that record.
Another program cannot read the same record for update until the first program
releases that lock. If a program reads a record for input, no lock is placed on the
record. A record that is locked by one program can be read for input by another
program.

In RPG IV programs, you use an update file to read records for update. A record
read from a file with a type other than update can be read for inquiry only. By
default, any record that is read from an update file will be read for update. For
update files, you can specify that a record be read for input by using one of the
input operations CHAIN, READ, READE, READP, or READPE and specifying an
operation code extender (N) in the operation code field following the operation
code name.

When a record is locked by an RPG IV program, that lock remains until one of the
following occurs:
v the record is updated.
v the record is deleted.
v another record is read from the file (either for inquiry or update).
v a SETLL or SETGT operation is performed against the file
v an UNLOCK operation is performed against the file.
v an output operation defined by an output specification with no field names

included is performed against the file.

Note: An output operation that adds a record to a file does not result in a
record lock being released.

If your program reads a record for update and that record is locked through
another program in your job or through another job, your read operation will wait
until the record is unlocked (except in the case of shared files, see “Sharing an
Open Data Path” on page 345). If the wait time exceeds that specified on the
WAITRCD parameter of the file, an exception occurs. If your program does not
handle this exception (RNX1218) then the default error handler is given control
when a record lock timeout occurs, an RNQ1218 inquiry message will be issued.
One of the options listed for this message is to retry the operation on which the
timeout occurred. This will cause the operation on which the timeout occurred to
be re-issued, allowing the program to continue as if the record lock timeout had
not occurred. Note that if the file has an INFSR specified in which an I/O
operation is performed on the file before the default error handler is given control,
unexpected results can occur if the input operation that is retried is a sequential
operation, since the file cursor may have been modified.

Note: Subprocedures do not get inquiry message, and so this situation should be
handled by using an error indicator on the read operation and checking for
status 1218 following the read.

If no changes are required to a locked record, you can release it from its locked
state, without modifying the file cursor, by using the UNLOCK operation or by
processing output operations defined by output specifications with no field names
included. These output operations can be processed by EXCEPT output, detail
output, or total output.

Record Locking

344 ILE RPG Programmer’s Guide

(There are exceptions to these rules when operating under commitment control.
See “Using Commitment Control” on page 373 for more information.)

Sharing an Open Data Path
An open data path is the path through which all input and output operations for a
file are performed. Usually a separate open data path is defined each time a file is
opened. If you specify SHARE(*YES) for the file creation or on an override, the
first program’s open data path for the file is shared by subsequent programs that
open the file concurrently.

If you are sharing your files so that you can use them in different programs or
modules, consider passing the files between your programs and modules as
parameters instead. See “Passing File Parameters” on page 153.

The position of the current record is kept in the open data path for all programs
using the file. If you read a record in one program and then read a record in a
called program, the record retrieved by the second read depends on whether the
open data path is shared. If the open data path is shared, the position of the
current record in the called program is determined by the current position in the
calling program. If the open data path is not shared, each program has an
independent position for the current record.

If your program holds a record lock in a shared file and then calls a second
program that reads the shared file for update, you can release the first program’s
lock by :
v performing a READ operation on the update file by the second program, or
v using the UNLOCK or the read-no-lock operations.

In ILE, shared files are scoped to either the job level or the activation group level.
Shared files that are scoped to the job level can be shared by any programs
running in any activation group within the job. Shared files that are scoped to the
activation group level can be shared only by the programs running in the same
activation group.

The default scope for shared files is the activation group. For job-level scope,
specify OVRSCOPE(*JOB) on the override command.

ILE RPG offers several enhancements in the area of shared ODPs. If a program or
procedure performs a read operation, another program or procedure can update
the record as long as SHARE(*YES) is specified for the file in question. In addition,
when using multiple-device files, if one program acquires a device, any other
program sharing the ODP can also use the acquired device. It is up to the
programmer to ensure that all data required to perform the update is available to
the called program.

If a program performs a sequential input operation, and it results in an end-of-file
condition, the normal operation is for any subsequent sequential input operation in
the same module to immediately result in an end-of-file condition without any
physical input request to the database. However, if the file is shared, the RPG
runtime will always send a physical input request to the database, and the input
operation will be successful if the file has been repositioned by a call to another
program or module using the shared file.

Record Locking

Chapter 16. General File Considerations 345

#
#
#

Sharing an open data path improves performance because the IBM i system does
not have to create a new open data path. However, sharing an open data path can
cause problems. For example, an error is signaled in the following cases:
v If a program sharing an open data path attempts file operations other than those

specified by the first open (for example, attempting input operations although
the first open specified only output operations)

v If a program sharing an open data path for an externally described file tries to
use a record format that the first program ignored

v If a program sharing an open data path for a program described file specifies a
record length that exceeds the length established by the first open.

When several files in one program are overridden to one shared file at run time,
the file opening order is important. In order to control the file opening order, you
should use a programmer-controlled open or use a CL program to open the files
before calling the program.

If a program shares the open data path for a primary or secondary file, the
program must process the detail calculations for the record being processed before
calling another program that shares that open data path. Otherwise, if lookahead is
used or if the call is at total time, sharing the open data path for a primary or
secondary file may cause the called program to read data from the wrong record in
the file.

You must make sure that when the shared file is opened for the first time, all of
the open options that are required for subsequent opens of the file are specified. If
the open options specified for subsequent opens of a shared file are not included in
those specified for the first open of a shared file, an error message is sent to the
program.

Table 45 details the system open options allowed for each of the open options you
can specify.

Table 45. System Open Options Allowed with User Open Options

RPG User
Open Options

System
Open Options

INPUT INPUT

OUTPUT OUTPUT (program created file)

UPDATE INPUT, UPDATE, DELETE

ADD OUTPUT (existing file)

For additional information about sharing an open data path and activation group
versus job level scope, see the ILE Concepts manual.

Spooling
Spooling is a system function that puts data into a storage area to wait for
processing. The i5/OS system provides for the use of input and output spooling
functions. Each i5/OS file description contains a spool attribute that determines
whether spooling is used for the file at run time. The RPG program is not aware
that spooling is being used. The actual physical device from which a file is read or
to which a file is written is determined by the spool reader or the spool writer. For
more detailed information on spooling, refer to the DB2 Universal Database for

Sharing an Open Data Path

346 ILE RPG Programmer’s Guide

iSeries section of the Database and File Systems category in the i5/OS Information
Center at this Web site - http://www.ibm.com/systems/i/infocenter/.

Output Spooling
Output spooling is valid for batch or interactive jobs. The description of the file
that is specified in the RPG program by the file name contains the specification for
spooling as shown in the following diagram:

File override commands can be used at run time to override the spooling options
specified in the file description, such as the number of copies to be printed. In
addition, i5/OS spooling support allows you to redirect a file after the program
has run. You can direct the same printed output to a different device such as a
diskette.

SRTSEQ/ALTSEQ in an RPG Program versus a DDS File
When a keyed file is created using SRTSEQ and LANGID, the SRTSEQ specified is
used when comparing character keys in the file during CHAIN, SETLL, SETGT,
READE and READPE operations. You do not have to specify the same, or any,
SRTSEQ value when creating the RPG program or module.

When a value for SRTSEQ is specified on CRTBNDRPG or CRTRPGMOD, then all
character comparison operations in the program will use this SRTSEQ. This value
affects the comparison of all fields, including key fields, fields from other files and
fields declared in the program.

RPG program

Spooled
File

QPRINT Spooling

Queue

QPRINT

Execution Time

Start
Printer
writer

Start Printer
writer Time

Device

File name = QPRINT
Device = PRINTER

SPOOL (*YES)
QUEUE (QPRINT)

Figure 165. Output Spooling Example

Spooling

Chapter 16. General File Considerations 347

http://www.ibm.com/systems/i/infocenter/

You should decide whether to use SRTSEQ for your RPG program based on how
you want operations such as IFxx, COMP, and SORTA, to work on your character
data, not on what was specified when creating your files.

SRTSEQ/ALTSEQ

348 ILE RPG Programmer’s Guide

Chapter 17. Accessing Database Files

You can access a database file from your program by associating the file name with
the device DISK in the appropriate file specification.

DISK files of an ILE RPG program also associate with distributed data
management (DDM) files, which allow you to access files on remote systems as
database files.

Database Files
Database files are objects of type *FILE on the i5/OS system. They can be either
physical or logical files and either externally described or program-described. You
access database files by associating the file name with the device DISK in positions
36 through 42 of the file description specifications.

Database files can be created by IBM i Create File commands. For more
information on describing and creating database files, refer to the DB2 Universal
Database for iSeries section of the Database and File Systems category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Physical Files and Logical Files
Physical files contain the actual data that is stored on the system, and a
description of how data is to be presented to or received from a program. They
contain only one record format, and one or more members. Records in database
files can be externally or program-described.

A physical file can have a keyed sequence access path. This means that data is
presented to a program in a sequence based on one or more key fields in the file.

Logical files do not contain data. They contain a description of records found in
one or more physical files. A logical file is a view or representation of one or more
physical files. Logical files that contain more than one format are referred to as
multi-format logical files.

If your program processes a logical file which contains more than one record
format, you can use a read by record format to set the format you wish to use.

Data Files and Source Files
A data file contains actual data, or a view of the data. Records in data files are
grouped into members. All the records in a file can be in one member or they can
be grouped into different members. Most database commands and operations by
default assume that database files which contain data have only one member. This
means that when your program accesses database files containing data, you do not
need to specify the member name for the file unless your file contains more than
one member. If your file contains more than one member and a particular member
is not specified, the first member is used.

Usually, database files that contain source programs are made up of more than one
member. Organizing source programs into members within database files allows

© Copyright IBM Corp. 1994, 2010 349

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

you to better manage your programs. The source member contains source
statements that the system uses to create program objects.

Using Externally Described Disk Files
Externally described DISK files are identified by an E in position 22 of the file
description specifications. The E indicates that the compiler is to retrieve the
external description of the file from the system when the program is compiled.
Therefore, you must create the file before the program is compiled.

The external description for a DISK file includes:
v The record-format specifications that contain a description of the fields in a

record
v Access path specifications that describe how the records are to be retrieved.

These specifications result from the DDS for the file and the IBM i create file
command that is used for the file.

Record Format Specifications
The record-format specifications allow you to describe the fields in a record and
the location of the fields in a record. The fields are located in the record in the
order specified in the DDS. The field description generally includes the field name,
the field type, and the field length (including the number of decimal positions in a
numeric field). Instead of specifying the field attributes in the record format for a
physical or logical file, you can define them in a field-reference file.

In addition, the DDS keywords can be used to:
v Specify that duplicate key values are not allowed for the file (UNIQUE)
v Specify a text description for a record format or a field (TEXT).

For a complete list of the DDS keywords that are valid for a database file, refer to
the DB2 Universal Database for iSeries section of the Database and File Systems
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/.

Figure 166 on page 351 shows an example of the DDS for a database file, and
Figure 167 on page 352 for a field-reference file that defines the attributes for the
fields used in the database file. See the above Web site for more information on
field-reference files.

Access Path
The description of an externally described file contains the access path that
describes how records are to be retrieved from the file. Records can be retrieved
based on an arrival sequence (non-keyed) access path or on a keyed-sequence
access path.

The arrival sequence access path is based on the order in which the records are
stored in the file. Records are added to the file one after another.

For the keyed-sequence access path, the sequence of records in the file is based on
the contents of the key field that is defined in the DDS for the file. For example, in
the DDS shown in Figure 166 on page 351, CUST is defined as the key field. The
keyed-sequence access path is updated whenever records are added, deleted, or
when the contents of a key field change.

Database Files

350 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

For a complete description of the access paths for an externally described database
file, refer to the DB2 Universal Database for iSeries section of the Database and File
Systems category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

The sample DDS are for the customer master logical file CUSMSTL. The file
contains one record format CUSREC (customer master record). The data for this
file is contained in the physical file CUSMSTP, which is identified by the keyword
PFILE. The UNIQUE keyword is used to indicate that duplicate key values are not
allowed for this file. The CUST field is identified by a K in position 17 of the last
line as the key field for this record format.

The fields in this record format are listed in the order they are to appear in the
record. The attributes for the fields are obtained from the physical file CUSMSTP.
The physical file, in turn, refers to a field-reference file to obtain the attributes for
the fields. The field-reference file is shown in Figure 167 on page 352.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*
A** LOGICAL CUSMSTL CUSTOMER MASTER FILE
A UNIQUE
A R CUSREC PFILE(CUSMSTP)
A TEXT('Customer Master Record')
A CUST
A NAME
A ADDR
A CITY
A STATE
A ZIP
A SRHCOD
A CUSTYP
A ARBAL
A ORDBAL
A LSTAMT
A LSTDAT
A CRDLMT
A SLSYR
A SLSLYR
A K CUST

Figure 166. Example of the Data Description Specifications for a Database File

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 351

http://www.ibm.com/systems/i/infocenter/

This example of a field-reference file shows the definitions of the fields that are
used by the CUSMSTL (customer master logical) file as shown in Figure 166 on
page 351. The field-reference file normally contains the definitions of fields that are
used by other files. The following text describes some of the entries for this
field-reference file.

�1� The BASDAT field is edited by the Y edit code, as indicated by the
keyword EDTCDE(Y). If this field is used in an externally described output
file for an ILE RPG program, the edit code used is the one specified in this
field-reference file; it cannot be overridden in the ILE RPG program. If the
field is used in a program-described output file for an ILE RPG program,
an edit code must be specified for the field in the output specifications.

�2� The CHECK(MF) entry specifies that the field is a mandatory fill field

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++RLen++TDpB......Functions++++++++++++++++++++*
A**FLDRED DSTREF DISTRIBUTION APPLICATION FIELD REFERENCE
A R DSTREF TEXT('Distribution Field Ref')
A* COMMON FIELDS USED AS REFERENCE
A BASDAT 6 0 EDTCDE(Y) �1�
A TEXT('Base Date Field')
A* FIELDS USED BY CUSTOMER MASTER FILE
A CUST 5 CHECK(MF) �2�
A COLHDG('Customer' 'Number')
A NAME 20 COLHDG('Customer Name')
A ADDR R REFFLD(NAME) �3�
A COLHDG('Customer Address')
A CITY R REFFLD(NAME) �3�
A COLHDG('Customer City')
A STATE 2 CHECK(MF) �2�
A COLHDG('State')
A SRHCOD 6 CHECK(MF) �2�
A COLHDG('Search' 'Code')
A TEXT('Customer Number Search +
A Code')
A ZIP 5 0 CHECK(MF) �2�
A COLHDG('Zip' 'Code')
A CUSTYP 1 0 RANGE(1 5) �4�
A COLHDG('Cust' 'Type')
A TEXT('Customer Type 1=Gov 2=Sch+
A 3=Bus 4=Pvt 5=Oth')
A ARBAL 8 2 COLHDG('Accts Rec' 'Balance') �5�
A EDTCDE(J) �6�
A ORDBAL R REFFLD(ARBAL)
A COLHDG('A/R Amt in' 'Order +
A File')
A LSTAMT R REFFLD(ARBAL)
A COLHDG('Last' 'Amount' 'Paid')
A TEXT('Last Amount Paid in A/R')
A LSTDAT R REFFLD(BASDAT)
A COLHDG('Last' 'Date' 'Paid')
A TEXT('Last Date Paid in A/R')
A CRDLMT R REFFLD(ARBAL)
A COLHDG('Credit' 'Limit')
A TEXT('Customer Credit Limit')
A SLSYR R+ 2 REFFLD(ARBAL)
A COLHDG('Sales' 'This' 'Year')
A TEXT('Customer Sales This Year')
A SLSLYR R+ 2 REFFLD(ARBAL)
A COLHDG('Sales' 'Last' 'Year')
A TEXT('Customer Sales Last Year') �7�

Figure 167. Example of a field Reference File

Using Externally Described Disk Files

352 ILE RPG Programmer’s Guide

when it is entered from a display work station. Mandatory fill means that
all characters for the field must be entered from the display work station.

�3� The ADDR and CITY fields share the same attributes that are specified for
the NAME field, as indicated by the REFFLD keyword.

�4� The RANGE keyword, which is specified for the CUSTYP field, ensures
that the only valid numbers that can be entered into this field from a
display work station are 1 through 5.

�5� The COLHDG keyword provides a column head for the field if it is used
by the Interactive Database Utilities (IDU).

�6� The ARBAL field is edited by the J edit code, as indicated by the keyword
EDTCDE(J).

�7� A text description (TEXT keyword) is provided for some fields. The TEXT
keyword is used for documentation purposes and appears in various
listings.

Valid Keys for a Record or File
For a keyed-sequence access path, you can define one or more fields in the DDS to
be used as the key fields for a record format. All record types in a file do not have
to have the same key fields. For example, an order header record can have the
ORDER field defined as the key field, and the order detail records can have the
ORDER and LINE fields defined as the key fields.

The key for a file is determined by the valid keys for the record types in that file.
The file’s key is determined in the following manner:
v If all record types in a file have the same number of key fields defined in the

DDS that are identical in attributes, the key for the file consists of all fields in the
key for the record types. (The corresponding fields do not have to have the same
name.) For example, if the file has three record types and the key for each record
type consists of fields A, B, and C, the file’s key consists of fields A, B, and C.
That is, the file’s key is the same as the records’ key.

v If all record types in the file do not have the same key fields, the key for the file
consists of the key fields common to all record types. For example, a file has three
record types and the key fields are defined as follows:
– REC1 contains key field A.
– REC2 contains key fields A and B.
– REC3 contains key fields A, B, and C.
The file’s key is field A–the key field common to all record types.

v If no key field is common to all record types, there is no key for the file.

In an ILE RPG program, you can specify a search argument on certain file
operation codes to identify the record you want to process. The ILE RPG program
compares the search argument with the key of the file or record, and processes the
specified operation on the record whose key matches the search argument.

Valid Search Arguments
You can specify a search argument in the ILE RPG operations CHAIN, DELETE,
READE, READPE, SETGT, and SETLL that specify a file name or a record name.

For an operation to a file name, the maximum number of fields that you can
specify in a search argument is equal to the total number of key fields valid for the
file’s key. For example, if all record types in a file do not contain all of the same

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 353

key fields, you can use a key list (KLIST) to specify a search argument that is
composed only of the number of fields common to all record types in the file. If a
file contains three record types, the key fields are defined as follows:

– REC1 contains key field A.
– REC2 contains key fields A and B.
– REC3 contains key fields A, B, and C.

The search argument can only be a single field with attributes identical to field A
because field A is the only key field common to all record types.

Note: Null-capable key fields cannot be used with ALWNULL(*YES) or
ALWNULL(*INPUTONLY).

For an operation to a record name, the maximum number of fields that you can
specify in a search argument is equal to the total number of key fields valid for
that record type.

If the search argument consists of one or more fields, you can specify a KLIST, a
figurative constant, and in free-form calculations only, a list of expressions
(enclosed by parentheses) or a %KDS. If the search argument consists of only one
field, in addition to the above, you can also specify a literal or variable name.

To process null-valued keys, you can:
v code the search argument using KLIST, in which case the null indicator can be

specified in Factor 2 of the KFLD opcode
v code a null-capable field as the search argument in a list (enclosed by

parentheses)
v code a null-capable field in the data structure specified in %KDS

For the latter two, the current value of the %NULLIND() for the search argument
is used in the search.

The attributes of each field in the search argument must be identical to the
attributes of the corresponding field in the file or record key. The attributes include
the length, the data type and the number of decimal positions. The attributes are
listed in the key-field-information data table of the compiler listing. See the
example in “Key Field Information” on page 511. For search arguments in a list or
%KDS used in an I/O operation in free-form calculations, the search argument
only needs to match in type. Length and format may be different than the key
defined in the file.

In all these file operations (CHAIN, DELETE, READE, READPE, SETGT, and
SETLL), you can also specify a search argument that contains fewer than the total
number of fields valid for the file or record. Such a search argument refers to a
partial key.

Referring to a Partial Key
To specify a partial key, you can use a KLIST with fewer KFLD specifications. In
free-form calculations, you can also use %KDS with a second parameter indicating
the number of keys, or a list of expressions with as many keys as you want. For
example, if the file has three keys, but you only want to specify two keys, you can
specify the partial key in any of the following ways.
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++
D keys DS LIKEREC(rec : *KEY)
CL0N01Factor1+++++++Opcode&ExtFactor2+++++++Result++++++++Len++D+HiLoEq

Using Externally Described Disk Files

354 ILE RPG Programmer’s Guide

C klist2 KLIST
C KFLD k1
C KFLD k2
/free

CHAIN klist2 rec; // KLIST with two KFLD entries
CHAIN %KDS(keys : 2) rec; // %KDS with two keys
CHAIN (name : %char(id_no)) rec; // a list of two expressions

The rules for the specification of a search argument that refers to a partial key are
as follows:
v The search argument is composed of fields that correspond to the leftmost

(high-order) fields of the key for the file or record.
v Only the rightmost fields can be omitted from the list of keys for a search

argument that refers to a partial key. For example, if the total key for a file or
record is composed of key fields A, B, and C, the valid search arguments that
refer to a partial key are field A, and fields A and B.

v Each field in the search argument must be identical in attributes to the
corresponding key field in the file or record. For search arguments in a list or
%KDS used in an I/O operation in free-form calculations, the search argument
only needs to match in type. Length and format may be different than the key
defined in the file. The attributes include the length, data type, the number of
decimal positions, and format (for example, packed or zoned).

v A search argument cannot refer to a portion of a key field.

If a search argument refers to a partial key, the file is positioned at the first record
that satisfies the search argument or the record retrieved is the first record that
satisfies the search argument. For example, the SETGT and SETLL operations
position the file at the first record on the access path that satisfies the operation
and the search argument. The CHAIN operation retrieves the first record on the
access path that satisfies the search argument. The DELETE operation deletes the
first record on the access path that satisfies the search argument. The READE
operation retrieves the next record if the portion of the key of that record (or the
record of the specified type) on the access path matches the search argument. The
READPE operation retrieves the prior record if the portion of the key of that
record (or the record of the specified type) on the access path matches the search
argument. For more information on the above operation codes, see the IBM
Rational Development Studio for i: ILE RPG Reference.

Record Blocking and Unblocking
By default, the RPG compiler unblocks input records and blocks output records to
improve run-time performance in SEQ or DISK files when the following conditions
are met:
1. The file is program-described or, if externally described, it has only one record

format.
2. The keyword RECNO is not used in the file-description specification.

Note: If RECNO is used, the ILE RPG compiler will not allow record blocking.
However, if the file is an input file and RECNO is used, Data
Management may still block records if fast sequential access is set. This
means that updated records might not be seen right away.

3. One of the following is true:
a. The file is an output file.
b. If the file is a combined file, then it is an array or table file.

Using Externally Described Disk Files

Chapter 17. Accessing Database Files 355

c. The file is an input-only file; it is not a record-address file or processed by a
record-address file; and uses only the OPEN, CLOSE FEOD, and READ file
operations. (In other words, the following file operations are not allowed:
READE, READPE, SETGT, SETLL, and CHAIN.)

The RPG compiler generates object program code to block and unblock records for
all SEQ or DISK files that satisfy the above conditions. Certain IBM i system
restrictions may prevent blocking and unblocking. In those cases, performance is
not improved.

You can explicitly request record blocking by specifying the keyword
BLOCK(*YES) on the file-description specification for the file. The only difference
between the default record blocking and user-requested record blocking is that
when BLOCK(*YES) is specified for input files, then the operations SETLL, SETGT
and CHAIN can be used with the input file (see condition 3c above) and blocking
will still occur. If the BLOCK keyword is not specified and these operations are
used, no record blocking will occur.

You can also prevent the default blocking of records by specifying the keyword
BLOCK(*NO) on the file-description specification. If BLOCK(*NO) is specified,
then no record blocking is done by the compiler, nor by data management. If the
keyword BLOCK is not specified, then default blocking occurs as described above.

The input/output and device-specific feedback of the file information data
structure are not updated after each read or write (except for the RRN and Key
information on block reads) for files in which the records are blocked and
unblocked by the RPG compiler. The feedback area is updated each time a block of
records is transferred. (For further details on the file information data structure see
the IBM Rational Development Studio for i: ILE RPG Reference.)

You can obtain valid updated feedback information by preventing the file from
being blocked and unblocked. Use one of the following ways to prevent blocking:
v Specify BLOCK(*NO) on the file description specification.
v At run time, use the CL command OVRDBF (Override with Database File) with

SEQONLY(*NO) specified.

Using Program-Described Disk Files
Program-described files, which are identified by an F in position 22 of the file
description specifications, can be described as indexed files, as sequential files, or
as record-address files.

Indexed File
An indexed file is a program-described DISK file whose access path is built on key
values. You must create the access path for an indexed file by using data
description specifications.

An indexed file is identified by an I in position 35 of the file description
specifications.

The key fields identify the records in an indexed file. You specify the length of the
key field in positions 29 through 33, the format of the key field in position 34, and
the starting location of the key field in the KEYLOC keyword of the file
description specifications.

Using Externally Described Disk Files

356 ILE RPG Programmer’s Guide

An indexed file can be processed sequentially by key, sequentially within limits, or
randomly by key.

Valid Search Arguments
For a program-described file, a search argument must be a single field. For the
CHAIN and DELETE operations, the search argument must be the same length as
the key field that is defined on the file description specifications for the indexed
file. For the other file operations, the search argument may be a partial field.

The DDS specifies the fields to be used as a key field. The KEYLOC keyword of
the file description specifications specify the starting position of the first key field.
The entry in positions 29 through 33 of the file description specifications must
specify the length of the key as defined in the DDS.

Figure 168 and Figure 169 on page 358 show examples of how to use the DDS to
describe the access path for indexed files.

You must use data description specifications to create the access path for a
program-described indexed file.

In the DDS for the record format FORMATA for the logical file ORDDTLL, the
field ORDER, which is five digits long, is defined as the key field, and is in packed
format. The definition of ORDER as the key field establishes the keyed access for
this file. Two other fields, FLDA and FLDB, describe the remaining positions in this
record as character fields.

The program-described input file ORDDTLL is described on the file description
specifications as an indexed file. Positions 29 through 33 must specify the number
of positions in the record required for the key field as defined in the DDS: three
positions. The KEYLOC keyword specifies position 15 as the starting position of
the key field in the record. Because the file is defined as program-described by the
F in position 22, the ILE RPG compiler does not retrieve the external field-level
description of the file at compilation time. Therefore, you must describe the fields
in the record on the input specifications.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*
A R FORMATA PFILE(ORDDTLP)
A TEXT('Access Path for Indexed +
A File')
A FLDA 14
A ORDER 5 0
A FLDB 101
A K ORDER
A*

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FORDDTLL IP F 118 3PIDISK KEYLOC(15)
F*

Figure 168. DDS and corresponding File-Description Specification Detail Flow of RPG IV
Exception/Error Handling

Using Program-Described Disk Files

Chapter 17. Accessing Database Files 357

In this example, the data description specifications define two key fields for the
record format FORMAT in the logical file ORDDTLL. For the two fields to be used
as a composite key for a program described indexed file, the key fields must be
contiguous in the record.

On the file description specifications, the length of the key field is defined as 10 in
positions 29 through 33 (the combined number of positions required for the
ORDER and ITEM fields). The starting position of the key field is described as 15
using the keyword KEYLOC (starting in position 44). The starting position must
specify the first position of the first key field.

When the DDS specifies a composite key, you must build a search argument in the
program to CHAIN to the file. (A KLIST cannot be used for a program-described
file.) One way is to create a data structure (using definition specifications) with
subfields equal to the key fields defined in the DDS. Then, in the calculations, set
the subfields equal to the value of the key fields, and use the data-structure name
as the search argument in the CHAIN operation.

In this example, the MOVE operations set the subfields K1 and K2 equal to the
value of ORDER and ITEM, respectively. The data-structure name (KEY) is then
used as the search argument in the CHAIN operation.

Sequential File
Sequential files are files where the order of the records in the file is based on the
order the records are placed in the file (that is, in arrival sequence). For example,
the tenth record placed in the file occupies the tenth record position.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
A..........T.Name++++++.Len++TDpB......Functions++++++++++++++++++++*
A R FORMAT PFILE(ORDDTLP)
A TEXT('Access Path for Indexed +
A File')
A FLDA 14
A ORDER 5
A ITEM 5
A FLDB 96
A K ORDER
A K ITEM

Figure 169. (Part 1 of 2). Using Data Description Specifications to Define the Access Path
(Composite Key) for an Indexed File

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FORDDTLL IP F 120 10AIDISK KEYLOC(15)
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
DKEY DS
D K1 1 5
D K2 6 10
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C MOVE ORDER K1
C MOVE ITEM K2
C KEY CHAIN ORDDTLL 99

Figure 170. (Part 2 of 2). Using Data Description Specifications to Define the Access Path
(Composite Key) for an Indexed File

Using Program-Described Disk Files

358 ILE RPG Programmer’s Guide

Sequential files can be processed randomly by relative record number,
consecutively, or by a record-address file. You can use either the SETLL or SETGT
operation code to set limits on the file.

Record Address File
You can use a record-address file to process another file. A record-address file can
contain (1) limits records that are used to process a file sequentially within limits,
or (2) relative record numbers that are used to process a file by relative record
numbers. The record-address file itself must be processed sequentially.

A record-address file is identified by an R in position 18 of the file description
specifications. If the record-address file contains relative record numbers, position
35 must contain a T. The name of the file to be processed by the record-address file
must be specified on the file description specification. You identify the file using
the keyword RAFDATA(file-name).

Limits Records
For sequential-within-limits processing, the record-address file contains limits
records. A limits record contains the lowest record key and the highest record key
of the records in the file to be read.

The format of the limits records in the record-address file is as follows:
v The low key begins in position 1 of the record; the high key immediately follows

the low key. No blanks can appear between the keys.
v Each record in the record-address file can contain only one set of limits. The

record length must be greater than or equal to twice the length of the record key.
v The low key and the high key in the limits record must be the same length. The

length of the keys must be equal to the length of the key field of the file to be
processed.

v A blank entry equal in length to the record key field causes the ILE RPG
compiler to read the next record in the record-address file.

Relative Record Numbers
For relative-record-number processing, the record-address file contains relative
record numbers. Each record retrieved from the file being processed is based on a
relative record number in the record-address file. A record-address file containing
relative record numbers cannot be used for limits processing. Each relative record
number in the record-address file is a multi-byte binary field where each field
contains a relative record number.

You can specify the record-address file length as 4, 3, or blank, depending on the
source of the file. When using a record-address file from the i5/OS environment,
specify the record-address file length as 4, since each field is 4 bytes in length.
When using a record-address file created for the System/36 Environment™, specify
the record-address file length as 3, since each field is 3 bytes in length. If you
specify the record-address file length as blank, the compiler will check the primary
record length at run time and determine whether to treat the record-address file as
3 byte or as 4 byte.

A minus 1 (-1 or hexadecimal FFFFFFFF) relative-record-number value stops the
use of a relative-record-address file record. End of file occurs when all records
from the record-address file have been processed.

Using Program-Described Disk Files

Chapter 17. Accessing Database Files 359

Methods for Processing Disk Files
The methods of disk file processing include:
v Consecutive processing
v Sequential-by-key processing
v Random-by-key processing
v Sequential-within-limits processing.
v Relative-record-number processing

Table 46 shows the valid entries for positions 28, 34, and 35 of the file description
specification for the various file types and processing methods. The subsequent
text describes each method of processing.

Table 46. Processing Methods for DISK Files

Processing Method Limits
Processing
(Pos. 28)

Record
Address
Type
(Pos. 34)

File
Organization
(Pos. 35)

Externally Described Files

With Keys

Sequentially
Randomly
Sequential within limits

(by record-address file)

Without Keys

Randomly/consecutively

Blank
Blank
L

Blank

K
K
K

Blank

Blank
Blank
Blank

Blank

Program Described Files

With Keys (indexed file)

Sequentially

Randomly

Sequential within limits
(by record-address file)

Without Keys

Randomly/consecutively
By record-address file
As record-address file

(relative record numbers)
As record-address limits file

Blank

Blank

L

Blank
Blank
Blank

Blank

A, D, G, P,
T, Z, or F

A, D, G, P,
T, Z, or F

A, D, G, P,
T, Z, or F

Blank
Blank
Blank

A, D, G, P,
T, Z, F, or

Blank

I

I

I

Blank
Blank
T

Blank

Consecutive Processing
During consecutive processing, records are read in the order they appear in the
file.

Methods for Processing Disk Files

360 ILE RPG Programmer’s Guide

For output and input files that do not use random functions (such as SETLL,
SETGT, CHAIN, or ADD), the ILE RPG compiler defaults to or operates as though
SEQONLY(*YES) had been specified on the CL command OVRDBF (Override with
Database File). (The ILE RPG compiler does not operate as though
SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES) allows
multiple records to be placed in internal data management buffers; the records are
then passed to the ILE RPG compiler one at a time on input.

If, in the same job or activation group, two logical files use the same physical file,
and one file is processed consecutively and one is processed for random update, a
record can be updated that has already been placed in the buffer that is presented
to the program. In this case, when the record is processed from the consecutive
file, the record does not reflect the updated data. To prevent this problem, use the
CL command OVRDBF and specify the option SEQONLY(*NO), which indicates
that you do not want multiple records transferred for a consecutively processed
file.

For more information on sequential only processing, refer to the DB2 Universal
Database for iSeries section of the Database and File Systems category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Sequential-by-Key Processing
For the sequential-by-key method of processing, records are read from the file in
key sequence.

The sequential-by-key method of processing is valid for keyed files used as
primary, secondary, or full procedural files.

For output files and for input files that do not use random functions (such as
SETLL, SETGT, CHAIN, or ADD) and that have only one record format, the ILE
RPG compiler defaults to or operates as though SEQONLY(*YES) had been
specified on the CL command OVRDBF. (The ILE RPG compiler does not operate
as though SEQONLY(*YES) had been specified for update files.) SEQONLY(*YES)
allows multiple records to be placed in internal data management buffers; the
records are then passed to the ILE RPG compiler one at a time on input.

If, in the same job, two files use the same physical file, and one file is processed
sequentially and one is processed for random update, a record could be updated
that has already been placed in the buffer that is presented to the program. In this
case, when the record is processed from the sequential file, the record does not
reflect the updated data. To prevent this problem, use the CL command OVRDBF
and specify the option SEQONLY(*NO), which indicates that you do not want
multiple records transferred for a sequentially processed file.

For more information on sequential only processing, refer to the DB2 Universal
Database for iSeries section of the Database and File Systems category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Examples of Sequential-by-Key Processing
The following three examples show you different ways of using the
sequential-by-key method of processing data.

DATA DESCRIPTION SPECIFICATIONS (DDS): Figure 171 on page 362 and
Figure 172 on page 362 shows the data description specifications (DDS) for the

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 361

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

physical files used by the examples. Figure 173 shows the DDS for the logical file
used by the first three examples.

EXAMPLE PROGRAM 1 (Sequential-by-Key Using Primary File): In this
example, the employee master record (EMPREC) and the weekly hours worked
record (RCWEEK) are contained in the same logical file EMPL1. The EMPL1 file is
defined as a primary input file and is read sequentially by key. In the data
description specifications for the file, the key for the EMPREC record is defined as
the ENUM (employee number) field, and the key for the RCWEEK record is
defined as the ENUM field plus the WEEKNO (week number) field, which is a
composite key.

A***
A* DESCRIPTION: This is the DDS for the physical file EMPMST. *
A* It contains one record format called EMPREC. *
A* This file contains one record for each employee *
A* of the company. *
A***
A*
A R EMPREC
A ENUM 5 0 TEXT('EMPLOYEE NUMBER')
A ENAME 20 TEXT('EMPLOYEE NAME')
A ETYPE 1 TEXT('EMPLOYEE TYPE')
A EDEPT 3 0 TEXT('EMPLOYEE DEPARTMENT')
A ENHRS 3 1 TEXT('EMPLOYEE NORMAL WEEK HOURS')
A K ENUM

Figure 171. DDS for database file EMPMST (physical file)

A***
A* DESCRIPTION: This is the DDS for the physical file TRWEEK. *
A* It contains one record format called RCWEEK. *
A* This file contains all weekly entries made to *
A* the time reporting system. *
A***
A*
A R RCWEEK
A ENUM 5 0 TEXT('EMPLOYEE NUMBER')
A WEEKNO 2 0 TEXT('WEEK NUMBER OF CURRENT YEAR')
A EHWRK 4 1 TEXT('EMPLOYEE HOURS WORKED')
A K ENUM
A K WEEKNO

Figure 172. DDS for database file TRWEEK (physical file)

A***
A* RELATED FILES: EMPMST (Physical File) *
A* TRWEEK (Physical File) *
A* DESCRIPTION: This is the DDS for the logical file EMPL1. *
A* It contains two record formats called *
A* EMPREC and RCWEEK. *
A***
A R EMPREC PFILE(EMPMST)
A K ENUM
A*
A R RCWEEK PFILE(TRWEEK)
A K ENUM
A K WEEKNO

Figure 173. DDS for database file EMPL1 (logical file)

Methods for Processing Disk Files

362 ILE RPG Programmer’s Guide

EXAMPLE PROGRAM 2 (Sequential-by-Key Using READ): This example is the
same as the previous example except that the EMPL1 file is defined as a
full-procedural file, and the reading of the file is done by the READ operation
code.

* PROGRAM NAME: YTDRPT1 *
* RELATED FILES: EMPL1 (Logical File) *
* PRINT (Printer File) *
* DESCRIPTION: This program shows an example of processing *
* records using the sequential-by-key method. *
* This program prints out each employee's *
* information and weekly hours worked. *

FPRINT O F 80 PRINTER
FEMPL1 IP E K DISK
* A record-identifying indicator is assigned to each record; these
* record-identifying indicators are used to control processing for
* the different record types.
IEMPREC 01
I*
IRCWEEK 02
I*

* Since the EMPL1 file is read sequentially by key, for
* a valid employee number, the ENUM in a RCWEEK record
* must be the same as the ENUM in the last retrieved EMPREC
* record. This must be checked for and is done here by saving
* ENUMs of the EMPREC record into the field EMPNO and comparing
* it with the ENUMs read from RCWEEK records.
* If the ENUM is a valid one, *IN12 will be seton. *IN12 is
* used to control the printing of the RCWEEK record.

C SETOFF 12
C 01 MOVE ENUM EMPNO 5 0
C*
C IF (*IN02='1') AND (ENUM=EMPNO)
C SETON 12
C ENDIF

OPRINT H 1P 2 6
O 40 'EMPLOYEE WEEKLY WORKING '
O 52 'HOURS REPORT'
O H 01 1
O 12 'EMPLOYEE: '
O ENAME 32
O H 01 1
O 12 'SERIAL #: '
O ENUM 17
O 27 'DEPT: '
O EDEPT 30
O 40 'TYPE: '
O ETYPE 41
O H 01 1
O 20 'WEEK #'
O 50 'HOURS WORKED'
O D 12 1
O WEEKNO 18
O EHWRK 3 45

Figure 174. Sequential-by-Key Processing, Example 1

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 363

* PROGRAM NAME: YTDRPT2 *
* RELATED FILES: EMPL1 (Logical File) *
* PRINT (Printer File) *
* DESCRIPTION: This program shows an example of processing *
* records using the read operation code. *
* This program prints out each employee's *
* information and weekly hours worked. *

FPRINT O F 80 PRINTER
FEMPL1 IF E K DISK
* The two records (EMPREC and RCWEEK) are contained in the same
* file, and a record-identifying indicator is assigned to each
* record. The record-identifying indicators are used to control
* processing for the different record types. No control levels
* or match fields can be specified for a full-procedural file.
IEMPREC 01
I*
IRCWEEK 02
I*

* The READ operation code reads a record from the EMPL1 file. An
* end-of-file indicator is specified in positions 58 and 59. If
* the end-of-file indicator 99 is set on by the READ operation,
* the program branches to the EOFEND tag and processes the end-of-
* file routine.

C SETOFF 12
C READ EMPL1 99
C 99 GOTO EOFEND
C*
C 01 MOVE ENUM EMPNO 5 0
C*
C IF (*IN02='1') AND (ENUM=EMPNO)
C SETON 12
C ENDIF

* Since EMPL1 is defined as a full-procedural file, indicator
* *INLR has to be seton to terminate the program after processing
* the last record.

C EOFEND TAG
C 99 SETON LR

Figure 175. Sequential-by-Key Processing, Example 2 (Part 1 of 2)

Methods for Processing Disk Files

364 ILE RPG Programmer’s Guide

EXAMPLE PROGRAM 3 (Matching-Record Technique): In this example, the
TRWEEK file is defined as a secondary input file. The EMPREC and RCWEEK
records are processed as matching records, with the ENUM field in both records
assigned the match level value of M1. Record-identifying indicators 01 and 02 are
assigned to the records to control the processing for the different record types.

OPRINT H 1P 2 6
O 40 'EMPLOYEE WEEKLY WORKING '
O 52 'HOURS REPORT'
O H 01 1
O 12 'EMPLOYEE: '
O ENAME 32
O H 01 1
O 12 'SERIAL #: '
O ENUM 17
O 27 'DEPT: '
O EDEPT 30
O 40 'TYPE: '
O ETYPE 41
O H 01 1
O 20 'WEEK #'
O 50 'HOURS WORKED'
O D 12 1
O WEEKNO 18
O EHWRK 3 45

Figure 175. Sequential-by-Key Processing, Example 2 (Part 2 of 2)

* PROGRAM NAME: YTDRPT5 *
* RELATED FILES: EMPMST (Physical File) *
* TRWEEK (Physical File) *
* PRINT (Printer File) *
* DESCRIPTION: This program shows an example of processing *
* records using the matching record method. *
* This program prints out each employee's *
* information, weekly worked hours and amount *
* of overtime. *

FPRINT O F 80 PRINTER
FEMPMST IP E K DISK
FTRWEEK IS E K DISK
IEMPREC 01
I ENUM M1
IRCWEEK 02
I ENUM M1

Figure 176. Sequential-by-Key Processing, Example 3 (Part 1 of 2)

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 365

Random-by-Key Processing
For the random-by-key method of processing, a search argument that identifies the
key of the record to be read is specified in factor 1 of the calculation specifications
for the CHAIN operation. Figure 178 on page 368 shows an example of an
externally described DISK file being processed randomly by key. The specified
record can be read from the file either during detail calculations or during total
calculations.

C 01 Z-ADD 0 TOTHRS 5 1
C 01 Z-ADD 0 TOTOVT 5 1
C 01 SETOFF 12
C*
C MR IF (*IN02='1')
C ADD EHWRK TOTHRS
C EHWRK SUB ENHRS OVTHRS 4 111
C 11 ADD OVTHRS TOTOVT
C SETON 12
C ENDIF
OPRINT H 1P 2 6
O 50 'YTD PAYROLL SUMMARY'
O D 01 1
O 12 'EMPLOYEE: '
O ENAME 32
O D 01 1
O 12 'SERIAL #: '
O ENUM 17
O 27 'DEPT: '
O EDEPT 30
O 40 'TYPE: '
O ETYPE 41
O D 02 MR 1
O 8 'WEEK #'
O WEEKNO 10
O 32 'HOURS WORKED = '
O EHWRK 3 38
* These 2 detail output lines are processed if *IN01 is on
* and no matching records found (that means no RCWEEK records
* for that employee found). Obviously, the total fields
* (TOTHRS and TOTOVT) are equal to zeros in this case.
O D 01NMR 1
O 70 'YTD HOURS WORKED = '
O TOTHRS 3 78
O D 01NMR 1
O 70 'YTD OVERTIME HOURS = '
O TOTHRS 3 78

* These 2 total output lines are processed before performing
* detail calcualations. Therefore, the total fields
* (TOTHRS and TOTOVT) for the employee in the last retrieved
* record will be printed out if the specified indicators are on.

O T 01 12 1
O OR LR 12
O 70 'YTD HOURS WORKED = '
O TOTHRS 3 78
O T 01 12 1
O OR LR 12
O 70 'YTD OVERTIME HOURS = '
O TOTOVT 3 78

Figure 176. Sequential-by-Key Processing, Example 3 (Part 2 of 2)

Methods for Processing Disk Files

366 ILE RPG Programmer’s Guide

The random-by-key method of processing is valid for a full procedural file
designated as an input file or an update file.

For an externally described file, position 34 of the file description specification
must contain a K, which indicates that the file is processed according to an access
path that is built on keys.

The data description specifications (DDS) for the file specifies the field that
contains the key value (the key field). Position 35 of the file description
specification must be blank.

A program-described file must be designated as an indexed file (I in position 35),
and position 34 of the file description specification must contain an A, D, G, P, T,
or Z. The length of the key field is identified in positions 29-33 of the file
description specification, and the starting location of the key field is specified on
the KEYLOC keyword. Data description specifications must be used to create the
access path for a program described input file (see “Indexed File” on page 356).

Example of Random-by-Key Processing
The following is an example of how to use the random-by-key method of
processing data. Figure 171 on page 362 and Figure 177 show the data description
specifications (DDS) for the physical files used by EMSTUPD (Figure 178 on page
368).

EXAMPLE PROGRAM: In this example, the EMPMST file is defined as an
Update Full-Procedural file. The update file CHANGE is to be processed by keys.
The DDS for each of the externally described files (EMPMST and CHANGE)
identify the ENUM field as the key field. The read/update processes are all
controlled by the operations specified in the Calculation Specifications.

A***
A* RELATED PGMS: EMSTUPD *
A* DESCRIPTIONS: This is the DDS for the physical file CHANGE. *
A* It contains one record format called CHGREC. *
A* This file contains new data that is used to *
A* update the EMPMST file. *
A***
A*
A R CHGREC
A ENUM 5 0 TEXT('EMPLOYEE NUMBER')
A NNAME 20 TEXT('NEW NAME')
A NTYPE 1 TEXT('NEW TYPE')
A NDEPT 3 0 TEXT('NEW DEPARTMENT')
A NNHRS 3 1 TEXT('NEW NORMAL WEEK HOURS')
A K ENUM

Figure 177. DDS for database file CHANGE (physical file)

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 367

Sequential-within-Limits Processing
Sequential-within-limits processing by a record-address file is specified by an L in
position 28 of the file description specifications and is valid for a file with a keyed
access.

You can specify sequential-within-limits processing for an input or an update file
that is designated as a primary, secondary, or full-procedural file. The file can be
externally described or program-described (indexed). The file should have keys in
ascending sequence.

To process a file sequentially within limits from a record-address file, the program
reads:
v A limits record from the record-address file
v Records from the file being processed within limits with keys greater than or

equal to the low-record key and less than or equal to the high-record key in the
limits record. If the two limits supplied by the record-address file are equal, only
the records with the specified key are retrieved.

* PROGRAM NAME: EMSTUPD *
* RELATED FILES: EMPMST (Physical File) *
* CHANGE (Physical File) *
* DESCRIPTION: This program shows the processing of records *
* using the random-by-key method. The CHAIN *
* operation code is used. *
* The physical file CHANGE contains all the *
* changes made to the EMPMST file. Its record *
* format name is CHGREC. There may be some *
* fields in the CHGREC that are left blank, *
* in that case, no changes are made to those *
* fields. *

FCHANGE IP E K DISK
FEMPMST UF E K DISK
* As each record is read from the primary input file, CHANGE,
* the employee number (ENUM) is used as the search argument
* to chain to the corresponding record in the EMPMST file.
* *IN03 will be set on if no corresponding record is found, which
* occurs when an invalid ENUM is entered into the CHGREC record.
C ENUM CHAIN EMPREC 03
C 03 GOTO NEXT
C NNAME IFNE *BLANK
C MOVE NNAME ENAME
C ENDIF
C NTYPE IFNE *BLANK
C MOVE NTYPE ETYPE
C ENDIF
C NDEPT IFNE *ZERO
C MOVE NDEPT EDEPT
C ENDIF
C NNHRS IFNE *ZERO
C MOVE NNHRS ENHRS
C ENDIF
C UPDATE EMPREC
C*
C NEXT TAG

Figure 178. Random-by-Key Processing of an Externally Described File

Methods for Processing Disk Files

368 ILE RPG Programmer’s Guide

The program repeats this procedure until the end of the record-address file is
reached.

Examples of Sequential-within-Limits Processing
Figure 179 shows an example of an indexed file being processed sequentially
within limits. Figure 181 on page 370 shows the same example with externally
described files instead of program-described files.

Figure 171 on page 362 shows the data description specifications (DDS) for the
physical file used by the program ESWLIM1 (Figure 179) and ESWLIM2 (
Figure 181 on page 370).

EXAMPLE PROGRAM 1 (Sequential-within-Limits Processing): EMPMST is
processed sequentially within limits (L in position 28) by the record address file
LIMITS. Each set of limits from the record-address file consists of the low and high
employee numbers of the records in the EMPMST file to be processed. Because the
employee number key field (ENUM) is five digits long, each set of limits consists
of two 5-digits keys. (Note that ENUM is in packed format, therefore, it requires
three positions instead of five.)

EXAMPLE PROGRAM 2 (Sequential-within-Limits Processing): Figure 180 on
page 370 shows the data description specifications (DDS) for the record-address

* PROGRAM NAME: ESWLIM1 *
* RELATED FILES: EMPMST (Physical File) *
* LIMITS (Physical File) *
* PRINT (Printer File) *
* DESCRIPTION: This program shows the processing of an *
* indexed file sequentially within limits. *
* This program prints out information for the *
* employees whose employee numbers are within *
* the limits given in the file LIMITS. *

FLIMITS IR F 6 3 DISK RAFDATA(EMPMST)
FEMPMST IP F 28L 3PIDISK KEYLOC(1)
FPRINT O F 80 PRINTER
* Input specifications must be used to describe the records in the
* program-described file EMPMST.
IEMPMST NS 01
I P 1 3 0ENUM
I 4 23 ENAME
I 24 24 ETYPE
I P 25 26 0EDEPT

* As EMPMST is processed within each set of limits, the corres-
* ponding records are printed. Processing of the EMPMST file is
* complete when the record-address file LIMITS reaches end of file.

OPRINT H 1P 1
O 12 'SERIAL #'
O 22 'NAME'
O 45 'DEPT'
O 56 'TYPE'
O D 01 1
O ENUM 10
O ENAME 35
O EDEPT 45
O ETYPE 55

Figure 179. Sequential-within-Limits Processing of an Externally Described File

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 369

limits file used by the program ESWLIM2 (Figure 181).

This program performs the same job as the previous program. The only difference
is that the physical file EMPMST is defined as an externally described file instead
of a program-described file.

Relative-Record-Number Processing
Random input or update processing by relative record number applies to full
procedural files only. The desired record is accessed by the CHAIN operation code.

Relative record numbers identify the positions of the records relative to the
beginning of the file. For example, the relative record numbers of the first, fifth,
and seventh records are 1, 5, and 7, respectively.

A***
A* RELATED PROGRAMS: ESWLIM *
A* DESCRIPTION: This is the DDS for the physical file *
A* LIMITS. *
A* It contains a record format named LIMIT. *
A***
A
A R LIMIT
A LOW 5 0
A HIGH 5 0

Figure 180. DDS for record address file LIMITS (physical file)

* PROGRAM NAME: ESWLIM2 *
* RELATED FILES: EMPMST (Physical File) *
* LIMITS (Physical File) *
* PRINT (Printer File) *
* DESCRIPTION: This program shows the processing of an *
* externally described file sequentially *
* within limits. *
* This program prints out information for the *
* employees whose employee numbers are within *
* the limits given in the file LIMITS. *

FLIMITS IR F 6 3 DISK RAFDATA(EMPMST)
FEMPMST IP E L K DISK
FPRINT O F 80 PRINTER
* Input Specifications are optional for an externally described
* file. Here, *IN01 is defined as the record-identifying
* indicator for the record-format EMPREC to control the
* processing of this record.
IEMPREC 01

OPRINT H 1P 1
O 12 'SERIAL #'
O 22 'NAME'
O 45 'DEPT'
O 56 'TYPE'
O D 01 1
O ENUM 10
O ENAME 35
O EDEPT 45
O ETYPE 55
O*

Figure 181. Sequential-within-Limits Processing of a Program-Described File

Methods for Processing Disk Files

370 ILE RPG Programmer’s Guide

For an externally described file, input or update processing by relative record
number is determined by a blank in position 34 of the file description
specifications and the use of the CHAIN operation code. Output processing by
relative record number is determined by a blank in position 34 and the use of the
RECNO keyword on the file description specification line for the file.

Use the RECNO keyword on a file description specifications to specify a numeric
field that contains the relative record number that specifies where a new record is
to be added to this file. The RECNO field must be defined as numeric with zero
decimal positions. The field length must be large enough to contain the largest
record number for the file. A RECNO field must be specified if new records are to
be placed in the file by using output specifications or a WRITE operation.

When you update or add a record to a file by relative record number, the record
must already have a place in the member. For an update, that place must be a
valid existing record; for a new record, that place must be a deleted record.

You can use the CL command INZPFM to initialize records for use by relative
record number. The current relative record number is placed in the RECNO field
for all retrieval operations or operations that reposition the file (for example,
SETLL, CHAIN, READ).

Valid File Operations
Table 47 shows the valid file operation codes allowed for DISK files processed by
keys and Table 48 on page 372 for DISK files processed by non-keyed methods.
The operations shown in these figures are valid for externally described DISK files
and program-described DISK files.

Before running your program, you can override a file to another file. In particular,
you can override a sequential file in your program to an externally described,
keyed file. (The file is processed as a sequential file.) You can also override a keyed
file in your program to another keyed file, providing the key fields are compatible.
For example, the overriding file must not have a shorter key field than you
specified in your program.

Note: When a database record is deleted, the physical record is marked as deleted.
Deleted records can occur in a file if the file has been initialized with
deleted records using the Initialize Physical File Member (INZPFM)
command. Once a record is deleted, it cannot be read. However, you can use
the relative record-number to position to the record and then write over its
contents.

Table 47. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential
by Key, Sequential within Limits)

File-Description
Specifications Positions

Calculation Specifications Positions

17 18 20 281 342 26-35

I P/S K/A/P/G/
D/T/Z/F

CLOSE, FEOD, FORCE

I P/S A K/A/P/G/
D/T/Z/F

WRITE, CLOSE, FEOD, FORCE

I P/S L K/A/P/G/
D/T/Z/F

CLOSE, FEOD, FORCE

Methods for Processing Disk Files

Chapter 17. Accessing Database Files 371

Table 47. Valid File Operations for Keyed Processing Methods (Random by Key, Sequential
by Key, Sequential within Limits) (continued)

File-Description
Specifications Positions

Calculation Specifications Positions

U P/S K/A/P/G/
D/T/Z/F

UPDATE, DELETE, CLOSE, FEOD,
FORCE

U P/S A K/A/P/G/
D/T/Z/F

UPDATE, DELETE, WRITE, CLOSE,
FEOD, FORCE

U P/S L K/A/P/G/
D/T/Z/F

UPDATE, DELETE, CLOSE, FEOD,
FORCE

I F K/A/P/G/
D/T/Z/F

READ, READE, READPE, READP,
SETLL, SETGT, CHAIN, OPEN, CLOSE,
FEOD

I F A K/A/P/G/
D/T/Z/F

WRITE, READ, READPE, READE,
READP, SETLL, SETGT, CHAIN, OPEN,
CLOSE, FEOD

I F L K/A/P/G/
D/T/Z/F

READ, OPEN, CLOSE, FEOD

U F K/A/P/G/
D/T/Z/F

READ, READE, READPE, READP,
SETLL, SETGT, CHAIN, UPDATE,
DELETE, OPEN, CLOSE, FEOD

U F A K/A/P/G/
D/T/Z/F

WRITE, UPDATE, DELETE, READ,
READE, READPE, READP, SETLL,
SETGT, CHAIN, OPEN, CLOSE, FEOD

U F L K/A/P/G/
D/T/Z/F

READ, UPDATE, DELETE, OPEN,
CLOSE, FEOD

O Blank A K/A/P/G/
D/T/Z/F

WRITE (add new records to a file),
OPEN, CLOSE, FEOD

O Blank K/A/P/G/
D/T/Z/F

WRITE (initial load of a new file)3, OPEN,
CLOSE, FEOD

Notes:

1. An L must be specified in position 28 to specify sequential-within-limits processing by a
record-address file for an input or an update file.

2. Externally described files require a K in position 34; program-described files require an
A,P,G,D,T,Z, or F in position 34 and an I in position 35.

3. An A in position 20 is not required for the initial loading of records into a new file. If A
is specified in position 20, ADD must be specified on the output specifications. The file
must have been created with the IBM i CREATE FILE command.

Table 48. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by
Relative Record Number, and Consecutive)

File-Description
Specifications Positions

Calculation Specifications Positions

17 18 20 34 44-80 26-35

I P/S Blank CLOSE, FEOD, FORCE

I P/S Blank RECNO CLOSE, FEOD, FORCE

U P/S Blank UPDATE, DELETE, CLOSE, FEOD, FORCE

U P/S Blank RECNO UPDATE, DELETE, CLOSE, FEOD, FORCE

Valid File Operations

372 ILE RPG Programmer’s Guide

Table 48. Valid File Operations for Non-keyed Processing Methods (Sequential, Random by
Relative Record Number, and Consecutive) (continued)

File-Description
Specifications Positions

Calculation Specifications Positions

I F Blank READ, READP, SETLL, SETGT, CHAIN,
OPEN, CLOSE, FEOD

I F Blank RECNO READ, READP, SETLL, SETGT,

U F Blank READ, READP, SETLL, SETGT, CHAIN,
UPDATE, DELETE, OPEN, CLOSE, FEOD

U F Blank RECNO READ, READP, SETLL, SETGT, CHAIN,
UPDATE, DELETE, OPEN, CLOSE, FEOD

U F A Blank RECNO WRITE (overwrite a deleted record), READ,
READP, SETLL, SETGT, CHAIN, UPDATE,
DELETE, OPEN, CLOSE, FEOD

I R A/P/G/
D/T/Z/
F/
Blank1

OPEN, CLOSE, FEOD

I R Blank2 OPEN, CLOSE, FEOD

O Blank A Blank RECNO WRITE3 (add records to a file), OPEN,
CLOSE, FEOD

O Blank Blank RECNO WRITE4 (initial load of a new file), OPEN,
CLOSE, FEOD

O Blank Blank Blank WRITE (sequentially load or extend a file),
OPEN, CLOSE, FEOD

Notes:

1. If position 34 is blank for a record-address-limits file, the format of the keys in the
record-address file is the same as the format of the keys in the file being processed.

2. A record-address file containing relative record numbers requires a T in position 35.

3. The RECNO field that contains the relative record number must be set prior to the WRITE
operation or if ADD is specified on the output specifications.

4. An A in position 20 is not required for the initial loading of the records into a new file;
however, if A is specified in position 20, ADD must be specified on output specifications.
The file must have been created with one of the IBM i file creation commands.

Using Commitment Control
This section describes how to use commitment control to process file operations as
a group. With commitment control, you ensure one of two outcomes for the file
operations:
v all of the file operations are successful (a commit operation)
v none of the file operations has any effect (a rollback operation).

In this way, you process a group of operations as a unit.

To use commitment control, you do the following:
v On the i5/OS system:

1. Prepare for using commitment control:. Use the CL commands CRTJRN
(Create Journal), CRTJRNRCV (Create Journal Receiver) and STRJRNPF (Start
Journal Physical File).

Valid File Operations

Chapter 17. Accessing Database Files 373

2. Notify the i5/OS system when to start and end commitment control: Use the
CL commands STRCMTCTL (Start Commitment Control) and ENDCMTCTL
(End Commitment Control). For information on these commands, see the CL
and APIs section of the Programming category in the i5/OS Information
Center at this Web site - http://www.ibm.com/systems/i/infocenter/.

v In the RPG program:
1. Specify commitment control (COMMIT) on the file-description specifications

of the files you want under commitment control.
2. Use the COMMIT (commit) operation code to apply a group of changes to

files under commitment control, or use the ROLBK (Roll Back) operation
code to eliminate the pending group of changes to files under commitment
control. For information on how the rollback function is performed by the
system, refer to the Recovering your system manual.

Note: Commitment control applies only to database files.

Starting and Ending Commitment Control
The CL command STRCMTCTL notifies the system that you want to start
commitment control.

The LCKLVL(Lock Level) parameter allows you to select the level at which records
are locked under commitment control. See “Commitment Control Locks” and the
CL Programming manual for further details on lock levels.

You can make commitment control conditional, in the sense that the decision
whether to process a file under commitment control is made at run time. For
further information, see “Specifying Conditional Commitment Control” on page
377.

When you complete a group of changes with a COMMIT operation, you can
specify a label to identify the end of the group. In the event of an abnormal job
end, this identification label is written to a file, message queue, or data area so that
you know which group of changes is the last group to be completed successfully.
You specify this file, message queue, or data area on the STRCMTCTL command.

Before you call any program that processes files specified for commitment control,
issue the STRCMTCTL command. If you call a program that opens a file specified
for commitment control before you issue the STRCMTCTL command, the opening
of the file will fail.

The CL command ENDCMTCTL notifies the system that your activation group or
job has finished processing files under commitment control. For further
information on the STRCMTCTL and ENDCMTCTL commands, see the CL and
APIs section of the Programming category in the i5/OS Information Center at this
Web site - http://www.ibm.com/systems/i/infocenter/.

Commitment Control Locks
On the STRCMTCTL command, you specify a level of locking, either
LCKLVL(*ALL), LCKLVL(*CHG), or LCKLVL(*CS). When your program is
operating under commitment control and has processed an input or output
operation on a record in a file under commitment control, the record is locked by
commitment control as follows:
v Your program can access the record.

Using Commitment Control

374 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

v Another program in your activation group or job, with this file under
commitment control, can read the record. If the file is a shared file, the second
program can also update the record.

v Another program in your activation group or job that does not have this file
under commitment control cannot read or update the record.

v Another program in a separate activation group or job, with this file under
commitment control, can read the record if you specified LCKLVL(*CHG), but it
cannot read the record if you specified LCKLVL(*ALL). With either lock level,
the next program cannot update the record.

v Another program that does not have this file under commitment control and
that is not in your activation group or job can read but not update the record.

v Commitment control locks are different than normal locks, depend on the
LCKLVL specified, and can only be released by the COMMIT and ROLBK
operations.

The COMMIT and ROLBK operations release the locks on the records. The
UNLOCK operation will not release records locked using commitment control. For
details on lock levels, see the CL and APIs section of the Programming category in
the i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

The number of entries that can be locked under commitment control before the
COMMIT or ROLBK operations are required may be limited. For more
information, see the Recovering your system manual.

Note: The SETLL and SETGT operations will lock a record in the same cases
where a read operation (not for update) would lock a record for
commitment control.

Commitment Control Scoping
When commitment control is started by using the STRCMTCTL command, the
system creates a commitment definition. A commitment definition contains
information pertaining to the resources being changed under commitment control
within that job. Each commitment definition is known only to the job that issued
the STRCMTCTL command and is ended when you issue the ENDCMTCTL
command.

The scope for commitment definition indicates which programs within the job use
that commitment definition. A commitment definition can be scoped at the
activation group level or at the job level.

The default scope for a commitment definition is to the activation group of the
program issuing the STRCMTCTL command, that is, at the activation group level.
Only programs that run within that activation group will use that commitment
definition. OPM programs will use the *DFTACTGRP commitment definition. ILE
programs will use the activation group they are associated with.

You specify the scope for a commitment definition on the commitment scope
(CMTSCOPE) parameter of the STRCMTCTL command. For further information on
the commitment control scope within ILE, refer to ″Data Management Scoping″ in
ILE Concepts.

Specifying Files for Commitment Control
To indicate that a DISK file is to run under commitment control, enter the keyword
COMMIT in the keyword field of the file description specification.

Using Commitment Control

Chapter 17. Accessing Database Files 375

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

When a program specifies commitment control for a file, the specification applies
only to the input and output operations made by this program for this file.
Commitment control does not apply to operations other than input and output
operations. It does not apply to files that do not have commitment control
specified in the program doing the input or output operation.

When more than one program accesses a file as a shared file, all or none of the
programs must specify the file to be under commitment control.

Using the COMMIT Operation
The COMMIT operation tells the system that you have completed a group of
changes to the files under commitment control. The ROLBK operation eliminates
the current group of changes to the files under commitment control. For
information on how to specify these operation codes and what each operation
does, see the IBM Rational Development Studio for i: ILE RPG Reference.

If the system fails, it implicitly issues a ROLBK operation. You can check the
identity of the last successfully completed group of changes using the label you
specify in factor 1 of the COMMIT operation code, and the notify-object you
specify on the STRCMTCTL command.

At the end of an activation group or job, or when you issue the ENDCMTCTL
command, the IBM i system issues an implicit ROLBK, which eliminates any
changes since the last ROLBK or COMMIT operation that you issued. To ensure
that all your file operations have effect, issue a COMMIT operation before ending
an activation group or job operating under commitment control.

The OPEN operation permits input and output operations to be made to a file and
the CLOSE operation stops input and output operations from being made to a file.
However, the OPEN and CLOSE operations do not affect the COMMIT and
ROLBK operations. A COMMIT or ROLBK operation affects a file, even after the
file has been closed. For example, your program may include the following steps:
1. Issue COMMIT (for files already opened under commitment control).
2. Open a file specified for commitment control.
3. Perform some input and output operations to this file.
4. Close the file.
5. Issue ROLBK.

The changes made at step 3 are rolled back by the ROLBK operation at step 5,
even though the file has been closed at step 4. The ROLBK operation could be
issued from another program in the same activation group or job.

A program does not have to operate all its files under commitment control, and to
do so may adversely affect performance. The COMMIT and ROLBK operations
have no effect on files that are not under commitment control.

Note: When multiple devices are attached to an application program, and
commitment control is in effect for the files this program uses, the COMMIT
or ROLBK operations continue to work on a file basis and not by device.
The database may be updated with partially completed COMMIT blocks or
changes that other users have completed may be eliminated. It is your
responsibility to ensure this does not happen.

Using Commitment Control

376 ILE RPG Programmer’s Guide

Example of Using Commitment Control
This example illustrates the specifications and CL commands required for a
program to operate under commitment control.

To prepare for using commitment control, you issue the following CL commands:
1. CRTJRNRCV JRNRCV (RECEIVER)

This command creates a journal receiver RECEIVER.
2. CRTJRN JRN(JOURNAL) JRNRCV(RECEIVER)

This command creates a journal JOURNAL and attaches the journal receiver
RECEIVER.

3. STRJRNPF FILE(MASTER TRANS) JRN(JOURNAL)

This command directs journal entries for the file MASTER and the file TRANS
to the journal JOURNAL.

In your program, you specify COMMIT for the file MASTER and the file TRANS:

To operate your program (named REVISE) under commitment control, you issue
the commands:
1. STRCMTCTL LCKLVL(*ALL)

This command starts commitment control with the highest level of locking.
2. CALL REVISE

This command calls the program REVISE.
3. ENDCMTCTL

This command ends commitment control and causes an implicit Roll Back
operation.

Specifying Conditional Commitment Control
You can write a program so that the decision to open a file under commitment
control is made at run time. By implementing conditional commitment control, you
can avoid writing and maintaining two versions of the same program: one which
operates under commitment control, and one which does not.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++
FMASTER UF E K DISK COMMIT
FTRANS UF E K DISK COMMIT
F*

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C :
C :
*
* Use the COMMIT operation to complete a group of operations if
* they were successful or rollback the changes if they were not
* successful.
*
C UPDATE MAST_REC 90
C UPDATE TRAN_REC 91
C IF *IN90 OR *IN91
C ROLBK
C ELSE
C COMMIT
C ENDIF

Figure 182. Example of Using Commitment Control

Using Commitment Control

Chapter 17. Accessing Database Files 377

The COMMIT keyword has an optional parameter which allows you to specify
conditional commitment control. You enter the COMMIT keyword in the keyword
section of the file description specifications for the file(s) in question. The ILE RPG
compiler implicitly defines a one-byte character field with the same name as the
one specified as the parameter. If the parameter is set to ’1’, the file will run under
commitment control.

The COMMIT keyword parameter must be set prior to opening the file. You can
set the parameter by passing in a value when you call the program or by explicitly
setting it to ’1’ in the program.

For shared opens, if the file in question is already open, the COMMIT keyword
parameter has no effect, even if it is set to ’1’.

Figure 183 is an example showing conditional commitment control.

Commitment Control in the Program Cycle
Commitment control is intended for full procedural files, where the input and
output is under your control. Do not use commitment control with primary and
secondary files, where input and output is under the control of the RPG program
cycle. The following are some of the reasons for this recommendation:
v You cannot issue a COMMIT operation for the last total output in your program.
v It is difficult to program within the cycle for recovery from a locked-record

condition.
v Level indicators are not reset by the ROLBK operation.
v After a ROLBK operation, processing matching records may produce a sequence

error.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++
FMASTER UF E K DISK COMMIT(COMITFLAG)
FTRANS UF E K DISK COMMIT(COMITFLAG)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
* If COMITFLAG = '1' the files are opened under commitment control,
* otherwise they are not.
C *ENTRY PLIST
C PARM COMITFLAG
C :
C :
*
* Use the COMMIT operation to complete a group of operations if
* they were successful or rollback the changes if they were not
* successful. You only issue the COMIT or ROLBK if the files
* were opened for commitment control (ie. COMITFLAG = '1')
*
C UPDATE MAST_REC 90
C UPDATE TRAN_REC 91
C IF COMITFLAG = '1'
C IF *IN90 OR *IN91
C ROLBK
C ELSE
C COMMIT
C ENDIF
C ENDIF
C*

Figure 183. Example of Using Conditional Commitment Control

Using Commitment Control

378 ILE RPG Programmer’s Guide

Unexpected Results Using Keyed Files
When using READE, READPE, SETLL for equality, or Sequential-within-limits
processing by a record address file, normally the key comparisons are done at the
data management level. However, there are some situations that do not allow the
key comparison to be done at the data management level. When data management
cannot perform the key comparison, the comparison is done using the hexadecimal
collation sequence. This may cause unexpected results. For example, if ABSVAL is
used on a numeric key, both -1 and 1 would be seen as valid search arguments for
a key in the file with a value of 1. Using the hexadecimal collating sequence, a
search argument of -1 will not succeed for an actual key of 1.

Some of the features that cause the key comparison to differ are:
v A Get Next Key Equal following a Read Multiple does not require a search key

to be provided. To circumvent this situation, issue an OVRDBF command with
either SEQONLY(*NO) or SEQONLY(*YES 1) specified so a Read multiple will
read only one record.

v Keyed feedback was not requested for the file at open time.
v The Read request was performed via a group-by view of the data. To circumvent

this situation, use a physical copy of the group-by data.
v The file is a Distributed Data Management (DDM) file and the remote file was

created before Version 3 Release 1 Modification 0.

Some of the features that will cause a hexadecimal key comparison to differ from a
key comparison performed by data management are:
v ALTSEQ was specified for the file
v ABSVAL, ZONE, UNSIGNED or DIGIT keywords on key fields
v Variable length, Date, Time or Timestamp key fields
v ALWNULL(*USRCTL) is specified as a keyword on a control specification or as

a command parameter and a key in the record or search argument has a null
value. The key in the file or search argument has null values. This applies only
to externally described files.

v SRTSEQ for the file is not hexadecimal
v A numeric sign is different from the system-preferred sign
v The CCSID of a key in the file is different from the CCSID of the job

DDM Files
ILE RPG programs access files on remote systems through distributed data
management (DDM). DDM allows application programs on one system to use files
stored on a remote system as database files. No special statements are required in
ILE RPG programs to support DDM files.

A DDM file is created by a user or program on a local (source) system. This file
(with object type *FILE) identifies a file that is kept on a remote (target) system.
The DDM file provides the information needed for a local system to locate a
remote system and to access the data in the source file. For more information
about using DDM and creating DDM files, refer to the DB2 Universal Database for
iSeries section of the Database and File Systems category in the i5/OS Information
Center at this Web site - http://www.ibm.com/systems/i/infocenter/.

Using Commitment Control

Chapter 17. Accessing Database Files 379

http://www.ibm.com/systems/i/infocenter/

Using Pre-V3R1 DDM Files
If you are using a pre-Version 3 Release 1.0 DDM file, the key comparison is not
done at the Data Management level during a READE or READPE operation, EQ
indicator for SETLL, or during sequential-within-limits processing by a record
address file. The READE or READPE operation, EQ indicator for SETLL, or during
sequential-within-limits processing by a record address file, will instead compare
the keys using the *HEX collating sequence.

This may give different results than expected when DDS features are used that
cause more than one search argument to match a given key in the file. For
example, if ABSVAL is used on a numeric key, both -1 and 1 would succeed as
search arguments for a key in the file with a value of 1. Using the hexadecimal
collating sequence, a search argument of -1 will not succeed for an actual key of 1.
Some of the DDS features that cause the key comparison to differ are:
v ALTSEQ specified for the file
v ABSVAL, ZONE, UNSIGNED, or DIGIT keywords on key fields
v Variable length, Date, Time, or Timestamp key fields
v The SRTSEQ for the file is not *HEX
v ALWNULL(*USRCTL) was specified on the creation command and a key in the

record or the search argument has a null value (this applies only to externally
described files)

In addition, if the sign of a numeric field is different from the system preferred
sign, the key comparison will also differ.

The first time that the key comparison is not done at the Data Management level
on a pre-V3R1 DDM file during the READE or READPE operation, EQ indicator
for SETLL, or during sequential-within-limits processing by a record address file,
an informational message (RNI2002) will be issued.

Note: The performance of I/O operations that have the possibility of not finding a
record (SETLL, CHAIN, SETGT, READE, READPE), will be slower than the
pre-Version 3 Release 1.0 equivalent.

DDM Files

380 ILE RPG Programmer’s Guide

Chapter 18. Accessing Externally Attached Devices

You can access externally attached devices from RPG by using device files. Device
files are files that provide access to externally attached hardware such as printers,
tape units, diskette units, display stations, and other systems that are attached by a
communications line.

This chapter describes how to access externally attached devices using RPG device
names PRINTER, SEQ, and SPECIAL. For information on display stations and ICF
devices see Chapter 19, “Using WORKSTN Files,” on page 395

Types of Device Files
Before your program can read or write to the devices on the system, a device
description that identifies the hardware capabilities of the device to the operating
system must be created when the device is configured. A device file specifies how
a device can be used. By referring to a specific device file, your RPG program uses
the device in the way that it is described to the system. The device file formats
output data from your RPG program for presentation to the device, and formats
input data from the device for presentation to your RPG program.

You use the device files listed in Table 49 to access the associated externally
attached devices:

Table 49. iSeries Device Files, Related CL commands, and RPG Device Name

Device File Associated Externally Attached Device CL
commands

RPG Device
Name

Printer Files Provide access to printer devices and
describe the format of printed output.

CRTPRTF
CHGPRTF
OVRPRTF

PRINTER

Tape Files Provide access to data files which are
stored on tape devices.

CRTTAPF
CHGTAPF
OVRTAPF

SEQ

Diskette Files Provide access to data files which are
stored on diskette devices.

CRTDKTF
CHGDKTF
OVRDKTF

DISK

Display Files Provide access to display devices. CRTDSPF
CHGDSPF
OVRDSPF

WORKSTN

ICF Files Allow a program on one system to
communicate with a program on the same
system or another system.

CRTICFF
CHGICFF
OVRICFF

WORKSTN

The device file contains the file description, which identifies the device to be used;
it does not contain data.

Accessing Printer Devices
PRINTER files of ILE RPG programs associate with the printer files on the iSeries
system:

© Copyright IBM Corp. 1994, 2010 381

Printer files allow you to print output files. This chapter provides information on
how to specify and use printer files in ILE RPG programs.

Specifying PRINTER Files
To indicate that you want your program to access printer files, specify PRINTER as
the device name for the file in a File Description specification. Each file must have
a unique file name. A maximum of eight printer files is allowed per program.

PRINTER files can be either externally-described or program-described. Overflow
indicators OA-OG and OV, fetch overflow, space/skip entries, and the PRTCTL
keyword are not allowed for an externally-described PRINTER file. See the IBM
Rational Development Studio for i: ILE RPG Reference for the valid output
specification entries for an externally-described file.

For an externally-described PRINTER file, you can specify the DDS keyword
INDARA. If you try to use this keyword for a program-described PRINTER file,
you get a run-time error.

You can use the CL command CRTPRTF (Create Print File) to create a printer file,
or you can use the IBM-supplied file names.

For information on the CRTPRTF command, see the CL and APIs section of the
Programming category in the i5/OS Information Center at this Web site —
http://www.ibm.com/systems/i/infocenter/.

For information on IBM-supplied file names and the DDS for externally-described
printer files, refer to the DB2 Universal Database for iSeries section of the Database
and File Systems category in the i5/OS Information Center at the above Web site.

The file operation codes that are valid for a PRINTER file are WRITE, OPEN,
CLOSE, and FEOD. For a complete description of these operation codes, see the
IBM Rational Development Studio for i: ILE RPG Reference.

Handling Page Overflow
An important consideration when you use a PRINTER file is page overflow. For an
externally-described PRINTER file, you are responsible for handling page overflow.
Do one of the following:
v Specify an indicator, *IN01 through *IN99, as the overflow indicator using the

keyword OFLIND(overflow indicator) in the Keywords field of the file description
specifications.

v Check the printer device feedback section of the INFDS for line number and
page overflow. Refer to the IBM Rational Development Studio for i: ILE RPG
Reference for more information.

v Count the number of output lines per page.
v Check for a file exception/error by specifying an indicator in positions 73 and 74

of the calculation specifications that specify the output operation, or by
specifying an INFSR that can handle the error. The INFDS has detailed
information on the file exception/error. See Chapter 13, “Handling Exceptions,”
on page 285 for further information on exception and error handling.

For either a program-described or an externally-described file, you can specify an
indicator, *IN01 through *IN99, using the keyword OFLIND(overflow indicator) on
the File Description specification. This indicator is set on when a line is printed on
the overflow line, or the overflow line is reached or passed during a space or skip

Accessing Printer Devices

382 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

operation. Use the indicator to condition your response to the overflow condition.
The indicator does not condition the RPG overflow logic as an overflow indicator
(*INOA through *INOG, *INOV) does. You are responsible for setting the indicator
off.

For both program-described and externally-described files, the line number and
page number are available in the printer feedback section of the INFDS for the file.
To access this information specify the INFDS keyword on the file specification. On
the specification, define the line number in positions 367-368 and define the page
number in positions 369-372 of the data structure. Both the line number and the
page number fields must be defined as binary with no decimal positions. Because
the INFDS will be updated after every output operation to the printer file, these
fields can be used to determine the current line and page number without having
line-count logic in the program.

Note: If you override a printer file to a different device, such as a disk, the printer
feedback section of the INFDS will not be updated, and your line count
logic will not be valid.

For a program-described PRINTER file, the following sections on overflow
indicators and fetch overflow logic apply.

Using Overflow Indicators in Program-Described Files
An overflow indicator (OA through OG, OV) is set on when the last line on a page
has been printed or passed. An overflow indicator can be used to specify the lines
to be printed on the next page. Overflow indicators can be specified only for
program-described PRINTER files and are used primarily to condition the printing
of heading lines. An overflow indicator is specified using the keyword OFLIND on
the file description specifications and can be used to condition operations in the
calculation specifications (positions 9 through 11) and output specifications
(positions 21 through 29). If an overflow indicator is not specified, the compiler
assigns the first unused overflow indicator to the PRINTER file. Overflow
indicators can also be specified as resulting indicators on the calculation
specifications (positions 71 through 76).

The compiler sets on an overflow indicator only the first time an overflow
condition occurs on a page. An overflow condition exists whenever one of the
following occurs:
v A line is printed past the overflow line.
v The overflow line is passed during a space operation.
v The overflow line is passed during a skip operation.

Table 50 on page 384 shows the results of the presence or absence of an overflow
indicator on the file description and output specifications.

The following considerations apply to overflow indicators used on the output
specifications:
v Spacing past the overflow line sets the overflow indicator on.
v Skipping past the overflow line to any line on the same page sets the overflow

indicator on.
v Skipping past the overflow line to any line on the new page does not set the

overflow indicator on unless a skip-to is specified past the specified overflow
line.

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 383

v A skip to a new page specified on a line not conditioned by an overflow
indicator sets the overflow indicator off after the forms advance to a new page.

v If you specify a skip to a new line and the printer is currently on that line, a
skip does not occur. The overflow indicator is set to off, unless the line is past
the overflow line.

v When an OR line is specified for an output print record, the space and skip
entries of the preceding line are used. If they differ from the preceding line,
enter space and skip entries on the OR line.

v Control level indicators can be used with an overflow indicator so that each
page contains information from only one control group. See Figure 185 on page
385.

v For conditioning an overflow line, an overflow indicator can appear in either an
AND or an OR relationship. For an AND relationship, the overflow indicator
must appear on the main specification line for that line to be considered an
overflow line. For an OR relationship, the overflow indicator can be specified on
either the main specification line or the OR line. Only one overflow indicator can
be associated with one group of output indicators. For an OR relationship, only
the conditioning indicators on the specification line where an overflow indicator
is specified is used for the conditioning of the overflow line.

v If an overflow indicator is used on an AND line, the line is not an overflow line.
In this case, the overflow indicator is treated like any other output indicator.

v When the overflow indicator is used in an AND relationship with a record
identifying indicator, unusual results are often obtained because the record type
might not be the one read when overflow occurred. Therefore, the record
identifying indicator is not on, and all lines conditioned by both overflow and
record identifying indicators do not print.

v An overflow indicator conditions an exception line (E in position 17), and
conditions fields within the exception record.

Table 50. Results of the Presence or Absence of an Overflow Indicator

File Description
Specifications
Positions 44-80

Output
Specifications
Positions 21-29

Action

No entry No entry First unused overflow indicator used to
condition skip to next page at overflow.

No entry Entry Error at compile time; overflow indicator
dropped from output specifications. First unused
overflow indicator used to condition skip to next
page at overflow.

OFLIND (indicator) No entry Continuous printing; no overflow recognized.

OFLIND (indicator) Entry Processes normal overflow.

Example of Printing Headings on Every Page
Figure 184 on page 385 shows an example of the coding necessary for printing
headings on every page: first page, every overflow page, and each new page to be
started because of a change in control fields (L2 is on). The first line allows the
headings to be printed at the top of a new page (skip to 06) only when an
overflow occurs (OA is on and L2 is not on).

The second line allows printing of headings on the new page only at the beginning
of a new control group (L2 is on). This way, duplicate headings caused by both L2
and OA being on at the same time do not occur. The second line allows headings
to be printed on the first page after the first record is read because the first record

Accessing Printer Devices

384 ILE RPG Programmer’s Guide

always causes a control break (L2 turns on) if control fields are specified on the
record.

Example of Printing a Field on Every Page
Figure 185shows the necessary coding for the printing of certain fields on every
page; a skip to 06 is done either on an overflow condition or on a change in
control level (L2). The NL2 indicator prevents the line from printing and skipping
twice in the same cycle.

Using the Fetch-Overflow Routine in Program-Described Files
When there is not enough space left on a page to print the remaining detail, total,
exception, and heading lines conditioned by the overflow indicator, the fetch
overflow routine can be called. This routine causes an overflow. To determine
when to fetch the overflow routine, study all possible overflow situations. By
counting lines and spaces, you can calculate what happens if overflow occurs on
each detail, total, and exception line.

The fetch-overflow routine allows you to alter the basic ILE RPG overflow logic to
prevent printing over the perforation and to let you use as much of the page as
possible. During the regular program cycle, the compiler checks only once,
immediately after total output, to see if the overflow indicator is on. When the
fetch overflow function is specified, the compiler checks overflow on each line for
which fetch overflow is specified.

Figure 186 on page 386 shows the normal processing of overflow printing when
fetch overflow is set on and when it is set off.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
OPRINT H OANL2 3 6
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O OR L2
O 8 'DATE'
O 18 'ACCOUNT'
O 28 'N A M E'
O 46 'BALANCE'
O*

Figure 184. Printing a Heading on Every Page

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
OPRINT D OANL2 3 6
O OR L2
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O ACCT 8
O*

Figure 185. Printing a Field on Every Page

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 385

�A� When fetch overflow is not specified, the overflow lines print after total
output. No matter when overflow occurs (OA is on), the overflow indicator
OA remains on through overflow output time and is set off after heading
and detail output time.

�B� When fetch overflow is specified, the overflow lines are written before the
output line for which fetch overflow was specified, if the overflow
indicator OA is on. When OA is set on, it remains on until after heading

Overflow
Occurs
During

Get a
Record

Total
Calculations

Total
Output

Overflow
Printing

T = Total

H = Heading

D = Detail

E = Exception

Detail
Calculations

Heading
and

Detail
Output

Set Off
Overflow
Indicators

Overflow Printing and Setting of the OA Overflow Indicator

Without Fetch

Normal Output

Detail
Output

Normal Output Exception Output

Detail
Calc

Total
Calc

0 A
Print

0 A
Print

0 A
Print

Print Print Print Print

0 A
Print

Total
Output

Total
Output

Exception Output

0 A

0 A

0 A

Off Off Off Off Off Off Off Off

0 A

Detail
Output

Detail
Calc

Total
Calc

With Fetch

Figure 186. Overflow Printing: Setting of the Overflow Indicator

Accessing Printer Devices

386 ILE RPG Programmer’s Guide

and detail output time. The overflow lines are not written a second time at
overflow output time unless overflow is sensed again since the last time
the overflow lines were written.

Specifying Fetch Overflow
Specify fetch overflow with an F in position 18 of the output specifications on any
detail, total, or exception lines for a PRINTER file. The fetch overflow routine does
not automatically cause forms to advance to the next page.

During output, the conditioning indicators on an output line are tested to
determine if the line is to be written. If the line is to be written and an F is
specified in position 18, the compiler tests to determine if the overflow indicator is
on. If the overflow indicator is on, the overflow routine is fetched and the
following operations occur:
1. Only the overflow lines for the file with the fetch specified are checked for

output.
2. All total lines conditioned by the overflow indicator are written.
3. Forms advance to a new page when a skip to a line number less than the line

number the printer is currently on is specified in a line conditioned by an
overflow indicator.

4. Heading, detail, and exception lines conditioned by the overflow indicator are
written.

5. The line that fetched the overflow routine is written.
6. Any detail and total lines left to be written for that program cycle are written.

Position 18 of each OR line must contain an F if the overflow routine is to be used
for each record in the OR relationship. Fetch overflow cannot be used if an
overflow indicator is specified in positions 21 through 29 of the same specification
line. If this is the case, the overflow routine is not fetched.

Example of Specifying Fetch Overflow
Figure 187 shows the use of fetch overflow.

The total lines with an F coded in position 18 can fetch the overflow routine. They
only do so if overflow is sensed prior to the printing of one of these lines. Before

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
OPRINTER H OA 3 05
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O 15 'EMPLOYEE TOTAL'
O TF L1 1
O EMPLTOT 25
O T L1 1
O EMPLTOT 35
O T L1 1
O EMPLTOT 45
O TF L1 1
O EMPLTOT 55
O T L1 1
O EMPLTOT 65
O T L1 1
O EMPLTOT 75
O T L1 1
O*

Figure 187. Use of Fetch Overflow

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 387

fetch overflow is processed, a check is made to determine whether the overflow
indicator is on. If it is on, the overflow routine is fetched, the heading line
conditioned by the overflow indicator is printed, and the total operations are
processed.

Changing Forms Control Information in a Program-Described
File

The PRTCTL (printer control) keyword allows you to change forms control
information and to access the current line value within the program for a
program-described PRINTER file. Specify the keyword PRTCTL(data structure name)
on the File Description specification for the PRINTER file.

You can specify two types of PRTCTL data structures in your source: an
OPM-defined data structure, or an ILE data structure. The default is to use the ILE
data structure layout which is shown in Table 51. To use the OPM-defined data
structure layout, specify PRTCTL(data-structure name:*COMPAT). The OPM
PRTCTL data structure layout is shown in Table 52.

The ILE PRTCTL data structure must be defined on the Definition specifications. It
requires a minimum of 15 bytes and must contain at least the following five
subfields specified in the following order:

Table 51. Layout of ILE PRTCTL Data Structure

Positions Subfield Contents

1-3 A three-position character field that contains the space-before value
(valid values: blank or 0-255)

4-6 A three-position character field that contains the space-after value
(valid values: blank or 0-255)

7-9 A three-position character field that contains the skip-before value
(valid values: blank or 0-255)

10-12 A three-position character field that contains the skip-after value
(valid values: blank or 0-255)

13-15 A three-digit numeric field with zero decimal positions that
contains the current line count value.

The OPM PRTCTL data structure must be defined on the Definition specifications
and must contain at least the following five subfields specified in the following
order:

Table 52. Layout of OPM PRTCTL Data Structure

Positions Subfield Contents

1 A one-position character field that contains the space-before value
(valid values: blank or 0-3)

2 A one-position character field that contains the space-after value
(valid values: blank or 0-3)

3-4 A two-position character field that contains the skip-before value
(valid values: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

5-6 A two-position character field that contains the skip-after value
(valid values: blank, 1-99, A0-A9 for 100-109, B0-B2 for 110-112)

7-9 A two-digit numeric field with zero decimal positions that contains
the current line count value.

Accessing Printer Devices

388 ILE RPG Programmer’s Guide

The values contained in the first four subfields of the ILE PRTCTL data structure
are the same as those allowed in positions 40 through 51 (space and skip entries)
of the output specifications. If the space/skip entries (positions 40 through 51) of
the output specifications are blank, and if subfields 1 through 4 are also blank, the
default is to space 1 after. If the PRTCTL keyword is specified, it is used only for
the output records that have blanks in positions 40 through 51. You can control the
space and skip value (subfields 1 through 4) for the PRINTER file by changing the
values in these subfields of the PRTCTL data structure while the program is
running.

Subfield 5 contains the current line count value. The compiler does not initialize
subfield 5 until after the first output line is printed. The compiler then changes
subfield 5 after each output operation to the file.

Example of Changing Forms Control Information
Figure 188 shows an example of the coding necessary to change the forms control
information using the PRTCTL keyword.

On the file description specifications, the PRTCTL keyword is specified for the
PRINT file. The name of the associated data structure is LINE.

The LINE data structure is defined on the input specifications as having only those
subfields that are predefined for the PRTCTL data structure. The first four
subfields in positions 1 through 12 are used to supply space and skip information
that is generally specified in positions 40 through 51 of the output specifications.
The PRTCTL keyword allows you to change these specifications within the
program.

In this example, the value in the SpAfter subfield is changed to 3 when the value
in the CurLine (current line count value) subfield is equal to 10. (Assume that
indicator 01 was set on as a record identifying indicator.)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FPRINT O F 132 PRINTER PRTCTL(LINE)

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++++++++++++++++++++
DLINE DS
D SpBefore 1 3
D SpAfter 4 6
D SkBefore 7 9
D SkAfter 10 12
D CurLine 13 15 0

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C EXCEPT
C 01CurLine COMP 10 49
C 01
CAN 49 MOVE '3' SpAfter

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+.............................
OPRINT E 01
O..............N01N02N03Field+++++++++YB.End++PConstant/editword/DTformat++
O DATA 25

Figure 188. Example of the PRTCTL Option

Accessing Printer Devices

Chapter 18. Accessing Externally Attached Devices 389

Accessing Tape Devices
Use the SEQ device specifications whenever you write to a tape file. To write
variable-length records to a tape file, use the RCDBLKFMT parameter of the CL
command CRTTAPF or OVRTAPF. When you use the RCDBLKFMT parameter, the
length of each record to be written to tape is determined by:
v the highest end position specified in the output specifications for the record or,
v if you do not specify an end position, the compiler calculates the record length

from the length of the fields.

Read variable-length records from tape just like you would read records from any
sequentially organized file. Ensure the record length specified on the file
description specification accommodates the longest record in the file.

Accessing Display Devices
You use display files to exchange information between your program and a display
device such as a workstation. A display file is used to define the format of the
information that is to be presented on a display, and to define how the information
is to be processed by the system on its way to and from the display.

See Chapter 19, “Using WORKSTN Files,” on page 395 for a discussion on how to
use WORKSTN files.

Using Sequential Files
Sequential files in an ILE RPG program associate with any sequentially organized
file on the AS/400 system, such as:
v Database file
v Diskette file
v Printer file
v Tape file.

The file name of the SEQ file in the file description specifications points to an
AS/400 file. The file description of the AS/400 file specifies the actual I/O device,
such as tape, printer or diskette.

You can also use the CL override commands, for example OVRDBF, OVRDKTF
and OVRTAPF, to specify the actual I/O device when the program is run.

Specifying a Sequential File
A sequential (SEQ) device specification, entered in positions 36 through 42 in the
file description specification, indicates that the input or output is associated with a
sequentially-organized file. Refer to Figure 189 on page 391. The actual device to be
associated with the file while running the program can be specified by a IBM i
override command or by the file description that is pointed to by the file name. If
SEQ is specified in a program, no device-dependent functions such as space/skip,
or CHAIN can be specified.

Accessing Tape Devices

390 ILE RPG Programmer’s Guide

The following figure shows the operation codes allowed for a SEQ file.

Table 53. Valid File Operation Codes for a Sequential File

File Description Specifications
Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, FEOD

I F READ, OPEN, CLOSE, FEOD

O WRITE, OPEN, CLOSE, FEOD

Note: No print control specifications are allowed for a sequential file.

Example of Specifying a Sequential File
Figure 189 shows an example of how to specify a SEQ file in an ILE RPG source
member.

A SEQ device is specified for the PAYOTIME file. When the program is run, you
can use a IBM i override command to specify the actual device (such as printer,
tape, or diskette) to be associated with the file while the program is running. For
example, diskette can be specified for some program runs while printer can be
specified for others. The file description, pointed to by the file name, can specify
the actual device, in which case an override command need not be used.

Using SPECIAL Files
The RPG device name SPECIAL (positions 36 - 42 of the file description
specifications) allows you to specify an input and/or output device that is not
directly supported by the ILE RPG operations. The input and output operations for
the file are controlled by a user-written routine. The name of the user-written
routine, must be identified in the file description specifications using the keyword
PGMNAME(’program name’).

ILE RPG calls this user-written routine to open the file, read and write the records,
and close the file. ILE RPG also creates a parameter list for use by the user-written
routine. The parameter list contains:
v option code parameter (option)
v return status parameter (status)
v error-found parameter (error)
v record area parameter (area).

This parameter list is accessed by the ILE RPG compiler and by the user-written
routine; it cannot be accessed by the program that contains the SPECIAL file.

The following describes the parameters in this RPG-created parameter list:

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+ ...
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FTIMECDS IP E DISK
FPAYOTIME O F 132 SEQ
*

Figure 189. SEQ Device

Using Sequential Files

Chapter 18. Accessing Externally Attached Devices 391

Option
The option parameter is a one-position character field that indicates the
action the user-written routine is to process. Depending on the operation
being processed on the SPECIAL file (OPEN, CLOSE, FEOD, READ,
WRITE, DELETE, UPDATE), one of the following values is passed to the
user-written routine from ILE RPG:

Value Passed
Description

O Open the file.

C Close the file.

F Force the end of file.

R Read a record and place it in the area defined by the area
parameter.

W The ILE RPG program has placed a record in the area defined by
the area parameter; the record is to be written out.

D Delete the record.

U The record is an update of the last record read.

Status The status parameter is a one-position character field that indicates the
status of the user-written routine when control is returned to the ILE RPG
program. Status must contain one of the following return values when the
user-written routine returns control to the ILE RPG program:

Return Value
Description

0 Normal return. The requested action was processed.

1 The input file is at end of file, and no record has been returned. If
the file is an output file, this return value is an error.

2 The requested action was not processed; error condition exists.

Error The error parameter is a five-digit zoned numeric field with zero decimal
positions. If the user-written routine detects an error, the error parameter
contains an indication or value representing the type of error. The value is
placed in the first five positions of location *RECORD in the INFDS when
the status parameter contains 2.

Area The area parameter is a character field whose length is equal to the record
length associated with the SPECIAL file. This field is used to pass the
record to or receive the record from the ILE RPG program.

You can add additional parameters to the RPG-created parameter list. Specify the
keyword PLIST(parameter list name) on the file description specifications for the
SPECIAL file. See Figure 190 on page 393. Then use the PLIST operation in the
calculation specifications to define the additional parameters.

The user-written routine, specified by the keyword PGMNAME of the file
description specifications for the SPECIAL file, must contain an entry parameter
list that includes both the RPG-created parameters and the user-specified
parameters.

If the SPECIAL file is specified as a primary file, the user-specified parameters
must be initialized before the first primary read. You can initialize these

Using SPECIAL Files

392 ILE RPG Programmer’s Guide

parameters with a factor 2 entry on the PARM statements or by the specification of
a compile-time array or an array element as a parameter.

Table 54 shows the file operation codes that are valid for a SPECIAL file.

Table 54. Valid File Operations for a SPECIAL File

File Description Specifications
Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, FEOD

C P/S WRITE, CLOSE, FEOD

U P/S UPDATE, DELETE, CLOSE, FEOD

O WRITE, OPEN, CLOSE, FEOD

I F READ, OPEN, CLOSE, FEOD

C F READ, WRITE, OPEN, CLOSE, FEOD

U F READ, UPDATE, DELETE, OPEN, CLOSE,
FEOD

Example of Using a Special File
Figure 190 shows how to use the RPG device name SPECIAL in a program. In this
example, a file description found in the file EXCPTN is associated with the device
SPECIAL.

Figure 191 on page 394 shows the user-written program USERIO.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
FFilename++IPEASFRlen+LKlen+AIDevice+.Keywords+++++++++++++++++++++++++++++
FEXCPTN O F 20 SPECIAL PGMNAME('USERIO')
F PLIST(SPCL)
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++
D OUTBUF DS
D FLD 1 20

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....
C SPCL PLIST
C PARM FLD1

C MOVEL 'HELLO' FLD
C MOVE '1' FLD1 1
C WRITE EXCPTN OUTBUF
C MOVE '2' FLD1 1
C WRITE EXCPTN OUTBUF
C SETON LR

Figure 190. SPECIAL Device

Using SPECIAL Files

Chapter 18. Accessing Externally Attached Devices 393

The I/O operations for the SPECIAL device are controlled by the user-written
program USERIO. The parameters specified for the programmer-defined
PLIST(SPCL) are added to the end of the RPG-created parameter list for the
SPECIAL device. The programmer-specified parameters can be accessed by the
user ILE RPG program and the user-written routine USERIO; whereas the
RPG-created parameter list can be accessed only by internal ILE RPG logic and the
user-written routine.

*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++
D ERROR S 5S 0
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+... *
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....

--
* The first 4 parameters are ILE RPG created parameter list. *
* The rest are defined by the programmer-defined PLIST. *
--
C *ENTRY PLIST
C PARM OPTION 1
C PARM STATUS 1
C PARM ERROR 5 0
C PARM AREA 20
C PARM FLD1 1

--
* The user written program will perform the file I/O according *
* to the option passed. *
--
C SELECT
C WHEN OPTION = 'O'
C* perform OPEN operation
C WHEN OPTION = 'W'
C* perform WRITE operation
C WHEN OPTION = 'C'
C* perform CLOSE operation
C ENDSL
C RETURN

Figure 191. User-written program USERIO

Using SPECIAL Files

394 ILE RPG Programmer’s Guide

Chapter 19. Using WORKSTN Files

Interactive applications on the System i generally involve communication with:
v One or more work station users via display files
v One or more programs on a remote system via ICF files
v One or more devices on a remote system via ICF files.

Display files are objects of type *FILE with attribute of DSPF on the i5/OSsystem.
You use display files to communicate interactively with users at display terminals.
Like database files, display files can be either externally-described or
program-described.

ICF files are objects of type *FILE with attribute of ICFF on the i5/OS system. You
use ICF files to communicate with (send data to and receive data from) other
application programs on remote systems (i5/OS or non-i5/OS). An ICF file
contains the communication formats required for sending and receiving data
between systems. You can write programs that use ICF files which allow you to
communicate with (send data to and receive data from) other application programs
on remote systems.

When a file in an RPG program is identified with the WORKSTN device name
then that program can communicate interactively with a work-station user or use
the Intersystem Communications Function (ICF) to communicate with other
programs. This chapter describes how to use:
v Intersystem Communications Function (ICF)
v Externally-described WORKSTN files
v Program-described WORKSTN files
v Multiple-device files.

Intersystem Communications Function
To use the ICF, define a WORKSTN file in your program that refers to an ICF
device file. Use either the system supplied file QICDMF or a file created using the
IBM i command CRTICFF.

You code for ICF by using the ICF as a file in your program. The ICF is similar to
a display file and it contains the communications formats required for the sending
and receiving of data between systems.

For further information on the ICF, refer to ICF Programming manual.

Using Externally Described WORKSTN Files
An RPG WORKSTN file can use an externally described display-device file or
ICF-device file, which contains file information and a description of the fields in
the records to be written. The most commonly used externally described
WORKSTN file is a display file. (For information about describing and creating
display files, refer to the DB2 Universal Database for iSeries section of the Database
and File Systems category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.)

© Copyright IBM Corp. 1994, 2010 395

http://www.ibm.com/systems/i/infocenter/

In addition to the field descriptions (such as field names and attributes), the DDS
for a display-device file are used to:
v Format the placement of the record on the screen by specifying the line-number

and position-number entries for each field and constant.
v Specify attention functions such as underlining and highlighting fields, reverse

image, or a blinking cursor.
v Specify validity checking for data entered at the display work station.

Validity-checking functions include detecting fields where data is required,
detecting mandatory fill fields, detecting incorrect data types, detecting data for
a specific range, checking data for a valid entry, and processing modules 10 or
11 check-digit verification.

v Control screen management functions, such as determining if fields are to be
erased, overlaid, or kept when new data is displayed.

v Associate indicators 01 through 99 with command attention keys or command
function keys. If a function key is described as a command function key (CF),
both the response indicator and the data record (with any modifications entered
on the screen) are returned to the program. If a function key is described as a
command attention key (CA), the response indicator is returned to the program
but the data record remains unmodified. Therefore, input-only character fields
are blank and input-only numeric field are filled with zeros, unless these fields
have been initialized otherwise.

v Assign an edit code (EDTCDE) or edit word (EDTWRD) keyword to a field to
specify how the field’s values are to be displayed.

v Specify subfiles.

A display-device-record format contains three types of fields:
v Input fields. Input fields are passed from the device to the program when the

program reads a record. Input fields can be initialized with a default value. If
the default value is not changed, the default value is passed to the program.
Input fields that are not initialized are displayed as blanks into which the
work-station user can enter data.

v Output fields. Output fields are passed from the program to the device when the
program writes a record to a display. Output fields can be provided by the
program or by the record format in the device file.

v Output/input (both) fields. An output/input field is an output field that can be
changed. It becomes an input field if it is changed. Output/input fields are
passed from the program when the program writes a record to a display and
passed to the program when the program reads a record from the display.
Output/input fields are used when the user is to change or update the data that
is written to the display from the program.

If you specify the keyword INDARA in the DDS for a WORKSTN file, the RPG
program passes indicators to the WORKSTN file in a separate indicator area, and
not in the input/output buffer.

For a detailed description of an externally-described display-device file and for a
list of valid DDS keywords, refer to the DB2 Universal Database for iSeries section of
the Database and File Systems category in the i5/OS Information Center at this Web
site - http://www.ibm.com/systems/i/infocenter/.

Figure 192 on page 397 shows an example of the DDS for a display-device file.

Using Externally Described WORKSTN Files

396 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/

This display device file contains two record formats: PROMPT and RESPONSE.

�1� The attributes for the fields in this file are defined in the DSTREF field
reference file.

�2� The OVERLAY keyword is used so that both record formats can be used
on the same display.

�3� Function key 3 is associated with indicator 98, which is used by the
programmer to end the program.

�4� The PUTRETAIN keyword allows the value that is entered in the ITEM
field to be kept in the display. In addition, the ITEM field is defined as an
input field by the I in position 38. ITEM is the only input field in these
record formats. All of the other fields in the record are output fields since
position 38 is blank for each of them.

�5� The ERRMSG keyword identifies the error message that is displayed if
indicator 61 is set on in the program that uses this record format.

�6� The LOCK keyword prevents the work-station user from using the
keyboard when the RESPONSE record format is initially-displayed.

�7� The constants such as ‘Description’, ‘Price’, and ‘Warehouse Location’
describe the fields that are written out by the program.

�8� The line and position entries identify where the fields or constants are
written on the display.

Specifying Function Key Indicators on Display Device Files
The function key indicators, KA through KN and KP through KY are valid for a
program that contains a display device WORKSTN file if the associated function
key is specified in the DDS.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*
A** ITEM MASTER INQUIRY
A REF(DSTREF) �1�
A R PROMPT TEXT('Item Prompt Format')
A 73N61 OVERLAY �2�
A CA03(98 'End of Program') �3�
A 1 2'Item Inquiry'
A 3 2'Item Number'
A ITEM R I 3 15PUTRETAIN �4�
A 61 ERRMSG('Invalid Item Number' 61)�5�
A R RESPONSE TEXT('Response Format')
A OVERLAY �2�
A LOCK �6�
A 5 2'Description'
A DESCRP R 5 15
A 5 37'Price'
A PRICE R 5 44
A 7 2'Warehouse Location' �7�
A WHSLOC R 7 22
A 9 2'On Hand'
A ONHAND R 9 10
A 9 19'Allocated' �8�
A ALLOC R 9 30
A 9 40'Available'
A AVAIL R 9 51
A*

Figure 192. Example of the Data Description Specifications for a Display Device File

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 397

The function key indicators relate to the function keys as follows: function key
indicator KA corresponds to function key 1, KB to function key 2 ... KX to function
key 23, and KY to function key 24.

Function keys are specified in the DDS with the CFxx (command function) or
CAxx (command attention) keyword. For example, the keyword CF01 allows
function key 1 to be used. When you press function key 1, function key indicator
KA is set on in the RPG program. If you specify the function key as CF01 (99),
both function key indicator KA and indicator 99 are set on in the RPG program. If
the work-station user presses a function key that is not specified in the DDS, the
IBM i system informs the user that an incorrect key was pressed.

If the work-station user presses a specified function key, the associated function
key indicator in the RPG program is set on when fields are extracted from the
record (move fields logic) and all other function key indicators are set off. If a
function key is not pressed, all function key indicators are set off at move fields
time. The function key indicators are set off if the user presses the Enter key.

Specifying Command Keys on Display Device Files
You can specify the command keys Help, Roll Up, Roll Down, Print, Clear, and
Home in the DDS for a display device file with the keywords HELP, ROLLUP,
ROLLDOWN, PRINT, CLEAR, and HOME.

Command keys are processed by an RPG program whenever the compiler
processes a READ or an EXFMT operation on a record format for which the
appropriate keywords are specified in the DDS. When the command keys are in
effect and a command key is pressed, the IBM i system returns control to the RPG
program. If a response indicator is specified in the DDS for the command selected,
that indicator is set on and all other response indicators that are in effect for the
record format and the file are set off.

If a response indicator is not specified in the DDS for a command key, the
following happens:
v For the Print key without *PGM specified, the print function is processed.
v For the Roll Up and Roll Down keys used with subfiles, the displayed subfile

rolls up or down, within the subfile. If you try to roll beyond the start or end of
a subfile, you get a run-time error.

v For the Print Key specified with *PGM, Roll Up and Roll Down keys used
without subfiles, and for the Clear, Help, and Home keys, one of the *STATUS
values 1121-1126 is set, respectively, and processing continues.

Processing an Externally Described WORKSTN File
When an externally-described WORKSTN file is processed, the IBM i system
transforms data from the program to the format specified for the file and displays
the data. When data is passed to the program, the data is transformed to the
format used by the program.

The IBM i system provides device-control information for processing input/output
operations for the device. When an input record is requested from the device, the
IBM i system issues the request, and then removes device-control information from
the data before passing the data to the program. In addition, the IBM i system can
pass indicators to the program indicating which fields, or if any fields, in the
record have been changed.

Using Externally Described WORKSTN Files

398 ILE RPG Programmer’s Guide

When the program requests an output operation, it passes the output record to the
IBM i system. The IBM i system provides the necessary device-control information
to display the record. It also adds any constant information specified for the record
format when the record is displayed.

When a record is passed to a program, the fields are arranged in the order in
which they are specified in the DDS. The order in which the fields are displayed is
based on the display positions (line numbers and position) assigned to the fields in
the DDS. The order in which the fields are specified in the DDS and the order in
which they appear on the screen need not be the same.

For more information on processing WORKSTN files, see “Valid WORKSTN File
Operations” on page 405.

Using Subfiles
Subfiles can be specified in the DDS for a display-device file to allow you to
handle multiple records of the same type on the display. (See Figure 193 on page
400.) A subfile is a group of records that is read from or written to a display-device
file. For example, a program reads records from a database file and creates a
subfile of output records. When the entire subfile has been written, the program
sends the entire subfile to the display device in one write operation. The
work-station user can change data or enter additional data in the subfile. The
program then reads the entire subfile from the display device into the program and
processes each record in the subfile individually.

Records that you want to be included in a subfile are specified in the DDS for the
file. The number of records that can be included in a subfile must also be specified
in the DDS. One file can contain more than one subfile, and up to 12 subfiles can
be active concurrently. Two subfiles can be displayed at the same time.

The DDS for a subfile consists of two record formats: a subfile-record format and a
subfile control-record format. The subfile-record format contains the field
information that is transferred to or from the display file under control of the
subfile control-record format. The subfile control-record format causes the physical
read, write, or control operations of a subfile to take place. Figure 194 on page 401
shows an example of the DDS for a subfile-record format, and Figure 195 on page
402 shows an example of the DDS for a subfile control-record format.

For a description of how to use subfile keywords, refer to the DB2 Universal
Database for iSeries section of the Database and File Systems category in the i5/OS
Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/..

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 399

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

To use a subfile for a display device file in an RPG program, you must specify the
SFILE keyword on a file description specification for the WORKSTN file. The
format of the SFILE keyword is SFILE(record format name:RECNO field name). The
WORKSTN file must be an externally-described file (E in position 22).

You must specify for the SFILE keyword the name of the subfile record format (not
the control-record format) and the name of the field that contains the relative
record number to be used in processing the subfile.

In an RPG program, relative record number processing is defined as part of the
SFILE definition. The SFILE definition implies a full-procedural update file with
ADD for the subfile. Therefore, the file operations that are valid for the subfile are
not dependent on the definition of the main WORKSTN file. That is, the
WORKSTN file can be defined as a primary file or a full-procedural file.

Use the CHAIN, READC, UPDATE, or WRITE operation codes with the subfile
record format to transfer data between the program and the subfile. Use the
READ, WRITE, or EXFMT operation codes with the subfile control-record format
to transfer data between the program and the display device or to process subfile
control operations.

Subfile processing follows the rules for relative-record-number processing. The
RPG program places the relative-record number of any record retrieved by a
READC operation into the field named in the second position of the SFILE
keyword. This field is also used to specify the record number that the RPG
program uses for WRITE operation to the subfile or for output operations that use
ADD. The RECNO field name specified for the SFILE keyword must be defined as
numeric with zero decimal positions. The field must have enough positions to
contain the largest record number for the file. (See the SFLSIZ keyword in the DB2
Universal Database for iSeries section of the Database and File Systems category in the
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.) The WRITE operation code and the ADD specification on the output
specifications require that a relative-record-number field be specified in the second
position of the SFILE keyword on the file description specification.

Customer Name Search

Search Code _______

Number Name Address City State

XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

Figure 193. Subfile Display

Using Externally Described WORKSTN Files

400 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

If a WORKSTN file has an associated subfile, all implicit input operations and
explicit calculation operations that refer to the file name are processed against the
main WORKSTN file. Any operations that specify a record format name that is not
designated as a subfile are processed on the main WORKSTN file.

If you press a specified function key during a read of a non-subfile record,
subsequent reads of a subfile record will cause the corresponding function key
indicator to be set on again, even if the function key indicator has been set off
between the reads. This will continue until a non-subfile record is read from the
WORKSTN file.

The data description specifications (DDS) for a subfile record format describe the
records in the subfile:

�1� The attributes for the fields in the record format are contained in the field
reference file DSTREF as specified by the REF keyword.

�2� The SFL keyword identifies the record format as a subfile.

�3� The line and position entries define the location of the fields on the
display.

Use of Subfiles
Some typical ways you can make use of subfiles include:
v Display only. The work-station user reviews the display.
v Display with selection. The user requests more information about one of the

items on the display.
v Modification. The user changes one or more of the records.
v Input only, with no validity checking. A subfile is used for a data entry function.
v Input only, with validity checking. A subfile is used for a data entry function,

but the records are checked.
v Combination of tasks. A subfile can be used as a display with modification, plus

the input of new records.

The following figure shows an example of data description specifications for a
subfile control-record format. For an example of using a subfile in an RPG
program, see “Search by Zip Code” on page 424.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*
A** CUSTOMER NAME SEARCH
A REF(DSTREF) �1�
A R SUBFIL SFL �2�
A TEXT('Subfile Record')
A CUST R 7 3
A NAME R 7 10
A ADDR R 7 32 �3�
A CITY R 7 54
A STATE R 7 77
A*

Figure 194. Data Description Specifications for a Subfile Record Format

Using Externally Described WORKSTN Files

Chapter 19. Using WORKSTN Files 401

The subfile control-record format defines the attributes of the subfile, the search
input field, constants, and function keys. The keywords you can use indicate the
following:
v SFLCTL names the associated subfile (SUBFIL).
v SFLCLR indicates when the subfile should be cleared (when indicator 70 is off).
v SFLDSPCTL indicates when to display the subfile control record (when indicator

70 is on).
v SFLDSP indicates when to display the subfile (when indicator 71 is on).
v SFLSIZ indicates the total number of records to be included in the subfile (15).
v SFLPAG indicates the total number of records in a page (15).
v ROLLUP indicates that indicator 97 is set on in the program when the user

presses the Roll Up key.
v HELP allows the user to press the Help key for a displayed message that

describes the valid function keys.
v PUTRETAIN allows the value that is entered in the SRHCOD field to be kept in

the display.

In addition to the control information, the subfile control-record format also
defines the constants to be used as column headings for the subfile record format.

Using Program-Described WORKSTN Files
You can use a program-described WORKSTN file with or without a format name
specified on the output specifications. The format name, if specified, refers to the
name of a data description specifications record format. This record format
describes:
v How the data stream sent from an RPG program is formatted on the screen
v What data is sent
v What ICF functions to perform.

.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ..
AAN01N02N03T.Name++++++RLen++TDpBLinPosFunctions++++++++++++++++++++*
A R FILCTL SFLCTL(SUBFIL)
A N70 SFLCLR
A 70 SFLDSPCTL
A 71 SFLDSP
A SFLSIZ(15)
A SFLPAG(15)
A TEXT('Subfile Control Record')
A OVERLAY
A 71 ROLLUP(97 'Continue Search')
A CA01(98 'End of Program')
A HELP(99 'Help Key')
A 1 2'Customer Name Search'
A 3 2'Search Code'
A SRHCOD R I 3 14PUTRETAIN
A 5 2'Number'
A 5 10'Name'
A 5 32'Address'
A 5 54'City'
A 5 76'State'
A*

Figure 195. Data Description Specifications for a Subfile Control-Record Format

Using Externally Described WORKSTN Files

402 ILE RPG Programmer’s Guide

If a format name is used, input and output specifications must be used to describe
the input and output records.

You can specify PASS(*NOIND) on a file description specification for a
program-described WORKSTN file. The PASS(*NOIND) keyword indicates that the
RPG program will not additionally pass indicators to data management on output
or receive them on input. It is your responsibility to pass indicators by describing
them as fields (in the form *INxx, *IN, or *IN(x)) in the input or output record.
They must be specified in the sequence required by the data description
specifications (DDS). You can use the DDS listing to determine this sequence.

Using a Program-Described WORKSTN File with a Format
Name

The following specifications apply to using a format name for a program-described
WORKSTN file.

Output Specifications
On the output specifications, you must specify the WORKSTN file name in
positions 7 through 16. The format name, which is the name of the DDS record
format, is specified as a literal or named constant in positions 53 through 80 on the
succeeding field description line. K1 through K10 must be specified
(right-adjusted) in positions 47 through 51 on the line containing the format name.
The K identifies the entry as a length rather than an end position, and the number
indicates the length of the format name. For example, if the format name is
CUSPMT, the entry in positions 47 through 51 is K6. (Leading zeros following the
K are allowed.) The format name cannot be conditioned (indicators in positions 21
through 29 are not valid).

Output fields must be located in the output record in the same order as defined in
the DDS; however, the field names do not have to be the same. The end position
entries for the fields refer to the end position in the output record passed from the
RPG program to data management, and not to the location of the fields on the
screen.

To pass indicators on output, do one of the following:
v Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use

the PASS(*NOIND) keyword on the file description specification and do not
specify the indicators on the output specifications. The program and file use a
separate indicator area to pass the indicators.

v Specify the PASS(*NOIND) keyword on the file description specification. Specify
the indicators in the output specifications as fields in the form *INxx. The
indicator fields must precede other fields in the output record, and they must
appear in the order specified by the WORKSTN file DDS. You can determine
this order from the DDS listing.

Input Specifications
The input specifications describe the record that the RPG program receives from
the display or ICF device. The WORKSTN file name must be specified in positions
7 through 16. Input fields must be located in the input record in the same sequence
as defined in the DDS; however, the field names do not have to be the same. The
field location entries refer to the location of the fields in the input record.

To receive indicators on input, do one of the following:
v Specify the keyword INDARA in the DDS for the WORKSTN file. Do not use

the PASS(*NOIND) keyword on the file description specification and do not

Using Program-Described WORKSTN Files

Chapter 19. Using WORKSTN Files 403

specify the indicators on the input specifications. The program and file use a
separate indicator area to pass the indicators.

v Specify the PASS(*NOIND) keyword on the file description specification. Specify
the indicators in the input specifications as fields in the form *INxx. They must
appear in the input record in the order specified by the WORKSTN file DDS.
You can determine this order from the DDS listing.

A record identifying indicator should be assigned to each record in the file to
identify the record that has been read from the WORKSTN file. A hidden field
with a default value can be specified in the DDS for the record identification code.

Calculation Specifications
The operation code READ is valid for a program-described WORKSTN file that is
defined as a combined, full-procedural file. See Table 55 on page 405. The file name
must be specified in factor 2 for this operation. A format must exist at the device
before any input operations can take place. This requirement can be satisfied on a
display device by conditioning an output record with 1P or by writing the first
format to the device in another program (for example, in the CL program). The
EXFMT operation is not valid for a program-described WORKSTN file. You can
also use the EXCEPT operation to write to a WORKSTN file.

Additional Considerations
When using a format name with a program-described WORKSTN file, you must
also consider the following:
v The name specified in positions 53 through 80 of the output specifications is

assumed to be the name of a record format in the DDS that was used to create
the file.

v If a Kn specification is present for an output record, it must also be used for any
other output records for that file. If a Kn specification is not used for all output
records to a file, a run-time error will occur.

Using a Program-Described WORKSTN File without a Format
Name

When a record-format name is not used, a program-described display-device file
describes a file containing one record-format description with one field. The fields
in the record must be described within the program that uses the file.

When you create the display file by using the Create Display File command, the
file has the following attributes:
v A variable record length can be specified; therefore, the actual record length

must be specified in the using program. (The maximum record length allowed is
the screen size minus one.)

v No indicators are passed to or from the program.
v No function key indicators are defined.
v The record is written to the display beginning in position 2 of the first available

line.

Input File
For an input file, the input record, which is treated by the IBM i device support as
a single input field, is initialized to blanks when the file is opened. The cursor is
positioned at the beginning of the field, which is position 2 on the display.

Using Program-Described WORKSTN Files

404 ILE RPG Programmer’s Guide

Output File
For an output file, the IBM i device support treats the output record as a string of
characters to be sent to the display. Each output record is written as the next
sequential record in the file; that is, each record displayed overlays the previous
record displayed.

Combined File
For a combined file, the record, which is treated by the IBM i device support as a
single field, appears on the screen and is both the output record and the input
record. Device support initializes the input record to blanks, and the cursor is
placed in position 2.

For more information on program-described-display-device files, refer to the DB2
Universal Database for iSeries section of the Database and File Systems category in the
i5/OS Information Center at this Web site - http://www.ibm.com/systems/i/
infocenter/.

Valid WORKSTN File Operations
Table 55 shows the valid file operation codes for a WORKSTN file.

Table 55. Valid File Operation Codes for a WORKSTN File

File Description
Specifications

Positions

Calculation Specifications Positions

17 18 26-35

I P/S CLOSE, ACQ, REL, NEXT, POST, FORCE

I P/S WRITE1, CLOSE, ACQ, REL, NEXT, POST, FORCE

I F READ, OPEN, CLOSE, ACQ, REL, NEXT, POST

C F READ, WRITE1, EXFMT2, OPEN, CLOSE, ACQ, REL, NEXT,
POST, UPDATE3, CHAIN3, READC3

O Blank WRITE1, OPEN, CLOSE, ACQ, REL, POST

Notes:

1. The WRITE operation is not valid for a program-described file used with a format name.

2. If the EXFMT operation is used, the file must be externally described (an E in position 19
of the file description specifications).

3. For subfile record formats, the UPDATE, CHAIN, and READC operations are also valid.

The following further explains the EXFMT, READ, and WRITE operation codes
when used to process a WORKSTN file.

EXFMT Operation
The EXFMT operation is a combination of a WRITE followed by a READ to the
same record format (it corresponds to a data management WRITE-READ
operation). If you define a WORKSTN file on the file description specifications as a
full-procedural (F in position 18) combined file (C in position 17) that uses
externally-described data (E in position 22) the EXFMT (execute format) operation
code can be used to write and read from the display.

Using Program-Described WORKSTN Files

Chapter 19. Using WORKSTN Files 405

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

READ Operation
The READ operation is valid for a full-procedural combined file or a
full-procedural input file that uses externally-described data or program-described
data. The READ operation retrieves a record from the display. However, a format
must exist at the device before any input operations can occur. This requirement
can be satisfied on a display device by conditioning an output record with the 1P
indicator, by writing the first format to the device from another program, or, if the
read is by record-format name, by using the keyword INZRCD on the record
description in the DDS.

WRITE Operation
The WRITE operation writes a new record to a display and is valid for a combined
file or an output file. Output specifications and the EXCEPT operation can also be
used to write to a WORKSTN file. See the IBM Rational Development Studio for i:
ILE RPG Reference for a complete description of each of these operation codes.

Multiple-Device Files
Any RPG WORKSTN file with at least one of the keywords DEVID, SAVEIND,
MAXDEV(*FILE) or SAVEDS specified on the file description specification is a
multiple-device file. Through a multiple-device file, your program may access
more than one device.

The RPG program accesses devices through program devices, which are symbolic
mechanisms for directing operations to an actual device. When you create a file
(using the DDS and commands such as the create file commands), you consider
such things as which device is associated with a program device, whether or not a
file has a requesting program device, which record formats will be used to invite
devices to respond to a READ-by-file-name operation, and how long this READ
operation will wait for a response. For detailed information on the options and
requirements for creating a multiple-device file, see the chapter on display files in
the DB2 Universal Database for iSeries section of the Database and File Systems
category in the i5/OS Information Center at this Web site - http://www.ibm.com/
systems/i/infocenter/. You can also refer to information on ICF files in ICF
Programming manual.

With multiple-device files, you make particular use of the following operation
codes:
v In addition to opening a file, the OPEN operation implicitly acquires the device

you specify when you create the file.
v The ACQ (acquire) operation acquires any other devices for a multiple-device

file.
v The REL (release) operation releases a device from the file.
v The WRITE operation, when used with the DDS keyword INVITE, invites a

program device to respond to subsequent read-from-invited- program-devices
operations. See the section on inviting a program device in ICF Programming
manual.

v The READ operation either processes a read-from-invited-program-devices
operation or a read-from-one-program-device operation. When no NEXT
operation is in effect, a program-cycle-read or READ-by-file-name operation
waits for input from any of the devices that have been invited to respond
(read-from-invited-program-device). Other input and output operations,
including a READ-by-file-name after a NEXT operation, and a
READ-by-format-name, process a read-from-one-program-device operation using

Valid WORKSTN File Operations

406 ILE RPG Programmer’s Guide

http://www.ibm.com/systems/i/infocenter/
http://www.ibm.com/systems/i/infocenter/

the program device indicated in a special field. (The field is named in the
DEVID keyword of the file description specification lines.)
This device may be the device used on the last input operation, a device you
specify, or the requesting program device. See the sections on reading from
invited program devices and on reading from one program device in ICF
Programming manual.

v The NEXT operation specifies which device is to be used in the next
READ-by-file-name operation or program-cycle-read operation.

v The POST operation puts information in the INFDS information data structure.
The information may be about a specific device or about the file. (The POST
operation is not restricted to use with multiple-device files.)

See the IBM Rational Development Studio for i: ILE RPG Reference for details of the
RPG operation codes.

On the file description specification you can specify several keywords to control
the processing of multiple-device files.
v The MAXDEV keyword indicates whether it is a single or multiple device file.

Specify MAXDEV(*FILE) to process a multiple device file with the maximum
number of devices taken from the definition of the file being processed. Specify
MAXDEV(*ONLY) to process only one device.

v The DEVID keyword allows you to specify the name of a program device to
which input and output operations are directed.
When a read-from-one-program-device or WRITE operation is issued, the device
used for the operation is the device specified as the parameter to the DEVID
keyword. This field is initialized to blanks and is updated with the name of the
device from which the last successful input operation occurred. It can also be set
explicitly by moving a value to it. The ACQ operation code does not affect the
value of this field. If the DEVID keyword is not specified, the input operation is
performed against the device from which the last successful input operation
occurred. A blank device name is used if a read operation has not yet been
performed successfully from a device.
When a read-from-one-program device or WRITE operation is issued with a
blank device name, the RPG compiler implicitly uses the device name of the
requestor device for the program. If you call an RPG program interactively and
acquire an ICF device against which you want to perform one of these
operations, you must explicitly move the device name of the ICF device into the
field name specified with the DEVID keyword prior to performing the operation.
If this is not done, the device name used will either be blank (in which case the
interactive requestor device name is used), or the device name used is the one
from the last successful input operation. Once you have performed an I/O
operation to the ICF device, you do not need to modify the value again unless
an input operation completes successfully with a different device.

v The SAVEDS keyword indicates a data structure that is saved and restored for
each device acquired to a file. The SAVEIND keyword indicates a set of
indicators to be saved and restored for each device acquired to a file. Before an
input operation, the current set of indicators and data structure are saved. After
the input operation, the RPG compiler restores the indicators and data structure
for the device associated with the operation. This may be a different set of
indicators or data structure than was available before the input operation.

v The INFDS keyword specifies the file information data structure for the
WORKSTN file. The RPG *STATUS field and the major/minor return code for

Multiple-Device Files

Chapter 19. Using WORKSTN Files 407

the I/O operation can be accessed through this data structure. Particularly when
ICF is being used, both fields are useful for detecting errors that occurred during
I/O operations to multiple-device files.

Note: When specifying these control options, you must code the MAXDEV
option before the DEVID, SAVEIND or SAVEDS options.

Multiple-Device Files

408 ILE RPG Programmer’s Guide

Chapter 20. Example of an Interactive Application

This chapter illustrates some common workstation applications and their ILE RPG
coding.

The application program presented in this chapter consists of four modules. Each
module illustrates a common use for WORKSTN files. The first module
(CUSMAIN) provides the main menu for the program. Based on the user's
selection, it calls the procedure in the appropriate module which provides the
function requested.

Each module uses a WORKSTN file to prompt the user for input and display
information on the screen. Each module, except for the main module CUSMAIN,
also uses a logical file which presents a view of the master database file. This view
consists of only the fields of the master file which the module requires for its
processing.

Note: Each module, except CUSMAIN, can be compiled as a free standing
program, that is, they can each be used as an independent program.

Table 56. Description of Each Module in the Interactive Application Example

Module Description

“Main Menu Inquiry” on page 410 An example of a basic menu inquiry program that
uses a WORKSTN file to display menu choices and
accept input.

“File Maintenance” on page 413 An example of a maintenance program which allows
customer records in a master file to be updated,
deleted, added, and displayed.

“Search by Zip Code” on page 424 An example program which uses WORKSTN subfile
processing to display all matched records for a
specified zip code.

“Search and Inquiry by Name” on
page 432

An example program which uses WORKSTN subfile
processing to display all matched records for a
specified customer name, and then allows the user to
select a record from the subfile to display the
complete customer information.

Database Physical File
Figure 196 on page 410 shows the data description specifications (DDS) for the
master customer file. This file contains important information for each customer,
such as name, address, account balance, and customer number. Every module
which requires customer information uses this database file (or a logical view of it).

© Copyright IBM Corp. 1994, 2010 409

Main Menu Inquiry
The following illustrates a simple inquiry program using a WORKSTN file to
display menu choices and accept input.

MAINMENU: DDS for a Display Device File
The DDS for the MAINMENU display device file specifies file level entries and
describe one record format: HDRSCN. The file level entries define the screen size
(DSPSIZ), input defaults (CHGINPDFT), print key (PRINT), and a separate
indicator area (INDARA).

The HDRSCN record format contains the constant ’CUSTOMER MAIN INQUIRY’,
which identifies the display. It also contains the keywords TIME and DATE, which
will display the current time and date on the screen. The CA keywords define the
function keys that can be used and associate the function keys with indicators in
the RPG program.

A***
A* FILE NAME: CUSMST *
A* RELATED PGMS: CUSMNT, SCHZIP, SCHNAM *
A* RELATED FILES: CUSMSTL1, CUSMSTL2, CUSMSTL3 (LOGICAL FILES) *
A* DESCRIPTION: THIS IS THE PHYSICAL FILE CUSMST. IT HAS *
A* ONE RECORD FORMAT CALLED CUSREC. *
A***
A* CUSTOMER MASTER FILE -- CUSMST
A R CUSREC
A CUST 5 0 TEXT('CUSTOMER NUMBER')
A NAME 20 TEXT('CUSTOMER NAME')
A ADDR1 20 TEXT('CUSTOMER ADDRESS')
A ADDR2 20 TEXT('CUSTOMER ADDRESS')
A CITY 20 TEXT('CUSTOMER CITY')
A STATE 2 TEXT('CUSTOMER STATE')
A ZIP 5 0 TEXT('CUSTOMER ZIP CODE')
A ARBAL 10 2 TEXT('ACCOUNTS RECEIVABLE BALANCE')

Figure 196. DDS for master database file CUSMST (physical file)

Main Menu Inquiry

410 ILE RPG Programmer’s Guide

In addition to describing the constants, fields, line numbers, and horizontal
positions for the screen, the record formats also define the display attributes for
these entries.

Note: Normally, the field attributes are defined in a field-reference file rather than
in the DDS for a file. The attributes are shown on the DDS so you can see
what they are.

A***
A* FILE NAME: MAINMENU *
A* RELATED PGMS: CUSMAIN *
A* DESCRIPTION: THIS IS THE DISPLAY FILE MAINMENU. IT HAS 1 *
A* RECORD FORMAT CALLED HDRSCN. *
A***
A DSPSIZ(24 80 *DS3)
A CHGINPDFT(CS)
A PRINT(QSYSPRT)
A INDARA
A R HDRSCN
A CA03(03 'END OF INQUIRY')
A CA05(05 'MAINTENANCE MODE')
A CA06(06 'SEARCH BY ZIP MODE')
A CA07(07 'SEARCH BY NAME MODE')
A 2 4TIME
A DSPATR(HI)
A 2 28'CUSTOMER MAIN INQUIRY'
A DSPATR(HI)
A DSPATR(RI)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A 6 5'Press one of the following'
A 6 32'PF keys.'
A 8 22'F3 End Job'
A 9 22'F5 Maintain Customer File'
A 10 22'F6 Search Customer by Zip Code'
A 11 22'F7 Search Customer by Name'

Figure 197. DDS for display device file MAINMENU

Main Menu Inquiry

Chapter 20. Example of an Interactive Application 411

CUSMAIN: RPG Source

//**
// PROGRAM NAME: CUSMAIN *
// RELATED FILES: MAINMENU (DSPF) *
// RELATED PGMS: CUSMNT (ILE RPG PGM) *
// SCHZIP (ILE RPG PGM) *
// SCHNAM (ILE RPG PGM) *
// DESCRIPTION: This is a customer main inquiry program. *
// It prompts the user to choose from one of the *
// following actions: *
// 1.Maintain (add, update, delete and display) *
// customer records. *
// 2.Search customer record by zip code. *
// 3.Search customer record by name. *
//**

Fmainmenu cf e workstn indds(indicators)

// Prototype definitions:
D CustMaintain pr extproc('CUSMNT')
D SearchZip pr extproc('SCHZIP')
D SearchName pr extproc('SCHNAM')

// Field definitions:
D indicators ds
D exitKey n overlay(indicators:3)
D maintainKey n overlay(indicators:5)
D srchZipKey n overlay(indicators:6)
D srchCustKey n overlay(indicators:7)

/free
// Keep looping until exit key is pressed
dow '1';

// Display main menu
exfmt hdrscn;

// Perform requested action
if exitKey;

// Exit program
leave;

elseif maintainKey;
// Maintain customer data
CustMaintain();

elseif srchZipKey;
// Search customer data on ZIP code
SearchZip();

elseif srchCustKey;
// Search customer data on customer name
SearchName();

endif;
enddo;

*inlr = *on;
/end-free

Figure 198. Source for module CUSMAIN

Main Menu Inquiry

412 ILE RPG Programmer’s Guide

This module illustrates the use of the CALLB opcode. The appropriate RPG
module (CUSMNT, SCHZIP, or SCHNAM) is called by CUSMAIN depending on
the user’s menu item selection.

To create the program object:
1. Create a module for each source member (CUSMAIN, CUSMNT, SCHZIP, and

SCHNAM) using CRTRPGMOD.
2. Create the program by entering:

CRTPGM PGM(MYPROG) MODULE(CUSMAIN CUSMNT SCHZIP SCHNAM) ENTMOD(*FIRST)

Note: The *FIRST option specifies that the first module in the list, CUSMAIN,
is selected as the program entry procedure.

3. Call the program by entering:
CALL MYPROG

The ″main menu″ will appear as in Figure 199.

File Maintenance
The following illustrates a maintenance program using the WORKSTN file. It
allows you to add, delete, update, and display records of the master customer file.

22:30:05 CUSTOMER MAIN INQUIRY 9/30/94

Press one of the following PF keys.

F3 End Job
F5 Maintain Customer File
F6 Search Customer by Zip Code
F7 Search Customer by Name

Figure 199. Customer Main Inquiry prompt screen

Main Menu Inquiry

Chapter 20. Example of an Interactive Application 413

CUSMSTL1: DDS for a Logical File

The DDS for the database file used by this program describe one record format:
CMLREC1. Each field in the record format is described, and the CUST field is
identified as the key field for the record format.

A***
A* FILE NAME: CUSMSTL1 *
A* RELATED PGMS: CUSMNT *
A* RELATED FILES: CUSMST (PHYSICAL FILE) *
A* DESCRIPTION: THIS IS LOGICAL FILE CUSMSTL1. *
A* IT CONTAINS ONE RECORD FORMAT CALLED CMLREC1. *
A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *
A* BY CUSTOMER NUMBER (CUST) *
A***
A R CMLREC1 PFILE(CUSMST)
A CUST
A NAME
A ADDR1
A ADDR2
A CITY
A STATE
A ZIP
A K CUST

Figure 200. DDS for logical file CUSMSTL1

File Maintenance

414 ILE RPG Programmer’s Guide

MNTMENU: DDS for a Display Device File

A***
A* FILE NAME: MNTMENU *
A* RELATED PGMS: CUSMNT *
A* RELATED FILES: CUSMSTL1 (LOGICAL FILE) *
A* DESCRIPTION: THIS IS THE DISPLAY FILE MNTMENU. IT HAS 3 *
A* RECORD FORMATS. *
A***
A REF(CUSMSTL1)
A CHGINPDFT(CS)
A PRINT(QSYSPRT)
A INDARA
A R HDRSCN
A TEXT('PROMPT FOR CUST NUMBER')
A CA03(03 'END MAINTENANCE')
A CF05(05 'ADD MODE')
A CF06(06 'UPDATE MODE')
A CF07(07 'DELETE MODE')
A CF08(08 'DISPLAY MODE')
A MODE 8A O 1 4DSPATR(HI)
A 1 13'MODE'
A DSPATR(HI)
A 2 4TIME
A DSPATR(HI)
A 2 28'CUSTOMER FILE MAINTENANCE'
A DSPATR(HI RI)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A CUST R Y I 10 25DSPATR(CS)
A CHECK(RZ)
A 51 ERRMSG('CUSTOMER ALREADY ON +
A FILE' 51)
A 52 ERRMSG('CUSTOMER NOT ON FILE' +
A 52)
A 10 33'<--Enter Customer Number'
A DSPATR(HI)
A 23 4'F3 End Job'
A 23 21'F5 Add'
A 23 34'F6 Update'
A 23 50'F7 Delete'
A 23 66'F8 Display'

Figure 201. DDS for display device file MNTMENU (Part 1 of 2)

File Maintenance

Chapter 20. Example of an Interactive Application 415

The DDS for the MNTMENU display device file contains three record formats:
HDRSCN, CSTINQ, and CSTBLD. The HDRSCN record prompts for the customer
number and the mode of processing. The CSTINQ record is used for the Update,

A R CSTINQ
A TEXT('DISPLAY CUST INFO')
A CA12(12 'PREVIOUS SCREEN')
A MODE 8A O 1 4DSPATR(HI)
A 1 13'MODE'
A DSPATR(HI)
A 2 4TIME
A DSPATR(HI)
A 2 28'CUSTOMER FILE MAINTENANCE'
A DSPATR(HI)
A DSPATR(RI)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A 4 14'Customer:'
A DSPATR(HI)
A DSPATR(UL)
A CUST R O 4 25DSPATR(HI)
A NAME R B 6 25DSPATR(CS)
A 04 DSPATR(PR)
A ADDR1 R B 7 25DSPATR(CS)
A 04 DSPATR(PR)
A ADDR2 R B 8 25DSPATR(CS)
A 04 DSPATR(PR)
A CITY R B 9 25DSPATR(CS)
A 04 DSPATR(PR)
A STATE R B 10 25DSPATR(CS)
A 04 DSPATR(PR)
A ZIP R B 10 40DSPATR(CS)
A EDTCDE(Z)
A 04 DSPATR(PR)
A 23 2'F12 Cancel'
A MODE1 8 O 23 13
A R CSTBLD TEXT('ADD CUST RECORD')
A CA12(12 'PREVIOUS SCREEN')
A MODE 8 O 1 4DSPATR(HI)
A 1 13'MODE' DSPATR(HI)
A 2 4TIME
A DSPATR(HI)
A 2 28'CUSTOMER FILE MAINTENANCE'
A DSPATR(HI RI)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A 4 14'Customer:' DSPATR(HI UL)
A CUST R O 4 25DSPATR(HI)
A 6 20'Name' DSPATR(HI)
A NAME R I 6 25
A 7 17'Address' DSPATR(HI)
A ADDR1 R I 7 25
A 8 17'Address' DSPATR(HI)
A ADDR2 R I 8 25
A 9 20'City' DSPATR(HI)
A CITY R I 9 25
A 10 19'State' DSPATR(HI)
A STATE R I 10 25
A 10 36'Zip' DSPATR(HI)
A ZIP R Y I 10 40
A 23 2'F12 Cancel Addition'

Figure 201. DDS for display device file MNTMENU (Part 2 of 2)

File Maintenance

416 ILE RPG Programmer’s Guide

Delete, and Display modes. The fields are defined as output/input (B in position
38). The fields are protected when Display or Delete mode is selected
(DSPATR(PR)). The CSTBLD record provides only input fields (I in position 38) for
a new record.

The HDRSCN record format contains the constant ’Customer File Maintenance’.
The ERRMSG keyword defines the messages to be displayed if an error occurs.
The CA keywords define the function keys that can be used and associate the
function keys with indicators in the RPG program.

CUSMNT: RPG Source

//**
// PROGRAM NAME: CUSMNT *
// RELATED FILES: CUSMSTL1 (LF) *
// MNTMENU (DSPF) *
// DESCRIPTION: This program shows a customer master *
// maintenance program using a workstn file. *
// This program allows the user to add, update, *
// delete and display customer records. *
// PF3 is used to quit the program. *
//**

Fcusmstl1 uf a e k disk
Fmntmenu cf e workstn indds(indicators)

// Field definitions:

D indicators ds
D exitKey n overlay(indicators:3)
D disableInput n overlay(indicators:4)
D addKey n overlay(indicators:5)
D updateKey n overlay(indicators:6)
D deleteKey n overlay(indicators:7)
D displayKey n overlay(indicators:8)
D prevKey n overlay(indicators:12)
D custExists n overlay(indicators:51)
D custNotFound n overlay(indicators:52)

// Key list definitions:

C CSTKEY KLIST
C KFLD CUST

Figure 202. Source for module CUSMNT (Part 1 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 417

//***
// MAINLINE *
//***

/free

mode = 'DISPLAY';
exfmt hdrscn;

// Loop until exit key is pressed
dow not exitKey;

exsr SetMaintenanceMode;

if cust <> 0;
if mode = 'ADD';

exsr AddSub;
elseif mode = 'UPDATE';

exsr UpdateSub;
elseif mode = 'DELETE';

exsr DeleteSub;
elseif mode = 'DISPLAY';

exsr InquirySub;
endif;

endif;

exfmt hdrscn;
custExists = *off; // turn off error messages
CustNotFound = *off;

enddo;

*inlr = *on;

Figure 202. Source for module CUSMNT (Part 2 of 5)

File Maintenance

418 ILE RPG Programmer’s Guide

//**
// SUBROUTINE - AddSub *
// PURPOSE - Add new customer to file *
//**
begsr AddSub;

// Is customer number already in file?
chain CstKey cmlrec1;
if %found(cusmstl1);

// Customer number is already being used
custExists = *on;
leavesr;

endif;

// Initialize new customer data
custExists = *off; // turn off error messages
CustNotFound = *off;
name = *blank;
addr1 = *blank;
addr2 = *blank;
city = *blank;
state = *blank;
zip = 0;

// Prompt for updated data for this customer record
exfmt cstbld;

// If OK, add customer to the customer file
if not *in12;

write cmlrec1;
endif;

endsr; // end of subroutine AddSub

//**
// SUBROUTINE - UpdateSub *
// PURPOSE - Update customer master record *
//**
begsr UpdateSub;

// Lookup customer number
chain cstkey cmlrec1;
if not %found(cusmstl1);

// Customer is not found in file
custNotFound = *on;
leavesr;

endif;

// Display information for this customer
disableInput = *off;
exfmt cstinq;
if not prevKey;

// Update information in file
update cmlrec1;

else;
// If we don't want to update, at least unlock
// the record.
unlock cusmstl1;

endif;
endsr; // end of subroutine UpdateSub;

Figure 202. Source for module CUSMNT (Part 3 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 419

//**
// SUBROUTINE - DeleteSub *
// PURPOSE - Delete customer master record *
//**
begsr DeleteSub;

// Lookup customer number
chain cstkey cmlrec1;
if not %found(cusmstl1);

// Customer is not found in file
custNotFound = *on;
leavesr;

endif;

// Display information for this customer
disableInput = *on;
exfmt cstinq;
if not prevKey;

// Delete customer record
delete cmlrec1;

else;
// If we don't want to delete, at least unlock
// the record.
unlock cusmstl1;

endif;
endsr; // end of subroutine DeleteSub

//**
// SUBROUTINE - InquirySub *
// PURPOSE - Display customer master record *
//**
begsr InquirySub;

// Lookup customer number
chain(n) cstkey cmlrec1; // don't lock record
if not %found(cusmstl1);

// Customer is not found in file
custNotFound = *on;
leavesr;

endif;

// Display information for this customer
disableInput = *on;
exfmt cstinq;

endsr; // end of subroutine InquirySub;

Figure 202. Source for module CUSMNT (Part 4 of 5)

File Maintenance

420 ILE RPG Programmer’s Guide

This program maintains a customer master file for additions, changes, and
deletions. The program can also be used for inquiry.

The program first sets the default (display) mode of processing and displays the
customer maintenance prompt screen. The workstation user can press F3, which
turns on indicator 03, to request end of job. Otherwise, to work with customer
information, the user enters a customer number and presses Enter. The user can
change the mode of processing by pressing F5 (ADD), F6 (UPDATE), F7 (DELETE),
or F8 (DISPLAY).

To add a new record to the file, the program uses the customer number as the
search argument to chain to the master file. If the record does not exist in the file,
the program displays the CSTBLD screen to allow the user to enter a new
customer record. If the record is already in the file, an error message is displayed.
The user can press F12, which sets on indicator 12, to cancel the add operation and
release the record. Otherwise, to proceed with the add operation, the user enters
information for the new customer record in the input fields and writes the new
record to the master file.

To update, delete, or display an existing record, the program uses the customer
number as the search argument to chain to the master file. If a record for that
customer exists in the file, the program displays the customer file inquiry screen
CSTINQ. If the record is not in the file, an error message is displayed. If the mode
of processing is display or delete, the input fields are protected from modification.
Otherwise, to proceed with the customer record, the user can enter new
information in the customer record input fields. The user can press F12, which sets
on indicator 12, to cancel the update or delete operation, and release the record.
Display mode automatically releases the record when Enter is pressed.

In Figure 203 on page 422, the workstation user responds to the prompt by
entering customer number 00007 to display the customer record.

//**
// SUBROUTINE - SetMaintenanceMode *
// PURPOSE - Set maintenance mode *
//**
begsr SetMaintenanceMode;

if addKey;
mode = 'ADD';

elseif updateKey;
mode = 'UPDATE';

elseif deleteKey;
mode = 'DELETE';

elseif displayKey;
mode = 'DISPLAY';

endif;
endsr; // end of subroutine SetMaintenanceMode

/end-free

Figure 202. Source for module CUSMNT (Part 5 of 5)

File Maintenance

Chapter 20. Example of an Interactive Application 421

Because the customer record for customer number 00007 exists in the Master File,
the data is displayed as show in Figure 204.

The workstation user responds to the add prompt by entering a new customer
number as shown in Figure 205 on page 423.

DISPLAY MODE
22:30:21 CUSTOMER FILE MAINTENANCE 9/30/94

00007 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 203. ’Customer File Maintenance’ Display Mode prompt screen

DISPLAY MODE
22:31:06 CUSTOMER FILE MAINTENANCE 9/30/94

Customer: 00007

Mikhail Yuri
1001 Bay Street
Suite 1702
Livonia
MI 11201

F12 Cancel DISPLAY

Figure 204. ’Customer File Maintenance’ Display Mode screen

File Maintenance

422 ILE RPG Programmer’s Guide

In Figure 206 a new customer is added to the Customer Master File.

The workstation user responds to the delete prompt by entering a customer
number as shown in Figure 207 on page 424.

ADD MODE
22:31:43 CUSTOMER FILE MAINTENANCE 9/30/94

00012 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 205. ’Customer File Maintenance’ Add Mode prompt screen

ADD MODE
22:32:04 CUSTOMER FILE MAINTENANCE 9/30/94

Customer: 00012

Name JUDAH GOULD
Address 2074 BATHURST AVENUE
Address

City YORKTOWN
State NY Zip 70068

F12 Cancel Addition

Figure 206. ’Customer File Maintenance’ Add Mode prompt screen

File Maintenance

Chapter 20. Example of an Interactive Application 423

The workstation user responds to the update prompt by entering a customer
number as shown in Figure 208.

Search by Zip Code
The following illustrates WORKSTN subfile processing (display only). Subfiles are
used to display all matched records for a specified zip code.

DELETE MODE
22:32:55 CUSTOMER FILE MAINTENANCE 9/30/94

00011 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 207. ’Customer File Maintenance’ Delete Mode prompt screen

UPDATE MODE
22:33:17 CUSTOMER FILE MAINTENANCE 9/30/94

00010 <--Enter Customer Number

F3 End Job F5 Add F6 Update F7 Delete F8 Display

Figure 208. ’Customer File Maintenance’ Update Mode prompt screen

File Maintenance

424 ILE RPG Programmer’s Guide

CUSMSTL2: DDS for a Logical File

The DDS for the database file used by this program describe one record format:
CMLREC2. The logical file CUSMSTL2 keyed by zip code is based on the physical
file CUSMST, as indicated by the PFILE keyword. The record format created by the
logical file will include only those fields specified in the logical file DDS. All other
fields will be excluded.

A***
A* FILE NAME: CUSMSTL2 *
A* RELATED PGMS: SCHZIP *
A* RELATED FILES: CUSMST (PHYSICAL FILE) *
A* DESCRIPTION: THIS IS LOGICAL FILE CUSMSTL2. *
A* IT CONTAINS ONE RECORD FORMAT CALLED CMLREC2. *
A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *
A* BY CUSTOMER ZIP CODE (ZIP) *
A***
A R CMLREC2 PFILE(CUSMST)
A ZIP
A NAME
A ARBAL
A K ZIP

Figure 209. DDS for logical file CUSMSTL2

Search by Zip Code

Chapter 20. Example of an Interactive Application 425

SZIPMENU: DDS for a Display Device File

A***
A* FILE NAME: SZIPMENU *
A* RELATED PGMS: SCHZIP *
A* RELATED FILES: CUSMSTL2 (LOGICAL FILE) *
A* DESCRIPTION: THIS IS THE DISPLAY FILE SZIPMENU. IT HAS 6 *
A* RECORD FORMATS. *
A***
A REF(CUSMSTL2)
A CHGINPDFT(CS)
A PRINT(QSYSPRT)
A INDARA
A CA03(03 'END OF JOB')
A R HEAD
A OVERLAY
A 2 4TIME
A DSPATR(HI)
A 2 28'CUSTOMER SEARCH BY ZIP'
A DSPATR(HI RI)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A R FOOT1
A 23 6'ENTER - Continue'
A DSPATR(HI)
A 23 29'F3 - End Job'
A DSPATR(HI)
A R FOOT2
A 23 6'ENTER - Continue'
A DSPATR(HI)
A 23 29'F3 - End Job'
A DSPATR(HI)
A 23 47'F4 - RESTART ZIP CODE'
A DSPATR(HI)
A R PROMPT
A OVERLAY
A 4 4'Enter Zip Code'
A DSPATR(HI)
A ZIP R Y I 4 19DSPATR(CS)
A CHECK(RZ)
A 61 ERRMSG('ZIP CODE NOT FOUND' +
A 61)
A R SUBFILE SFL
A NAME R 9 4
A ARBAL R 9 27EDTCDE(J)
A R SUBCTL SFLCTL(SUBFILE)
A 55 SFLCLR
A 55 SFLCLR
A N55 SFLDSPCTL
A N55 SFLDSP
A SFLSIZ(13)
A SFLPAG(13)
A ROLLUP(95 'ROLL UP')
A OVERLAY
A CA04(04 'RESTART ZIP CDE')
A 4 4'Zip Code'
A ZIP R O 4 14DSPATR(HI)
A 7 4'Customer Name'
A DSPATR(HI UL)
A 7 27'A/R Balance'
A DSPATR(HI UL)

Figure 210. DDS for display device file SZIPMENU

Search by Zip Code

426 ILE RPG Programmer’s Guide

The DDS for the SZIPMENU display device file contains six record formats:
HEAD, FOOT1, FOOT2, PROMPT, SUBFILE, and SUBCTL.

The PROMPT record format requests the user to enter a zip code. If the zip code is
not found in the file, an error message is displayed. The user can press F3, which
sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the
subfile-control record format SUBCTL. The subfile record format, which is defined
with the keyword SFL, describes each field in the record, and specifies the location
where the first record is to appear on the display (here, on line 9).

The subfile-control record format contains the following unique keywords:
v SFLCTL identifies this format as the control record format and names the

associated subfile record format.
v SFLCLR describes when the subfile is to be cleared of existing records (when

indicator 55 is on). This keyword is needed for additional displays.
v SFLDSPCTL indicates when to display the subfile-control record format (when

indicator 55 is off).
v SFLDSP indicates when to display the subfile (when indicator 55 is off).
v SFLSIZ specifies the total size of the subfile. In this example, the subfile size is

13 records that are displayed on lines 9 through 21.
v SFLPAG defines the number of records on a page. In this example, the page size

is the same as the subfile size.
v ROLLUP indicates that indicator 95 is set on in the program when the roll up

function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the IBM i system erasing the
screen first. F4 is valid for repeating the search with the same zip code. (This use
of F4 allows a form of roll down.)

Search by Zip Code

Chapter 20. Example of an Interactive Application 427

SCHZIP: RPG Source

//**
//PROGRAM NAME: SCHZIP *
// RELATED FILES: CUSMSTL2 (LOGICAL FILE) *
// SZIPMENU (WORKSTN FILE) *
// DESCRIPTION: This program shows a customer master search *
// program using workstn subfile processing. *
// This program prompts the user for the zip code*
// and displays the customer master records by *
// zip code. *
// Roll up key can be used to look at another *
// page. PF3 us used to quit the program. *
//**
Fcusmstl2 if e k disk
Fszipmenu cf e workstn sfile(subfile:recnum)
F indds(indicators)

// Field definitions:
D recnum s 5p 0
D recordFound s n

D indicators ds
D exitKey n overlay(indicators:3)
D restartKey n overlay(indicators:4)
D sflClear n overlay(indicators:55)
D zipNotFound n overlay(indicators:61)
D rollupKey n overlay(indicators:95)

// Key list definitions:
C cstkey klist
C kfld zip

Figure 211. Source for module SCHZIP (Part 1 of 3)

Search by Zip Code

428 ILE RPG Programmer’s Guide

//***
// MAINLINE *
//***

/free

// Write out initial menu
write foot1;
write head;
exfmt prompt;

// loop until PF03 is pressed
dow not exitKey;

setll cstkey cmlrec2;
recordFound = %equal(cusmstl2);
if recordFound;

exsr ProcessSubfile;
endif;

// Quit loop if PF03 was pressed in the subfile display
if exitKey;

leave;
endif;

// If PF04 was pressed, then redo search with the same
// zip code.
if restartKey;

iter;
endif;

// Prompt for new zip code.
if not recordFound;

// If we didn't find a zip code, don't write header
// and footer again
write foot1;
write head;

endif;
zipNotFound = not recordFound;
exfmt prompt;

enddo;

*inlr = *on;

Figure 211. Source for module SCHZIP (Part 2 of 3)

Search by Zip Code

Chapter 20. Example of an Interactive Application 429

//**
// SUBROUTINE - ProcessSubfile *
// PURPOSE - Process subfile and display it *
//**
begsr ProcessSubfile;

// Keep looping while roll up key is pressed
dou not rollupKey;

// Do we have more information to add to subfile?
if not %eof(cusmstl2);

// Clear and fill subfile with customer data
exsr ClearSubfile;
exsr FillSubfile;

endif;

// Write out subfile and wait for response
write foot2;
exfmt subctl;

enddo;

endsr; // end of subroutine ProcessSubfile

//**
// SUBROUTINE - FillSubfile *
// PURPOSE - Fill subfile with customer records matching *
// specified zip code. *
//**
begsr FillSubfile;

// Loop through all customer records with specified zip code
recnum = 0;
dou %eof(szipmenu);

// Read next record with specified zip code
reade zip cmlrec2;
if %eof(cusmstl2);

// If no more records, we're done
leavesr;

endif;

// Add information about this record to the subfile
recnum = recnum + 1;
write subfile;

enddo;
endsr; // end of subroutine FillSubfile;

//**
// SUBROUTINE - ClearSubfile *
// PURPOSE - Clear subfile records *
//**
begsr ClearSubfile;

sflClear = *on;
write subctl;
sflClear = *off;

endsr; // end of subroutine ClearSubfile

/end-free

Figure 211. Source for module SCHZIP (Part 3 of 3)

Search by Zip Code

430 ILE RPG Programmer’s Guide

The file description specifications identify the disk file to be searched and the
display device file to be used (SZIPMENU). The SFILE keyword for the
WORKSTN file identifies the record format (SUBFILE) that is to be used as a
subfile. The relative-record-number field (RECNUM) specified controls which
record within the subfile is being accessed.

The program displays the PROMPT record format and waits for the workstation
user’s response. F3 sets on indicator 03, which controls the end of the program.
The zip code (ZIP) is used to position the CUSMSTL2 file by the SETLL operation.
Notice that the record format name CMLREC2 is used in the SETLL operation
instead of the file name CUSMSTL2. If no record is found, an error message is
displayed.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the CUSMSTL2 file. If the zip code is the same, the record
count (RECNUM) is incremented and the record is written to the subfile. This
subroutine is repeated until either the subfile is full (indicator 21 on the WRITE
operation) or end of file occurs on the CUSMSTL2 file (indicator 71 on the READE
operation). When the subfile is full or end of file occurs, the subfile is written to
the display by the EXFMT operation by the subfile-control record control format.
The user reviews the display and decides whether:
v To end the program by pressing F3.
v To restart the zip code by pressing F4. The PROMPT record format is not

displayed, and the subfile is displayed starting over with the same zip code.
v To fill another page by pressing ROLL UP. If end of file has occurred on the

CUSMSTL2 file, the current page is re-displayed; otherwise, the subfile is cleared
and the next page is displayed.

v To continue with another zip code by pressing ENTER. The PROMPT record
format is displayed. The user can enter a zip code or end the program.

In Figure 212 on page 432, the user enters a zip code in response to the prompt.

Search by Zip Code

Chapter 20. Example of an Interactive Application 431

The subfile is written to the screen as shown in Figure 213.

Search and Inquiry by Name
The following illustrates WORKSTN subfile processing (display with selection).
Subfiles are used to display all matched records for a specified customer name,
and then the user is allowed to make a selection from the subfile, such that
additional information about the customer can be displayed.

22:34:38 CUSTOMER SEARCH BY ZIP 9/30/94

Enter Zip Code 11201

ENTER - Continue F3 - End Job

Figure 212. ’Customer Search by Zip’ prompt screen

22:34:45 CUSTOMER SEARCH BY ZIP 9/30/94

Zip Code 11201

Customer Name A/R Balance

Rick Coupland 300.00
Mikhail Yuri 150.00
Karyn Sanders 5.00

ENTER - Continue F3 - End Job F4 - RESTART ZIP CODE

Figure 213. ’Customer Search by Zip’ screen

Search by Zip Code

432 ILE RPG Programmer’s Guide

CUSMSTL3: DDS for a Logical File

The DDS for the database file used in this program defines one record format
named CUSREC and identifies the NAME field as the key fields.

A***
A* FILE NAME: CUSMSTL3 *
A* RELATED PGMS: SCHNAM *
A* RELATED FILES: CUSMST *
A* DESCRIPTION: THIS IS THE LOGICAL FILE CUSMSTL3. IT HAS *
A* ONE RECORD FORMAT CALLED CUSREC. *
A* LOGICAL VIEW OF CUSTOMER MASTER FILE (CUSMST) *
A* BY NAME (NAME) *
A***
A R CUSREC PFILE(CUSMST)
A K NAME
A*
A***
A* NOTE: SINCE THE RECORD FORMAT OF THE PHYSICAL FILE (CUSMST) *
A* HAS THE SAME RECORD-FORMAT-NAME, NO LISTING OF FIELDS *
A* IS REQUIRED IN THIS DDS FILE. *
A***

Figure 214. DDS for logical file CUSMSTL3

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 433

SNAMMENU: DDS for a Display Device File

A***
A* FILE NAME: SNAMMENU *
A* RELATED PGMS: SCHNAM *
A* RELATED FILES: CUSMSTL3 (LOGICAL FILE) *
A* DESCRIPTION: THIS IS THE DISPLAY FILE SNAMMENU. IT HAS 7 *
A* RECORD FORMATS. *
A***
A REF(CUSMSTL3)
A CHGINPDFT(CS)
A PRINT(QSYSPRT)
A INDARA
A CA03(03 'END OF JOB')
A R HEAD
A OVERLAY
A 2 4TIME
A DSPATR(HI)
A 2 25'CUSTOMER SEARCH & INQUIRY BY NAME'
A DSPATR(HI UL)
A 2 70DATE
A EDTCDE(Y)
A DSPATR(HI)
A R FOOT1
A 23 6'ENTER - Continue'
A DSPATR(HI)
A 23 29'F3 - End Job'
A DSPATR(HI)
A R FOOT2
A 23 6'ENTER - Continue'
A DSPATR(HI)
A 23 29'F3 - End Job'
A DSPATR(HI)
A 23 47'F4 - Restart Name'
A DSPATR(HI)
A R PROMPT
A OVERLAY
A 5 4'Enter Search Name'

Figure 215. DDS for display device file SNAMMENU (Part 1 of 2)

Search and Inquiry by Name

434 ILE RPG Programmer’s Guide

The DDS for the SNAMMENU display device file contains seven record formats:
HEAD, FOOT1, FOOT2, PROMPT, SUBFILE, SUBCTL, and CUSDSP.

The PROMPT record format requests the user to enter a zip code and search name.
If no entry is made, the display starts at the beginning of the file. The user can
press F3, which sets on indicator 03, to end the program.

The SUBFILE record format must be defined immediately preceding the
subfile-control record format SUBCTL. The subfile-record format defined with the
keyword SFL, describes each field in the record, and specifies the location where
the first record is to appear on the display (here, on line 9).

A DSPATR(HI)
A SRCNAM R I 5 23REFFLD(NAME CUSMSTL3)
A DSPATR(CS)
A R SUBFILE SFL
A CHANGE(99 'FIELD CHANGED')
A SEL 1A B 9 8DSPATR(CS)
A VALUES(' ' 'X')
A ZIP R O 9 54
A CUST R O 9 43
A NAME R O 9 17
A R SUBCTL SFLCTL(SUBFILE)
A SFLSIZ(0013)
A SFLPAG(0013)
A 55 SFLCLR
A N55 SFLDSPCTL
A N55 SFLDSP
A ROLLUP(95 'ROLL UP')
A OVERLAY
A CF04(04 'RESTART SEARCH NAME')
A 5 4'Search Name'
A SRCNAM R O 5 17REFFLD(NAME CUSMSTL3)
A DSPATR(HI)
A 7 6'Select'
A DSPATR(HI)
A 8 6' "X" Customer Name '
A DSPATR(HI)
A DSPATR(UL)
A 8 42' Number Zip Code '
A DSPATR(HI)
A DSPATR(UL)
A R CUSDSP
A OVERLAY
A 6 25'Customer'
A CUST 5S 0O 6 35DSPATR(HI)
A 8 25'Name'
A NAME 20A O 8 35DSPATR(HI)
A 10 25'Address'
A ADDR1 20A O 10 35DSPATR(HI)
A ADDR2 20A O 11 35DSPATR(HI)
A 13 25'City'
A CITY 20A O 13 35DSPATR(HI)
A 15 25'State'
A STATE 2A O 15 35DSPATR(HI)
A 15 41'Zip Code'
A ZIP 5S 0O 15 50DSPATR(HI)
A 17 25'A/R Balance'
A ARBAL 10Y 2O 17 42DSPATR(HI)
A EDTCDE(J)

Figure 215. DDS for display device file SNAMMENU (Part 2 of 2)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 435

The subfile-control record format SUBCTL contains the following unique
keywords:
v SFLCTL identifies this format as the control record format and names the

associated subfile record format.
v SFLCLR describes when the subfile is to be cleared of existing records (when

indicator 55 is on). This keyword is needed for additional displays.
v SFLDSPCTL indicates when to display the subfile-control record format (when

indicator 55 is off).
v SFLDSP indicates when to display the subfile (when indicator 55 is off).
v SFLSIZ specifies the total size of the subfile. In this example, the subfile size is

13 records that are displayed on lines 9 through 21.
v SFLPAG defines the number of records on a page. In this example, the page size

is the same as the subfile size.
v ROLLUP indicates that indicator 95 is set on in the program when the roll up

function is used.

The OVERLAY keyword defines this subfile-control record format as an overlay
format. This record format can be written without the IBM i system erasing the
screen first. F4 is valid for repeating the search with the same name. (This use of
F4 allows a form of roll down.)

The CUSDSP record format displays information for the selected customers.

Search and Inquiry by Name

436 ILE RPG Programmer’s Guide

SCHNAM: RPG Source

//**
// PROGRAM NAME: SCHNAM *
// RELATED FILES: CUSMSTL3 (LOGICAL FILE) *
// SNAMMENU (WORKSTN FILE) *
// DESCRIPTION: This program shows a customer master search *
// program using workstn subfile processing. *
// This program prompts the user for the customer*
// name and uses it to position the cusmstl3 *
// file by the setll operation. Then it displays *
// the records using subfiles. *
// To fill another page, press the rollup key. *
// To display customer detail, enter 'X' beside *
// that customer and press enter. *
// To quit the program, press PF3. *
//**

Fcusmstl3 if e k disk
Fsnammenu cf e workstn sfile(subfile:recnum)
F indds(indicators)

// Field definitions:
D recnum s 5p 0

D indicators ds
D exitKey n overlay(indicators:3)
D restartKey n overlay(indicators:4)
D sflClear n overlay(indicators:55)
D rollupKey n overlay(indicators:95)

// Key list definitions:
C cstkey klist
C kfld srcnam
C zipkey klist
C kfld name

Figure 216. Source for module SCHNAM (Part 1 of 4)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 437

//**
// MAINLINE *
//**

/free

write foot1;
write head;
exfmt prompt;

// loop until exit key is pressed
dow not exitKey;

setll cstkey cusrec;
exsr ProcessSubfile;
exsr DisplayCustomerDetail;

// If exit key pressed in subfile display, leave loop
if exitKey;

leave;
endif;

// If restart key pressed in subfile display, repeat loop
if restartKey;

iter;
endif;

write foot1;
write head;
exfmt prompt;

enddo;

*inlr = *on;

//***
// SUBROUTINE - ProcessSubfile *
// PURPOSE - Process subfile and display *
//***
begsr ProcessSubfile;

// Keep looping while roll up key is pressed
dou not rollupKey;

// Do we have more information to add to subfile?
if not %eof(cusmstl3);

// Clear and fill subfile with customer data
exsr ClearSubfile;
exsr FillSubfile;

endif;

// Write out subfile and wait for response
write foot2;
exfmt subctl;

enddo;

endsr; // end of subroutine ProcessSubfile

Figure 216. Source for module SCHNAM (Part 2 of 4)

Search and Inquiry by Name

438 ILE RPG Programmer’s Guide

//**
// SUBROUTINE - FillSubfile *
// PURPOSE - Fill subfile *
//**
begsr FillSubfile;

// Loop through all customer records with specified zip code
recnum = 0;
dou %eof(snammenu);

// Read next record with specified zip code
read cusrec;
if %eof(cusmstl3);

// If no more records, we're done
leavesr;

endif;

// Add information about this record to the subfile
recnum = recnum + 1;
sel = *blank;
write subfile;

enddo;

endsr; // end of subroutine FillSubfile;

//**
// SUBROUTINE - ClearSubfile *
// PURPOSE - Clear subfile records *
//**
begsr ClearSubfile;

sflClear = *on;
write subctl;
sflClear = *off;

endsr; // end of subroutine ClearSubfile

Figure 216. Source for module SCHNAM (Part 3 of 4)

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 439

The file description specifications identify the disk file to be searched and the
display device file to be used (SNAMMENU). The SFILE keyword for the
WORKSTN file identifies the record format (SUBFILE) to be used as a subfile. The
relative-record-number field (RECNUM) specifies which record within the subfile
is being accessed.

The program displays the PROMPT record format and waits for the workstation
user’s response. F3 sets on indicator 03, which controls the end of the program.
The name (NAME) is used as the key to position the CUSMSTL3 file by the SETLL
operation. Notice that the record format name CUSREC is used in the SETLL
operation instead of the file name CUSMSTL3.

The SFLPRC subroutine handles the processing for the subfile: clearing, filling, and
displaying. The subfile is prepared for additional requests in subroutine SFLCLR. If
indicator 55 is on, no action occurs on the display, but the main storage area for
the subfile records is cleared. The SFLFIL routine fills the subfile with records. A
record is read from the CUSMSTL3 file, the record count (RECNUM) is
incremented, and the record is written to the subfile. This subroutine is repeated
until either the subfile is full (indicator 21 on the WRITE operation) or end of file
occurs on the CUSMSTL3 file (indicator 71 on the READ operation). When the
subfile is full or end of file occurs, the subfile is written to the display by the
EXFMT operation by the subfile-control record control format. The user reviews
the display and decides:
v To end the program by pressing F3.
v To restart the subfile by pressing F4. The PROMPT record format is not

displayed, and the subfile is displayed starting over with the same name.

//***
// SUBROUTINE - DisplayCustomerDetail *
// PURPOSE - Display selected customer records *
//***
begsr DisplayCustomerDetail;

// Loop through all changed record in subfile
readc subfile;
dow not %eof(snammenu);

// Restart the display of requested customer records
restartKey = *on;

// Lookup customer record and display it
chain zipkey cusrec;
exfmt cusdsp;

// If exit key pressed, exit loop
if exitKey;

leave;
endif;

readc subfile;
enddo;

endsr; // end of subroutine ChangeSubfile

/end-free

Figure 216. Source for module SCHNAM (Part 4 of 4)

Search and Inquiry by Name

440 ILE RPG Programmer’s Guide

v To fill another page by pressing the ROLL UP keys. If end of file has occurred
on the CUSMSTL3 file, the current page is displayed again; otherwise, the
subfile is cleared, and the next page is displayed.

v To display customer detail by entering X, and pressing ENTER. The user can
then return to the PROMPT screen by pressing ENTER, display the subfile again
by pressing F4, or end the program by pressing F3.

In Figure 217, the user responds to the initial prompt by entering a customer name.

The user requests more information by entering an X as shown in Figure 218.

The detailed information for the customer selected is shown in Figure 219 on page
442. At this point the user selects the appropriate function key to continue or end

22:35:26 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

Enter Search Name JUDAH GOULD

ENTER - Continue F3 - End Job

Figure 217. ’Customer Search and Inquiry by Name’ prompt screen

22:35:43 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

Search Name JUDAH GOULD

Select
"X" Customer Name Number Zip Code
X JUDAH GOULD 00012 70068

JUDAH GOULD 00209 31088

ENTER - Continue F3 - End Job F4 - Restart Name

Figure 218. ’Customer Search and Inquiry by Name’ information screen

Search and Inquiry by Name

Chapter 20. Example of an Interactive Application 441

the inquiry.

23:39:48 CUSTOMER SEARCH & INQUIRY BY NAME 9/30/94

Customer 00012

Name JUDAH GOULD

Address 2074 BATHURST AVENUE

City YORKTOWN

State NY Zip Code 70068

A/R Balance .00

ENTER - Continue F3 - End Job F4 - Restart Name

Figure 219. ’Customer Search and Inquiry by Name’ detailed information screen

Search and Inquiry by Name

442 ILE RPG Programmer’s Guide

Part 5. Appendixes

© Copyright IBM Corp. 1994, 2010 443

444 ILE RPG Programmer’s Guide

Appendix A. Behavioral Differences Between OPM RPG/400
and ILE RPG for AS/400

The following lists note differences in the behavior of the OPM RPG/400 compiler
and ILE RPG.

Compiling
1. If you specify CVTOPT(*NONE) in OPM RPG, all externally described fields

that are of a type or with attributes not supported by RPG will be ignored. If
you specify CVTOPT(*NONE) in ILE RPG, all externally described fields will
be brought into the program with the same type as specified in the external
description.

2. In RPG IV there is no dependency between DATEDIT and DECEDIT in the
control specification.

3. Regarding the ILE RPG create commands (CRTBNDRPG and CRTRPGMOD):
v The IGNDECERR parameter on the CRTRPGPGM command has been

replaced by the FIXNBR parameter on the ILE RPG create commands.
IGNDECDTA ignores any decimal data errors and continues with the next
machine instruction. In some cases, this can cause fields to be updated with
incorrect and sometimes unpredictable values. FIXNBR corrects the data in a
predictable manner before it is used.

v There is a new parameter, TRUNCNBR, for controlling whether numeric
overflow is allowed.

v There are no auto report features or commands in RPG IV.
v You cannot request an MI listing from the compiler.

4. In a compiler listing, line numbers start at 1 and increment by 1 for each line of
source or generated specifications, when the default OPTION(*NOSRCSTMT) is
specified. If OPTION(*SRCSTMT) is specified, sequence numbers are printed
instead of line numbers. Source IDs are numeric, that is, there are no more
AA000100 line numbers for /COPY members or expanded DDS.

5. RPG IV requires that all compiler directives appear before compile-time data,
including /TITLE. When RPG IV encounters a /TITLE directive, it will treat it
as data. (RPG III treats /TITLE specifications as compiler directives anywhere
in the source.)
The Conversion Aid will remove any /TITLE specifications it encounters in
compile-time data.

6. ILE RPG is more rigorous in detecting field overlap in data structures. For
some calculation operations involving overlapping operands, ILE RPG issues a
message while the OPM compiler does not.

7. In ILE RPG the word NOT cannot be used as a variable name. NOT is a special
word that is used as an operator in expressions.

8. At compile time, the source is read using the CCSID of the main source file,
while for OPM RPG, the source is read using the CCSID of the job.

Running
1. The FREE operation is not supported by RPG IV. See “Unsupported RPG III

Features” on page 470.

© Copyright IBM Corp. 1994, 2010 445

2. Certain MCH messages may appear in the job log that do not appear under
OPM (for example, MCH1202). The appearance of these messages does not
indicate a change in the behavior of the program.

3. If you use the nonbindable API QMHSNDPM to send messages from your
program, you may need to add 1 to the stack offset parameter to allow for the
presence of the program-entry procedure in the stack. This will only be the case
if the ILE procedure is the user-entry procedure, and if you used the special
value of ’*’ for the call message queue and a value of greater than 0 for the
stack offset.

4. ILE RPG does not interpret return codes that are not 0 or 1 for calls to
programs or procedures that end without an exception.

5. When the cancel handler for an ILE RPG program receives control, it will set
the system return code to 2. The cancel handler for an OPM RPG program does
not modify the setting of the system return code.

6. When recursion is detected, OPM RPG/400 displays inquiry message RPG8888.
ILE RPG signals escape message RNX8888; no inquiry message is displayed for
this condition. Note that this only applies to cycle-main procedures. Recursion
is allowed for subprocedures.

7. When the cycle-main procedure of an ILE RPG module is cancelled from the
program stack without reaching the part of the RPG cycle that checks *INLR,
the *TERM processing will be done.
When an OPM RPG program is cancelled from the program stack without
reaching the part of the RPG cycle that checks *INLR, the *TERM processing
will not be done.
*TERM processing includes the following:
v opened global files are closed
v data areas locked by the program are released
v the program or module is set so that program variables will be refreshed for

the next call.
If *INLR was on when an ILE RPG cycle-main procedure was canceled, *INLR
will not be on for the next call to the procedure, and the RPG cycle will begin
normally with *INIT.
If *INLR was on when an OPM RPG program was cancelled, it will still be on
for the next call to the program and the RPG cycle will proceed to *TERM
without performing the *DETC part of the cycle.

8. If decimal-data errors occur during the initialization of a zoned-decimal or
packed-decimal subfield, then the reset values (those values use to restore the
subfield with the RESET operation) may not be valid. For example, it may be
that the subfield was not initialized, or that it was overlaid on another
initialized subfield of a different type. If a RESET operation is attempted for
that subfield, then in OPM RPG/400, a decimal-data error would occur.
However, a RESET to the same subfield in ILE RPG will complete successfully;
after the RESET, the subfield has the same invalid value. As a result, attempts
to use the value will get a decimal data error.

9. In ILE RPG, positions 254-263 of the program status data structure (PSDS)
contain the user name of the originating job. In OPM RPG, these positions
reflect the current user profile. The current user profile in ILE RPG can be
found in positions 358-367.

Debugging and Exception Handling
1. The DEBUG operation is not supported in RPG IV.

Differences Between OPM RPG/400 and ILE RPG

446 ILE RPG Programmer’s Guide

#
#
#
#

|
|
|

|
|
|

|

|

|

|
|

|
|
|

|
|
|

2. You cannot use RPG tags, subroutine names, or points in the cycle such as
*GETIN and *DETC for setting breakpoints when using the ILE source
debugger.

3. Function checks are normally left in the job log by both OPM RPG and ILE
RPG. However, in ILE RPG, if you have coded an error indicator, ’E’ extender,
or *PSSR error routine, then the function check will not appear.
You should remove any code that deletes function checks, since the presence of
the indicator, ’E’ extender, or *PSSR will prevent function checks from
occurring.

4. Call performance for LR-on will be greatly improved by having no PSDS, or a
PSDS no longer than 80 bytes, since some of the information that fills the PSDS
after 80 bytes is costly to obtain. If the PSDS is not coded, or is too short to
contain the date and time the program started, these two values will not be
available in a formatted dump. All other PSDS values will be available, no
matter how long the PSDS is.

5. The prefix for ILE RPG inquiry messages is RNQ, so if you use the default
reply list, you must add RNQ entries similar to your existing RPG entries.

6. In OPM, if a CL program calls your RPG program followed by a MONMSG,
and the RPG program receives a notify or status message, the CL MONMSG
will not handle the notify or status message. If you are calling ILE RPG from
ILE CL and both are in the same activation group, the ILE CL MONMSG will
handle the notify or status message and the RPG procedure will halt
immediately without an RPG error message being issued. For more information
see “Problems when ILE CL Monitors for Notify and Status Messages” on page
315.

7. When displaying a variable using the ILE source debugger, you will get
unreliable results if:
v the ILE RPG program uses an externally described file and
v the variable is defined in the data base file but not referenced in the ILE RPG

program.
8. If your RPG III program has a parameter-mismatch problem (for example, it

passes a parameter of length 10 to a program that expects a parameter of
length 20, and the called program changes all 20 bytes), your program will
experience a storage corruption problem. This problem may not always result
in an error, if the storage that is corrupted is not important to the running of
the program.
When this program is converted to RPG IV, the layout of storage may be
different, so that the corrupted storage is used by the program. This can cause
an unexpected exception to occur, for example exception MCH3601 on a file
operation such as a SETLL. If you experience mysterious errors that seem
unrelated to your application, you should check the parameters of all your call
operations to ensure the parameters all have the correct length.

9. In OPM, the formatted dump can be performed when a programmer has *USE
authority to the program. In ILE, the formatted dump requires *CHANGE
authority to the program or service program.

I/O
1. In ILE RPG you can read a record in a file opened for update, and created or

overridden with SHARE(*YES), and then update this locked record in another
program that has opened the same file for update.

2. If a program performs a sequential input operation, and it results in an
end-of-file condition, the normal operation is for any subsequent sequential

Differences Between OPM RPG/400 and ILE RPG

Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400 447

input operation in the same module to immediately result in an end-of-file
condition without any physical input request to the database. However, if the
file is shared, the RPG runtime will always send a physical input request to
the database, and the input operation will be successful if the file has been
repositioned by a call to another program or module using the shared file.

3. You cannot modify the MR indicator using the MOVE or SETON operations.
(RPG III only prevents using SETON with MR.)

4. The File Type entry on the File specification no longer dictates the type of I/O
operations that must be present in the calculation specifications.
For example, in RPG III, if you define a file as an update file, then you must
have an UPDAT operation later in the program. This is no longer true in RPG
IV. However, your file definition still must be consistent with the I/O
operations present in the program. So if you have an UPDATE operation in
your source, the file must be defined as an update file.

5. ILE RPG will allow record blocking even if the COMMIT keyword is specified
on the file description specification.

6. In RPG IV, a file opened for update will also be opened as delete capable. You
do not need any DELETE operations to make it delete capable.

7. In RPG IV, you do not have to code an actual number for the number of
devices that will be used by a multiple-device file. If you specify
MAXDEV(*FILE) on a file description specification, then the number of save
areas created for SAVEDS and SAVEIND is based on the number of devices
that your file can handle. (The SAVEDS, SAVEIND, and MAXDEV keywords
on an RPG IV file description specification correspond to the SAVDS, IND,
and NUM options on a RPG III file description specification continuation line,
respectively.)
In ILE RPG, the total number of program devices that can be acquired by the
program cannot be different from the maximum number of devices defined in
the device file. OPM RPG/400 allows this through the NUM option.

8. In ILE RPG, the ACQ and REL operation codes can be used with single device
files.

9. In ILE RPG, the relative record number and key fields in the database-specific
feedback section of the INFDS are updated on each input operation when
doing blocked reads.

10. When a referential constraint error occurs in OPM RPG/400, the status code is
set to ″01299″ (I/O error). In ILE RPG, the status code is set to ″01022″,
″01222″, or ″01299″, depending on the type of referential constraint error that
occurs:
v If data management is not able to allocate a record due to a referential

constraint error, a CPF502E notify message is issued. ILE RPG will set the
status code to ″01222″ and OPM RPG/400 will set the status code to
″01299″.
If you have no error indicator, ’E’ extender, or INFSR error subroutine, ILE
RPG will issue the RNQ1222 inquiry message, and OPM RPG/400 will
issue the RPG1299 inquiry message. The main difference between these two
messages is that RNQ1222 allows you to retry the operation.

v If data management detects a referential constraint error that has caused it
to issue either a CPF503A, CPF502D, or CPF502F notify message, ILE RPG
will set the status code to ″01022″ and OPM RPG/400 will set the status
code to ″01299″.

Differences Between OPM RPG/400 and ILE RPG

448 ILE RPG Programmer’s Guide

If you have no error indicator, ’E’ extender, or INFSR error subroutine, ILE
RPG will issue the RNQ1022 inquiry message, and OPM RPG will issue the
RPG1299 inquiry message.

v All referential constraint errors detected by data management that cause
data management to issue an escape message will cause both OPM and ILE
RPG to set the status code to ″01299″.

11. In ILE RPG, the database-specific feedback section of the INFDS is updated
regardless of the outcome of the I/O operation. In OPM RPG/400, this
feedback section is not updated if the record-not-found condition is
encountered.

12. ILE RPG relies more on data-management error handling than does OPM
RPG/400. This means that in some cases you will find certain error messages
in the job log of an ILE RPG program, but not an OPM RPG/400 program.
Some differences you will notice in error handling are:
v When doing an UPDATE on a record in a database file that has not been

locked by a previous input operation, both ILE RPG and OPM RPG/400 set
the status code to ″01211″. ILE RPG detects this situation when data
management issues a CPF501B notify message and places it in the job log.

v When handling WORKSTN files and trying to do I/O to a device that has
not been acquired or defined, both ILE and OPM RPG will set the status to
″01281″. ILE RPG detects this situation when data management issues a
CPF5068 escape message and places it in the job log.

13. When doing READE, REDPE (READPE in ILE), SETLL on a database file, or
when doing sequential-within-limits processing by a record-address-file, OPM
RPG/400 does key comparisons using the *HEX collating sequence. This may
give different results than expected when DDS features are used that cause
more than one search argument to match a given key in the file.
For example, if ABSVAL is used on a numeric key, both -1 and 1 would
succeed as search arguments for a key in the file with a value of 1. Using the
hexadecimal collating sequence, a search argument of -1 will not succeed for
an actual key of 1.
ILE RPG does key comparisons using *HEX collating sequence only for
pre-V3R1 DDM files. See “Using Pre-V3R1 DDM Files” on page 380 for more
information.

14. ILE RPG allows the To File and the From File specified for prerun-time arrays
and tables to be different. In OPM RPG, both file names must be the same; if
they are different the diagnostic message QRG3038 is issued.

15. When translation of a RAF-Controlled file is specified, the results using ILE
RPG may differ from OPM RPG/400, depending on the translation table. This
is due to the different sequence of operations. In OPM RPG/400 the sequence
is: retrieve record, translate and compare; in ILE RPG the sequence is:
translate, compare and retrieve record.

16. The RPG/400 compiler considers the DELET operation to be an output
operation. If an update-capable record format has a DELET operation and a
CLEAR or RESET operation, but no UPDAT operation, the RPG/400 compiler
will clear or reset the fields of the record format, but the ILE RPG compiler
will not clear or reset the fields. To have the ILE RPG compiler clear or reset
the fields, *ALL can be specified in Factor 2 of the operation, or an UPDATE
operation can be added to the program.

Differences Between OPM RPG/400 and ILE RPG

Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400 449

|
|
|
|
|
|
|

DBCS Data in Character Fields
1. In OPM RPG/400, position 57 (Transparency Check) of the control specification

allows you to specify whether the RPG/400 compiler should scan character
literals and constants for DBCS characters. If you specify that the compiler
should scan for transparent literals, and if a character literal that starts with an
apostrophe followed by a shift-out fails the transparency check, the literal is
reparsed as a literal that is not transparent.
In ILE RPG, there is no option on the control specification to specify whether
the compiler should perform transparency check on character literals. If a
character literal contains a shift-out control character, regardless of the position
of the shift-out character within the character literal, the shift-out character
signifies the beginning of DBCS data. The compiler will check for the following:
v A matching shift-in for each shift-out (that is, the shift-out and shift-in

control characters should be balanced)
v An even number (minimally two) between the shift-in and the shift-out
v The absence of an embedded shift-out in the DBCS data
If the above conditions are not met, the compiler will issue a diagnostic
message, and the literal will not be reparsed. As a result, if there are character
literals in your OPM RPG programs that fail the transparency check performed
by the OPM RPG compiler, such programs will get compilation errors in ILE
RPG.

2. In OPM RPG/400, if there are two consecutive apostrophes enclosed within
shift-out and shift-in control characters inside a character literal, the two
consecutive apostrophes are considered as one single apostrophe if the
character literal is not a transparent literal. The character literal will not be a
transparent literal if:
v The character literal does not start with an apostrophe followed by a

shift-out
v The character literal fails the transparency check performed by the compiler
v The user has not specified that a transparency check should be performed by

the compiler
In ILE RPG, if there are two consecutive apostrophes enclosed within shift-out
and shift-in control characters inside a character literal, the apostrophes will not
be considered as a single apostrophe. A pair of apostrophes inside a character
literal will only be considered as a single apostrophe if they are not enclosed
within shift-out and shift-in control characters.

3. In ILE RPG, if you want to avoid the checking of literals for shift-out characters
(that is, you do not want a shift-out character to be interpreted as such), then
you should specify the entire literal as a hexadecimal literal. For example, if
you have a literal ’AoB’ where ’o’ represents a shift-out control character, you
should code this literal as X’C10EC2’.

Differences Between OPM RPG/400 and ILE RPG

450 ILE RPG Programmer’s Guide

Appendix B. Using the RPG III to RPG IV Conversion Aid

The RPG IV source specification layouts differ significantly from the System/38™

environment RPG III and the OPM RPG/400 layouts. For example, the positions of
entries on the specifications have changed and the types of specifications available
have also changed. The RPG IV specification layouts are not compatible with the
previous layouts. To take advantage of RPG IV features, you must convert RPG III
and RPG/400 source members in your applications to the RPG IV source format.

Note: The valid types of source members you can convert are RPG, RPT, RPG38,
RPT38, SQLRPG, and blank. The Conversion Aid does not support
conversion of RPG36, RPT36, and other non-RPG source member types.

If you are in a hurry and want to get started, go to “Converting Your Source” on
page 454 and follow the general directions.

Conversion Overview
You convert source programs to the RPG IV source format by calling the
Conversion Aid through the CL command Convert RPG Source (CVTRPGSRC).
The Conversion Aid converts:
v A single member
v All members in a source physical file
v All members with a common member-name prefix in the same file

To minimize the likelihood of there being conversion problems, you can optionally
have the /COPY members included in the converted source code. For convenience
in reading the code, you can also optionally include specification templates in the
converted source code.

The Conversion Aid converts each source member on a line-by-line basis. After
each member conversion, it updates a log file on the status of the conversion if you
specified a log file on the command. You can also obtain a conversion report that
includes information such as conversion errors, /COPY statements, CALL
operations, and conversion status.

The Conversion Aid assumes that your source code is free of any compilation
errors. If this is the case, then it will successfully convert most of your source code.
In some cases, there may be a small amount of code that you may have to convert
manually. Some of these cases are identified by the Conversion Aid. Others are not
detected until you attempt to compile the converted source. To see which ones the
Conversion Aid can identify, you can run the Conversion Aid using the
unconverted member as input, and specify a conversion report but no output
member. For information on the types of coding that cannot be converted, see
“Resolving Conversion Problems” on page 469.

File Considerations
The Conversion Aid operates on file members. This section presents information
on different aspects of files that must be taken into consideration when using the
Conversion Aid.

© Copyright IBM Corp. 1994, 2010 451

Source Member Types
Table 57 lists the various source member types, indicates whether the member type
can be converted, and indicates the output source member type.

Table 57. Source Member Types and their Conversion Status

Source Member Type Convert? Converted Member Type

RPG Yes RPGLE

RPG38 Yes RPGLE

RPT Yes RPGLE

RPT38 Yes RPGLE

'blank' Yes RPGLE

RPG36 No N/A

RPT36 No N/A

SQLRPG Yes SQLRPGLE

Any other type No N/A

If the source member type is 'blank', then the Conversion Aid will assume it has a
member type of RPG. If the source member type is blank for an auto report source
member, then you should assign the correct source member type (RPT or RPT38)
to the member before converting it. If you do, then the Conversion Aid will
automatically expand the auto report source member so that it can be converted
properly. The expansion is necessary since ILE RPG does not support auto report
source members.

For more information on converting auto report source members, see “Converting
Auto Report Source Members” on page 461.

File Record Length
The recommended record length for the converted source physical file is 112
characters. This record length takes into account the RPG IV structure as shown in
Figure 220. The recommended record length of 112 characters also corresponds to
the maximum amount of information that fits on a line of a compiler listing.

If the converted source file has a record length less than 92 characters then an error
message will be issued and the conversion will stop. This is because the record
length is not long enough to contain the 80 characters allowed for source code and
so some code is likely to be lost.

File and Member Names
The unconverted member and the member for the converted output can only have
the same name if they are in different files or libraries.

Seq. No.

12 80 20

Code Comments

Minimum Record Length
(92 characters)

Recommended Record Length
(112 characters)

Figure 220. RPG IV Record Length Breakdown

Conversion Overview

452 ILE RPG Programmer’s Guide

The name of the converted source member(s) depends on whether you are
converting one or several members. If you are converting one member, the default
is to give the converted source member the same name as the unconverted
member. You can, of course, specify a different name for the output member. If you
are converting all source members in a file, or a group of them using a generic
name, then the members will automatically be given the same name as the
unconverted source members.

Note that specifying the file, library and member name for the converted output is
optional. If you do not specify any of these names, the converted output will be
placed in the file QRPGLESRC and have a member name the same as the
unconverted member name. (The library list will be searched for the file
QRPGLESRC.)

The Log File
The Conversion Aid uses a log file to provide audit trails on the status of each
source member conversion. By browsing the log file, you can determine the status
of previous conversions. You can access the log file with a user-written program
for further processing, for example, compiling and binding programs.

If you specify that a log file is to be updated, then its record format must match
the format of the IBM-suppled ″model″ database file QARNCVTLG in library
QRPGLE. Figure 227 on page 469 shows the DDS for this file. Use the following
CRTDUPOBJ command to create a copy of this model in your own library, referred
to here as MYLIB. You may want to name your log file QRNCVTLG, as this is the
default log file name for the Conversion Aid.
CRTDUPOBJ OBJ(QARNCVTLG) FROMLIB(QRPGLE) OBJTYPE(*FILE)

TOLIB(MYLIB) NEWOBJ(QRNCVTLG)

You must have object management, operational and add authority to the log file
that is accessed by the Conversion Aid.

For information on using the log file see “Using the Log File” on page 467.

Conversion Aid Tool Requirements
To use the Conversion Aid, you need the following authority:
v *USE authority for the CVTRPGSRC command
v *USE authority to the library that contains the source file and source members
v *CHANGE authority to the new library that will contain the source file and

converted source members
v object management, operational, and add authority to the log file used by the

Conversion Aid

In addition to object-authority requirements, there may be additional storage
requirements. Each converted source program is, on average, about 25 percent
larger than the size of the program before conversion. To use the Conversion Aid
you need sufficient storage to store the converted source files.

What the Conversion Aid Won’t Do
v The Conversion Aid does not support conversion from the RPG IV format back

to the RPG III or RPG/400 format.
v The RPG IV compiler does not support automatic conversion of RPG III or

RPG/400 source members to the RPG IV source format at compile time.

Conversion Overview

Appendix B. Using the RPG III to RPG IV Conversion Aid 453

v The Conversion Aid does not support converting RPG II source programs to the
RPG IV source format. However, you can use the RPG II to RPG III
Conversion Aid first and then the RPG III to RPG IV Conversion Aid.

v The Conversion Aid does not re-engineer source code, except where required
(for example, the number of conditioning indicators.)

v The Conversion Aid does not create files. The log file and the output file must
exist prior to running it.

Converting Your Source
This section explains how to convert source programs to the RPG IV format. It
discusses the command CVTRPGSRC, which starts the Conversion Aid, and how
to use it.

To convert your source code to the RPG IV format, follow these general steps:
1. If you use a data area as a control specification, you must create a new data

area in the RPG IV format. Refer to the chapter on control specifications in IBM
Rational Development Studio for i: ILE RPG Reference for more information.

2. Create a log file, if necessary.
Unless you specify LOGFILE(*NONE), there must be a log file for the
Conversion Aid to access. If you do not have one, then you can create one by
using the CRTDUPOBJ command. For more information, see “The Log File” on
page 453 and “Using the Log File” on page 467.

3. Create the file for the converted source members.
The Conversion Aid will not create any files. You must create the output file for
the converted source prior to running the CVTRPGSRC command. The
recommended name and record length for the output file is QRPGLESRC and
112 characters respectively. For additional file information see “File
Considerations” on page 451.

4. Convert your source using the CVTRPGSRC command.
You need to enter the name of the file and member to be converted. If you
accept the defaults, you will get a converted member in the file QRPGLESRC.
The name of the member will correspond to the name of the unconverted
source member. /COPY members will not be expanded in the converted source
member, unless it is of type RPT or RPT38. A conversion report will be
generated.
See “The CVTRPGSRC Command” on page 455 for more information.

5. Check the log file or the error report for any errors. For more information, see
“Analyzing Your Conversion” on page 465.

6. If there are errors, correct them and go to step 4.
7. If there are no errors, create your program. For information on how to create

ILE RPG programs, see Chapter 6, “Creating a Program with the CRTBNDRPG
Command,” on page 61.

8. If your converted source member still has compilation problems, these are most
likely caused because your primary source member contains /COPY compiler
directives. You have two choices to correct this situation:
a. Reconvert your source member specifying EXPCPY(*YES) to expand copy

members into your converted source member.
b. Manually correct any remaining errors using the compiler listing as a guide.

Refer to “Resolving Conversion Problems” on page 469 for further information.

Conversion Overview

454 ILE RPG Programmer’s Guide

9. Once your converted source member has compiled successfully, retest the
program before putting it back into production.

The CVTRPGSRC Command
To convert your RPG III or RPG/400 source to the new RPG IV format, you use
the CVTRPGSRC command to start the Conversion Aid. Table 58 shows the
parameters of the command based on their function.

Table 58. CVTRPGSRC Parameters and Their Default Values Grouped by Function

Program Identification

FROMFILE Identifies library and file name of RPG source to be
converted

FROMMBR Identifies which source members are to be converted

TOFILE(*LIBL/QRPGLESRC) Identifies library and file name of converted output

TOMBR(*FROMMBR) Identifies file member names of converted source

Conversion Processing

TOMBR If *NONE is specified, then no file members are saved

EXPCPY(*NO) Determines if /COPY statements are included in
converted output

INSRTPL(*NO) Indicates if specification templates are to be included in
converted output

Conversion Feedback

CVTRPT(*YES) Determines whether to produce conversion report

SECLVL(*NO) Determines whether to include second-level message text

LOGFILE(*LIBL/QRNCVTLG) Identifies log file for audit report

LOGMBR(*FIRST) Identifies which member of the log file to use for audit
report

The syntax for the CVTRPGSRC command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

�� CVTRPGSRC
*LIBL/

FROMFILE (source-file-name)
*CURLIB/
library-name/

�

�
source-file-member-name

FROMMBR (*ALL)
generic*-member-name

�

�
*LIBL/ QRPGLESRC

TOFILE (source-file-name)
*CURLIB/
library-name/

*NONE

�

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 455

�
(1)

*FROMMBR
TOMBR (source-file-member-name)

*NO
EXPCPY (*YES)

�

�
*YES

CVTRPT (*NO)
*NO

SECLVL (*YES)

�

�
*NO

INSRTPL (*YES)

�

�
*LIBL/ QRNCVTLG

LOGFILE (log-file-name)
*CURLIB/
library-name/

*NONE

�

�
*FIRST

LOGMBR (*LAST)
log-file-member-name

��

Notes:

1 All parameters preceding this point can be specified by position.

The parameters and their possible values follow the syntax diagram. If you need
prompting, type CVTRPGSRC and press F4. The CVTRPGSRC screen appears, lists
the parameters, and supplies default values. For a description of a parameter on
the display, place your cursor on the parameter and press F1. Extended help for all
of the parameters is available by pressing F1 on any parameter and then pressing
F2.

FROMFILE
Specifies the name of the source file that contains the RPG III or RPG source
code to be converted and the library where the source file is stored. This is a
required parameter; there is no default file name.

source-file-name
Enter the name of the source file that contains the source member(s) to be
converted.

*LIBL
The system searches the library list to find the library where the source file
is stored.

*CURLIB
The current library is used to find the source file. If you have not specified
a current library, then the library QGPL is used.

library-name
Enter the name of the library where the source file is stored.

Converting Your Source

456 ILE RPG Programmer’s Guide

FROMMBR
Specifies the name(s) of the member(s) to be converted. This is a required
parameter; there is no default member name.

The valid source member types of source members to be converted are RPG,
RPT, RPG38, RPT38, SQLRPG and blank. The Convert RPG Source command
does not support source member types RPG36, RPT36, and other non-RPG
source member types (for example, CLP and TXT).

source-file-member-name
Enter the name of the source member to be converted.

*ALL
The command converts all the members in the source file specified.

generic*-member-name
Enter the generic name of members having the same prefix in their names
followed by a ’*’ (asterisk). The command converts all the members having
the generic name in the source file specified. For example, specifying
FROMMBR(PR*) will result in the conversion of all members whose names
begin with ’PR’.

(See the CL Programmer’s Guide for more information on the generic
name.)

TOFILE
Specifies the name of the source file that contains converted source members
and the library where the converted source file is stored. The converted source
file must exist and should have a record length of 112 characters: 12 for the
sequence number and date, 80 for the code and 20 for the comments.

QRPGLESRC
The default source file QRPGLESRC contains the converted source
member(s).

*NONE
No converted member is generated. The TOMBR parameter value is
ignored. CVTRPT(*YES) must also be specified or the conversion will end
immediately.

This feature allows you to find some potential problems without having to
create the converted source member.

source-file-name
Enter the name of the converted source file that contains the converted
source member(s).

The TOFILE source file name must be different from the FROMFILE source
file name if the TOFILE library name is the same as the FROMFILE library.

*LIBL
The system searches the library list to find the library where the converted
source file is stored.

*CURLIB
The current library is used to find the converted source file. If you have
not specified a current library, then the library QGPL is used.

library-name
Enter the name of the library where the converted source file is stored.

TOMBR
Specifies the name(s) of the converted source member(s) in the converted

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 457

source file. If the value specified on the FROMMBR parameter is *ALL or
generic*, then TOMBR must be equal to *FROMMBR.

*FROMMBR
The member name specified in the FROMMBR parameter is used as the
converted source member name. If FROMMBR(*ALL) is specified, then all
the source members in the FROMFILE are converted. The converted source
members have the same names as those of the original source members. If
a generic name is specified in the FROMMBR parameter, then all the
source members specified having the same prefix in their names are
converted. The converted source members have the same names as those
of the original generic source members.

source-file-member-name
Enter the name of the converted source member. If the member does not
exist it will be created.

EXPCPY
Specifies whether or not /COPY member(s) is expanded into the converted
source member. EXPCPY(*YES) should be specified only if you are having
conversion problems pertaining to /COPY members.

Note: If the member is of type RPT or RPT38, EXPCPY(*YES) or
EXPCPY(*NO) has no effect because the auto report program will
always expand the /COPY members.

*NO
Do not expand the /COPY file member(s) into the converted source.

*YES
Expands the /COPY file member(s) into the converted source.

CVTRPT
Specifies whether or not a conversion report is printed.

*YES
The conversion report is printed.

*NO
The conversion report is not printed.

SECLVL
Specifies whether second-level text is printed in the conversion report in the
message summary section.

*NO
Second-level message text is not printed in the conversion report.

*YES
Second-level message text is printed in the conversion report.

INSRTPL
Specifies if the ILE RPG specification templates (H-, F-, D-, I-, C- and/or
O-specification template), are inserted in the converted source member(s). The
default value is *NO.

*NO
A specification template is not inserted in the converted source member.

*YES
A specification template is inserted in the converted source member. Each
specification template is inserted at the beginning of the appropriate
specification section.

Converting Your Source

458 ILE RPG Programmer’s Guide

LOGFILE
Specifies the name of the log file that is used to track the conversion
information. Unless *NONE is specified, there must be a log file. The file must
already exist, and it must be a physical data file. Create the log file by using
the CPYF command with the ″From object″ file QARNCVTLG in library
QRPGLE and the ″New object″ file QRNCVTLG in your library.

QRNCVTLG
The default log file QRNCVTLG is used to contain the conversion
information.

*NONE
Conversion information is not written to a log file.

log-file-name
Enter the name of the log file that is to be used to track the conversion
information.

*LIBL
The system searches the library list to find the library where the log file is
stored.

library-name
Enter the name of the library where the log file is stored.

LOGMBR
Specifies the name of the log file member used to track conversion information.
The new information is added to the existing data in the specified log file
member.

If the log file contains no members, then a member having the same name as
the log file is created.

*FIRST
The command uses the first member in the specified log file.

*LAST
The command uses the last member in the specified log file.

log-file-member-name
Enter the name of the log file member used to track conversion
information.

Converting a Member Using the Defaults
You can take advantage of the default values supplied on the CVTRPGSRC
command. Simply enter:
CVTRPGSRC FROMFILE(file name) FROMMBR(member name)

This will result in the conversion of the specified source member. The output will
be placed in the file QRPGLESRC in whichever library in the library list contains
this file. The /COPY members will not be expanded, no specification templates
will be inserted, and the conversion report will be produced. The log file
QRNCVTLG will be updated.

Note: The files QRPGLESRC and QRNCVTLG must already exist.

Converting All Members in a File
You can convert all of the members in a source physical file by specifying
FROMMBR(*ALL) and TOMBR(*FROMMBR) on the CVTRPGSRC command. The

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 459

Conversion Aid will attempt to convert all members in the file specified. If one
member should fail to convert, the conversion process will still continue.

For example, if you want to convert all source members in the file QRPGSRC to
the file QRPGLESRC, you would enter:
CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

FROMMBR(*ALL)
TOFILE(NEWRPG/QRPGLESRC)
TOMBR(*FROMMBR)

This command converts all of the source members in library OLDRPG in the
source physical file QRPGSRC. The new members are created in library NEWRPG
in the source physical file QRPGLESRC.

If you prefer to keep all source (DDS source, RPG source, etc.) in the same file, you
can still convert the RPG source members in one step, by specifying
FROMMBR(*ALL). The Conversion Aid will only convert members with a valid
RPG type (see Table 57 on page 452).

Converting Some Members in a File
If you need to convert only some members that are in a source physical file, and
these members share a common prefix in the member name, then you can convert
them by specifying the prefix followed by an * (asterisk).

For example, if you want to convert all members with a prefix of PAY, you would
enter:
CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

FROMMBR(PAY*)
TOFILE(NEWRPG/QRPGLESRC)
TOMBR(*FROMMBR)

This command converts all of the source members in library OLDRPG in the
source physical file QRPGSRC. The new members are created in library NEWRPG
in the source physical file QRPGLESRC.

Performing a Trial Conversion
You can do a trial run for any source member that you suspect you may have
problems converting. You will then get a conversion report for the converted
source member that may identify certain conversion errors.

For example, to perform a trial conversion on the source member PAYROLL, type:
CVTRPGSRC FROMFILE(OLDRPG/QRPGSRC)

FROMMBR(PAYROLL)
TOFILE(*NONE)

The TOMBR parameter should be specified as *FROMMBR. However, since this is
the default, you do not need to specify it unless the default value has been
changed. The CVTRPT parameter should be specified as *YES — this is also the
default. If it is not, then the conversion will stop immediately.

Using the TOFILE(*NONE) parameter stops the Conversion Aid from generating a
converted member, but still allows it to produce a conversion report. For more
information on the conversion report, see “Analyzing Your Conversion” on page
465.

Converting Your Source

460 ILE RPG Programmer’s Guide

Obtaining Conversion Reports
The Conversion Aid normally produces a conversion report each time you issue
the command. The name of the spooled file corresponds to the file name specified
in the TOFILE parameter. If you try to convert a member that already exists or has
an unsupported member type, then a message is printed in the job log indicating
that these members have not been converted. The log file, if requested, is also
updated to reflect that no conversion has occurred. However, no information
regarding these members is placed in the report.

The conversion report includes the following information:
v CVTRPGSRC command options
v Source section that includes:

– conversion errors or warnings
– CALL operations
– /COPY directives

v Message summary
v Final summary

The conversion error messages provide you with suggestions on how to correct the
error. In addition, any CALL operations and /COPY directives in the unconverted
source are flagged to help you in identifying the various parts of the application
you are converting. In general, you should convert all RPG components of an
application at the same time.

If you do not want a conversion report, then specify CVTRPT(*NO).

Converting Auto Report Source Members
When an auto report source member (type RPT or RPT38) is detected in an RPG III
or OPM RPG/400 source program, the Conversion Aid calls the CRTRPTPGM
command to expand the source member and then converts it. (This is because auto
report is not supported by ILE RPG.)

The auto report program produces a spooled file each time it is called by the
Conversion Aid. You may want to check this file to see if any errors occurred on
the auto report expansion, since these errors will not be in the conversion report.

In particular, you may want to check the auto report spooled file for an error
message indicating that /COPY members were not found. The Conversion Aid will
not know if these files are missing. However, without these files, it may not be able
to successfully convert your source.

Note: If the source member type of the member to be converted is not RPT or
RPT38 and the member is an auto report source member, you should assign
the correct source member type (RPT or RPT38) to the member before
converting it; otherwise conversion errors may occur.

Auto Report supports compile-time data in /COPY members. RPG IV does not
support this. If you are keeping compile-time data in /COPY members so that
several programs can use the data, consider moving the compile-time data to a
user-space and accessing it through the user-space APIs.

Converting Your Source

Appendix B. Using the RPG III to RPG IV Conversion Aid 461

Converting Source Members with Embedded SQL
When converting code that contains embedded SQL and the SQL code is continued
over multiple lines, the following will occur:
v If there are continuation lines but column 74 is blank, the line is simply copied

to the ILE member.

Note: This could be a problem if column 74 happens to be a blank character
inside a character string.

v If column 74 is not blank, all of the SQL code from that line to the /END-EXEC
will be concatenated and copied to the ILE member filling up all 80 columns. If
this occurs:
– Any comments in column 75 on, will be ignored.
– Any embedded comment lines (C*) will be copied to the ILE member before

the concatenated code is copied.
– Problems could arise if DBCS literals are split.
If you do not want this concatenation and re-formatting to occur, ensure that
column 74 is blank.

Inserting Specification Templates
Because the source specifications for RPG IV are new, you may want to have
specification templates inserted into the converted source. To have templates
inserted, specify INSRTPL(*YES) on the CVTRPGSRC command. The default is
INSRTPL(*NO).

Converting Source from a Data File
The Conversion Aid will convert source from a data file. Because data files
generally do not have sequence numbers, the minimum record length of the file for
placing the converted output is 80 characters. (See Figure 220 on page 452.) The
recommended record length is 100 characters for a data file.

Note: If your data file has sequence numbers, you should remove them prior to
running the Conversion Aid.

Example of Source Conversion
The example shows a sample RPG III source member which is to be converted to
RPG IV. Figure 221 on page 463 shows the source of the RPG III version.

Converting Your Source

462 ILE RPG Programmer’s Guide

To convert this source, enter:
CVTRPGSRC FROMFILE(MYLIB/QRPGSRC) FROMMBR(TEST1)

TOFILE(MYLIB/QRPGLESRC) INSRTPL(*YES)

The converted source is shown in Figure 222 on page 464.

H TSTPGM
FFILE1 IF E DISK COMM1
FQSYSPRT O F 132 OF LPRINTER
LQSYSPRT 60FL 56OL
E ARR1 3 3 1 COMM2
E ARR2 3 3 1
IFORMAT1
I OLDNAME NAME
I* DATA STRUCTURE COMMENT
IDS1 DS
I 1 3 FIELD1
I* NAMED CONSTANT COMMENT
I 'XYZ' C CONST1 COMM3
I 4 6 ARR1
C ARR1,3 DSPLY
C READ FORMAT1 01
C NAME DSPLY
C SETON LR
C EXCPTOUTPUT
OQSYSPRT E 01 OUTPUT
O ARR2,3 10

**
123
**
456

Figure 221. RPG III Source for TEST1

Example of Source Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 463

Note the following about the converted source:
v The new specification types are H (control), F (file), D (definition), I (input), C

(calculation), and O (output); they must be entered in this order.
The converted source contains specification templates for the new types, since
INSRTPL(*YES) was specified on CVTRPGSRC.

v The control, file, and definition specifications are keyword-oriented. See lines 2,
4 - 7, and 9 - 16.

v The ILE member has a new specification type, definition. It is used to define
standalone fields, arrays and named constants as well as data structures.
In this example,
– ARR2 is defined as a standalone array (Line 9)
– Data structure DS1 is defined as a data structure with two subfields FIELD1

and ARR1 (Lines 11 - 14)
– Constant CONST1 is defined as a constant (Line 16)
The input (I) specifications are now used only to define records and fields of a
file. See Lines 19 - 20.

v The extension (E) specifications have been eliminated. Arrays and tables are now
defined using definition specifications.

v Record address file (RAF) entries on extension specifications have been replaced
by the keyword RAFDATA on the File Description specification.

v The line counter specifications have been eliminated. They have been replaced
by the keywords FORMLEN and FORMOFL on the file description specification.
See Lines 6 and 7.

1H*unctions+++Comments+++++++++
2 H DFTNAME(TSTPGM)
3F*ilename++IPEASFRlen+LKlen+AIDevice+.Functions++++++++++++++++++++++++++++Comments+++++++++
4 FFILE1 IF E DISK COMM1
5 FQSYSPRT O F 132 PRINTER OFLIND(*INOF)
6 F FORMLEN(60)
7 F FORMOFL(56)
8D*ame+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++++Comments+++++++++
9 D ARR2 S 1 DIM(3) CTDATA PERRCD(3)

10 D* DATA STRUCTURE COMMENT
11 D DS1 DS
12 D FIELD1 1 3
13 D ARR1 4 6
14 D DIM(3) CTDATA PERRCD(3) COMM2
15 D* NAMED CONSTANT COMMENT
16 D CONST1 C CONST('XYZ') COMM3
17I*ilename++SqNORiPos1+NCCPos2+NCCPos3+NCC..................................Comments+++++++++
18I*.............Ext_field+Fmt+SPFrom+To+++DcField+++++++++L1M1FrP1MnZr......Comments+++++++++
19 IFORMAT1
20 I OLDNAME NAME
21C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq....Comments+++++++++
22 C ARR1(3) DSPLY
23 C READ FORMAT1 01
24 C NAME DSPLY
25 C SETON LR
26 C EXCEPT OUTPUT
27 OQSYSPRT E OUTPUT 01
28 O ARR2(3) 10
29 **CTDATA ARR1
30 123
31 **CTDATA ARR2
32 456

Figure 222. Converted (RPG IV) Source for TEST1

Example of Source Conversion

464 ILE RPG Programmer’s Guide

v All specification types have been expanded to allow for 10-character names for
fields and files.

v In RPG IV, data structures (which are defined using definition specifications)
must precede the input specifications.
Note that in the converted source, the data structure DS1 (Line 11) has been
moved to precede the specification containing the FORMAT1 information (Line
19).

v In RPG III, named constants can appear in the middle of a data structure. This is
not allowed in RPG IV.
In the converted source, CONST1 (Line 16) has been moved to follow data
structure DS1 (Line 11).

v If a specification is moved, any comment that precedes it is also moved.
In the converted source, the comments above CONST1 and DS1 were moved
with the following specifications.

v In RPG III, to define an array as a data structure subfield, you define both the
array and a data structure subfield with the same name. This double definition
is not allowed in RPG IV. Instead you specify the array attributes when you
define the subfields using the new keyword syntax.
In this example, ARR1 is defined twice in the OPM version, but has been
merged into a single definition in converted source. See Lines 13 and 14.
The merging of RPG III array specifications may result in the reordering of the
array definitions. If the reordered arrays are compile-time arrays, then the
loading of array data may be affected. To overcome this problem, RPG IV
provides a keyword format for the ** records. Following **, you enter one of the
keywords FTRANS, ALTSEQ, or CTDATA. If the keyword is CTDATA, you enter
the array or table name in positions 10 - 19.
In this example, the array ARR2 now precedes array ARR1, due to the merging
of the two RPG III specifications for ARR2. The Conversion Aid has inserted the
keywords and array names in the converted ** records, which ensures the
correct loading of the compile-time data. See Lines 29 and 31.

v Note that array syntax has changed. The notation ARR1,3 in RPG III is ARR1(3)
in RPG IV. See line 28.

Analyzing Your Conversion
The Conversion Aid provides you with two ways to analyze your conversion
results. They are:
v The conversion error report
v The log file

Using the Conversion Report
The Conversion Aid generates a conversion report if you specify the
CVTRPT(*YES) parameter on the CVTRPGSRC command. The spooled file name is
the same as the file name specified on the TOFILE parameter.

The conversion report consists of four parts:
1. CVTRPGSRC command options
2. source section
3. message summary
4. final summary

Example of Source Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 465

The first part of the listing includes a summary of the command options used by
CVTRPGSRC. Figure 223 shows the command summary for a sample conversion.

The source section includes lines that have informational, warning, or error
messages associated with them. These lines have an asterisk (*) in column 1 for
ease of browsing in SEU. The message summary contains all three message types.

Two informational messages which may be of particular interest are:
v RNM0508 — flags /COPY statements
v RNM0511 — flags CALL operations

All /COPY members in an program must be converted in order for the
corresponding ILE RPG program to compile without errors. Similarly, you may
want to convert all members related by CALL at the same time. Use this part of
the report to assist you in identifying these members. Figure 224 shows the source
section for the sample conversion.

The message summary of the listing shows you the different messages that were
issued. If you specify SECLVL(*YES), second-level messages will appear in the
message summary. Figure 225 on page 467 shows the messages section for the
sample conversion, including second-level messages.

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 1
Command : CVTRPGSRC
Issued by : DAVE

From file : QRPGSRC
Library : MYLIB

From member : REPORT
To file. : QRPGLESRC
Library : MYLIB

To member : *FROMMBR
Log file : *NONE

Library :
Log member : *FIRST
Expand copy members. : *NO
Print conversion report : *YES
Include second level text. . . . : *YES
Insert specification template. . : *YES

Figure 223. Command Summary of Sample Conversion Report

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 2
From file : MYLIB/QRPGSRC(REPORT)
To file. : MYLIB/QRPGLESRC(REPORT)
Log file : *NONE

C o n v e r s i o n R e p o r t
Sequence <----------------------- Source Specifications ---------------------------><-------------- Comments --------------> Page
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10....+...11....+...12 Line

000002 C CALL PROG1
*RNM0511 00 CALL operation code found.

000003 C/COPY COPYCODE
*RNM0508 00 /COPY compiler directive found.

000004 C FREE PROG2
*RNM0506 30 FREE operation code is not supported in RPG IV.

* * * * * E N D O F S O U R C E * * * * *

Figure 224. Sample Source Section of Conversion Report

Analyzing Your Conversion

466 ILE RPG Programmer’s Guide

The final summary of the listing provides message and record statistics. A final
status message is also placed in the job log. Figure 226 shows the messages section
for the sample conversion.

Using the Log File
By browsing the log file, you can see the results of your conversions. The log file is
updated after each conversion operation. It tracks:
v Source members and their library names
v Converted source file names and their library names
v Highest severity error found

For example, if no errors are found, the conversion status is set to 0. If severe
errors are found, the status is set to 30.

If you try to convert a member with an unsupported member type or a member
that already exists, then the conversion will not take place, as this is a severe error

5769WDS V5R2M0 020719 RN IBM ILE RPG ISERIES1 08/15/02 20:41:35 Page 2
M e s s a g e S u m m a r y

Msg id Sv Number Message text
*RNM0508 00 1 /COPY compiler directive found.

Cause : In order for this RPG IV source to
compile correctly, ensure that all /COPY source members
included in this source member have also been converted to
RPG IV.

Recovery . . . : Ensure that all /COPY source
members are converted prior to compiling in RPG IV. In some
cases, problems may result when attempting to convert and
compile source members that make use of the /COPY compiler
directive. If this situation results, specify *YES for the
EXPCPY parameter on the CVTRPGSRC command to expand the
/COPY member(s) into the converted source. For further
information see the ILE RPG for AS/400 Programmers Guide.

*RNM0511 00 1 CALL operation code found.
Cause : RPG specifications that contain CALL

operation codes have been identified because the user may
wish to:

-- change the CALL operation code to CALLB to take
advantage of static binding

-- convert all programs in an application to RPG IV.
Recovery . . . : Convert the CALL

operation code to a CALLB if you wish to take advantage of
static binding or convert the called program to RPG IV if
you wish to convert all programs in an application.

*RNM0506 30 1 FREE operation code is not supported in RPG IV.
Cause : The RPG III or RPG/400 program contains
the FREE operation code which is not supported in RPG IV.

Recovery . . . : Remove the FREE operation and replace
it with alternative code so that the programming logic is
not affected prior to compiling the converted source.

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 225. Sample Message Summary of Conversion Report

F i n a l S u m m a r y
Message Totals:

Information (00) : 2
Warning (10) : 0
Severe Error (30+) : 1
--------------------------------- -------
Total : 3

Source Totals:
Original Records Read : 3
Converted Records Written : 4
Highest Severity Message Issued . : 30

* * * * * E N D O F F I N A L S U M M A R Y * * * * *
* * * * * E N D O F C O N V E R S I O N * * * * *

Figure 226. Sample Final Summary of Conversion Report

Analyzing Your Conversion

Appendix B. Using the RPG III to RPG IV Conversion Aid 467

(severity 40 or higher). A record will be added to the log file with the conversion
status set to 40. The TOFILE, TOMBR, and TO LIBRARY will be set to blank to
indicate that a TOMBR was not generated (as the conversion did not take place).

The log file is an externally described, physical database file. A ″model″ of this file
is provided in library QRPGLE in file QARNCVTLG. It has one record format
called QRNCVTLG. All field names are six characters in length and follow the
naming convention LGxxxx, where xxxx describes the fields. Figure 227 on page
469 shows the DDS for this file.

Use the following CPYF command to create a copy of this model in your own
library, referred to here as MYLIB. You may want to name your log file
QRNCVTLG, as this is the default log file name for the Conversion Aid.
CPYF FROMFILE(QRPGLE/QARNCVTLG) TOFILE(MYLIB/QRNCVTLG)

CRTFILE(*YES)

Analyzing Your Conversion

468 ILE RPG Programmer’s Guide

Resolving Conversion Problems
Conversion problems may arise for one or more of the following reasons:
v The RPG III source has compilation errors
v Certain features of the RPG III language are not supported by RPG IV
v One or more /COPY compiler directives exists in the RPG III source

A R QRNCVTFM
A LGCENT 1A COLHDG('CVT' 'CENT')
A TEXT('Conversion Century: 0-20th 1-+
A 21st')
A LGDATE 6A COLHDG('CVT' 'DATE')
A TEXT('Conversion Date : format is Y+
A YMMDD')
A LGTIME 6A COLHDG('CVT' 'TIME')
A TEXT('Conversion Time : format is H+
A HMMSS')
A LGSYST 8A COLHDG('CVT' 'SYST')
A TEXT('Name of the system running co+
A nversion')
A LGUSER 10A COLHDG('CVT' 'USER')
A TEXT('User Profile name of the user+
A running conversion')
A LGFRFL 10A COLHDG('FROM' 'FILE')
A TEXT('From File')
A LGFRLB 10A COLHDG('FROM' 'LIB')
A TEXT('From Library')
A LGFRMR 10A COLHDG('FROM' 'MBR')
A TEXT('From Member')
A LGFRMT 10A COLHDG('FMBR' 'TYPE')
A TEXT('From Member Type')
A LGTOFL 10A COLHDG('TO' 'FILE')
A TEXT('To File')
A LGTOLB 10A COLHDG('TO' 'LIB')
A TEXT('To Library')
A LGTOMR 10A COLHDG('TO' 'MBR')
A TEXT('To Member')
A LGTOMT 10A COLHDG('TMBR' 'TYPE')
A TEXT('To Member Type')
A LGLGFL 10A COLHDG('LOG' 'FILE')
A TEXT('Log File')
A LGLGLB 10A COLHDG('LOG' 'LIB')
A TEXT('Log Library')
A LGLGMR 10A COLHDG('LOG' 'MBR')
A TEXT('Log Member')
A LGCEXP 1A COLHDG('CPY' 'EXP')
A TEXT('Copy Member Expanded: Y=Yes, +
A N=No')
A LGERRL 1A COLHDG('CVT' 'RPT')
A TEXT('Conversion Report Printed: Y=+
A Yes, N=No')
A LGSECL 1A COLHDG('SEC' 'LVL')
A TEXT('Second Level Text Printed: Y=+
A Yes, N=No')
A LGINSR 1A COLHDG('INSR' 'TPL')
A TEXT('Template Inserted: Y=Yes, N=N+
A o')
A LGSTAT 2A COLHDG('CVT' 'STAT')
A TEXT('Conversion Status')
A LGMRDS 50A COLHDG('MBR' 'DESC')
A TEXT('Member Description')

Figure 227. DDS for model log file QARNCVTLG in library QRPGLE

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 469

v Use of externally described data structures
v Behavioral differences between the OPM and ILE run time

Each of these areas is discussed in the sections which follow.

Compilation Errors in Existing RPG III Code
The Conversion Aid assumes that you are attempting to convert a valid RPG III
program, that is, a program with no compilation errors. If this is not the case, then
unpredictable results may occur during conversion. If you believe your program
contains compilation errors, compile it first using the RPG III compiler and correct
any errors before performing the conversion.

Unsupported RPG III Features
A few features of the RPG III language are not supported in RPG IV. The most
notable of these are:
v The auto report function
v The FREE operation code
v The DEBUG operation code

Since the auto report function is not supported, the Conversion Aid will
automatically expand these programs (that is, call auto report) prior to performing
the conversion if the type is RPT or RPT38.

You must replace the FREE or DEBUG operation code with equivalent logic either
before or after conversion.

If you specify the CVTRPT(*YES) option on the CVTRPGSRC command, you will
receive a conversion report that identifies most of these types of problems.

For further information on converting auto report members, see “Converting Auto
Report Source Members” on page 461. For further information on differences
between RPG III and RPG IV, see Appendix A, “Behavioral Differences Between
OPM RPG/400 and ILE RPG for AS/400,” on page 445.

Converting the FREE operation code
To replace the function of the FREE operation, you must first determine why the
FREE operation was being used.
v If the FREE operation was being used to ensure that the program would be

initialized on the next call to the program, change the called program so that it
may be called with a special parameter (or no parameter), indicating that it
should simply set on LR and return. Then, instead of coding the FREE
operation, call the program with the special ″free″ parameter.

* RPG III coding
C CALL 'MYPGM'
C PARM P1
...
C FREE 'MYPGM'
...
C CALL 'MYPGM'
C PARM P1

* Replacement RPG IV coding for the "reresolve" function of FREE

C call MYPGM_var
C parm p1
...

Resolving Conversion Problems

470 ILE RPG Programmer’s Guide

#
#
#

#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#

* Cause MYPGM to initialize on the next call
C call MYPGM_VAR
...
C call MYPGM_var
C parm p1

* Modified version of MYPGM. It ends itself when it is called with no parameters.
D SDS
D PARMS *PARMS
C *ENTRY PLIST
C PARM NAME 10
c PARMS IFEQ 0
C SETON LR
C RETURN
C ENDIF
...

v If the FREE operation was being used to cause the program containing the FREE
operation to resolve to the program again on the next call to the program, then
you can change your calling program so that you call using a character variable;
to cause your called program to be resolved again, you must use the character
variable to call a different program at the point where you would do your FREE;
then when you use the character variable on the next CALL operation, the
system would perform the resolve to your program again. Create a very
quick-running program to be called for the ″FREE″ function, such as an ILE RPG
program that simply has a RETURN operation.

* RPG III coding
C CALL 'MYPGM'
C PARM P1
...
C FREE 'MYPGM'
...
C CALL 'MYPGM'
C PARM P1

* Replacement RPG IV coding for the "reresolve" function of FREE

D MYPGM_var s 21a INZ('MYPGM')
C call MYPGM_var
C parm p1
...
* Cause a reresolve to MYPGM for the next call
C eval MYPGM_var = 'MYLIB/FREEPGM'
C call MYPGM_VAR
C reset MYPGM_var
...
C call MYPGM_var
C parm p1

To replace the function of the DEBUG operation, use an interactive debugger. For
information on program debugging see Chapter 12, “Debugging Programs,” on
page 229.

Use of the /COPY Compiler Directive
In some cases, errors will not be found until you actually compile the converted
RPG IV source. Conversion errors of this type are usually related to the use of the
/COPY compiler directive. These errors fall into two categories: merging problems
and context-sensitive problems. Following is a discussion of why these problems
occur and how you might resolve them.

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 471

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#

Merging Problems
Because of differences between the RPG III and RPG IV languages, the Conversion
Aid must reorder certain source statements. An example of this reordering is
shown in “Example of Source Conversion” on page 462 for the RPG III source
member TEST1. If you compare the placement of the data structure DS1 in
Figure 221 on page 463 and in Figure 222 on page 464, you can see that the data
structure DS1 was moved so that it precedes the record format FORMAT1.

Now suppose that the RPG III member TEST1 was split into two members, TEST2
and COPYDS1, where the data structure DS1 and the named constant CONST1 are
in a copy member COPYDS1. This copy member is included in source TEST2.
Figure 228 and Figure 229 show the source for TEST2 and COPYDS1 respectively.

In this situation, the Conversion Aid would convert both member TEST2 and the
copy member COPYDS1 correctly. However, when the copy member is included at
compile time, it will be inserted below FORMAT1, because this is where the
/COPY directive is located. As a result, all source lines in the copy member
COPYDS1 will get a ″source record is out of sequence″ error. In RPG IV, definition
specifications must precede input specifications.

Note that the Conversion Aid could not move the /COPY directive above
FORMAT1 because the contents of /COPY member are unknown.

There are two methods of correcting this type of problem:

H TSTPGM
FFILE1 IF E DISK COMM1
FQSYSPRT O F 132 OF LPRINTER
LQSYSPRT 60FL 56OL
E ARR1 3 3 1 COMM2
E ARR2 3 3 1
IFORMAT1
I OLDNAME NAME
/COPY COPYDS1
C ARR1,3 DSPLY
C READ FORMAT1 01
C NAME DSPLY
C SETON LR
C EXCPTOUTPUT
OQSYSPRT E 01 OUTPUT
O ARR2,3 10

**
123
**
456

Figure 228. RPG III Source for TEST2

I* DATA STRUCTURE COMMENT
IDS1 DS
I 1 3 FIELD1
I* NAMED CONSTANT COMMENT
I 'XYZ' C CONST1 COMM3
I 4 6 ARR1

Figure 229. RPG III Source for COPYDS1

Resolving Conversion Problems

472 ILE RPG Programmer’s Guide

1. Use the EXPCPY(*YES) option of the CVTRPGSRC command to include all
/COPY members in the converted RPG IV source member.
This approach is easy and will work most of the time. However, including the
/COPY members in each source member reduces the maintainability of your
application.

2. Manually correct the code after conversion using the information in the ILE
RPG compiler listing and the IBM Rational Development Studio for i: ILE RPG
Reference.

Other examples of this type of problem include:
v Line Specifications and Record Address Files

In RPG III the line counter specification and the Record Address File of the
extension specification are changed to keywords (RAFDATA, FORMLEN, and
FORMOFL) on the file description specification. If the content of a /COPY
member contains only the line counter specification and/or the Record Address
File of the extension specification but not the corresponding file description
specification, the Conversion Aid does not know where to insert the keywords.

v Extension Specification Arrays and Data Structure Subfields
As mentioned in “Example of Source Conversion” on page 462, you are not
allowed to define a standalone array and a data structure subfield with the same
name in RPG IV. Therefore, as shown in the example TEST1 (Figure 222 on page
464), the Conversion Aid must merge these two definitions. However, if the
array and the data structure subfield are not in the same source member (that is,
one or both is in a /COPY member), this merging cannot take place and a
compile-time error will result.

v Merged compile-time array and compile-time data (**) records
As shown in the example TEST1 (Figure 222 on page 464), if compile-time
arrays are merged with data structure subfield definitions, the loading of array
data may be affected. To overcome this problem, compile-time array data are
changed to the new **CTDATA format if at least one compile-time array is
merged. However, if the arrays and the data do not reside in the same source
file (that is, one or both is in a COPY member) the naming of compile-time data
records using the **CTDATA format cannot proceed properly.

Context-Sensitive Problems
In RPG III, there are occasions when it is impossible to determine the type of
specifications in a /COPY member without the context of the surrounding
specifications of the primary source member. There are two instances of this
problem:
v In data structure subfields or program-described file fields

I* If the RPG III source member contains only the source
I* statements describing fields FIELD1 and FIELD2 below, the
I* Conversion Aid is unsure how to convert them. These
I* statements may be data structure fields (which are converted
I* to definition specifications) or program-described file
I* fields (which are converted to input specifications).
I 1 3 FIELD1
I 4 6 FIELD2

Figure 230. RPG III /COPY file with input fields only

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 473

v In renaming an externally described data structure field or an externally
described file field

In the above two instances, a data structure is assumed and definition
specifications are produced. A block of comments containing the input specification
code is also produced. For example, the Conversion Aid will convert the source in
Figure 230 on page 473 to the code shown in Figure 232. If Input specification code
is required, delete the definition specifications and blank out the asterisks from the
corresponding Input specifications.

Remember that you have two ways of correcting these types of problems. Either
use the EXPCPY(*YES) option of the CVTRPGSRC command, or manually correct
the code after conversion.

Use of Externally Described Data Structures
There are two problems that you may have to fix manually even though you
specify the EXPCPY(*YES) option on the CVTRPGSRC command.
v The merging of an array with an externally described DS subfield
v The renaming and initializing of an externally described DS subfield

These problems are related to the use of externally described data structures.

Because these problems will generate compile-time errors, you can use the
information in the ILE RPG compiler listing and the IBM Rational Development
Studio for i: ILE RPG Reference to correct them.

Merging an Array with an Externally Described DS Subfield
As mentioned earlier, you are not allowed to define a standalone array and a data
structure subfield with the same name in RPG IV. In general, the Conversion Aid
will merge these two definitions. However, if the subfield is in an externally
described data structure, this merging is not handled and you will be required to
manually correct the converted source member.

I* If the RPG III source member contains only the source
I* statement describing field CHAR below, the Conversion
I* Aid is unsure how to convert it. This statement may be
I* a rename of an externally described data structure field
I* which is converted to a definition specification) or
I* a rename of an externally described file field)
I* (which is converted to an input specification).
I CHARACTER CHAR

Figure 231. RPG III Source with a renamed field

D* If the RPG III source member contains only the source
D* statements describing fields FIELD1 and FIELD2 below, the
D* Conversion Aid is unsure how to convert them. These
D* statements may be data structure fields (which are converted
D* to definition specifications) or program-described file
D* fields (which are converted to input specifications).
D FIELD1 1 3
D FIELD2 4 6
I* 1 3 FIELD1
I* 4 6 FIELD2

Figure 232. RPG IV source after converting source with input fields only

Resolving Conversion Problems

474 ILE RPG Programmer’s Guide

For example, the field ARRAY in Figure 233 is included twice in Figure 234. It is
included once as a standalone array and once in the externally described data
structure EXTREC. When converted, the RPG IV source generated is shown in
Figure 235. This code will not compile since ARRAY is defined twice. In order to
correct this problem, delete the standalone array and add a subfield with the
keywords to data structure DSONE as shown in Figure 236.

Renaming and Initializing an Externally Described DS Subfield
In RPG III, when both renaming and initializing a field in an externally described
data structure, you had to use two source lines, as shown for the field CHAR in
Figure 237. The converted source also contains two source lines, as shown in
Figure 238 on page 476. This use of two source lines for a field will result in a
compile-time error, as the field CHAR is defined twice. To correct this code you
must combine the keywords of the field CHAR into a single line as shown in
Figure 239 on page 476, where the key fields INZ and EXTFLD have been
combined and only one instance on the field CHAR is shown.

A R RECORD
A CHARACTER 10
A ARRAY 10

Figure 233. DDS for external data structure

E ARRAY 10 1
IDSONE E DSEXTREC
C CHAR DSPLY
C SETON LR

Figure 234. RPG III source using external data structure with array

D ARRAY S 1 DIM(10)
D DSONE E DS EXTNAME(EXTREC)
C CHAR DSPLY
C SETON LR

Figure 235. RPG IV source with two definitions for the array

D DSONE E DS EXTNAME(EXTREC)
D ARRAY E DIM(10)
C CHAR DSPLY
C SETON LR

Figure 236. Corrected RPG IV source with a single definition for the array

IDSONE E DSEXTREC
I CHARACTER CHAR
I I 'XYZ' CHAR
C CHAR DSPLY
C SETON LR

Figure 237. RPG III source with renamed and initialized external subfield

Resolving Conversion Problems

Appendix B. Using the RPG III to RPG IV Conversion Aid 475

Run-time Differences
If you have prerun-time arrays that overlap in data structures, the order of loading
these arrays at run time may be different in RPG III and in RPG IV. This difference
in order can cause the data in the overlapping section to differ. The order in which
the arrays are loaded is the order in which they are encountered in the source. This
order may have changed when the arrays were been merged with the subfields
during conversion.

In general, you should avoid situations where an application consists of OPM and
ILE programs that are split across the OPM default activation group and a named
activation group. When spilt across these two activation groups, you are mixing
OPM behavior with ILE behavior and your results may be hard to predict. Refer to
Chapter 3, “Program Creation Strategies,” on page 23 or ILE Concepts for further
information.

D DSONE E DS EXTNAME(EXTREC)
D CHAR E EXTFLD(CHARACTER)
D CHAR E INZ('XYZ')
C CHAR DSPLY
C SETON LR

Figure 238. RPG IV source with two definitions for renamed subfield

D DSONE E DS EXTNAME(EXTREC)
D CHAR E EXTFLD(CHARACTER) INZ('XYZ')
C CHAR DSPLY
C SETON LR

Figure 239. Corrected RPG IV source with a single definition

Resolving Conversion Problems

476 ILE RPG Programmer’s Guide

Appendix C. The Create Commands

This section provides information on:
v Using CL commands
v Syntax diagram and description of CRTBNDRPG
v Syntax diagram and description of CRTRPGMOD

For information on the Create Program and Create Service Program commands, see
the CL and APIs section of the Programming category in the i5/OS Information
Center at this Web site - http://www.ibm.com/systems/i/infocenter/.

Using CL Commands
Control Language (CL) commands, parameters, and keywords can be entered in
either uppercase or lowercase characters. In the syntax diagram they are shown in
uppercase (for example, PARAMETER, PREDEFINED-VALUE). Variables appear in
lowercase italic letters (for example, user-defined-value). Variables are user-defined
names or values.

How to Interpret Syntax Diagrams
The syntax diagrams in this book use the following conventions:

�� PARAMETER (user-defined-value)
PREDEFINED-VALUE

��

Read the syntax diagram from left to right, and from top to bottom, following the
path of the line.

The ��── symbol indicates the beginning of the syntax diagram.

The ──�� symbol indicates the end of the syntax diagram.

The ───� symbol indicates that the statement syntax is continued on the next line.

The �─── symbol indicates that a statement is continued from the previous line.

The ──(──)── symbol indicates that the parameter or value must be entered in
parentheses.

Required parameters appear on the base line and must be entered. Optional
parameters appear below the base line and do not need to be entered. In the
following sample, you must enter REQUIRED-PARAMETER and a value for it, but
you do not need to enter OPTIONAL-PARAMETER or a value for it.

�� REQUIRED-PARAMETER (PREDEFINED-VALUE)
user-defined-value

�

© Copyright IBM Corp. 1994, 2010 477

http://www.ibm.com/systems/i/infocenter/

�
OPTIONAL-PARAMETER (PREDEFINED-VALUE)

user-defined-value

��

Default values appear above the base line and do not need to be entered. They are
used when you do not specify a parameter. In the following sample, you can enter
DEFAULT-VALUE, OTHER-PREDEFINED-VALUE, or nothing. If you enter
nothing, DEFAULT-VALUE is assumed.

��
DEFAULT-VALUE

PARAMETER (OTHER-PREDEFINED-VALUE) ��

Optional values are indicated by a blank line. The blank line indicates that a value
from the first group (OPTIONAL-VALUE1, OPTIONAL-VALUE2, user-defined-value)
does not need to be entered. For example, based on the syntax below, you could
enter KEYWORD(REQUIRED-VALUE).

��
OPTIONAL-VALUE1

PARAMETER (REQUIRED-VALUE)
OPTIONAL-VALUE2
user-defined-value

��

Repeated values can be specified for some parameters. The comma (,) in the
following sample indicates that each user-defined-value must be separated by a
comma.

�� �

,

KEYWORD (user-defined-value) ��

CRTBNDRPG Command
The Create Bound RPG (CRTBNDRPG) command performs the combined tasks of
the Create RPG Module (CRTRPGMOD) and Create Program (CRTPGM)
commands by creating a temporary module object from the source code, and then
creating the program object. Once the program object is created, CRTBNDRPG
deletes the module object it created. The entire syntax diagram for the
CRTBNDRPG command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

�� CRTBNDRPG
*CURLIB/ *CTLSPEC

PGM (program-name)
library-name/

�

�
*LIBL/ QRPGLESRC

SRCFILE (source-file-name)
*CURLIB/
library-name/

�

Reading Syntax Diagrams

478 ILE RPG Programmer’s Guide

�
*PGM

SRCMBR (source-file-member-name)
SRCSTMF (source-stream-file-name)

�

�
(1)

*PRINT
OUTPUT (*NONE)

10
GENLVL (severity-level-value)

�

�
*SRCMBRTXT

TEXT (*BLANK)
'description'

*YES
DFTACTGRP (*NO)

�

�
OPTION (OPTION Details) *STMT

DBGVIEW (*SOURCE)
*LIST
*COPY
*ALL
*NONE

�

�
*NONE

DBGENCKEY (character-value)
*PRINT

OUTPUT (*NONE)

�

�
*NONE

OPTIMIZE (*BASIC)
*FULL

*NONE
INDENT (character-value)

�

�
*NONE

CVTOPT ()

*DATETIME *GRAPHIC *VARCHAR *VARGRAPHIC

�

�
*HEX

SRTSEQ (*JOB)
*JOBRUN
*LANGIDUNQ
*LANGIDSHR

sort-table-name
*LIBL/
*CURLIB/
library-name/

�

�
*JOBRUN

LANGID (*JOB)
language-identifier

*YES
REPLACE (*NO)

�

�
*USER

USRPRF (*OWNER)
*LIBCRTAUT

AUT (*ALL)
*CHANGE
*USE
*EXCLUDE
authorization-list-name

�

�
*YES

TRUNCNBR (*NO)
*NONE

FIXNBR (*ZONED)
*INPUTPACKED

�

CRTBNDRPG Command

Appendix C. The Create Commands 479

�
*CURRENT

TGTRLS (*PRV)
VxRxMx

*NO
ALWNULL (*INPUTONLY)

*USRCTL
*YES

�

�
*SNGLVL

STGMDL (*TERASPACE)
*INHERIT

�

�
*NONE

BNDDIR ()
*LIBL/

binding-directory-name
*CURLIB/
*USRLIBL/
library-name/

�

�
*STGMDL

ACTGRP (*NEW)
*CALLER
activation-group-name

*PEP
ENBPFRCOL (*ENTRYEXIT)

*FULL

�

�
*NONE

DEFINE (condition-name)
*NOCOL

PRFDTA (*COL)

�

�
LICOPT (options) *NONE

INCDIR (directory)

�

�
*NO

*STMF
PGMINFO (*PCML *MODULE)

*ALL

�

�
INFOSTMF (program-interface-stream-file-name)

�

�
*NONE

PPGENOPT ()
*DFT

*RMVCOMMENT *EXPINCLUDE *NOSEQSRC

*NORMVCOMMENT *NOEXPINCLUDE *SEQSRC

�

�
*CURLIB

PPSRCSFILE (output-source-file-name)
library-name

�

�
*PGM

PPSRCSMBR (output-source-member-name)

�

CRTBNDRPG Command

480 ILE RPG Programmer’s Guide

�
*SRCSTMF

PPSRCSTMF (output-stream-file-name)

��

Notes:

1 All parameters preceding this point can be specified by position.

OPTION Details:

*XREF

*NOXREF

*GEN

*NOGEN

*NOSECLVL

*SECLVL

*SHOWCPY

*NOSHOWCPY

*EXPDDS

*NOEXPDDS
�

�
*EXT

*NOEXT

*NOSHOWSKP

*SHOWSKP

*NOSRCSTMT

*SRCSTMT

*DEBUGIO

*NODEBUGIO

*UNREF

*NOUNREF
�

�
*NOEVENTF

*EVENTF

Description of the CRTBNDRPG Command
The parameters, keywords, and variables of the CRTBNDRPG command are listed
below. The same information is available online. Enter the command name on a
command line, press PF4 (Prompt) and then press PF1 (Help) for any parameter
you want information on.

See Using the application development tools in the client product for information
about getting started with the client tools.

PGM
Specifies the program name and library name for the program object (*PGM)
you are creating. The program name and library name must conform to System
i5 naming conventions. If no library is specified, the created program is stored
in the current library.

*CTLSPEC
The name for the compiled program is taken from the name specified in
the DFTNAME keyword of the control specification. If the program name
is not specified on the control specification and the source member is from
a database file, the member name, specified by the SRCMBR parameter, is
used as the program name. If the source is not from a database file then
the program name defaults to RPGPGM.

program-name
Enter the name of the program object.

*CURLIB
The created program object is stored in the current library. If you have not
specified a current library, QGPL is used.

library-name
Enter the name of the library where the created program object is to be
stored.

SRCFILE
Specifies the name of the source file that contains the ILE RPG source member
to be compiled and the library where the source file is located. The

CRTBNDRPG Command

Appendix C. The Create Commands 481

##

recommended source physical file length is 112 characters: 12 for the sequence
number and date, 80 for the code and 20 for the comments. This is the
maximum amount of source that is shown on the compiler listing.

QRPGLESRC
The default source file QRPGLESRC contains the ILE RPG source member
to be compiled.

source-file-name
Enter the name of the source file that contains the ILE RPG source member
to be compiled.

*LIBL
The system searches the library list to find the library where the source file
is stored. This is the default.

*CURLIB
The current library is used to find the source file. If you have not specified
a current library, QGPL is used.

library-name
Enter the name of the library where the source file is stored.

SRCMBR
Specifies the name of the member of the source file that contains the ILE RPG
source program to be compiled.

*PGM
Use the name specified by the PGM parameter as the source file member
name. The compiled program object will have the same name as the source
file member. If no program name is specified by the PGM parameter, the
command uses the first member created in or added to the source file as
the source member name.

source-file-member-name
Enter the name of the member that contains the ILE RPG source program.

SRCSTMF
Specifies the path name of the stream file containing the ILE RPG source code
to be compiled.

The path name can be either absolutely or relatively qualified. An absolute
path name starts with ’/’; a relative path name starts with a character other
than ’/’.

If absolutely-qualified, the path name is complete. If relatively-qualified, the
path name is completed by appending the job’s current working directory to
the path name.

The SRCMBR and SRCFILE parameters cannot be specified with the SRCSTMF
parameter.

GENLVL
Controls the creation of the program object. The program object is created if all
errors encountered during compilation have a severity level less than or equal
to the generation severity level specified.

10 A program object will not be generated if you have messages with a
severity-level greater than 10.

severity-level-value
Enter a number, 0 through 20 inclusive. For errors greater than severity 20,
the program object will not be generated.

CRTBNDRPG Command

482 ILE RPG Programmer’s Guide

TEXT
Allows you to enter text that briefly describes the program and its function.
The text appears whenever program information is displayed.

*SRCMBRTXT
The text of the source member is used.

*BLANK
No text appears.

’description’
Enter the text that briefly describes the function of the source
specifications. The text can be a maximum of 50 characters and must be
enclosed in apostrophes. The apostrophes are not part of the 50-character
string. Apostrophes are not required if you are entering the text on the
prompt screen.

DFTACTGRP
Specifies whether the created program is intended to always run in the default
activation group.

*YES
When this program is called it will always run in the default activation
group. The default activation group is the activation group where all
original program model (OPM) programs are run.

Specifying DFTACTGRP(*YES) allows ILE RPG programs to behave like
OPM programs in the areas of override scoping, open scoping, and
RCLRSC.

ILE static binding is not available when a program is created with
DFTACTGRP(*YES). This means that you cannot use the BNDDIR or
ACTGRP parameters when creating this program. In addition, any call
operation in your source must call a program and not a procedure.

DFTACTGRP(*YES) is useful when attempting to move an application on a
program-by-program basis to ILE RPG.

*NO
The program is associated with the activation group specified by the
ACTGRP parameter. Static binding is allowed when *NO is specified.

If ACTGRP(*CALLER) is specified and this program is called by a program
running in the default activation group, then this program will behave
according to ILE semantics in the areas of file sharing, file scoping and
RCLRSC.

DFTACTGRP(*NO) is useful when you intend to take advantage of ILE
concepts; for example, running in a named activation group or binding to
a service program.

OPTION
Specifies the options to use when the source member is compiled. You can
specify any or all of the options in any order. Separate the options with one or
more blank spaces. If an option is specified more than once, the last one is
used.

*XREF
Produces a cross-reference listing (when appropriate) for the source
member.

*NOXREF
A cross-reference listing is not produced.

CRTBNDRPG Command

Appendix C. The Create Commands 483

*GEN
Create a program object if the highest severity level returned by the
compiler does not exceed the severity specified in the GENLVL option.

*NOGEN
Do not create a program object.

*NOSECLVL
Do not print second-level message text on the line following the first-level
message text.

*SECLVL
Print second-level message text on the line following the first-level
message text in the Message Summary section.

*SHOWCPY
Show source records of members included by the /COPY compiler
directive.

*NOSHOWCPY
Do not show source records of members included by the /COPY compiler
directive.

*EXPDDS
Show the expansion of externally described files in the listing and display
key field information.

*NOEXPDDS
Do not show the expansion of externally described files in the listing or
display key field information.

*EXT
Show the list of external procedures and fields referenced during the
compile on the listing.

*NOEXT
Do not show the list of external procedures and fields referenced during
the compilation on the listing.

*NOSHOWSKP
Do not show ignored statements in the source part of the listing. The
compiler ignores statements as a result of /IF, /ELSEIF or /ELSE
directives.

*SHOWSKP
Show all statements in the source part of the listing, regardless of whether
or not the compiler has skipped them.

*NOSRCSTMT
Line Numbers in the listing are assigned sequentially; these numbers are
used when debugging using statement numbers. Line Numbers are shown
on the left-most column of the listing. The source IDs and SEU Sequence
Numbers are shown on the two right-most columns of the listing.

*SRCSTMT
Statement numbers for debugging are generated using SEU sequence
numbers and source IDs as follows:
Statement_Number = source_ID * 1000000 + source_SEU_sequence_number

SEU Sequence Numbers are shown on the left-most column of the listing.
Statement Numbers are shown on the right-most column of the listing;
these numbers are used when debugging using statement numbers.

CRTBNDRPG Command

484 ILE RPG Programmer’s Guide

Note: When OPTION(*SRCSTMT) is specified, all sequence numbers in the
source files must contain valid numeric values. If there are duplicate
sequence numbers in the same source file, the behavior of the
debugger may be unpredictable and statement numbers for
diagnostic messages or cross reference entries may not be
meaningful.

*DEBUGIO
Generate breakpoints for all input and output specifications.

*NODEBUGIO
Do not generate breakpoints for input and output specifications.

*UNREF
Unreferenced data items are included in the compiled module.

*NOUNREF
Unreferenced data items are not included in the compiled module. This
reduces the amount of storage used, allowing a larger program to be
compiled. You cannot look at or assign to an unreferenced data item
during debugging when the *NOUNREF option is chosen. The
unreferenced data items still appear in the cross-reference listings produced
by specifying OPTION(*XREF).

*NOEVENTF
Do not create an Event File for use by CoOperative Development
Environment/400 (CODE/400). CODE/400 uses this file to provide error
feedback integrated with the CODE/400 editor. An Event File is normally
created when you create a module or program from within CODE/400.

*EVENTF
Create an Event File for use by CoOperative Development
Environment/400 (CODE/400). The Event File is created as a member in
file EVFEVENT in the library where the created module or program object
is to be stored. If the file EVFEVENT does not exist it is automatically
created. The Event File member name is the same as the name of the object
being created.

CODE/400 uses this file to provide error feedback integrated with the
CODE/400 editor. An Event File is normally created when you create a
module or program from within CODE/400.

DBGVIEW
Specifies which level of debugging is available for the compiled program
object, and which source views are available for source-level debugging.

*STMT
Allows the program object to be debugged using the Line Numbers or
Statement Numbers of the compiler listing. Line Numbers are shown on
the left-most column of the source section of the compiler listing when
OPTION(*NOSRCSTMT) is specified. Statement Numbers are shown on
the right-most column of the source section of the compiler listing when
OPTION(*SRCSTMT) is specified.

*SOURCE
Generates the source view for debugging the compiled program object.
This view is not available if the root source member is a DDM file. Also, if
changes are made to any source members after the compile and before
attempting to debug the program, the views for those source members
may not be usable.

CRTBNDRPG Command

Appendix C. The Create Commands 485

#
#

#
#
#
#
#
#
#

*LIST
Generates the listing view for debugging the compiled program object. The
information contained in the listing view is dependent on whether
*SHOWCPY, *EXPDDS, and *SRCSTMT are specified for the OPTION
parameter.

Note: The listing view will not show any indentation that you may have
requested using the Indent option.

*COPY
Generates the source and copy views for debugging the compiled program
object. The source view for this option is the same source view generated
for the *SOURCE option. The copy view is a debug view which has all the
/COPY source members included. These views will not be available if the
root source member is a DDM file. Also, if changes are made to any source
members after the compile and before attempting to debug the program,
the views for those source members may not be usable.

*ALL
Generates the listing, source and copy views for debugging the compiled
program object. The information contained in the listing view is dependent
on whether *SHOWCPY, *EXPDDS, and *SRCSTMT are specified for the
OPTION parameter.

*NONE
Disables all of the debug options for debugging the compiled program
object.

DBGENCKEY
Specifies the encryption key to be used to encrypt program source that is
embedded in debug views.

*NONE
No encryption key is specified.

character-value
Specify the key to be used to encrypt program source that is embedded in
debug views stored in the module object. The length of the key can be
between 1 and 16 bytes. A key of length 1 to 15 bytes will be padded to 16
bytes with blanks for the encryption. Specifying a key of length zero is the
same as specifying *NONE.

If the key contains any characters which are not invariant over all code
pages, it will be up to the user to ensure that the target system uses the
same code page as the source system, otherwise the key may not match
and the decryption may fail. If the encryption key must be entered on
systems with differing code pages, it is recommended that the key be
made of characters which are invariant for all EBCDIC code pages.

OUTPUT
Specifies if a compiler listing is generated.

*PRINT
Produces a compiler listing, consisting of the ILE RPG program source and
all compile-time messages. The information contained in the listing is
dependent on whether *XREF, *SECLVL, *SHOWCPY, *EXPDDS, *EXT,
*SHOWSKP, and *SRCSTMT are specified for the OPTION parameter.

*NONE
Do not generate the compiler listing.

CRTBNDRPG Command

486 ILE RPG Programmer’s Guide

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

OPTIMIZE
Specifies the level of optimization, if any, of the program.

*NONE
Generated code is not optimized. This is the fastest in terms of translation
time. It allows you to display and modify variables while in debug mode.

*BASIC
Some optimization is performed on the generated code. This allows user
variables to be displayed but not modified while the program is in debug
mode.

*FULL
Optimization which generates the most efficient code. Translation time is
the longest. In debug mode, user variables may not be modified but may
be displayed although the presented values may not be current values.

INDENT
Specifies whether structured operations should be indented in the source
listing for enhanced readability. Also specifies the characters that are used to
mark the structured operation clauses.

Note: Any indentation that you request here will not be reflected in the listing
debug view that is created when you specify DBGVIEW(*LIST).

*NONE
Structured operations will not be indented in the source listing.

character-value
The source listing is indented for structured operation clauses. Alignment
of statements and clauses are marked using the characters you choose. You
can choose any character string up to 2 characters in length. If you want to
use a blank in your character string, you must enclose the string in single
quotation marks.

Note: The indentation may not appear as expected if there are errors in the
program.

CVTOPT
Specifies how the ILE RPG compiler handles date, time, timestamp, graphic
data types, and variable-length data types which are retrieved from externally
described database files.

*NONE
Ignores variable-length database data types and use the native RPG date,
time, timestamp and graphic data types.

*DATETIME
Specifies that date, time, and timestamp database data types are to be
declared as fixed-length character fields.

*GRAPHIC
Specifies that double-byte character set (DBCS) graphic data types are to be
declared as fixed-length character fields.

*VARCHAR
Specifies that variable-length character data types are to be declared as
fixed-length character fields.

*VARGRAPHIC
Specifies that variable-length double-byte character set (DBCS) graphic data
types are to be declared as fixed-length character fields.

CRTBNDRPG Command

Appendix C. The Create Commands 487

SRTSEQ
Specifies the sort sequence table that is to be used in the ILE RPG source
program.

*HEX
No sort sequence table is used.

*JOB
Use the SRTSEQ value for the job when the *PGM is created.

*JOBRUN
Use the SRTSEQ value for the job when the *PGM is run.

*LANGIDUNQ
Use a unique-weight table. This special value is used in conjunction with
the LANGID parameter to determine the proper sort sequence table.

*LANGIDSHR
Use a shared-weight table. This special value is used in conjunction with
the LANGID parameter to determine the proper sort sequence table.

sort-table-name
Enter the qualified name of the sort sequence table to be used with the
program.

*LIBL
The system searches the library list to find the library where the sort
sequence table is stored.

*CURLIB
The current library is used to find the sort sequence table. If you have not
specified a current library, QGPL is used.

library-name
Enter the name of the library where the sort sequence table is stored.

If you want to use the SRTSEQ and LANGID parameters to determine the
alternate collating sequence, you must also specify ALTSEQ(*EXT) on the
control specification.

LANGID
Specifies the language identifier to be used when the sort sequence is
*LANGIDUNQ and *LANGIDSHR. The LANGID parameter is used in
conjunction with the SRTSEQ parameter to select the sort sequence table.

*JOBRUN
Use the LANGID value associated with the job when the RPG program is
executed.

*JOB
Use the LANGID value associated with the job when the RPG program is
created.

language-identifier
Use the language identifier specified. (For example, FRA for French and
DEU for German.)

REPLACE
Specifies if a new program is created when a program of the same name
already exists in the specified (or implied) library. The intermediate module
created during the processing of the CRTBNDRPG command are not subject to

CRTBNDRPG Command

488 ILE RPG Programmer’s Guide

the REPLACE specifications, and have an implied REPLACE(*NO) against the
QTEMP library. The intermediate modules is deleted once the CRTBNDRPG
command has completed processing.

*YES
A new program is created in the specified library. The existing program of
the same name in the specified library is moved to library QRPLOBJ.

*NO
A new program is not created if a program of the same name already
exists in the specified library. The existing program is not replaced, a
message is displayed, and compilation stops.

USRPRF
Specifies the user profile that will run the created program object. The profile
of the program owner or the program user is used to run the program and to
control which objects can be used by the program (including the authority the
program has for each object). This parameter is not updated if the program
already exists. To change its value, you must delete the program and recompile
using the new value (or, if the constituent *MODULE objects exist, you may
choose to invoke the CRTPGM command).

*USER
The program runs under the user profile of the program’s user.

*OWNER
The program runs under the user profile of both the program’s user and
owner. The collective set of object authority in both user profiles are used
to find and access objects while the program is running. Any objects
created during the program are owned by the program’s user.

AUT
Specifies the authority given to users who do not have specific authority to the
object, who are not on the authorization list, and whose user group has no
specific authority to the object. The authority can be altered for all users or for
specified users after the program is created with the CL commands Grant
Object Authority (GRTOBJAUT) or Revoke Object Authority (RVKOBJAUT).
For further information on these commands, see the CL and APIs section of the
Programming category in the i5/OS Information Center at this Web site -
http://www.ibm.com/systems/i/infocenter/.

*LIBCRTAUT
The public authority for the object is taken from the CRTAUT keyword of
the target library (the library that contains the object). The value is
determined when the object is created. If the CRTAUT value for the library
changes after the create, the new value will not affect any existing objects.

*ALL
Authority for all operations on the program object, except those limited to
the owner or controlled by authorization list management authority. The
user can control the program object’s existence, specify this security for it,
change it, and perform basic functions on it, but cannot transfer its
ownership.

*CHANGE
Provides all data authority and the authority to perform all operations on
the program object except those limited to the owner or controlled by
object authority and object management authority. The user can change the
object and perform basic functions on it.

CRTBNDRPG Command

Appendix C. The Create Commands 489

http://www.ibm.com/systems/i/infocenter/

*USE
Provides object operational authority and read authority; that is, authority
for basic operations on the program object. The user is prevented from
changing the object.

*EXCLUDE
The user is prevented from accessing the object.

authorization-list name
Enter the name of an authorization list of users and authorities to which
the program is added. The program object will be secured by this
authorization list, and the public authority for the program object will be
set to *AUTL. The authorization list must exist on the system when the
CRTBNDRPG command is issued.

Note: Use the AUT parameter to reflect the security requirements of your
system. The security facilities available are described in detail in the
Security reference manual.

TRUNCNBR
Specifies if the truncated value is moved to the result field or an error is
generated when numeric overflow occurs while running the program.

Note: The TRUNCNBR option does not apply to calculations performed
within expressions. (Expressions are found in the Extended-Factor 2
field.) If overflow occurs for these calculations, an error will always
occur. In addition, overflow is always signalled for any operation where
the value that is assigned to an integer or unsigned field is out of range.

*YES
Ignore numeric overflow and move the truncated value to the result field.

*NO
When numeric overflow is detected, a run time error is generated with
error code RNX0103.

FIXNBR
Specifies whether decimal data that is not valid is fixed by the compiler.

*NONE
Indicates that decimal data that is not valid will result in decimal data
errors during run time if used.

*ZONED
Zoned-decimal data that is not valid will be fixed by the compiler on the
conversion to packed data. Blanks in numeric fields will be treated as
zeroes. Each decimal digit will be checked for validity. If a decimal digit is
not valid, it is replaced with zero. If a sign is not valid, the sign will be
forced to a positive sign code of hex ’F’. If the sign is valid, it will be
changed to either a positive sign hex ’F’ or a negative sign hex ’D’, as
appropriate. If the resulting packed data is not valid, it will not be fixed.

*INPUTPACKED
Indicates that if packed decimal data that is not valid is encountered while
processing input specifications, the internal variable will be set to zero.

TGTRLS
Specifies the release level of the operating system on which you intend to use
the object being created. In the examples given for the *CURRENT and *PRV
values, and when specifying the target-release value, the format VxRxMx is

CRTBNDRPG Command

490 ILE RPG Programmer’s Guide

used to specify the release, where Vx is the version, Rx is the release, and Mx
is the modification level. For example, V2R3M0 is version 2, release 3,
modification level 0.

Valid values for this parameter change every release. The possible values are:

*CURRENT
The object is to be used on the release of the operating system currently
running on your system. For example, if V2R3M5 is running on the
system, *CURRENT means that you intend to use the object on a system
with V2R3M5 installed. You can also use the object on a system with any
subsequent release of the operating system installed.

Note: If V2R3M5 is running on the system, and the object is to be used on
a system with V2R3M0 installed, specify TGTRLS(V2R3M0), not
TGTRLS(*CURRENT).

*PRV
The object is to be used on the previous release with modification level 0
of the operating system. For example, if V2R3M5 is running on your
system, *PRV means you intend to use the object on a system with
V2R2M0 installed. You can also use the object on a system with any
subsequent release of the operating system installed.

target-release
Specify the release in the format VxRxMx. You can use the object on a
system with the specified release or with any subsequent release of the
operating system installed.

Valid values depend on the current version, release, and modification level,
and they change with each new release. If you specify a target-release that is
earlier than the earliest release level supported by this command, an error
message is sent indicating the earliest supported release.

Note: The current version of the command may support options that are not
available in previous releases of the command. If the command is used
to create objects that are to be used on a previous release, it will be
processed by the compiler appropriate to that release, and any
unsupported options will not be recognized. The compiler will not
necessarily issue any warnings regarding options that it is unable to
process.

ALWNULL
Specifies how the ILE RPG module will be allowed to use records containing
null-capable fields from externally described database files.

*NO
Specifies that the ILE RPG module will not process records with null-value
fields from externally-described files. If you attempt to retrieve a record
containing null values, no data in the record is accessible to the ILE RPG
module and a data-mapping error occurs.

*INPUTONLY
Specifies that the ILE RPG module can successfully read records with
null-capable fields containing null values from externally-described
input-only database files. When a record containing null values is
retrieved, no data-mapping errors occur and the database default values
are placed into any fields that contain null values. The module cannot do
any of the following:
v use null-capable key fields

CRTBNDRPG Command

Appendix C. The Create Commands 491

v create or update records containing null-capable fields
v determine whether a null-capable field is actually null while the module

is running
v set a null-capable field to be null.

*USRCTL
Specifies that the ILE RPG module can read, write, and update records
with null values from externally-described database files. Records with null
keys can be retrieved using keyed operations. The module can determine
whether a null-capable field is actually null, and it can set a null-capable
field to be null for output or update. The programmer is responsible for
ensuring that fields containing null values are used correctly within the
module.

*YES
Same as *INPUTONLY.

STGMDL
Specifies the storage model attribute of the program.

*SNGLVL
The program is created with single-level storage model. When a
single-level storage model program is activated and run, it is supplied
single-level storage for automatic and static storage. A single-level storage
program runs only in a single-level storage activation group.

*TERASPACE
The program is created with teraspace storage model. When a teraspace
storage model program is activated and run, it is supplied teraspace
storage for automatic and static storage. A teraspace storage program runs
only in a teraspace storage activation group.

*INHERIT
The program is created with inherit storage model. When activated, the
program adopts the storage model of the activation group into which it is
activated. An equivalent view is that it inherits the storage model of its
caller. When the *INHERIT storage model is selected, *CALLER must be
specified for the Activation group (ACTGRP) parameter.

BNDDIR
Specifies the list of binding directories that are used in symbol resolution.

*NONE
No binding directory is specified.

binding-directory-name
Specify the name of the binding directory used in symbol resolution.

The directory name can be qualified with one of the following library
values:

*LIBL
The system searches the library list to find the library where the binding
directory is stored.

*CURLIB
The current library for the job is searched. If no library is specified as the
current library for the job, library QGPL is used.

*USRLIBL
Only the libraries in the user portion of the job’s library list are searched.

CRTBNDRPG Command

492 ILE RPG Programmer’s Guide

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

library-name
Specify the name of the library to be searched.

ACTGRP
Specifies the activation group this program is associated with when it is called.

*STGMDL
If STGMDL(*TERASPACE) is specified, the program will be activated into
the QILETS activation group when it is called. Otherwise, this program
will be activated into the QILE activation group when it is called.

*NEW
When this program is called, it is activated into a new activation group.

*CALLER
When this program is called, it is activated into the caller’s activation
group.

activation-group-name
Specify the name of the activation group to be used when this program is
called.

ENBPFRCOL
Specifies whether performance collection is enabled.

*PEP
Performance statistics are gathered on the entry and exit of the program
entry procedure only. This applies to the actual program-entry procedure
for a program, not to the main procedure of the modules within the
program. This is the default.

*NEW
When this program is called, it is activated into a new activation group.

*ENTRYEXIT
Performance statistics are gathered on the entry and exit of all procedures
of the program.

*FULL
Performance statistics are gathered on entry and exit of all procedures.
Also, statistics are gathered before and after each call to an external
procedure.

DEFINE
Specifies condition names that are defined before the compilation begins. Using
the parameter DEFINE(condition-name) is equivalent to coding the /DEFINE
condition-name directive on the first line of the source file.

*NONE
No condition names are defined. This is the default.

condition-name
Up to 32 condition names can be specified. Each name can be up to 50
characters long. The condition names will be considered to be defined at
the start of compilation.

PRFDTA
Specifies the program profiling data attribute for the program. Program
profiling is an advanced optimization technique used to reorder procedures
and code within the procedures based on statistical data (profiling data).

*NOCOL
This program is not enabled to collect profiling data. This is the default.

CRTBNDRPG Command

Appendix C. The Create Commands 493

|
|
|
|

*COL
The program is enabled to collect profiling data. *COL can be specified
only when the optimization level of the module is *FULL, and when
compiling with a target release of *CURRENT.

LICOPT
Specifies one or more Licensed Internal Code compile-time options. This
parameter allows individual compile-time options to be selected, and is
intended for the advanced programmer who understands the potential benefits
and drawbacks of each selected type of compiler option.

INCDIR
Specifies one or more directories to add to the search path used by the
compiler to find copy files.

The compiler will search the directories specified here if the relatively specified
copy files in the source program can not be resolved by looking in the current
directory.If the copy file cannot be found in the current directory or the
directories specified in the INCDIR parameter, the directories specified in the
RPGINCDIR environment variable will be searched, followed by the directory
containing the main source file.

*NONE
No directories are specified.

directory
Specify up to 32 directories in which to search for copy files.

PGMINFO Parameter:
This option specifies whether program interface information should be
generated and where it should be generated. Specify the option values in the
following order:

generate
Specifies whether program interface information should be generated. The
possible values are:

*NO
Program interface information will not be generated.

*PCML
Specifies that PCML (Program Call Markup Language) should be
generated. The generated PCML makes it easier for Java methods to
call the procedures in this RPG module, with less Java code.

location
Specifies the location for the generated program information if the generate
parameter is *PCML. The possible values are:

*STMF
Specifies that the program information should be generated into a
stream file. The name of a stream file that will contain the generated
information must be specified on the INFOSTMF option.

*MODULE
Specifies that the program information should be stored in the RPG
module. For CRTBNDRPG, a module is created as the first step before
creating a program.

*ALL
Specifies that the program information should be generated into a

CRTBNDRPG Command

494 ILE RPG Programmer’s Guide

#
#
#
#

#
#
#

#
#

#
#
#
#

#
#
#

#
#
#
#

#
#
#
#

#
#

stream file and also stored in the module. The name of a stream file
that will contain the generated information must be specified on the
INFOSTMF option.

INFOSTMF

Specifies the path name of the stream file to contain the generated program
interface information specifed on the PGMINFO option.

The path name can be either absolutely or relatively qualified. An absolute
path name starts with ’/’; a relative path name starts with a character other
than ’/’.

If absolutely-qualified, the path name is complete. If relatively-qualified, the
path name is completed by appending the job’s current working directory to
the path name.

This parameter can only be specified when the PGMINFO parameter has a
value other than *NO.

PPGENOPT
Specifies the preprocessor generation options to use when the source code is
compiled.

The possible options are:

*NONE
Run the entire compiler against the source file. Do not copy the
preprocessor output to a file.

*DFT
Run the preprocessor against the input source. *RMVCOMMENT,
*EXPINCLUDE and *NOSEQSRC will be used as the options for
generating the preprocessor output. Use PPSRCFILE and PPSRCMBR to
specify an output source file and member, or PPSRCSTMF to specify a
stream file to contain the preprocessor output.

*RMVCOMMENT
Remove comments, blank lines, and most directives during preprocessing.
Retain only the RPG specifications and any directives necessary for the
correct interpretation of the specifications..

*NORMVCOMMENT
Preserve comments, blank lines and listing-control directives (for example
/EJECT, /TITLE) during preprocessing. Transform source-control directives
(for example /COPY, /IF) to comments during preprocessing.

*EXPINCLUDE
Expand /INCLUDE directives in the generated output file.

*NOEXPINCLUDE
/INCLUDE directives are placed unchanged in the generated output file.

Note: /COPY directives are always expanded

*SEQSRC
If PPSRCFILE is specified, the generated output member has sequential
sequence numbers, starting at 000001 and incremented by 000001.

*NOSEQSRC
If PPSRCFILE is specified, the generated output member has the same
sequence numbers as the original source read by the preprocessor

CRTBNDRPG Command

Appendix C. The Create Commands 495

#
#
#

PPSRCFILE
Specifies the source file name and library for the preprocessor output.

source-file-name
Specify the name of the source file for the preprocessor output.

The possible library values are:

*CURLIB
The preprocessor output is created in the current library. If a job does
not have a current library, the preprocessor output file is created in the
QGPL library.

library-name
Specify the name of the library for the preprocessor output.

PPSRCMBR
Specifies the name of the source file member for the preprocessor output.

*PGM
The name supplied on the PGM parameter is used as the preprocessor
output member name.

member-name
Specify the name of the member for the preprocessor output.

PPSRCSTMF
Specifies the path name of the stream file for the preprocessor output.

*SRCSTMF
The path name supplied on the SRCSTMF parameter is used as the
preprocessor output path name. The file will have the extension ’.i’.

’path-name’
Specify the path name for the preprocessor output stream file.

The path name can be either absolutely or relatively-qualified. An absolute
path name starts with ’/’; a relative path name starts with a character other
than ’/’.

If absolutely-qualified, the path name is complete. If relatively-qualified,
the path name is completed by appending the job’s current working
directory to the path name.

CRTRPGMOD Command
The Create RPG Module (CRTRPGMOD) command compiles ILE RPG source code
to create a module object (*MODULE). The entire syntax diagram for the
CRTRPGMOD command is shown below.

Job: B,I Pgm: B,I REXX: B,I Exec

�� CRTRPGMOD
*CURLIB/ *CTLSPEC

MODULE (module-name)
library-name/

�

CRTBNDRPG Command

496 ILE RPG Programmer’s Guide

�
*LIBL/ QRPGLESRC

SRCFILE (source-file-name)
*CURLIB/
library-name/

�

�
*MODULE

SRCMBR (source-file-member-name)
SRCSTMF (source-stream-file-name)

�

�
(1)

*PRINT
OUTPUT (*NONE)

10
GENLVL (severity-level-value)

�

�
*SRCMBRTXT

TEXT (*BLANK)
'description'

OPTION (OPTION Details)
�

�
*STMT

DBGVIEW (*SOURCE)
*LIST
*COPY
*ALL
*NONE

*NONE
DBGENCKEY (character-value)

�

�
*PRINT

OUTPUT (*NONE)
*NONE

OPTIMIZE (*BASIC)
*FULL

�

�
*NONE

INDENT (character-value)

�

�
*NONE

CVTOPT ()

*DATETIME *GRAPHIC *VARCHAR *VARGRAPHIC

�

�
*HEX

SRTSEQ (*JOB)
*JOBRUN
*LANGIDUNQ
*LANGIDSHR

sort-table-name
*LIBL/
*CURLIB/
library-name/

�

�
*JOBRUN

LANGID (*JOB)
language-identifier

*YES
REPLACE (*NO)

�

�
*LIBCRTAUT

AUT (*ALL)
*CHANGE
*USE
*EXCLUDE
authorization-list-name

*YES
TRUNCNBR (*NO)

�

CRTRPGMOD Command

Appendix C. The Create Commands 497

�
*NONE

FIXNBR (*ZONED)
*INPUTPACKED

*CURRENT
TGTRLS (*PRV)

VxRxMx

�

�
*NO

ALWNULL (*INPUTONLY)
*USRCTL
*YES

*INHERIT
STGMDL (*SNGLVL)

*TERASPACE

�

�
*NONE

BNDDIR ()
*LIBL/

binding-directory-name
*CURLIB/
library-name/

�

�
*PEP

ENBPFRCOL (*ENTRYEXIT)
*FULL

*NONE
DEFINE (condition-name)

�

�
*NOCOL

PRFDTA (*COL)
LICOPT (options) *NONE

INCDIR (directory)

�

�
*NO

*STMF
PGMINFO (*PCML *MODULE)

*ALL

�

�
INFOSTMF (program-interface-stream-file-name)

�

�
*NONE

PPGENOPT ()
*DFT

*RMVCOMMENT *EXPINCLUDE *NOSEQSRC

*NORMVCOMMENT *NOEXPINCLUDE *SEQSRC

�

�
*CURLIB

PPSRCSFILE (output-source-file-name)
library-name

�

�
*MODULE

PPSRCSMBR (output-source-member-name)

�

�
*SRCSTMF

PPSRCSTMF (output-stream-file-name)

��

Notes:

1 All parameters preceding this point can be specified by position.

CRTRPGMOD Command

498 ILE RPG Programmer’s Guide

OPTION Details:

*XREF

*NOXREF

*GEN

*NOGEN

*NOSECLVL

*SECLVL

*SHOWCPY

*NOSHOWCPY

*EXPDDS

*NOEXPDDS
�

�
*EXT

*NOEXT

*NOSHOWSKP

*SHOWSKP

*NOSRCSTMT

*SRCSTMT

*DEBUGIO

*NODEBUGIO

*NOEVENTF

*EVENTF

Description of the CRTRPGMOD command
For a description of the parameters, options and variables for the CRTRPGMOD
command see the corresponding description in the CRTBNDRPG command. They
correspond exactly, except that those in CRTRPGMOD refer to modules and not to
programs. (When looking at the CRTBNDRPG descriptions, keep in mind that
CRTRPGMOD does not have the following parameters: ACTGRP, DFTACTGRP,
USRPRF.)

The meaning of the STGMDL parameter for the CRTRPGMOD command differs
from the meaning for the CRTBNDRPG command.

STGMDL
Specifies the type of storage to be used by the module.

*INHERIT
The module is created with inherit storage model. An inherit storage
model module can be bound into programs and service programs with a
storage model of single-level, teraspace or inherit. The type of storage used
for automatic and static storage for single-level and teraspace storage
model programs matches the storage model of the object. An inherit
storage model object will inherit the storage model of its caller.

*SNGLVL
The module is created with single-level storage model. A single level
storage model module can only be bound into programs and service
programs that use single level storage. These programs and service
programs use single-level storage for automatic and static storage.

*TERASPACE
The module is created with teraspace storage model. A teraspace storage
model module can only be bound into programs and service programs that
use teraspace storage. These programs and service programs use teraspace
storage for automatic and static storage.

A description of CRTRPGMOD is also available online. Enter the command name
on a command line, press PF4 (Prompt) and then press PF1 (Help) for any
parameter you want information on.

CRTRPGMOD Command

Appendix C. The Create Commands 499

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

CRTRPGMOD Command

500 ILE RPG Programmer’s Guide

Appendix D. Compiler Listings

Compiler listings provide you with information regarding the correctness of your
code with respect to the syntax and semantics of the RPG IV language. The listings
are designed to help you to correct any errors through a source editor; as well as
assist you while you are debugging a module. This section tells you how to
interpret an ILE RPG compiler listing. See “Using a Compiler Listing” on page 67
for information on how to use a listing.

To obtain a compiler listing specify OUTPUT(*PRINT) on either the CRTRPGMOD
command or the CRTBNDRPG command. (This is their default setting.) The
specification OUTPUT(*NONE) will suppress a listing.

Table 59 summarizes the keyword specifications and their associated compiler
listing information.

Table 59. Sections of the Compiler Listing

Listing Section1 OPTION2 Description

Prologue Command option summary

Source listing Source specifications

In-line diagnostic messages Errors contained within one line of source

/COPY members *SHOWCPY /COPY member source records

Skipped statements *SHOWSKP Source lines excluded by conditional compilation
directives.

Externally described files *EXPDDS Generated specifications

Matching field table Lengths that are matched based on matching fields

Additional diagnostic messages Errors spanning more than one line of source

Field Positions in Output Buffer Start and end positions of programmed-described
output fields

/COPY member table List of /COPY members and their external names

Compile-time data Compilation source records

Alternate collating sequences ALTSEQ records and table or NLSS information and
table

File translation File translation records

Arrays Array records

Tables Table records

Key field information *EXPDDS Key field attributes

Cross reference *XREF File and record, and field and indicator references

EVAL-CORR Summary *XREF4 Summary of subfields for EVAL-CORR operations

External references *EXT List of external procedures and fields referenced during
compilation

Message summary List of messages and number of times they occurred

Second-level text *SECLVL Second-level text of messages

Final summary Message and source record totals, and final compilation
message

© Copyright IBM Corp. 1994, 2010 501

Table 59. Sections of the Compiler Listing (continued)

Listing Section1 OPTION2 Description

Code generation errors3 Errors (if any) which occur during code generation
phase.

Binding section3 Errors (if any) which occur during binding phase for
CRTBNDRPG command

Notes:

1. The information contained in the listing section is dependent on whether *SRCSTMT or *NOSRCSTMT is
specified for the OPTION parameter. For details on how this information changes, see “″*NOSRCSTMT Source
Heading″” on page 508 and “″*SRCSTMT Source Heading″” on page 508. *SRCSTMT allows you to request that
the compiler use SEU sequence numbers and source IDs when generating statement numbers for debugging.
Otherwise, statement numbers are associated with the Line Numbers of the listing and the numbers are assigned
sequentially.

2. The OPTION column indicates what value to specify on the OPTION parameter to obtain this information. A
blank entry means that the information will always appear if OUTPUT(*PRINT) is specified.

3. The sections containing the code generation errors and binding errors appear only if there are errors. There is no
option to suppress these sections.

4. If OPTION(*XREF) is specified, the summary lists information about all subfields, whether or not they are
handled by the EVAL-CORR operation. If OPTION(*NOXREF) is specified, the summary lists only information
about subfields that are not handled by the EVAL-CORR operation. The EVAL-CORR summary section is not
printed if there are no EVAL-CORR operations.

Reading a Compiler Listing
The following text contains a brief discussion and an example of each section of
the compiler listing. The sections are presented in the order in which they appear
in a listing.

Prologue
The prologue section summarizes the command parameters and their values as
they were processed by the CL command analyzer. If *CURLIB or *LIBL was
specified, the actual library name is listed. Also indicated in the prologue is the
effect of overrides. Figure 240 on page 503 illustrates how to interpret the Prologue
section of the listing for the program MYSRC, which was compiled using the
CRTBNDRPG command.

Compiler Listings

502 ILE RPG Programmer’s Guide

�1� Page Heading
The page heading information includes the product information line 1b
and the text supplied by a /TITLE directive 1a. “Customizing a Compiler
Listing” on page 68 describes how you can customize the page heading
and spacing in a compiler listing.

�2� Module or Program
The name of the created module object (if using CRTRPGMOD) or the
name of the created program object (if using CRTBNDRPG)

�3� Source member
The name of the source member from which the source records were
retrieved (this can be different from �2� if you used command overrides).

�4� Source
The name of the file actually used to supply the source records. If the file
is overridden, the name of the overriding source is used.

�5�Compiler options
The compiler options in effect at the time of compilation, as specified on
either the CRTRPGMOD command or the CRTBNDRPG command.

Title from first source line �1a�
5722WDS V5R2M0 020719 RN IBM ILE RPG MYLIB/MYSRC �1b� ISERIES1 02/08/15 12:58:46 Page 1

Command : CRTBNDRPG
Issued by : MYUSERID

Program : MYSRC �2�
Library : MYLIB

Text 'description' : Text specified on the Command
Source Member : MYSRC �3�
Source File : QRPGLESRC �4�
Library : MYLIB
CCSID : 37

Text 'description' : Text specified on the Source Member
Last Change : 98/07/27 12:50:13
Generation severity level . . . : 10
Default activation group : *NO
Compiler options : *XREF *GEN *SECLVL *SHOWCPY �5�

*EXPDDS *EXT *SHOWSKP *NOSRCSTMT
*DEBUGIO *NOEVENTF

Debugging views : *ALL
Output : *PRINT
Optimization level : *NONE
Source listing indentation . . . : '| ' �6�
Type conversion options : *NONE
Sort sequence : *HEX
Language identifier : *JOBRUN
Replace program : *YES
User profile : *USER
Authority : *LIBCRTAUT
Truncate numeric : *YES
Fix numeric : *ZONED *INPUTPACKED
Target release : *CURRENT
Allow null values : *NO
Binding directory : BNDDIRA BNDDIRB
Library : CMDLIBA CMDLIBB

Activation group : CMDACTGRP
Define condition names : ABC �7�

DEF
Enable performance collection . : *PEP
Profiling data : *NOCOL
Generate program interface . . . : *PCML
Program interface stream file . : /home/mydir/MYSRC.pcml �8�
Include directory : /projects/ABC Electronics Corporation/copy files/prototypes

: /home/mydir �9�

Figure 240. Sample Prologue for CRTBNDRPG

Compiler Listings

Appendix D. Compiler Listings 503

�6�Indentation Mark
The character used to mark structured operations in the source section of
the listing.

�7�Define condition names
Specifies the condition names that take effect before the source is read.

�8� Specifies the IFS file that the PCML (Program Call Markup Language) is to
be written to.

�9� Specifies the directories that can be searched for /COPY or /INCLUDE
files.

Source Section
The source section shows records that comprise the ILE RPG source specifications.
The root source member records are always shown. If OPTION(*EXPDDS) is also
specified, then the source section shows records generated from externally
described files, and marks them with a ’=’ in the column beside the line number.
These records are not shown if *NOEXPDDS is specified. If OPTION(*SHOWCPY)
is specified, then it also shows the records from /COPY members specified in the
source, and marks them with a ’+’ in the column beside the line number. These
records are not shown if *NOSHOWCPY is specified.

The source section also shows the conditional compilation process. All lines with
/IF, /ELSEIF, /ELSE and /ENDIF directives and source lines selected by the /IF
groups are printed and given a listing line number. If OPTION(*SHOWSKP) is
specified, it shows all statements that have been excluded by the /IF, /ELSEIF, and
/ELSE directives, and marks them with a ’-------’ in the column beside the
statement. Line numbers in the listing are not incremented for excluded lines. All
skipped statements are printed exactly as specified, but are not interpreted in any
way. For example, an excluded statement with an /EJECT directive does not cause
a page break. Similarly, /SPACE, /TITLE, /COPY and /EOF compiler directives
are ignored if they are encountered in excluded lines. These statements are not
shown if the default OPTION(*NOSHOWSKP) is specified; instead a message is
printed giving the number of lines excluded.

The source section identifies any syntax errors in the source, and includes a
match-field table, when appropriate.

If OPTION(*NOSRCSTMT) is specified, line numbers are printed sequentially on
the left side of the listing to reflect the compiled source line numbers. Source IDs
and SEU sequence numbers are printed on the right side of the listing to identify
the source members and records respectively. For example, Figure 241 on page 505
shows a section of the listing with a /COPY statement in line 35. In the root source
member, the next line is a DOWEQ operation. In the listing, however, the DOWEQ
operation is on line 39. The three intervening lines shown in the listing are from
the /COPY source member.

Compiler Listings

504 ILE RPG Programmer’s Guide

If OPTION(*SRCSTMT) is specified, sequence numbers are printed on the left side
of the listing to reflect the SEU sequence numbers. Statement numbers are printed
on the right side of the listing. The statement number information is identical to
the source ID and SEU sequence number information. For example, Figure 242
shows a section of the listing that has a /COPY statement with sequence number
001600. The next line in the root source member is the same as the line with the
next sequence number in the listing: sequence number 001700. The three
intervening lines are assigned the SEU sequence numbers from the /COPY source
member. The corresponding statement numbers are genereated from source IDs
and SEU sequence numbers of the root and /COPY source members.

Figure 243 on page 506 shows the entire source section for MYSRC with
OPTION(*NOSRCSTMT) specified.

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

34 C MOVE '123' BI_FLD1 001500
35 C/COPY MYCPY 971104 001600

--
* RPG member name : MYCPY * 5
* External name : RPGGUIDE/QRPGLESRC(MYCPY) * 5
* Last change : 98/07/24 16:20:04 * 5
* Text 'description' : Text on copy member * 5
--

36+C Blue(1) DSPLY 5000100
37+C Green(4) DSPLY 5000200
38+C Red(2) DSPLY 5000300
39 C *in20 doweq *OFF 001700

Figure 241. Sample Section of the Listing with OPTION(*NOSRCSTMT)

Seq <--------------------- Source Specifications --><---- Comments ----> Statement
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Number
001500 C MOVE '123' BI_FLD1 001500
001600 C/COPY MYCPY 971104 001600

--
* RPG member name : MYCPY * 5
* External name : RPGGUIDE/QRPGLESRC(MYCPY) * 5
* Last change : 98/07/24 16:20:04 * 5
* Text 'description' : Text on copy member * 5
--

000100+C Blue(1) DSPLY 5000100
000200+C Green(4) DSPLY 5000200
000300+C Red(2) DSPLY 5000300
001700 C *in20 doweq *OFF 001700

Figure 242. Sample Section of the Listing with OPTION(*SRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 505

5769WDS V5R2M0 020719 RN IBM ILE RPG MYLIB/MYSRC ISERIES1 02/08/15 14:21:00 Page 2
�1a�

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

S o u r c e L i s t i n g
1 H DFTACTGRP(*NO) ACTGRP('Srcactgrp') CCSID(*GRAPH:*SRC) 980727 000100
2 H OPTION(*NODEBUGIO) 980727 000200
3 H BNDDIR('SRCLIB1/BNDDIR1' : 'SRCLIB2/BNDDIR2' : '"ext.nam"') 971104 000300
4 H ALTSEQ(*SRC) 971104 000400
5 H FIXNBR(*ZONED) 980728 000500
6 H TEXT('Text specified on the Control Specification') 971104 000600

-- �2�
* Compiler Options in Effect: *
--
* Text 'description' : *
* Text specified on the Control Specification *
* Generation severity level . . . : 10 *
* Default activation group : *NO *
* Compiler options : *XREF *GEN *
* *SECLVL *SHOWCPY *
* *EXPDDS *EXT *
* *SHOWSKP *NOSRCSTMT *
* *NODEBUGIO *NOEVENTF *
* Optimization level : *NONE *
* Source listing indentation . . . : '| ' *
* Type conversion options : *NONE *
* Sort sequence : *HEX *
* Language identifier : *JOBRUN *
* User profile : *USER *
* Authority : *LIBCRTAUT *
* Truncate numeric : *YES *
* Fix numeric : *ZONED *INPUTPACKED *
* Allow null values : *NO *
* Binding directory from Command . : BNDDIRA BNDDIRB *
* Library : CMDLIBA CMDLIBB *
* Binding directory from Source . : BNDDIR1 BNDDIR2 *
* Library : SRCLIB1 SRCLIB2 *
* "ext.nam" *
* *LIBL *
* Activation group : Srcactgrp *
* Enable performance collection . : *PEP *
* Profiling data : *NOCOL *
--

7 FInFile IF E DISK 971104 000700
-- �3�
* RPG name External name *
* File name. : INFILE MYLIB/INFILE *
* Record format(s) : INREC INREC *
--

8 FKEYL6 IF E K DISK 971104 000800
--
* RPG name External name *
* File name. : KEYL6 MYLIB/KEYL6 *
* Record format(s) : REC1 REC1 *
* REC2 REC2 *
--

9 FOutfile O E DISK 971104 000900
--
* RPG name External name *
* File name. : OUTFILE MYLIB/OUTFILE *
* Record format(s) : OUTREC OUTREC *
--

10 D Blue S 4 DIM(5) CTDATA PERRCD(1) 971104 001000
11 D Green S 2 DIM(5) ALT(Blue) 971104 001100
12 D Red S 4 DIM(2) CTDATA PERRCD(1) 980727 001200
13 D DSEXT1 E DS 100 PREFIX(BI_) INZ(*EXTDFT) 980727 001300
14 D FLD3 E INZ('111') 980727 001400

Figure 243. Sample Source Part of the Listing (Part 1 of 3)

Compiler Listings

506 ILE RPG Programmer’s Guide

-- �4� 1
* Data structure : DSEXT1 * 1
* Prefix : BI_ : 0 * 1
* External format : REC1 : MYLIB/DSEXT1 * 1
* Format text : Record format description * 1
-- 1

�5�
15=D BI_FLD1 5A EXTFLD (FLD1) FLD1 description 1000001
16=D INZ (*BLANK) 1000002
17=D BI_FLD2 10A EXTFLD (FLD2) FLD2 description 1000003
18=D INZ (*BLANK) 1000004
19=D BI_FLD3 18A EXTFLD (FLD3) FLD3 description 1000005
20=D INZ ('111') 1000006
21=IINREC 2000001

-- 2
* RPG record format : INREC * 2
* External format : INREC : MYLIB/INFILE * 2
-- 2

22=I A 1 25 FLDA 2000002
23=I A 26 90 FLDB 2000003
24=I 13488 *VAR C 91 112 UCS2FLD 2000004
25=IREC1 3000001

-- 3
* RPG record format : REC1 * 3
* External format : REC1 : MYLIB/KEYL6 * 3
-- 3

26=I *ISO-D 1 10 FLD12 3000002
27=I A 11 13 FLD13 3000003
28=I A 14 17 FLD14 3000004
29=I A 18 22 FLD15 3000005
30=I 13488 C 23 32 FLDC 3000006
31=I 13488 *VAR C 33 44 FLDCV 3000007
32=I 835 G 45 54 FLDG 3000008
33=IREC2 4000001

-- 4
* RPG record format : REC2 * 4
* External format : REC2 : MYLIB/KEYL6 * 4
-- 4

34=I *ISO-D 1 10 FLD22 4000002
35=I A 11 13 FLD23 4000003
36=I A 14 17 FLD24 4000004
37=I A 18 22 FLD25 4000005

Line <--------------------- Source Specifications --><---- Comments ----> Src Seq
Number1....+....2....+<-------- 26 - 35 -------->....4....+....5....+....6....+....7....+....8....+....9....+...10 Id Number

38 C MOVE '123' BI_FLD1 001500
39 C/COPY MYCPY 971104 001600

-- �6�
* RPG member name : MYCPY * 5
* External name : MYLIB/QRPGLESRC(MYCPY) * 5
* Last change : 98/07/24 16:20:04 * 5
* Text 'description' : Text specified on Copy Member * 5
--

�7�
40+C Blue(1) DSPLY 5000100
41+C Green(4) DSPLY 5000200
42+C Red(2) DSPLY 5000300

�8�
43 C *in20 doweq *OFF 001700
44 C | READ InRec ----20 001800
45 C | if NOT *in20 001900
46 C FLDA | | DSPLY 002000
47 C | endif 002100
48 C enddo 002200
49 C write outrec 002300

�9�
50 C SETON LR---- 002400
47 C/DEFINE ABC 971104 002500
51 C/IF DEFINED(ABC) 971104 002600
52 C MOVEL 'x' Y 10 002700
54 C MOVEL 'x' Z 10 002800
55 C/ELSE 971104 002900

�10�
------ C MOVEL ' ' Y 10 971104 003000
------ C MOVEL ' ' Z 10 971104 003100

56 C/ENDIF 971104 003200

Figure 243. Sample Source Part of the Listing (Part 2 of 3)

Compiler Listings

Appendix D. Compiler Listings 507

�1a� *NOSRCSTMT Source Heading
The source heading shown in the above example was generated with
OPTION(*NOSRCSTMT) specified.

Line Number
Starts at 1 and increments by 1 for each source or generated record.
Use this number when debugging using statement numbers.

Ruler Line
This line adjusts when indentation is specified.

Do Number
Identifies the level of the structured operations. This number will
not appear if indentation is requested.

Page Line
Shows the first 5 columns of the source record.

Source Id
Identifies the source (either /COPY or DDS) of the record. For
/COPY members, it can be used to obtain the external member
name from the /COPY member table.

Sequence Number (on right side of listing)
Shows the SEU sequence number of the record from a member in a
source physical file. Shows an incremental number for records from
a /COPY member or records generated from DDS.

�1b� *SRCSTMT Source Heading
When OPTION(*SRCSTMT) is specified, the source heading changes to:

The Ruler Line, Do Number, and Page Line remain unchanged.

Sequence Number (on left side of listing)
Shows the SEU sequence number of the record from a member in a
source physical file. Shows an incremental number for records from
a /COPY member or records generated from DDS.

Statement Number
Shows the statement number generated from the source ID number
and the SEU sequence number as follows:
stmt_num = source_ID * 1000000 + source_SEU_sequence_number

Use this number when debugging using statement numbers.

Line <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Src Seq
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Id Number

57=OOUTREC 6000001
-- 6
* RPG record format : OUTREC * 6
* External format : OUTREC : MYLIB/OUTFILE * 6
-- 6

58=O FLDY 100A CHAR 100 6000002
59=O FLDZ 132A CHAR 32 6000003
60=O GRAPHFLD 156G GRPH 12 835 6000004

* * * * * E N D O F S O U R C E * * * * *

Figure 243. Sample Source Part of the Listing (Part 3 of 3)

�1b�
Seq <---------------------- Source Specifications ----------------------------><---- Comments ----> Do Page Change Statement
Number1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Num Line Date Number

Compiler Listings

508 ILE RPG Programmer’s Guide

�2� Compiler Options in Effect
Identifies the compiler options in effect. Displayed when compile-option
keywords are specified on the control specification.

�3� File/Record Information
Identifies the externally described file and the records it contains.

�4� DDS Information
Identifies from which externally described file the field information is
extracted. Shows the prefix value, if specified. Shows the format record text
if specified in the DDS.

�5� Generated Specifications
Shows the specifications generated from the DDS, indicated by ’=’ beside
the Line Number. Shows up to 50 characters of field text if it is specified in
the DDS. Shows the initial value as specified by the INZ keyword on the
definition specification. If INZ(*EXTDFT) is specified for externally
described data structure subfields, the DDS default value is displayed.
Default values that are too long to fit on one line are truncated and
suffixed with '...'.

�6� /COPY Member Information
Identifies which /COPY member is used. Shows the member text, if any.
Shows the date and time of the last change to the member.

�7� /COPY Member Records
Shows the records from the /COPY member, indicated by a ’+’ beside the
Line Number.

�8� Indentation
Shows how structured operations appear when you request that they be
marked.

�9� Indicator Usage
Shows position of unused indicators, when an indicator is used.

�10� OPTION(*SHOWSKP) Usage
Shows two statements excluded by an /IF directive, indicated by a ’-------’
beside the statements. If the OPTION(*NOSHOWSKP) was specified these
two statements would be replaced by: LINES EXCLUDED: 2.

Additional Diagnostic Messages
The Additional Diagnostic Messages section lists compiler messages which indicate
errors spanning more than one line. When possible, the messages indicate the line
number and sequence number of the source which is in error. Figure 244 shows an
example.

A d d i t i o n a l D i a g n o s t i c M e s s a g e s
Msg id Sv Number Seq Message text
*RNF7066 00 8 000800 Record-Format REC1 not used for input or output.
*RNF7066 00 8 000800 Record-Format REC2 not used for input or output.
*RNF7086 00 60 000004 RPG handles blocking for file INFILE. INFDS is updated only

when blocks of data are transferred.
*RNF7086 00 60 000004 RPG handles blocking for file OUTFILE. INFDS is updated

only when blocks of data are transferred.
* * * * * E N D O F A D D I T I O N A L D I A G N O S T I C M E S S A G E S * * * * *

Figure 244. Sample Additional Diagnostic Messages with OPTION(*NOSRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 509

If OPTION(*SRCSTMT) is specified, the messages will have only the statement
number shown. Figure 245 shows an example.

Output Buffer Positions
The Field Positions in Output Buffer Positions table is included in the listing
whenever the source contains programmed-described Output specifications. For
each variable or literal that is output, the table contains the line number of output
field specification and its start and end positions within the output buffer. Literals
that are too long for the table are truncated and suffixed with '...' with no ending
apostrophe (for example, 'Extremely long-litera...'). Figure 246 shows an example of
an Output Buffer Position table.

/COPY Member Table
The /COPY member table identifies any /COPY members specified in the source
and lists their external names. You can find the name and location of a member
using the Source ID number. The table is also useful as a record of what members
are used by the module/program. Figure 247 shows an example.

Compile-Time Data
The Compile-Time Data section includes information on ALTSEQ or NLSS tables,
and on tables and arrays. In this example, there is an alternate collating sequence
and two arrays, as shown in Figure 248 on page 511.

A d d i t i o n a l D i a g n o s t i c M e s s a g e s
Msg id Sv Statement Message text
*RNF7066 00 000800 Record-Format REC1 not used for input or output.
*RNF7066 00 000800 Record-Format REC2 not used for input or output.
*RNF7086 00 6000004 RPG handles blocking for file INFILE. INFDS is updated only

when blocks of data are transferred.
*RNF7086 00 6000004 RPG handles blocking for file OUTFILE. INFDS is updated

only when blocks of data are transferred.
* * * * * E N D O F A D D I T I O N A L D I A G N O S T I C M E S S A G E S * * * * *

Figure 245. Sample Additional Diagnostic Messages with OPTION(*SRCSTMT)

O u t p u t B u f f e r P o s i t i o n s
Line Start End Field or Constant
Number Pos Pos

58 1 100 FLDY
59 101 132 FLDZ
60 133 156 GRAPHFLD

* * * * * E N D O F O U T P U T B U F F E R P O S I T I O N * * * * *

Figure 246. Output Buffer Position Table

/ C o p y M e m b e r s
Line Src RPG name <-------- External name -------> CCSID <- Last change ->
Number Id Library File Member Date Time

39 5 MYCPY MYLIB QRPGLESRC MYCPY 37 98/07/24 16:20:04
* * * * * E N D O F / C O P Y M E M B E R S * * * * *

Figure 247. Sample /COPY Member Table

Compiler Listings

510 ILE RPG Programmer’s Guide

�1� Total Number of Characters Altered
Shows the number of characters whose sort sequence has been altered.

�2� Character to be Altered
The rows and columns of the table together identify the characters to be
altered. For example, the new value for character 3A is 65, found in
column 3_ and row _A.

�3� Alternate Sequence
The new hexadecimal sort value of the selected character.

�4� Array/Table information
Identifies the name of the array or table for which the compiler is
expecting data. The name of the alternate array is also shown, if it is
defined.

Key Field Information
The Key Field Information section shows information about key fields for each
keyed file. It also shows information on any keys that are common to multiple
records (that is, common keys). Figure 249 on page 512 shows an example.

C o m p i l e T i m e D a t a
61 ** 971104 003300

--
* Alternate Collating Sequence Table Data: *
--

62 ALTSEQ 1122ACAB4B7C36F83A657D73 971104 003400
Line <---------------------- Data Records --> Change Src Seq
Number+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+...10 Date Id Number

--
* Alternate Collating Sequence Table: *
* Number of characters with an altered sequence : 6 �1� *
* �2� 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_ A_ B_ C_ D_ E_ F_ *
* _0 _0 *
* _1 . 22 �3�. _1 *
* _2 _2 *
* _3 _3 *
* _4 _4 *
* _5 _5 *
* _6 . . . F8 _6 *
* _7 _7 *
* _8 _8 *
* _9 _9 *
* _A . . . 65 _A *
* _B 7C _B *
* _C AB _C *
* _D 73 _D *
* _E _E *
* _F _F *
* 0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_ A_ B_ C_ D_ E_ F_ *
--

63 ** 971104 003500
--
* Array . . . : BLUE �4� Alternating Array : GREEN *
--

64 1234ZZ 971104 003600
65 ABCDYY 971104 003700
66 5432XX 971104 003800
67 EDCBWW 971104 003900
68 ABCDEF 0980728 004000
69 ** 971104 00410

--
* Array . . . : RED *
--

70 3861 971104 00420
71 TJKL 971104 00430
* * * * * E N D O F C O M P I L E T I M E D A T A * * * * *

Figure 248. Sample Compile-Time Data Section

Compiler Listings

Appendix D. Compiler Listings 511

Cross-Reference Table
The Cross-Reference table contains at least three lists:
v files and records
v global fields
v indicators

In addition, it contains the local fields that are used by each subprocedure. Use this
table to check where files, fields and indicators are used within the
module/program.

Note that the informational message RNF7031, which is issued when an identifier
is not referenced, will only appear in the cross-reference section of the listing and
in the message summary. It does not appear in the source section of the listing.

Names longer than 122 characters, will appear in the cross-reference section of the
listing split across multiple lines. The entire name will be printed with the
characters ’...’ at the end of the lines. If the final portion of the name is longer than
17 characters, the attributes and line numbers will be listed starting on the
following line. Figure 250 on page 513 shows an example for the module
TRANSRPT, which has two subprocedures.

In this example, the Cross-Reference table shows the line numbers for each
reference. If you specify OPTION(*SRCSTMT) instead of OPTION(*NOSRCSTMT),
the statement numbers will be displayed for each reference and the cross reference
listing can extend beyond the first 80 columns of the listing.

K e y F i e l d I n f o r m a t i o n
File Internal External

Record field name field name Attributes
2 KEYL6

Common Keys:
DATE *ISO- 10
CHAR 3

REC1
FLD12 DATE *ISO- 10
FLD13 CHAR 3
FLD15 CHAR 5
FLDC UCS2 5 13488
FLDCV VUC2 5 13488
FLDG GRPH 5 835

REC2
FLD22 DATE *ISO- 10
FLD23 CHAR 3

* * * * * E N D O F K E Y F I E L D I N F O R M A T I O N * * * * *

Figure 249. Sample Key Field Information

Compiler Listings

512 ILE RPG Programmer’s Guide

EVAL-CORR Summary
When OPTION(*XREF) is specified, the EVAL-CORR summary lists every subfield
in either the source or the target data structure indicating
v whether the subfield is assigned
v the reason the source and target subfields are not considered to correspond, if

the subfield is not assigned
v for subfields that are assigned, additional information that may affect the

assignment such as a difference in the number of array elements or the
null-capability of the subfields

C r o s s R e f e r e n c e
File and Record References:

File Device References (D=Defined)
Record

CUSTFILE DISK 8D
CUSTREC 0 44

*RNF7031 CUSTRPT DISK 9D
ARREARS 0 60 79

Global Field References:
Field Attributes References (D=Defined M=Modified)
*INZSR BEGSR 63D
AMOUNT P(10,2) 56M 83 95
CITY A(20) 53D 132
CURDATE D(10*ISO-) 42D 64M 92
CUSTNAME A(20) 50D 122
CUSTNUM P(5,0) 49D 124
DUEDATE A(10) 57M 84 91
EXTREMELY_LONG_PROCEDURE_NAME_THAT_REQUIRES_MORE_THAN_ONE_LINE_IN_THE_CROSS_REFERENCE_EVEN_THOUGH_THE_ENTIRE_LINE_UP_TO_.

COLUMN_132_IS_USED_TO_PRINT_THE_NAME...
I(5,0) 9D
PROTOTYPE

FMTCUST PROTOTYPE 35D 59 113 114
134

INARREARS A(1) 30D 58 85 86
PROTOTYPE 101

LONG_FLOAT F(8) 7D 11M 12M
NUMTOCHAR A(31) 22D 124 130

PROTOTYPE
RPTADDR A(100) 59 82
RPTNAME C(100) 59 81

CCSID(13488)
RPTNUM P(5,0) 80
SHORT_FLOAT F(4) 8D 10M

*RNF7031 STATE A(2) 54D
STREETNAME A(20) 52D 131
STREETNUM P(5,0) 51D 130
THIS_NAME_IS_NOT_QUITE_SO_LONG...

A(5) 7D
UDATE S(6,0) 64

*RNF7031 ZIP P(5,0) 55D
INARREARS Field References:

Field Attributes References (D=Defined M=Modified)
DAYSLATE I(10,0) 88D 92M 94
DATEDUE D(10*ISO-) 89D 91M 92

FMTCUST Field References:
Field Attributes References (D=Defined M=Modified)
NAME A(100) 115D 122M

BASED(_QRNL_PST+)
ADDRESS A(100) 116D 130M

BASED(_QRNL_PST+)
Indicator References:

Indicator References (D=Defined M=Modified)
*RNF7031 01 44D

* * * * * E N D O F C R O S S R E F E R E N C E * * * * *

Figure 250. Sample Cross-Reference Table with OPTION(*NOSRCSTMT)

Compiler Listings

Appendix D. Compiler Listings 513

When OPTION(*NOXREF) is specified, the EVAL-CORR summary does not list
any information about corresponding subfields. It only lists the subfields that do
not correspond, with the reason that the subfields are not considered to
correspond.

�1� EVAL-CORR Summary Number
Messages in the Additional Diagnostics section refer to the relevant
EVAL-CORR summary by number.

�2� EVAL-CORR Statement Numbers
EVAL-CORR operations with the same (either identical or related through
LIKEDS or LIKEREC) source and target data structures share the same
EVAL-CORR summary. In this example, there are five EVAL-CORR
operations with one pair of data structure definitions, and one
EVAL-CORR operation with the other pair.

�3� Additional Information for a Subfield
The subfield is assigned. Additional information is listed on separate lines.

�4� Message Indicating that the Subfield is not Assigned
The subfield is not assigned. The error message and text indicate the
reason the subfields are not considered to correspond is given.

�5� Data Structure Subfields
If the subfield is a data structure, its subfields are listed with indentation.

External References List
The External References section lists the external procedures and fields which are
required from or available to other modules at bind time. This section is shown
whenever the source contains statically bound procedures, imported Fields, or
exported fields.

The statically bound procedures portion contains the procedure name, and the
references to the name on a CALLB operation or %PADDR built-in function, or the
name of a prototyped bound procedure called by CALLP or within an expression.

The imported fields and exported fields portions contain the field name, the
dimension if it is an array, the field attribute and its definition reference. Figure 252
on page 515 shows an example.

EVAL-CORR summary 1 �1� 13 14 19 24 �2�
28

FLD1 Assigned; exact match
FLD2 Assigned; target and source are compatible

Target subfield has fewer elements than source subfield�3�
FLD3 Assigned; exact match

Target subfield is null-capable; source subfield is
�4�*RNF7349 FLD5 Not same data type in source and target

EVAL-CORR summary 2 22
FLD1 Assigned; exact match
SUBDS �5�
SUBF1 Assigned; exact match

Target subfield is defined using OVERLAY
FLD2 Assigned; exact match

*RNF7341 FLD3 In target only.

Figure 251. EVAL-CORR summary

Compiler Listings

514 ILE RPG Programmer’s Guide

Message Summary
The message summary contains totals by severity of the errors that occurred. If
OPTION(*SECLVL) is specified, it also provides second-level message text.
Figure 253 shows an example.

Final Summary
The final summary section provides final message statistics and source statistics. It
also specifies the status of the compilation. Figure 254 on page 516 shows an
example.

E x t e r n a l R e f e r e n c e s
Statically bound procedures:

Procedure References
PROTOTYPED 2 2
PADDR_PROC 4
CALLB_PROC 6

Imported fields:
Field Attributes Defined
IMPORT_FLD P(5,0) 3

Exported fields:
Field Attributes Defined
EXPORT_ARR(2) A(5) 2

* * * * * E N D O F E X T E R N A L R E F E R E N C E S * * * * *

Figure 252. Sample External References

M e s s a g e S u m m a r y
Msg id Sv Number Message text
*RNF7031 00 16 The name or indicator is not referenced.

Cause : The field, subfield, TAG, data
structure, PLIST, KLIST, subroutine, indicator, or
prototype is defined in the program, but not referenced.

Recovery . . . : Reference the item, or remove it from
the program. Compile again.

*RNF7066 00 2 Record-Format name of Externally-Described file is not used.
Cause : There is a Record-Format name for an

Externally-Described File that is not used on a valid
input or output operation.

Recovery . . . : Use the Record-Format name of the
Externally-Described File for input or output, or specify
the name as a parameter for keyword IGNORE. Compile
again.

*RNF7086 00 2 RPG handles blocking for the file. INFDS is updated only when
blocks of data are transferred.

Cause : RPG specifies MLTRCD(*YES) in the UFCB
(User-File-Control Block). Records are passed between RPG
and data management in blocks. Positions 241 through the
end of the INFDS (File-Information-Data Structure) are
updated only when a block of records is read or written.

Recovery . . . : If this information is needed after
each read or write of a record, specify the OVRDBF
command for the file with SEQONLY(*NO).

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 253. Sample Message Summary

Compiler Listings

Appendix D. Compiler Listings 515

Code Generation and Binding Errors
Following the final summary section, you may find a section with code generation
errors and/or binding errors.

The code generation error section will appear only if errors occur while the
compiler is generating code for the module object. Generally, this section will not
appear. The binding errors section will appear whenever there are messages arising
during the binding phase of the CRTBNDRPG command. A common error is the
failure to specify the location of all the external procedures and fields referenced in
the source at the time the CRTBNDRPG command was issued.

F i n a l S u m m a r y
Message Totals:

Information (00) : 20
Warning (10) : 0
Error (20) : 0
Severe Error (30+) : 0
--------------------------------- -------
Total : 20

Source Totals:
Records : 71
Specifications : 55
Data records : 8
Comments : 0

* * * * * E N D O F F I N A L S U M M A R Y * * * * *
Program MYSRC placed in library MYLIB. 00 highest severity. Created on 98/07/28 at 14:21:03.

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 254. Sample Final Summary

Compiler Listings

516 ILE RPG Programmer’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2010 517

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd. Laboratory
Information Development
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, IBM License Agreement for
Machine Code, or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided ″AS IS″, without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication is intended to help you create programs using RPG IV source.
This publication documents General-Use Programming Interface and Associated
Guidance Information provided by the ILE RPG compiler.

General-Use programming interfaces allow the customer to write programs that
obtain the services of the ILE RPG compiler.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

518 ILE RPG Programmer’s Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 519

520 ILE RPG Programmer’s Guide

Bibliography

For additional information about topics related to
ILE RPG programming on the i5/OS system, refer
to the following IBM i5/OS publications:
v ADTS/400: Programming Development Manager,

SC09-1771-00, provides information about using
the Programming Development Manager
(PDM) to work with lists of libraries, objects,
members, and user-defined options to easily do
such operations as copy, delete, and rename.
Contains activities and reference material to
help the user learn PDM. The most commonly
used operations and function keys are
explained in detail using examples.

v ADTS for AS/400: Source Entry Utility,
SC09-2605-00, provides information about using
the Application Development ToolSet Source
Entry Utility (SEU) to create and edit source
members. The manual explains how to start
and end an SEU session and how to use the
many features of this full-screen text editor. The
manual contains examples to help both new
and experienced users accomplish various
editing tasks, from the simplest line commands
to using pre-defined prompts for high-level
languages and data formats.

v Application Display Programming, SC41-5715-02,
provides information about:
– Using DDS to create and maintain displays

for applications;
– Creating and working with display files on

the system;
– Creating online help information;
– Using UIM to define panels and dialogs for

an application;
– Using panel groups, records, or documents

v Recovering your system, SC41-5304-10, provides
information about setting up and managing the
following:
– Journaling, access path protection, and

commitment control
– User auxiliary storage pools (ASPs)
– Disk protection (device parity, mirrored, and

checksum)
Provides performance information about
backup media and save/restore operations.
Also includes advanced backup and recovery
topics, such as using save-while-active support,

saving and restoring to a different release, and
programming tips and techniques.

v CL Programming, SC41-5721-06, provides a
wide-ranging discussion of System i
programming topics including a general
discussion on objects and libraries, CL
programming, controlling flow and
communicating between programs, working
with objects in CL programs, and creating CL
programs. Other topics include predefined and
impromptu messages and message handling,
defining and creating user-defined commands
and menus, application testing, including
debug mode, breakpoints, traces, and display
functions.

v Communications Management, SC41-5406-02,
provides information about work management
in a communications environment,
communications status, tracing and diagnosing
communications problems, error handling and
recovery, performance, and specific line speed
and subsystem storage information.

v GDDM Programming Guide, SC41-0536-00,
provides information about using IBM i
graphical data display manager (GDDM) to
write graphics application programs. Includes
many example programs and information to
help users understand how the product fits into
data processing systems.

v GDDM Reference, SC41-3718-00, provides
information about using IBM i graphical data
display manager (GDDM) to write graphics
application programs. This manual provides
detailed descriptions of all graphics routines
available in GDDM. Also provides information
about high-level language interfaces to GDDM.

v ICF Programming, SC41-5442-00, provides
information needed to write application
programs that use System i communications
and the IBM i intersystem communications
function (IBM i-ICF). Also contains information
on data description specifications (DDS)
keywords, system-supplied formats, return
codes, file transfer support, and program
examples.

v IDDU Use, SC41-5704-00, describes how to use
the System i interactive data definition utility
(IDDU) to describe data dictionaries, files, and
records to the system. Includes:

© Copyright IBM Corp. 1994, 2010 521

– An introduction to computer file and data
definition concepts

– An introduction to the use of IDDU to
describe the data used in queries and
documents

– Representative tasks related to creating,
maintaining, and using data dictionaries,
files, record formats, and fields

– Advanced information about using IDDU to
work with files created on other systems and
information about error recovery and
problem prevention.

v IBM Rational Development Studio for i: ILE C/C++
Programmer’s Guide, SC09-2712-07, provides
information on how to develop applications
using the ILE C language. It includes
information about creating, running and
debugging programs. It also includes
programming considerations for interlanguage
program and procedure calls, locales, handling
exceptions, database, externally described and
device files. Some performance tips are also
described. An appendix includes information
on migrating source code from EPM C/400® or
System C/400 to ILE C.

v IBM Rational Development Studio for i: ILE
COBOL Programmer’s Guide, SC09-2540-07,
provides information about how to write,
compile, bind, run, debug, and maintain ILE
COBOL programs on the System i. It provides
programming information on how to call other
ILE COBOL and non-ILE COBOL programs,
share data with other programs, use pointers,
and handle exceptions. It also describes how to
perform input/output operations on externally
attached devices, database files, display files,
and ICF files.

v ILE Concepts, SC41-5606-09, explains concepts
and terminology pertaining to the Integrated
Language Environment® (ILE) architecture of
the IBM i licensed program. Topics covered
include creating modules, binding, running
programs, debugging programs, and handling
exceptions.

v IBM Rational Development Studio for i: ILE RPG
Reference, SC09-2508-08, provides information
about the ILE RPG programming language.
This manual describes, position by position and
keyword by keyword, the valid entries for all
RPG IV specifications, and provides a detailed
description of all the operation codes and
built-in functions. This manual also contains
information on the RPG logic cycle, arrays and
tables, editing functions, and indicators.

v Printer Device Programming, SC41-5713-06,
provides information to help you understand
and control printing. Provides specific
information on printing elements and concepts
of the i5/OS system, printer file and print
spooling support for printing operations, and
printer connectivity. Includes considerations for
using personal computers, other printing
functions such as Business Graphics Utility
(BGU), advanced function printing (AFP), and
examples of working with the System i printing
elements such as how to move spooled output
files from one output queue to a different
output queue. Also includes an appendix of
control language (CL) commands used to
manage printing workload. Fonts available for
use with the System i are also provided. Font
substitution tables provide a cross-reference of
substituted fonts if attached printers do not
support application-specified fonts.

v Security reference, SC41-5302-11, tells how
system security support can be used to protect
the system and the data from being used by
people who do not have the proper
authorization, protect the data from intentional
or unintentional damage or destruction, keep
security information up-to-date, and set up
security on the system.

v Installing, upgrading, or deleting IBM i and related
software, SC41-5120-11, provides step-by-step
procedures for initial installation, installing
licensed programs, program temporary fixes
(PTFs), and secondary languages from IBM.
This manual is also for users who already have
a System i with an installed release and want
to install a new release.

v Who Knew You Could Do That with RPG IV? A
Sorcerer’s Guide to System Access and More
provides hints and tips for System i
programmers who want to take full advantage
of RPG IV and the Integrated Language
Environment (ILE). It is available from the IBM
Redbooks Web Site:
http://www.redbooks.ibm.com/

522 ILE RPG Programmer’s Guide

Index

Special characters
/COPY statement

conversion problems 461, 471
COPY debug view 234
in a conversion report 466
table in compiler listing 510
using source files 57

*CALLER 115
*CANCL 305
*DETC 305
*DETL 305
*ENTRY PLIST 158
*EXTDFT

example 505
in compiler listing 509

*GETIN 305
*JOB

sort sequence, SRTSEQ 488
*JOBRUN

language identifier, LANGID 488
sort sequence, SRTSEQ 488

*NEW 115
*OFL 305
*OMIT 146
*TOTC 305
*TOTL 305
*USER

user profile, USRPRF 489
%ADDR (Get Address of Variable)

omitted parameters 146
%ADDR debug built-in 273
%ALLOC built-in function 119
%INDEX debug built-in 273
%PARMS (Return Number of Parameters)

checking for number of
parameters 147

%REALLOC built-in function 119
%SUBSTR debug built-in

changing values 275
examples 274

%VARS debug built-in 273

Numerics
01-99 indicators

displaying while debugging 268
in a sample formatted dump 325

A
abnormal program/procedure end 160
access path

example of 357
for externally described DISK

file 350
for indexed file 356

ACTGRP parameter
CRTBNDRPG command 62, 493
CRTPGM command 87
specifying 114

ACTGRP parameter (continued)
using 64

activation group
*CALLER 115

running in OPM default 115
specifying 115

*NEW 87, 161
ending 115
specifying 115

definition 114
deleting 116
identifying 87, 114
managing 114
named 87

deleting 114
specifying 114

OPM default 115
QILE 87, 114
role in exception handling 286

activation, program 114
Add Reply List Entry (ADDRPLYE)

command
adding to system reply list 113

adding objects to a debug session 239
additional diagnostic messages section of

compiler listing 509
ADDRPLYE command

See Add Reply List Entry
(ADDRPLYE) command

all- thread static variables 169
ALLOC (allocate storage) operation

code 119
allocating storage for a run-time

array 125
alternate collating sequence

debug considerations 249
ALWNULL parameter

CRTBNDRPG command 62, 491
CRTRPGMOD command 78

analyzing your conversion 465
application design

See creating programs
application programming interface (API)

calling non-bindable 134
QMHSNDPM 446
Retrieve Message (QMHRTVM)

API 164
area parameter for SPECIAL PLIST 392
array

conversion problems 474
displaying while debugging 266
loading 476
prerun-time arrays 476

arrival sequence access path 350
ATTR debug command

definition 231
example 277
using 277

audit file
See log file

AUT parameter
CRTBNDRPG command 62, 489
CRTRPGMOD command 78

authority to commands ix
auto report program

converting to ILE RPG 461
avoiding a loop in an error

subroutine 304

B
behavior of bound ILE RPG modules 84
behavioral differences between OPM

RPG/400 and ILE RPG 445
bibliography 521
bindable APIs

calling conventions 162
CEE4ABN 162
CEECRHP (Create Heap) 20, 126
CEECZST (Reallocate Storage) 21
CEEDSHP (Discard Heap) 20, 126
CEEFRST (Free Storage) 20
CEEGTST (Get Heap Storage) 21, 126
CEEHDLR (Register ILE Condition

Handler) 306
CEEHDLU (Unregister ILE Condition

Handler) 306
CEERTX (Register Call Stack Entry

Termination User Exit
Procedure) 312

CEETREC 161
CEETSTA (Check for Omitted

Argument) 146
CEEUTX (Call Stack Entry

Termination User Exit
Procedure) 312

Create Heap (CEECRHP) 20, 126
description 162
Discard Heap (CEEDSHP) 20, 126
Free Storage (CEEFRST) 20
Get Descriptive Information About a

String Argument (CEESGI) 145
Get Heap Storage (CEEGTST) 21, 126
overview 20
passing operational descriptors

to 144
Reallocate Storage (CEECZST) 21
Retrieve Operational Descriptor

Information (CEEDOD) 145
returning from a procedure 161
sample coding 162

binder language
example 101
reasons for using 96

binder listing
as maintenance resource 91
basic 104
creating 90
determining exports in service

program 95
sections of 90

© Copyright IBM Corp. 1994, 2010 523

binding
after modifying a module 91
definition 85
modules into a program 85
service program to a program 102

binding errors in compiler listing 516
binding multiple modules 89
blocking/unblocking records 355
BNDDIR parameter on CRTBNDRPG

CRTBNDRPG command 62, 492
CRTRPGMOD command 78
static binding 64

BREAK debug command
definition 231
example 248
using 245, 247, 251

breakpoints
conditional

setting and removing for job 247
setting and removing for

thread 252
removing all 253
setting and removing 243
setting using statement numbers 250
testing 244
unconditional

setting and removing for job 244
setting and removing for

thread 246
browsing a compiler listing using

SEU 72
built-in functions

%ADDR 146

C
calculation specifications

general description 3
program-described WORKSTN

file 404
CALL (call a program) operation code

in a conversion report 466
using 155

CALL CL command
example passing parameters 108
passing parameters 107
running a program 107

call operations
calling programs 155
DSPPGMREF 156
fixed-form call 155
free-form call 140
query names of called

procedures 156
special routines 164
using 140

call stack 135, 286
Call Stack Entry Termination User Exit

Procedure (CEEUTX) 312
CALLB (call a bound procedure)

operation code
calling programs 155
using 155

calling
Java from RPG 195
RPG from Java 202

calling a graphics routine 163

calling programs/procedures
abnormal program/procedure

end 160
call stack 135
calling bindable APIs 162
calling graphics 163
calling procedures 134
calling programs 134
calling special routines 164
fixed-form call 155
free-form call 140
interlanguage calls 154
normal program/procedure end 159
overview 133
parameter passing methods 142
recursive calls 136
returning from a called program or

procedure 158
returning values 140
returning without ending 160
static calls 134
using the CALL operation 155
using the CALLB operation 155
within ILE 19

CALLP (call a prototyped program or
procedure) operation code

using 140
cancel handler 285

CEERTX (Register Call Stack Entry
Termination User Exit
Procedure) 312

CEEUTX (Call Stack Entry
Termination User Exit
Procedure) 312

example 313
using 312

CCSIDs
indicated in compiler listing 508

CEE4ABN 162
CEECRHP (Create Heap) bindable

API 20, 126
CEECZST (Reallocate Storage) bindable

API 21
CEEDOD (Retrieve Operational

Descriptor Information) 98
example 146
operational descriptors 145

CEEDSHP (Discard Heap) bindable
API 20, 126

CEEFRST (Free Storage) bindable
API 20

CEEGTST (Get Heap Storage) bindable
API 21, 126

CEEHDLR (Register ILE Condition
Handler) 306

CEEHDLU (Unregister ILE Condition
Handler) 306

CEERTX (Register Call Stack Entry
Termination User Exit Procedure) 312

CEESGI (Get Descriptive Information
About a String Argument) 145

CEETREC 161
CEETSTA (Check for Omitted

Argument) 146
CEEUTX (Call Stack Entry Termination

User Exit Procedure) 312

Change Module (CHGMOD)
command 92

removing observability 93
Change Program (CHGPGM) command

optimization parameters 92
removing observability 93

Change Service Program (CHGSRVPGM)
command 103

changing a module 91
changing a program 91
changing a service program 97
changing field values while

debugging 275
changing optimization level

of a program or module 92
changing the debug view of a

module 242
character format

character CCSID
indicated in compiler listing 508

displaying while debugging 269
Check for Omitted Argument

(CEETSTA) 146
checking for the number of passed

parameters 147
checking, level 339
CHGMOD command

See Change Module (CHGMOD)
command

CHGPGM command
See Change Program (CHGPGM)

command
CHGSRVPGM

See Change Service Program
(CHGSRVPGM) command

CL commands
Add Program (ADDPGM) 239
additional service program

commands 97
ADDRPLYE 113
authority ix
CALL 107
Change Module (CHGMOD) 92
CHGPGM 93
commonly used commands 12
CRTPGM command 87
CRTRPGMOD 78
CVTRPGSRC 455
Display Module Source

(DSPMODSRC) 238, 239, 240, 241
DSPMOD 156
DSPPGMREF 156
End Debug (ENDDBG) 236
module-related 84
MONMSG 315
program-related 90
RCLACTGR 114
RCLRSC 116
reading syntax diagrams 477
Remove Program (RMVPGM) 239
Start Debug (STRDBG) 236, 238
UPDPGM 91
using 477
WRKRPLYE 113

clear command 398
CLEAR debug command

definition 231

524 ILE RPG Programmer’s Guide

CLEAR debug command (continued)
removing all 253
using 245, 248, 252

Client tools li
Remote System Explorer li
Remote Systems LPEX Editor lxiii
Remote Systems view lvi
System i Table view lvii

code conversion constraints 469
code generation errors in compiler

listing 516
combined file 405
command attention (CA) keys 396
command definition 112
command function (CF) keys 396
COMMIT (commit) operation code

commitment control 376
system considerations 376
with multiple devices 376

commitment control 373
COMMIT operation 376
conditional 377
example 377
in program cycle 378
locks 374
scoping 375
specifying files 375
starting and ending 374

communication
accessing other programs and

systems 395
compatibility differences between OPM

RPG/400 and ILE RPG 445
compilation errors, correcting 70
compile time array or table

section in compiler listing 510
compiler directives

changing a listing heading 68
compiler listing

additional diagnostic messages 71
browsing using SEU 72
coordinating listing options with

debug view options 72
correcting compilation errors 70
correcting run-time errors 72
default information 67
in-line diagnostic messages 71
indenting structured operations 69
obtaining 67
reading 501
sample listing 502
sections of 67, 502
specifying the format of 68
using 67
using as documentation 73

compiling
creating modules 77
differences between ILE RPG and

OPM RPG/400 445
in ILE 17
using CRTBNDRPG command 61

compressing an object 93
condition handler 285

example 306
overview 306
percolate an exception 307
recursive calls 306

condition handler (continued)
registering 306

conditional breakpoint
definition 243
setting 248
setting and removing for job 247
setting and removing for thread 252
using statement numbers 250

conditional commitment control,
specifying 377

conditioning output
overflow indicators 383

consecutive processing 360
control boundary 286
control break

example 384
control language (CL) program

See also ILE CL
as module in ILE program 27
commands used with ILE RPG 12
commonly used commands 12
in OPM-compatible application 23

control specification keywords
compile-option keywords

compiler listing example 502
control specifications

conversion considerations 454
example 7
general description 3

control-record format, subfile 399
Conversion Aid

See converting to RPG IV
conversion reports

obtaining 461
sections of 465
using 465

conversion, analyzing 465
converting to RPG IV

analyzing your conversion 465
constraints 453
conversion problems 469
converting 454
converting all file members 459
converting auto report source

members 461
converting some file members 460
converting source from a data

file 462
converting source members with

embedded SQL 462
CVTRPGSRC command 455
example 462
file and member names 452
file considerations 451
file record length 452
log file 453
obtaining conversion reports 461
overview 451
performing a trial conversion 460
requirements 453
using a conversion error report 465
using the log file 467
valid source member types 452

CoOperative Development
Environment/400 (CODE/400)

event file 484

coordinating listing options with debug
view options 72

correcting compilation errors 70
correcting run-time errors 72
Create Bound RPG Program

(CRTBNDRPG) command
and ILE 18
coordinating listing options with

debug view 72
creating programs 61
default parameter values 62
examples

OPM-compatible program 65
program for source debugging 63
program with static binding 64

parameter description 481
parameters grouped by function 62
program creation strategy 23, 25
RETURNCODE data area 74
syntax diagram 478
using 61

Create Heap (CEECRHP) bindable
API 20, 126

Create Program (CRTPGM)
command 27

and ILE 18
creating a program 77
examples 102

binding multiple modules 89
parameters 88
system actions 88
using 87

Create RPG Module (CRTRPGMOD)
command

and ILE 18
default values of parameters 78
defaults 80
examples 101, 102
parameter description 499
parameter grouping by function 78
program creation strategy 27
syntax diagram 496
using 78

Create Service Program (CRTSRVPGM)
command

and ILE 18
example 101
parameters 96

creating a binder listing 90
creating a debug view

COPY 234
listing 235
root source 233
statement 236

creating a library 51
creating a module

general discussion 77
using CRTRPGMOD 78
using CRTRPGMOD defaults 80

creating a program with the
CRTBNDRPG command 61

creating a source physical file 51
creating programs

coding considerations 45
examples of 63, 64, 65, 89
OPM-compatible

creating 23

Index 525

creating programs (continued)
OPM-compatible (continued)

strategy to avoid 31
strategies for 23

CRTPGM command 87
ILE application using

CRTRPGMOD 27
OPM-compatible 23
strategy to avoid 31
using CRTBNDRPG 25
using CRTRPGMOD and

CRTPGM 77
using the one-step process 61

creating service programs
about 95
strategies 96

cross-reference listing 512
CRTBNDRPG command 482

See Create Bound RPG Program
(CRTBNDRPG) command

CRTPGM command
See Create Program (CRTPGM)

command
CRTRPGMOD command

See Create RPG Module
(CRTRPGMOD) command

CRTRPTPGM (create auto report
program) command

converting auto report members 461
CRTSRVPGM command

See Create Service Program
(CRTSRVPGM) command

CVTOPT parameter
CRTBNDRPG command 62, 487
CRTRPGMOD command 78

CVTRPGSRC (Convert RPG Source)
command

default parameter values 455
example 459
parameter description 456
syntax diagram 455
using the command defaults 459

CVTRPT parameter 458, 461, 465
cycle-free module 80
cycle, program

commitment control 378
fetch overflow logic 385
general description 4
last cycle 5

D
data areas

RETURNCODE 74
data file, converting source from 462
data management operations 340
data structures

multiple-occurrence
displaying while debugging 267

subfields
conversion problems 474
displaying while debugging 267

using EVAL debug command 267
database data

updating while debugging 238
database file

data file 349

database file (continued)
field level description 349
general discussion 349
physical and logical files 349
record level description 349
source member 349

DB2 for AS/400 SQL
entering SQL statements 55

DBCS
in RPG IV character fields 450
NLSS debug considerations 249

DBGVIEW parameter
coordinating with listing options 72
CRTBNDRPG command 62, 485
CRTRPGMOD command 78
preparing a program for

debugging 232
using 63
values for viewing source 240

DDM
See distributed data management

(DDM)
DEALLOC (free storage) operation

code 119
debug commands

ATTR 277
CLEAR 245
DISPLAY 241
EQUATE 278
equating with a name while

debugging 278
EVAL 263, 275
general discussion 230
STEP 258, 259
STEP INTO 260
STEP OVER 259
WATCH 253

debug data
creating 232
effect on object size 233
none 233
removing from a module 93

debug view
changing while debugging 242
COPY source 234
default 236
definition 232
listing 235
root source 233
statement 236

debugging
adding an object to a session 239
built-in functions

%ADDR 273
%INDEX 273
%SUBSTR 273
%VARS 273
changing values using

%SUBSTR 275
examples 274
general discussion 273

changing field values 275
changing modules while

debugging 241
coordinating with listing options 72
creating a program for debugging 63

debugging (continued)
differences between ILE RPG and

OPM RPG/400 446
displaying attributes of 277
displaying data addressed by

pointers 270
displaying data and expressions 263
displaying fields as hexadecimal

values 269
displaying fields in character

format 269
displaying fields in UCS-2

format 270
displaying fields in variable-length

format 270
displaying indicators 268
displaying multiple-occurrence data

structures 267
displaying the contents of a table 266
displaying the contents of an

array 266
general discussion 229
National Language Support 279
NLSS considerations 249
obtaining a formatted dump 319
OPM program limit in debug

session 239
optimization effects 92, 230
overview 20
preparing a program 232
removing an object from a

session 239, 240
rules for assigning values using

EVAL 275
setting and removing

breakpoints 243
setting debug options 238
setting watch conditions 253
starting the source 236
stepping through 258
unexpected results 265
updating production files 238
viewing shorthand names 279
viewing source 240

decimal positions
input specifications

program-described WORKSTN
file 403

with external descriptions 335
decompressing an object 93
default activation group 23, 31, 115

running in 115
default exception handler, RPG 288
default heap 119
DEFINE parameter

CRTBNDRPG command 62, 493
CRTRPGMOD command 78

definition specifications
general description 3

deleting an activation group 116
description of parameters

CRTBNDRPG command 481
CRTRPGMOD command 499
CVTRPGSRC command 456

descriptors, operational
definition 144
example 98

526 ILE RPG Programmer’s Guide

DETAIL parameter
creating a binder listing 90

DETC 305
detecting errors in a program 229
DETL 305
device files

device dependence 329
device independence 329
DISK files 349
general discussion 381
multiple-device 406
PRINTER files 381
SEQ files 390
workstation files 395

device name, function of 330
devices

WORKSTN 395
DFTACTGRP parameter on CRTBNDRPG

CRTBNDRPG command 62
description 483
running in OPM default 115
using 61, 64, 65

diagnosing errors in a program 229
differences between OPM and ILE RPG

behavioral differences 445
exception handling 290

different views of a module 242
Discard Heap (CEEDSHP) bindable

API 20, 126
DISK file

externally described
access path 350
as program-described 332
examples 351
general description 350
record format specifications 350

file operation codes allowed
for keyed processing

methods 372
for non-keyed processing

methods 372
general description 349
processing methods

consecutive processing 360
overview 360
random-by-key processing 367
relative-record-number

processing 370
sequential-by-key processing 361
sequential-within-limits

processing 368
program-described

indexed file 356
processing 360
record-address file 359
sequential file 358

record-format specifications 350
DISPLAY debug command

definition 231
using 241
viewing shorthand names 279

Display Module (DSPMOD)
command 156

Display Module Source (DSPMODSRC)
command 238, 239, 240, 241

Display Program (DSPPGM) command
determining optimization level 92

Display Program References
(DSPPGMREF) command 156

Display Service Program (DSPSRVPGM)
command 95

displaying attributes of a field 277
displaying data and expressions while

debugging 263
distributed data management (DDM)

files 379
documentation of programs 73
double byte character set

in RPG IV character fields 450
NLSS debug considerations 249

DSPMODSRC command
See Display Module Source

(DSPMODSRC) command
DSPPGMREF command

See Display Program References
(DSPPGMREF) command

DUMP (program dump) operation code
obtaining a formatted dump 319
using 320

dump, formatted 319
dynamic array

allocating storage during
run-time 125

dynamic calls 19, 134
dynamic storage 117

E
edit source (STRSEU) command 52
eliminating errors in a program 229
ENBPFRCOL parameter

CRTBNDRPG command 62, 493
CRTRPGMOD command 78

End Debug (ENDDBG) command 236
ending a program or procedure

abnormal end 160
after system call 113
normal end 159
return overview 158
returning without ending 160
using bindable APIs 161

ending commitment control 374
ENDSR (end of subroutine) operation

code
specifying a return point 305

ENTMOD parameter 87
entry module 28

See program entry procedure (PEP)
environment

See Integrated Language Environment
(ILE)

EQUATE debug command
definition 231
example 278
using 278

equating a name with a field, expression,
or command 278

error indicators
specifying 294

error subroutines
avoiding a loop 304
for file errors 298
program 301
using 297

errors
See also exception
correcting compilation 70
correcting run-time 72
file 288
program 288
runtime, Java 216
when calling Java from RPG 205

escape messages
definition 286
unhandled 292

EVAL debug command
changing values 275
contents of a table 266
contents of an array 266
definition 231
displaying data structures 267
example 264, 276
in character format 269
in UCS-2 format 270
in variable-length format 270
indicators 268
rules for assigning values 275
using 263

event file for CODE/400 484
examples

compiling
binding multiple modules 89
OPM-compatible program 65
program for source debugging 63
program with static binding 64
sample binder listing 104
service program 97

converting to RPG IV
all members in a file 459
performing a trial conversion 460
sample conversion 462
some members in a file 460

debugging
adding a service program to a

session 239
changing field values 276
changing the debug view of a

module 242
displaying attributes of a

field 277
displaying data addressed by

pointers 270
displaying fields as hexadecimal

values 269
displaying fields in character

format 269
displaying fields in UCS-2

format 270
displaying fields in variable-length

format 270
displaying indicators 268
displaying multiple-occurrence

data structures 267
displaying the contents of a

table 266
displaying the contents of an

array 266
removing programs from a

session 240
setting a conditional

breakpoint 248

Index 527

examples (continued)
debugging (continued)

setting an unconditional
breakpoint 245

setting debug options 238
source for debug examples 279
using %SUBSTR to display field

values 274
viewing a different module in a

debug session 241
handling exceptions

*PSSR error subroutine 301
avoiding a loop in an error

subroutine 304
cancel handler 312
file error subroutine 298
unhandled escape message 292
unhandled function check 292
using a cancel handler 313
using a condition handler 306

I/O
data maintenance 413
inquiry by zip code and search on

name 432
inquiry program 410
subfile processing 424

interactive application 409
managing your own heap 125
module with multiple procedures 40
passing parameters using the CL

CALL command 108
program/procedure call

checking number of passed
parameters 147

using omitted parameters 98
sample ILE RPG program 6
subprocedures 37

creating a NOMAIN module 80
exception

monitoring during run time 114
nested, 291

exception handler
priority of 291
RPG-specific 288, 294

exception messages
percolation 286
types of 286
unexpectedly handled by CL

MONMSG 315
unhandled 291

exception/error handling
*PSSR error subroutine 301
avoiding a loop 304
cancel handler 312
condition handler 306
differences between ILE RPG and

OPM RPG/400 290, 446
error indicators 294
error/exception subroutine

overview 297
exceptions 216
file error/exception (INFSR)

subroutine 298
general considerations 290
MONITOR group 295
NOOPT keyword 294
optimization considerations 294

exception/error handling (continued)
overview 285
percolation 286
RPG-specific 288
specifying a return point 305
types of 285
unhandled 291
using ’E’ extender 294

EXFMT (write/then read format)
operation code 405

EXPCPY parameter 458
EXPORT keyword

duplicate names 89
expressions

returning values 140
extension specifications

conversion problems 464, 473
external-references list in compiler

listing 514
externally described file

access path 350
adding to external description 333
advantages 329
as program-described 332
as WORKSTN file 395, 398
definition 331
file description specifications for 333
output specifications for 337
overriding 335
physical and logical files 349
record format specifications 350
renaming field names 334
renaming record format 334
specifications 333

F
fetch overflow

general description 385
logic 385

field
changing the value while

debugging 275
displaying attributes of while

debugging 277
displaying while debugging

as hexadecimal values 269
in character format 269
in UCS-2 format 270
in variable-length format 270
using EVAL 263

equating with a name while
debugging 278

maintaining current values while
debugging 230

field-reference file, example of 351
file

device dependence 329
device independence 329
differences between ILE RPG and

OPM RPG/400 447
DISK 349
externally described 329
externally described disk 350
general considerations 329
indexed 356
locking 343

file (continued)
name

externally described 329
override 335
program-described 339

naming conventions 331
open options 345
override 335
PRINTER 381
processing charts

sequential file 391
SPECIAL file 393
WORKSTN file 406

program described 329, 339
redirection 330
SEQ 358, 390
sharing 345
valid keys 353
WORKSTN 395

file description specifications
commitment control 375
for externally described files 333
general description 3

file exception/error subroutine (INFSR)
description 298
example 298
specifications for 298

file exception/errors
definition 288
example 298
using an INFSR subroutine 298

file information data structure
example 298
using in an error subroutine 298

file locking 343
file operations

allowed with DISK file 372
allowed with PRINTER file 381
allowed with sequential file 391
allowed with SPECIAL file 393
allowed with WORKSTN file 405

file overrides 335
example 342
general discussion 341, 371
indicated in compiler listing 503

file record length, conversion
considerations 452

file sharing 345
final summary in compiler listing 515
FIND debug command 231
FIXNBR parameter

CRTBNDRPG command 62, 490
CRTRPGMOD command 78

flowchart
fetch-overflow logic 385

format name 403
format of compiler listing, specifying 68
formatted dump 319
FREE (deactivate a program) operation

code 467
Free Storage (CEEFRST) bindable

API 20
freeing resources of ILE programs 116
FROMFILE parameter 456
FROMMBR parameter 457, 459
function check

definition 286

528 ILE RPG Programmer’s Guide

function check (continued)
unhandled 292

function keys
indicators 397
with WORKSTN file 397

G
GDDM 163
generating a program

See compiling
GENLVL parameter

CRTBNDRPG command 62, 482
CRTRPGMOD command 78

Get Descriptive Information About a
String Argument (CEESGI) 145

Get Heap Storage (CEEGTST) bindable
API 21, 126

graphic format
graphic CCSID

indicated in compiler listing 508
NLSS debug considerations 249
rules for assigning values using

EVAL 275
graphic support 163
Graphical Data Display

Manager(GDDM) 163

H
halt (H1-H9) indicators

used to end a program/
procedure 159, 160

handling exceptions/errors
*PSSR error subroutine 301
avoiding a loop 304
cancel handler 312
condition handler 306
differences between ILE RPG and

OPM RPG/400 290, 446
error indicators 294
error/exception subroutine

overview 297
file error/exception (INFSR)

subroutine 298
general considerations 290
NOOPT keyword 294
optimization considerations 294
overview 285
percolation 286
RPG-specific 288
specifying a return point 305
types of 285
unhandled 291
using ’E’ extender 294

heap
default heap 119
definition 117
example 125

help command key 398
hexadecimal values, displaying while

debugging 269
home command key 398

I
I/O differences between ILE RPG and

OPM RPG/400 447
ICF communications file 395
identifying an activation group 114
IGNORE keyword 334
ignoring record format 334
ILE

See Integrated Language Environment
(ILE)

ILE C
as ILE language 17
in advanced application 30
in mixed-language application 29
parameter passing method 154
source for module in debug

example 283
ILE CL

as ILE language 17
as module in ILE program 27
calling ILE RPG program 28
calling RPG program 25
in advanced application 30
in mixed-language application 29
parameter passing method 154
unexpectedly handling status and

notify exceptions 315
ILE COBOL

as ILE language 17
parameter passing method 154

ILE RPG
behavior of bound modules 84
behavioral differences between OPM

RPG/400 445
converting to 451
data management operations 340
device types supported 381
exception handling overview 288
logic chart 4
overview of RPG IV language 3
sample program 6

ILE source debugger
debug commands 230
description 230
starting 236

include source view, creating 234
INDENT parameter 235

CRTBNDRPG command 62, 486, 487
CRTRPGMOD command 78

indenting structured operations in the
compiler listing 69

indexed file
access path 356
general description 356
valid search arguments 357

indicators
as error indicators 294
displaying while debugging 268
error 294
function key (KA-KN, KP-KY)

with WORKSTN file 397
halt (H1-H9)

used to end a
program/procedure 159, 160

last record (LR)
general description 5

indicators (continued)
last record (LR) (continued)

used to end a
program/procedure 159, 160

overflow
examples 385
fetch overflow logic 385
general description 381
presence or absence of 383
relation to program cycle 385
setting of 385
with PRINTER file 381

return (RT)
used to end a

program/procedure 159, 160
using 5

input
file 404

input record
unblocking 355

input specifications
general description 3

inquiry messages
list of 112
replying to 112

inserting specification templates 462
INSRTPL parameter 458, 462
integer format

TRUNCNBR parameter 490
Integrated Language Environment (ILE)

effect on
OPM-compatible program 24
program using CRTBNDRPG 26

ending an ILE program 113
family of ILE compilers 17
interlanguage calling

considerations 155
interlanguage calls 154
internal structure of program 85
overview 17
program call 19
program creation 17
program creation strategies 23, 25, 27
program management 19

interlanguage calls 154
Intersystem Communications Function

(ICF) 395

J
Java

calling Java from RPG 195
calling Java methods 195
calling RPG from Java 202
calling RPG programs using

PCML 223
coding errors 205
Java Virtual Machine (JVM) 207
native methods 202
prototyping 192
runtime errors 216

JNI functions, wrappers for 207

Index 529

K
key

composite 354
for a record or a file 353
partial 354

key field information in compiler
listing 511

keyed processing 379
access path 350
indexed file 356
record-address limits file 359
sequential-within-limits 368
unexpected results 379

keyed-sequence access path 350
keywords

*OMIT 146
DDS 349
EXPORT 89
for continuation line 349

CLEAR 398
HELP 398
HOME 398
PRINT 398
ROLLDOWN 398
ROLLUP 398

for display device file
CLEAR 398
HELP 398
HOME 398
PRINT 398
ROLLDOWN 398
ROLLUP 398

NOOPT 92, 294

L
LANGID parameter

CRTBNDRPG command 62, 488
CRTRPGMOD command 78

languages, ILE 17
last record (LR) indicator

used to end a program/
procedure 159, 160

length of record in a file, conversion
considerations 452

level checking 339
library, creating 51
LICOPT parameter

CRTBNDRPG command 494
limitations of the XML parser 189
limits records 351
listing view, creating 235
listing, binder

as maintenance resource 91
basic 104
creating 90
determining exports in service

program 95
sections of 90

listing, compiler
additional diagnostic messages 71
browsing using SEU 72
coordinating listing options with

debug view options 72
correcting compilation errors 70
correcting run-time errors 72

listing, compiler (continued)
default information 67
in-line diagnostic messages 71
indenting structured operations 69
obtaining 67
reading 501
sample listing 502
sections of 67, 502
specifying the format of 68
using 67
using as documentation 73

local variable
in formatted dump 326

locking
file 343
read without locking 344
record locking wait time 344
retry on timeout 344
standalone 344
under commitment control 374
UNLOCK 344

log file
about 453
DDS for 467
using 467

LOGFILE parameter 459
logical file

general 349
multi-format 349

LOGMBR parameter 459
long names

in compiler listing 512
loop, avoiding in an error

subroutine 304

M
main procedure

coding considerations 45
overview 33
returning from 158
scope of files 84

maintaining OPM compatibility 65, 116
managing activation groups 114
managing dynamically-allocated

storage 117
managing programs 19
managing run-time storage 117
managing the default heap using RPG

operations 119
manual code conversion 469
MCH3601 447
memory management operations

%ALLOC built-in function 119
%REALLOC built-in function 119
ALLOC (allocate storage) operation

code 119
DEALLOC (free storage) operation

code 119
REALLOC (reallocate storage with

new length) operation code 119
message summary in compiler

listing 515
messages

additional diagnostic 71
exception

example 292

messages (continued)
exception (continued)

types of 286
unhandled 291

in-line diagnostic 71
inquiry

replying to 112
migrating to ILE RPG

See converting to RPG IV
modifying a module 91
module

about 77
behavior of bound ILE RPG 84
binding into a program 85
binding multiple 89
changing optimization level 92
changing while debugging 241
creating 77
creating a NOMAIN module 80
CRTRPGMOD command 78
determining the entry module 87
different debug views 242
effect of debug data on size 233
information in dump listing 319
modifying and rebinding 91
overview of multiple-procedure

module 33
preparing for debugging 232
reducing size 93
related CL commands 84
relationship to program 85
removing observability 92
replacing in a program 91
viewing source while debugging 240

module creation
general discussion 77
using CRTRPGMOD 78
using CRTRPGMOD defaults 80

module observability 92
MODULE parameter 87

CRTBNDRPG command 481
CRTRPGMOD command 78

MONITOR group 295
MQSeries 191
multiple devices attached to application

program 376
multiple-device file

WORKSTN 406

N
named activation group 114
National Language Support (NLS) of

source debugger 279
nested exceptions 291
no debug data 233
NOMAIN module

coding considerations 45
creating 80

nonkeyed processing 371
NOOPT keyword

and handling exceptions 294
maintaining current values while

debugging 230
program optimization level 92

normal program/procedure end 159

530 ILE RPG Programmer’s Guide

NOT
Behavioral difference between ILE

RPG and RPG/400 445
null value support

displaying null-capable fields 272

O
observability 92
obtaining a compiler listing 67
obtaining conversion reports 461
OFL 305
omitted parameters 146

*OMIT 146
ON-ERROR group 295
one-step process of program creation 61
online information

for create commands 481
for ILE source 232

open data path
sharing 345

operation codes 405
allowed with DISK file 372
allowed with PRINTER file 381
allowed with sequential file 390
allowed with SPECIAL file 393
allowing ’E’ extender 295
allowing error indicators 295
general discussion 6

operational descriptors
definition 144
example 98

OPM compatibility, maintaining 65, 116
OPM default activation group 23, 31

running in 115
optimization

definition 92
effect on fields when debugging 230
exception handling

considerations 294
level of

changing an object’s 92
checking 92

OPTIMIZE parameter
CRTBNDRPG command 62, 487
CRTRPGMOD command 78

OPTION parameter
coordinating listing and debug view

options 235
coordinating with debug view

options 72
CRTBNDRPG command 62, 483
CRTRPGMOD command 78
using 67, 73

OPTIONS keyword
*NOPASS 146
*OMIT 146

order of evaluation
on prototyped call 153

output
specifications

program-described WORKSTN
file 403

output buffer positions, in compiler
listing 510

output file 405

OUTPUT parameter
CRTBNDRPG command 62, 486
CRTRPGMOD command 78
using 67

output record
blocking 355

output specifications
example 9
general description 3
program-described WORKSTN

file 403
with external descriptions 337

output spooling 347
overflow

indicators 383
page 382

overflow indicators
conditioning output 383
examples 385
fetch-overflow logic 385
general description 383
presence or absence of 383
relation to program cycle 385
setting of 385
with PRINTER file 381

overrides, file 335
example 342
general discussion 341, 371
indicated in compiler listing 503

overriding external description 335

P
page headings 68
page number, in PRINTER file 382
page overflow, in PRINTER file 382
parameter descriptions

CRTBNDRPG command 481
CRTRPGMOD command 499
CVTRPGSRC command 456

parameter list
created by PARM 158
identifying 138
rules for specifying 158

parameter table
CRTBNDRPG command 62
CRTRPGMOD command 78
CVTRPGSRC command 455

parameters
checking number passed 147
match data type requirements 144
omitted 146
operational descriptors 144
passing 138
passing using the CL CALL

command 107
specifying 157

PARM (identify parameters) operation
code 108

*OMIT 146
rules for specifying 157
using 157

partial key 354
parts of an ILE RPG program 6
passing file parameters 153
passing parameters

by read-only reference 142

passing parameters (continued)
by reference 142
by value 142
checking number passed 147
example 108
match data type requirements 144
omitted parameters 146
operational descriptors 144
overview 138
passing less data 152
passing methods for ILE

languages 154
using PARM 157
using PLIST 158
using the CL CALL command 107

PCML
see Program call Markup

Language 223
PEP

See program entry procedure (PEP)
percolate an exception

using a condition handler 307
percolation of an exception 286
performance considerations

subroutines vs. subprocedures 98
performance tips

call for LR-on 447
program call 159

performing a quick conversion 459
performing a trial conversion 460
PGM parameter

CRTBNDRPG command 62
physical file 349
PLIST (identify a parameter list)

operation code 108
*ENTRY PLIST 158
using 158

PREFIX keyword 334
preparing a program for debugging 232
Presentation Graphics Routines

(PGR) 163
preventing printing over perforation 385
PRFDTA parameter

CRTBNDRPG command 62, 493
CRTRPGMOD command 78
removing observability 93

print command key 398
PRINTER file

access current line value 388
fetch-overflow logic 385
file operation codes allowed 381
maximum number of files allowed in

program 381
modify forms control 388
overflow indicators 381
page overflow 382
PRTCTL (printer control) 388

procedure
abnormal ending 160
calling 133
dump information 319
normal ending 159
passing parameters 138
procedure pointer call 134
returning from 158
returning without ending 160
static procedure call 134

Index 531

procedure (continued)
stepping over 259

procedure pointer calls 134
processing methods

consecutive 360
for DISK file 360
nonkeyed 371
random-by-key 366
relative-record-number 370
sequential only 361, 371
sequential-by-key 361
sequential-within-limits 368
WORKSTN file 398, 405

processing XML documents 185
limitations of the XML parser 189
XML parser error codes 187

program
abnormal ending 160
advanced ILE 30
binding modules 85
calling 133, 134
calling using expressions 140
calling using the CALL

operation 155
calling using the CALLP

operation 140
changing 91
changing optimization level 92
changing while debugging 241
different debug views 242
effect of debug data on size 233
ending 113
entering source 51
entering SQL statements 55
example 6
freeing resources 116
internal structure 85
mixed-language 29
multiple-module

general creation strategy 27
normal ending 159
OPM-compatible

creation method 23
effect of ILE 24
example 23
program creation strategy 23, 31

passing parameters 138
preparing for debugging 232
program entry procedure 85
reducing size 93
related CL commands 90
removing observability 92
returning from 158
returning without ending 160
running 107
running from a menu-driven

application 109
running in the OPM default activation

group 115
running using a user-created

command 112
setting watch conditions 253
single-language 28

effect of ILE 26
stepping into 260
stepping over 259
stepping through 258

program (continued)
updating 91
viewing source while debugging 240

program activation 114
program creation

coding considerations 45
examples of 63, 64, 65, 89
OPM-compatible

creating 23
strategy to avoid 31

strategies for 23
CRTPGM command 87
ILE application using

CRTRPGMOD 27
OPM-compatible 23
strategy to avoid 31
using CRTBNDRPG 25
using CRTRPGMOD and

CRTPGM 77
using the one-step process 61

program cycle
commitment control 378
fetch overflow logic 385
general description 4
last cycle 5

program entry procedure (PEP)
and the call stack 135
definition 85
determining 87

program exception/error subroutine
description 301
example 301

program exception/errors
avoiding a loop 304
definition 288
example 301, 306
using a *PSSR subroutine 301

program management 19
program name

*FROMMBR parameter 458
program status data structure

example 157, 301
using in an error subroutine 301

program-described file
as DISK file 356
as WORKSTN file 402, 403, 404
definition 331
physical and logical files 349
valid search arguments 357

program/procedure call
abnormal program/procedure

end 160
call stack 135
calling bindable APIs 162
calling graphics 163
calling procedures 134
calling programs 134
calling special routines 164
fixed-form call 155
free-form call 140
interlanguage calls 154
normal program/procedure end 159
overview 133
parameter passing methods 142
recursive calls 136
returning from a called program or

procedure 158

program/procedure call (continued)
returning values 140
returning without ending 160
static calls 134
using the CALL operation 155
using the CALLB operation 155
within ILE 19

program/procedure end
abnormal end 160
after system call 113
normal end 159
return overview 158
returning without ending 160
using bindable APIs 161

programming tips
creating NOMAIN module 96
setting subprocedure breakpoints 260

prologue section of compiler listing 502
prototype

description 34
using 139

prototyped call
order of evaluation of

parameters 153
prototyped program or procedure

prototyped call 34
prototyping, Java methods 192
PRTCTL (printer control)

example 389
general information 388

Q
QUAL debug command

definition 231
ILE RPG 275

querying names of called
programs/procedures 156

R
random-by-key processing

example 367
general discussion 366

RCLACTGRP command
See Reclaim Activation Group

(RCLACTGRP) command
RCLRSC command

See Reclaim Resources (RCLRSC)
command

reading a record 406
reading next record

with WORKSTN subfile 400
REALLOC (reallocate storage with new

length) operation code 119
Reallocate Storage (CEECZST) bindable

API 21
rebinding 91
Reclaim Activation Group (RCLACTGRP)

command
deleting activation groups 116
named activation groups 114

Reclaim Resources (RCLRSC) command
ILE program 26
OPM-compatible program 24
to free storage 116

532 ILE RPG Programmer’s Guide

RECNO keyword
with relative-record-number

processing 370
record

limits 359
locking 344
releasing 344
valid keys 353

record address file
conversion problems 464, 473
relative-record number 359
sequential-within-limits 359
with limits records 359
with relative record numbers 359

record format
for a subfile 399
ignoring 334
renaming 334
specifications for externally described

file 350
record length of files, conversion

considerations 452
record locking 344
recursion

calling condition handlers 306
recursive calls 46, 136

redirection, file
definition 330
general description 330

reducing object size 93, 233
Register Call Stack Entry Termination

User Exit Procedure(CEERTX) 312
Register ILE Condition Handler

(CEEHDLR) API 306
relative-record number 359
relative-record-number processing 370
releasing a locked record 344
removing breakpoints

about 243
all 253
conditional job breakpoints 247
conditional thread breakpoints 252
unconditional job breakpoints 244
unconditional thread breakpoints 246
using statement numbers 250

removing objects from a debug
session 239

removing observability 92
RENAME keyword 334
renaming field names 334
renaming fields 334
renaming record-format names 334
REPLACE parameter

CRTBNDRPG command 62, 488
CRTRPGMOD command 78

replacing modules in a program 91
reply list of messages

adding to 113
changing 113

replying to run-time inquiry
messages 112

requirements of Conversion Aid 453
reserved words

*CANCL 305
*DETC 305
*DETL 305
*GETIN 305

reserved words (continued)
*OFL 305
*TOTC 305
*TOTL 305

resulting indicators (01-99, H1-H9,
OA-OG, OV, L1-L9, LR, U1-U8, KA-KN,
KP-KY, RT)

as error indicators 294
resume point 305
Retrieve Operational Descriptor

Information (CEEDOD) 98
example 146
operational descriptors 145

retry on a record lock timeout 344
RETURN (return to caller) operation code

returning without ending 160
role in abnormal end 160
role in normal end 159

return (RT) indicator
used to end a program/

procedure 159, 160
return points, specifying in ENDSR 305
return status parameter 392
return value

returning using expressions 140
RETURNCODE data area 74
returning from a called main

procedure 158
returning from a called procedure 158
returning from a main procedure 158
returning from a subprocedure 161
returning using ILE bindable APIs 161
returning without ending 160
rolldown command key 398
rollup command key 398
root source view, creating 233
RPG IV

See also ILE RPG
behavioral differences between RPG

III 445
converting to 23, 25, 451
overview 3
unsupported RPG III features 470

run-time array
allocating storage during

run-time 125
run-time errors, correcting with a

compiler listing 72
run-time inquiry messages, replying

to 112
run-time storage, managing 117
running a program

differences between ILE RPG and
OPM RPG/400 445

from a menu-driven application 109
in the OPM default activation

group 115
overview 107
using a user-created command 112
using the CL CALL command 107

S
sample programs

See examples
scope

of files 84

screen design aid (SDA) 110
search argument

externally described file
description 353
referencing a partial key 354
valid 353

program-described file 357
SECLVL parameter 458
SEQ file

example 391
file operation codes allowed 391
general description 390
processing chart 391
restrictions 390
variable-length 390

sequence checking
on input specifications 339

sequential file 358
sequential-by-key processing

examples 361
general discussion 361

sequential-only processing 360, 361
sequential-within-limits processing

examples 369
general discussion 368

serialized procedure 169
service program

adding to a debug session 239
binder language 101
binding with CRTBNDRPG 64
changing 97
creating 95
example 97
in advanced application 30
reasons for using 95
reclaiming resources 116
related CL commands 97
sample binder listing 104
strategies for creating 96
updating 103

service program creation
about 95
strategies 96

SET debug command
definition 231

SETLL
exception MCH3601 447

setting breakpoints
about 243
conditional job breakpoints 247
conditional thread breakpoints 252
example 245, 248
unconditional job breakpoints 244
unconditional thread breakpoints 246
using statement numbers 250

setting debug options 238
SEU

See source entry utility (SEU)
sharing an open data path for a file 345
sort sequence

affect of SRTSEQ parameter 347
ALTSEQ table in compiler listing 510
debug considerations 249

source debugging
adding an object to a session 239
built-in functions

%ADDR 273

Index 533

source debugging (continued)
built-in functions (continued)

%INDEX 273
%SUBSTR 273
%VARS 273
changing values using

%SUBSTR 275
examples 274
general discussion 273

changing field values 275
changing modules while

debugging 241
coordinating with listing options 72
creating a program for debugging 63
differences between ILE RPG and

OPM RPG/400 446
displaying attributes of 277
displaying data addressed by

pointers 270
displaying data and expressions 263
displaying fields as hexadecimal

values 269
displaying fields in character

format 269
displaying fields in UCS-2

format 270
displaying fields in variable-length

format 270
displaying indicators 268
displaying multiple-occurrence data

structures 267
displaying the contents of a table 266
displaying the contents of an

array 266
general discussion 229
National Language Support 279
NLSS considerations 249
obtaining a formatted dump 319
OPM program limit in debug

session 239
optimization effects 92, 230
overview 20
preparing a program 232
removing an object from a

session 239, 240
rules for assigning values using

EVAL 275
setting and removing

breakpoints 243
setting debug options 238
setting watch conditions 253
starting the source 236
stepping through 258
unexpected results 265
updating production files 238
viewing shorthand names 279
viewing source 240

source entry utility (SEU) 51
browsing a compiler listing 72
entering source 52

source from a data file, converting 462
source member types, conversion of 452
source physical file, creating 51
source program

converting all members 459
converting auto report source

members 461

source program (continued)
converting some members 460
converting to ILE RPG 454
entering into system 51
entering SQL statements 55
file and member names when

converting 452
record length of when

converting 452
source member types when

converting 452
source section of compiler listing 504
special command keys 398
SPECIAL file

deleting records from 393
general discussion 391, 393
valid file operations 393

special routines, calling 164
specification templates, inserting 462
specifications

description of 3
externally described file 333
file description 333
order 3
record format 350
types 3

specifying a return point 305
specifying an activation group 114
specifying error indicators 294
specifying the format of compiler

listing 68
spooling 346
SQL

See DB2 for AS/400 SQL
SRCFILE parameter

CRTBNDRPG command 62, 481
CRTRPGMOD command 78

SRCMBR parameter
CRTBNDRPG command 62, 482
CRTRPGMOD command 78

SRTSEQ parameter
affect on key comparisons 347
CRTBNDRPG command 62, 488
CRTRPGMOD command 78
debug considerations 249

stack, call 135, 286
Start Debug (STRDBG) command 236

Update Production files (UPDPROD)
parameter 238

starting commitment control 374
starting the ILE source 236
statement view

creating 236
using for debug 250

static binding
See binding

static calls 19, 134
static procedure call 134
status codes

data management errors 448
STEP debug command

definition 231
into 260
over 259

stepping while debugging
into a program or procedure 260
over a program or procedure 259

stepping while debugging (continued)
through a program 258

STGMDL parameter
CRTBNDRPG command 492
CRTRPGMOD command 499

storage management
allocating during run-time 125
dynamic storage 117
managing run-time 117

storage model 164
inherit storage model 165
recommendations 165
single-level storage model 164
teraspace storage model 165

strategies for creating ILE programs 23
STRDBG command

See Start Debug (STRDBG) command
STRSEU (edit source) command 52
structured operations

indenting 69
Structured Query Language (SQL)

See DB2 for AS/400 SQL
subfields

for file information data
structure 321, 323

for program status data structure 320
for PRTCTL 388

subfiles
control-record format 399
descriptions 399
examples 401
file operation codes allowed

with 400
general description 399, 400
record format 399
uses of 401

subprocedures
coding considerations 46
debugging 262
example 9
information in compiler listing 514
local data in dump listing 326
logic flow 5
overview 33
returning from 161
scope of files 84
stepping into 260
stepping over 259

SUBR23R3 (message retrieval) 164
SUBR40R3 (manipulating Double Byte

Characters variables) 164
SUBR41R3 (manipulating Double Byte

Characters variables) 164
subroutines

avoiding a loop 304
calling SUBR routines 164
error 297
file error (INFSR) 298
program error (*PSSR) 301

substring of character or graphic literal
ILE debug built-in %SUBSTR 274

summary tables
file operation codes allowed with

DISK 371
PRINTER 381
sequential 391
SPECIAL 393

534 ILE RPG Programmer’s Guide

summary tables (continued)
file operation codes allowed with

(continued)
WORKSTN 405

sequential file processing 391
SPECIAL file processing 393

syntax diagrams
CRTBNDRPG command 478
CRTRPGMOD command 496
CVTRPGSRC command 455
interpreting 477

system functions
spooling 346

system reply list
adding to 113
changing 113

T
table

displaying while debugging 266
table of parameters

CRTBNDRPG command 62
CRTRPGMOD command 78
CVTRPGSRC command 455

tape file 358
TBREAK debug command

definition 231
using 246, 252

templates, inserting specification 462
teraspace 165
test library, using 238
testing breakpoints 244
TEXT parameter

CRTBNDRPG command 62, 483
CRTRPGMOD command 78

TGTRLS parameter
CRTBNDRPG command 62, 490
CRTRPGMOD command 78

THREAD debug command
definition 231
using 246

threaded applications
coding considerations 165
debugging 243
locking and unlocking

procedures 168
overview 21

TOFILE parameter 457, 460
TOMBR parameter 457, 459
TOTC 305
TOTL 305
trial conversion, performing 460
TRUNCNBR parameter

CRTBNDRPG command 62, 490
CRTRPGMOD command 78

two-step process of program creation 77
types of exception handlers 285

U
UCS-2 format

displaying while debugging 270
UCS-2 CCSID

indicated in compiler listing 508

UEP
See user entry procedure (UEP)

unblocking/blocking records 355
unconditional breakpoint

definition 243
setting 245
setting and removing for job 244
setting and removing for thread 246
using statement numbers 250

unhandled escape message 292
unhandled exceptions 291
unhandled function check 292
Unregister ILE Condition Handler

(CEEHDLU) API 306
unsigned integer format

TRUNCNBR parameter 490
Update Program (UPDPGM) command

using 91
updating a service program 103
UPDPGM command

See Update Program (UPDPGM)
command

user entry procedure (UEP)
and the call stack 135
role in program 85

user-created command, running an RPG
program 112

USRPRF parameter on CRTBNDRPG
CRTBNDRPG command 62, 489

V
valid file operations

SPECIAL file 393
valid keys

for file 353
for records 353

variable-length format
displaying while debugging 270

variable-length records 390
view, debug

changing while debugging 242
COPY source 234
default 236
definition 232
listing 235
root source 233
statement 236

viewing source while debugging 240

W
WATCH debug command

definition 231
example 257
setting conditions 253

Work with Reply List Entry (WRKRPLYE)
command

changing a system reply list 113
WORKSTN file

definition 395
examples 409
externally described

processing 398
externally-described 395

WORKSTN file (continued)
file operation codes allowed

with 405
function key indicators with 397
multiple-device 406
processing 405
program-described

calculation specifications 404
combined file 405
considerations 404
general 402
input file 404
input specifications 403
output file 405
output specifications 403
with format name 403
without format name 404

sample data maintenance
program 413

sample inquiry and search
program 432

sample inquiry program 410
sample subfile processing

program 424
subfiles

control-record format 399
examples 401
for display-device file 399
record format 399
uses of 401

using 395
WRKRPLYE command

See Work with Reply List Entry
(WRKRPLYE) command

X
XML 185

processing XML documents 185
limitations of the XML parser 189
XML parser error codes 187

XML parser error codes 187

Index 535

536 ILE RPG Programmer’s Guide

����

Program Number: 5770-WDS

Printed in U.S.A.

SC09-2507-08

	Contents
	About This Guide
	Who Should Use This Guide
	Prerequisite and Related Information
	How to Send Your Comments
	What's New
	What's New in this Release
	What's New in V6R1
	What′s New in V5R4?
	What's New in V5R3?
	What's New in V5R2?
	What's New in V5R1?
	What's New in V4R4?
	What's New in V4R2?
	What's New in V3R7?
	What's New in V3R6/V3R2?

	Using the application development tools in the client product
	Getting started in the Remote System Explorer perspective
	Remote Systems view
	System i Table view
	Remote Systems LPEX Editor

	Part 1. ILE RPG Introduction
	Chapter 1. Overview of the RPG IV Programming Language
	RPG IV Specifications
	Cycle Programming
	Subprocedure logic

	Indicators
	Operation Codes
	Example of an ILE RPG Program
	Using IBM i
	Interacting with the System

	WebSphere Development Studio for System i
	WebSphere Development Studio Client for System i

	Chapter 2. RPG Programming in ILE
	Program Creation
	Program Management
	Program Call
	Source Debugging
	Bindable APIs
	Multithreaded Applications

	Chapter 3. Program Creation Strategies
	Strategy 1: OPM-Compatible Application
	Method
	Example of OPM-Compatible Program
	Effect of ILE

	Related Information

	Strategy 2: ILE Program Using CRTBNDRPG
	Method
	Example of ILE Program Using CRTBNDRPG
	Effect of ILE

	Related Information

	Strategy 3: ILE Application Using CRTRPGMOD
	Method
	Single-Language ILE Application Scenario
	Mixed-Language ILE Application Scenario
	Advanced Application Scenario
	Related Information

	A Strategy to Avoid

	Chapter 4. Creating an Application Using Multiple Procedures
	A Multiple Procedures Module — Overview
	Main Procedures and Subprocedures
	Prototyped Calls

	Example of Module with Multiple Procedures
	The Entire ARRSRPT Program

	Coding Considerations
	General Considerations
	Program Creation
	Main Procedure Considerations
	Subprocedure Considerations

	For Further Information
	Main Procedures
	Subprocedures
	Prototyped Call

	Part 2. Creating and Running an ILE RPG Application
	Chapter 5. Using Source Files
	Using Source Physical Files
	Creating a Library and Source Physical File
	Using the Source Entry Utility (SEU)
	Using SQL Statements

	Using IFS Source Files
	Include files
	Search Path Within The IFS

	Chapter 6. Creating a Program with the CRTBNDRPG Command
	Using the CRTBNDRPG Command
	Creating a Program for Source Debugging
	Creating a Program with Static Binding
	Creating an OPM-Compatible Program Object

	Using a Compiler Listing
	Obtaining a Compiler Listing
	Customizing a Compiler Listing
	Customizing a Page Heading
	Customizing the Spacing
	Indenting Structured Operations

	Correcting Compilation Errors
	Using In-Line Diagnostic Messages
	Using Additional-Diagnostic Messages
	Browsing a Compiler Listing Using SEU

	Correcting Run-time Errors
	Coordinating Listing Options with Debug View Options

	Using a Compiler Listing for Maintenance

	Accessing the RETURNCODE Data Area

	Chapter 7. Creating a Program with the CRTRPGMOD and CRTPGM Commands
	Creating a Module Object
	Using the CRTRPGMOD Command
	Creating a NOMAIN Module

	Creating a Module for Source Debugging
	Additional Examples
	Behavior of Bound ILE RPG Modules
	Related CL Commands

	Binding Modules into a Program
	Using the CRTPGM Command
	Binding Multiple Modules

	Additional Examples
	Related CL Commands

	Using a Binder Listing
	Changing a Module or Program
	Using the UPDPGM Command
	Changing the Optimization Level
	Removing Observability
	Reducing an Object′s Size

	Chapter 8. Creating a Service Program
	Service Program Overview
	Strategies for Creating Service Programs
	Creating a Service Program Using CRTSRVPGM
	Changing A Service Program
	Related CL commands

	Sample Service Program
	Creating the Service Program
	Binding to a Program
	Updating the Service Program
	Sample Binder Listing

	Chapter 9. Running a Program
	Running a Program Using the CL CALL Command
	Passing Parameters using the CL CALL Command

	Running a Program From a Menu-Driven Application
	Running a Program Using a User-Created Command
	Replying to Run-Time Inquiry Messages
	Ending an ILE Program
	Managing Activation Groups
	Specifying an Activation Group
	Running in the OPM Default Activation Group
	Maintaining OPM RPG/400 and ILE RPG Program Compatibility
	Deleting an Activation Group
	Reclaim Resources Command

	Managing Dynamically-Allocated Storage
	Managing the Default Heap Using RPG Operations
	Heap Storage Problems
	Managing Your Own Heap Using ILE Bindable APIs

	Chapter 10. Calling Programs and Procedures
	Program/Procedure Call Overview
	Calling Programs
	Calling Procedures
	The Call Stack
	Recursive Calls
	Parameter-Passing Considerations

	Using a Prototyped Call
	Using the CALLP Operation
	Calling within an Expression
	Examples of Free-Form Call

	Passing Prototyped Parameters
	Parameter Passing Styles
	Passing by Reference
	Passing by Value
	Passing by Read-Only Reference
	Advantages of passing by value or read-only reference
	Choosing between parameter passing styles

	Using Operational Descriptors
	Omitting Parameters
	Passing *OMIT
	Leaving Out Parameters

	Checking for the Number of Passed Parameters
	Using %PARMS

	Passing Less Data Than Required
	Passing File Parameters
	Order of Evaluation
	Interlanguage Calls

	Interlanguage Calling Considerations
	Using the Fixed-Form Call Operations
	Examples of CALL and CALLB
	Passing Parameters Using PARM and PLIST
	Using the PARM operation
	Using the PLIST Operation

	Returning from a Called Program or Procedure
	Returning from a Main Procedure
	Normal End for a Cycle-Main Procedure
	Abnormal End for a Cycle-Main Procedure
	Returning without Ending for a Cycle-Main Procedure

	Returning from a Subprocedure
	Returning using ILE Bindable APIs

	Using Bindable APIs
	Examples of Using Bindable APIs

	Calling a Graphics Routine
	Calling Special Routines
	Storage Model
	Considerations for the single-level storage model
	Considerations for the teraspace storage model
	Considerations for the inherit storage model
	Recommendations for the storage model of programs and service programs

	Multithreading Considerations
	Running Concurrently in Multiple Threads
	Running Serialized in Multiple Threads
	Activation Group Considerations for the THREAD keyword
	Storage that is Shared Among Multiple Threads
	How to Avoid Deadlock Between Modules
	All-Thread Static Variables
	When to use a serialized procedure
	When a serialized procedure does not provide sufficient protection
	Difficulty of manually synchronizing access to shared resources
	Using thread-related APIs
	How to build the examples
	How to run the examples

	Chapter 11. RPG and the eBusiness World
	RPG and XML
	Processing XML Documents
	XML Parser Error Codes
	Limitations of the XML Parser

	RPG and MQSeries
	RPG and Java
	Introduction to Java and RPG
	The Object Data Type and CLASS Keyword
	Prototyping Java Methods

	Calling Java Methods from ILE RPG
	Creating Objects

	Calling methods in your own classes
	Controlling how the Java Virtual Machine is set up
	RPG Native Methods
	Getting the Instance Parameter in Non-Static Native Methods
	Passing Character Parameters from Java to Native Methods

	Coding Errors when calling Java from RPG
	Incorrectly specifying the method parameters in the RPG prototype
	Failure to free Java resources
	Using objects that no longer exist

	Additional RPG Coding for Using Java
	Telling Java to free several objects at once
	Telling Java you are finished with a temporary object
	Telling Java you want an object to be permanent
	Telling Java you are finished with a permanent object
	Creating the Java Virtual Machine (JVM)
	Obtaining the JNI environment pointer
	Handling JNI Exceptions

	Additional Considerations
	Common Runtime Errors
	Debugging Hints
	Creating String objects in RPG
	Getting information about exceptions thrown by called Java methods

	Advanced JNI Coding
	Setting an Object Reference in the jvalue Structure
	Converting Java Character Data
	Accessing Fields in Java Classes
	Calling Java Methods Using the JNI Rather than RPG *JAVA Prototypes

	Calling RPG programs from Java using PCML
	PCML Restrictions

	Part 3. Debugging and Exception Handling
	Chapter 12. Debugging Programs
	The ILE Source
	Debug Commands

	Preparing a Program for Debugging
	Creating a Root Source View
	Creating a COPY Source View
	Creating a Listing View
	Creating a Statement View

	Starting the ILE Source
	STRDBG Example
	Setting Debug Options

	Adding/Removing Programs from a Debug Session
	Example of Adding a Service Program to a Debug Session
	Example of Removing ILE Programs from a Debug Session

	Viewing the Program Source
	Viewing a Different Module
	Changing the View of a Module

	Setting and Removing Breakpoints
	Setting and Removing Unconditional Job Breakpoints
	Example of Setting an Unconditional Job Breakpoint

	Setting and Removing Unconditional Thread Breakpoints
	Setting and Removing Conditional Job Breakpoints
	Example of Setting a Conditional Job Breakpoint Using F13
	Example of Setting a Conditional Job Breakpoint Using the BREAK Command

	National Language Sort Sequence (NLSS)
	Setting and Removing Job Breakpoints Using Statement Numbers
	Setting and Removing Conditional Thread Breakpoints
	Using the Work with Module Breakpoints Display
	Using the TBREAK or CLEAR Debug Commands

	Removing All Job and Thread Breakpoints

	Setting and Removing Watch Conditions
	Characteristics of Watches
	Setting Watch Conditions
	Using the WATCH Command

	Displaying Active Watches
	Removing Watch Conditions

	Example of Setting a Watch Condition
	Stepping Through the Program Object
	Stepping Over Call Statements
	Stepping Into Call Statements
	Example of Stepping Into an OPM Program Using F22
	Example of Stepping Into a Subprocedure

	Displaying Data and Expressions
	Unexpected Results when Evaluating Variables
	Displaying the Contents of an Array
	Displaying the Contents of a Table
	Displaying Data Structures
	Displaying Indicators
	Displaying Fields as Hexadecimal Values
	Displaying Fields in Character Format
	Displaying UCS-2 Data
	Displaying Variable-Length Fields
	Displaying Data Addressed by Pointers
	Evaluating Based Variables
	Displaying Null-Capable Fields
	Using Debug Built-In Functions
	Debugging an XML-SAX Handling Procedure

	Changing the Value of Fields
	Displaying Attributes of a Field
	Equating a Name with a Field, Expression, or Command
	Source Debug National Language Support for ILE RPG
	Sample Source for Debug Examples

	Chapter 13. Handling Exceptions
	Exception Handling Overview
	ILE RPG Exception Handling
	Exception Handling within a Cycle-Main Procedure
	Exception Handling within Subprocedures
	Differences between OPM and ILE RPG Exception Handling

	Using Exception Handlers
	Exception Handler Priority
	Nested Exceptions
	Unhandled Exceptions
	Example of Unhandled Escape Message
	Example of Unhandled Function Check

	Optimization Considerations

	Using RPG-Specific Handlers
	Specifying Error Indicators or the ′E′ Operation Code Extender
	Using a MONITOR Group
	Using an Error Subroutine
	Using a File Error (INFSR) Subroutine
	Using a Program Error Subroutine
	Avoiding a Loop in an Error Subroutine

	Specifying a Return Point in the ENDSR Operation

	ILE Condition Handlers
	Using a Condition Handler

	Using Cancel Handlers
	Problems when ILE CL Monitors for Notify and Status Messages

	Chapter 14. Obtaining a Dump
	Obtaining an ILE RPG Formatted Dump
	Using the DUMP Operation Code
	Example of a Formatted Dump

	Part 4. Working with Files and Devices
	Chapter 15. Defining Files
	Associating Files with Input/Output Devices
	Naming Files
	Types of File Descriptions
	Using Files with External-Description as Program-Described
	Example of Some Typical Relationships between Programs and Files

	Defining Externally Described Files
	Renaming Record-Format Names
	Renaming Field Names
	Ignoring Record Formats
	Using Input Specifications to Modify an External Description
	Using Output Specifications
	Level Checking

	Defining Program-Described Files
	Data Management Operations and ILE RPG I/O Operations

	Chapter 16. General File Considerations
	Overriding and Redirecting File Input and Output
	Example of Redirecting File Input and Output

	File Locking
	Record Locking
	Sharing an Open Data Path
	Spooling
	Output Spooling

	SRTSEQ/ALTSEQ in an RPG Program versus a DDS File

	Chapter 17. Accessing Database Files
	Database Files
	Physical Files and Logical Files
	Data Files and Source Files

	Using Externally Described Disk Files
	Record Format Specifications
	Access Path
	Valid Keys for a Record or File
	Valid Search Arguments
	Referring to a Partial Key

	Record Blocking and Unblocking

	Using Program-Described Disk Files
	Indexed File
	Valid Search Arguments

	Sequential File
	Record Address File
	Limits Records
	Relative Record Numbers

	Methods for Processing Disk Files
	Consecutive Processing
	Sequential-by-Key Processing
	Examples of Sequential-by-Key Processing

	Random-by-Key Processing
	Example of Random-by-Key Processing

	Sequential-within-Limits Processing
	Examples of Sequential-within-Limits Processing

	Relative-Record-Number Processing

	Valid File Operations
	Using Commitment Control
	Starting and Ending Commitment Control
	Commitment Control Locks
	Commitment Control Scoping

	Specifying Files for Commitment Control
	Using the COMMIT Operation
	Example of Using Commitment Control

	Specifying Conditional Commitment Control
	Commitment Control in the Program Cycle

	Unexpected Results Using Keyed Files
	DDM Files
	Using Pre-V3R1 DDM Files

	Chapter 18. Accessing Externally Attached Devices
	Types of Device Files
	Accessing Printer Devices
	Specifying PRINTER Files
	Handling Page Overflow
	Using Overflow Indicators in Program-Described Files
	Example of Printing Headings on Every Page
	Example of Printing a Field on Every Page

	Using the Fetch-Overflow Routine in Program-Described Files
	Specifying Fetch Overflow
	Example of Specifying Fetch Overflow

	Changing Forms Control Information in a Program-Described File
	Example of Changing Forms Control Information

	Accessing Tape Devices
	Accessing Display Devices
	Using Sequential Files
	Specifying a Sequential File
	Example of Specifying a Sequential File

	Using SPECIAL Files
	Example of Using a Special File

	Chapter 19. Using WORKSTN Files
	Intersystem Communications Function
	Using Externally Described WORKSTN Files
	Specifying Function Key Indicators on Display Device Files
	Specifying Command Keys on Display Device Files
	Processing an Externally Described WORKSTN File
	Using Subfiles
	Use of Subfiles

	Using Program-Described WORKSTN Files
	Using a Program-Described WORKSTN File with a Format Name
	Output Specifications
	Input Specifications
	Calculation Specifications
	Additional Considerations

	Using a Program-Described WORKSTN File without a Format Name
	Input File
	Output File
	Combined File

	Valid WORKSTN File Operations
	EXFMT Operation
	READ Operation
	WRITE Operation

	Multiple-Device Files

	Chapter 20. Example of an Interactive Application
	Database Physical File
	Main Menu Inquiry
	MAINMENU: DDS for a Display Device File
	CUSMAIN: RPG Source

	File Maintenance
	CUSMSTL1: DDS for a Logical File
	MNTMENU: DDS for a Display Device File
	CUSMNT: RPG Source

	Search by Zip Code
	CUSMSTL2: DDS for a Logical File
	SZIPMENU: DDS for a Display Device File
	SCHZIP: RPG Source

	Search and Inquiry by Name
	CUSMSTL3: DDS for a Logical File
	SNAMMENU: DDS for a Display Device File
	SCHNAM: RPG Source

	Part 5. Appendixes
	Appendix A. Behavioral Differences Between OPM RPG/400 and ILE RPG for AS/400
	Compiling
	Running
	Debugging and Exception Handling
	I/O
	DBCS Data in Character Fields

	Appendix B. Using the RPG III to RPG IV Conversion Aid
	Conversion Overview
	File Considerations
	Source Member Types
	File Record Length
	File and Member Names

	The Log File
	Conversion Aid Tool Requirements
	What the Conversion Aid Won′t Do

	Converting Your Source
	The CVTRPGSRC Command
	Converting a Member Using the Defaults
	Converting All Members in a File
	Converting Some Members in a File
	Performing a Trial Conversion
	Obtaining Conversion Reports
	Converting Auto Report Source Members
	Converting Source Members with Embedded SQL
	Inserting Specification Templates
	Converting Source from a Data File

	Example of Source Conversion
	Analyzing Your Conversion
	Using the Conversion Report
	Using the Log File

	Resolving Conversion Problems
	Compilation Errors in Existing RPG III Code
	Unsupported RPG III Features
	Converting the FREE operation code

	Use of the /COPY Compiler Directive
	Merging Problems
	Context-Sensitive Problems

	Use of Externally Described Data Structures
	Merging an Array with an Externally Described DS Subfield
	Renaming and Initializing an Externally Described DS Subfield

	Run-time Differences

	Appendix C. The Create Commands
	Using CL Commands
	How to Interpret Syntax Diagrams

	CRTBNDRPG Command
	Description of the CRTBNDRPG Command

	CRTRPGMOD Command
	Description of the CRTRPGMOD command

	Appendix D. Compiler Listings
	Reading a Compiler Listing
	Prologue
	Source Section
	Additional Diagnostic Messages
	Output Buffer Positions
	/COPY Member Table
	Compile-Time Data
	Key Field Information
	Cross-Reference Table
	EVAL-CORR Summary
	External References List
	Message Summary
	Final Summary
	Code Generation and Binding Errors

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

