Products and Solutions Support Center of Montpellier

Cloud Computing – What's behind the cloud ?

Sébastien LLaurency Integration IT Architect Europe IBM Infrastructure Montpellier Customer Center (PSSC) Ilaurency@fr.ibm.com

Customers' expectations today and in perspective ?

Defining Cloud Computing

<u>Cloud Computing</u> is the provision of dynamically <u>scalable</u> and often <u>virtualized</u> resources <u>as a service</u>

Who Cares about Clouds? How are they Delivered?

"Self-service" plus standardization drives lower costs and unlocks productivity for delivering workloads more effectively

Cloud computing has immediate cost savings, capital reductions and improved operating efficiencies

....leverages virtualization, standardization and automation to free up operational budget for new

investment Capability From То Cloud is a synergistic fusion which Server/Storage Utilization 10-20% 70-90% accelerates business value across a wide variety of domains. Self service None Unlimited Test Provisioning Weeks Minutes Days/Hours **Change Management** Months Minutes **Release Management** Weeks Metering/Billing Fixed cost model Granular Payback period for new services Years Months

Legacy environments

Cloud enabled enterprise

Cloud Computing Delivery Models

Flexible Delivery Models

Public ...

Access by Service provider owned and managed. subscription. Delivers select set of standardized business process, application and/or infrastructure services on a flexible price per use basis

....Standardization, capital

preservation, flexibility and

time to deploy

Hybrid ...

Access to client, partner network, and third party resources

Private ...

Privately owned and managed. Access limited to client and its partner network. Drives efficiency, standardization and best practices while retaining greater customization and control

.... Customization, efficiency, availability, resiliency, security and privacy

 $\mathsf{ORGANIZATION} \longrightarrow \mathsf{CULTURE} \longrightarrow \mathsf{GOVERNANCE}$

...service sourcing and service value

Cloud Computing

High-level cloud security concerns

Loss of Control

Many companies and governments are **uncomfortable** with the idea of their information located on **systems they do not control**. Providers must offer a high degree of security transparency to help put customers at ease.

Compliance

Complying with SOX, HIPPA and other **regulations may prohibit** the use of clouds for some applications. Comprehensive auditing capabilities are essential.

Data Security

Migrating workloads to a shared network and compute infrastructure increases the potential for unauthorized exposure. Authentication and access technologies become increasingly important.

Reliability

High availability will be a key concern. IT departments will worry about a **loss of service** should outages occur. Mission critical applications may not run in the cloud without strong availability guarantees.

Security Management

Providers must supply easy, visual controls to **manage firewall and security settings** for applications and runtime environments in the cloud.

Gartner reports on 7 security risks of cloud computing

...that map directly to the IBM Security Framework.

Gartner: Assessing the Security Risks of Cloud Computing, June 2008

Cloud computing also provides the opportunity to simplify security controls and defenses

and the g

People and Identity	 Centralized Identity and Access Control policies Well-defined set of input/output interfaces
Information and Data	 Computing services running in isolated domains as defined in service catalogs Default encryption of data in motion & at rest Virtualized storage providing better inventory, control, and tracking of master data
Process & Application	 Autonomous security policies and procedures Personnel and tools with specialized knowledge of the cloud ecosystem SLA-backed availability and confidentiality
Network Server and Endpoint	 Automated provisioning and reclamation of hardened runtime images Dynamic allocation of pooled resources to mission-oriented resources Simplified, built-in security controls
Physical infrastructure	 Closer coupling of systems for management of physical and logical identity/access Strong platform of compute resources with integrated workload-balancing and resiliency Highly-fortified physical data centers

IBM approach to Cloud Computing...

IBM Cloud differentiators

Workloads optimized for specific tasks, or services in ways that deliver orders of magnitude better performance, scale and efficiency.

Service Management to provide visibility, control and automation across IT and business services to ensure consistent delivery.

Flexible delivery choices IBM works with clients to select the right delivery option, including Cloud computing, to fit their business.

IBM provides the technology and solutions for cloud computing

Operations have industrialized to become smarter

Telcos automate traffic through switches to assure service and lower cost

Manufacturers use robotics to improve quality and lower cost

Banks use automated teller machines to improve service and lower cost

..Breakthroughs like these are enabled by service management systems

Dynamic Infrastructure imperatives across initiatives and stages of adoption

IMPROVE SERVICE

Achieve superior service delivery and align all assets to business goals with a **business-driven service model** to **respond with agility and speed** to changing business imperatives.

Implement a **cost-efficient infrastructure** that balances mounting budget pressures with rising customer demands, service delivery expectations, and adoption of emerging technologies.

Instill trust with key constituents that all business and IT infrastructure is **secure and resilient**, including "smart" and mobile devices, external networks, and supply chains.

Building a dynamic infrastructure.

<u>Service Management</u> – Provide visibility, control and automation across all the business and IT assets to deliver higher value services.

<u>Asset Management</u> – Maximizing the value of critical business and IT assets over their lifecycle with industry tailored asset management solutions.

<u>Virtualization</u> – Leadership virtualization and consolidation solutions that reduce cost, improve asset utilization, and speed provisioning of new services.

Energy Efficiency – Address energy, environment, and sustainability challenges and opportunities across your infrastructure.

Business Resiliency – Maintaining continuous business and IT operations while rapidly adapting and responding to risks and opportunities.

<u>Security</u> – End to end industry customized governance, risk management and compliance solutions.

<u>Information Infrastructure</u> – Helping businesses achieve information compliance, availability, retention, and security objectives.

Building Private Clouds - The Stages of Adoption and Benefits of a Dynamic Infrastructure

Ability to Dynamically Respond

Architectural Model for Cloud Computing

a contraction of

The cloud service lifecycle

Vision for Server Virtualization Evolution:

Systems Pools (a.k.a Ensemble Technology)

Goal is to limit effects of complexity increasing with the number of managed virtualized systems

- An <u>Ensemble</u> is a pool of like systems that are managed as a single system on which workloads are deployed
- Scale from a few to many thousands of virtual or physical nodes
- Reduce management complexity with integrated virtualization, systems management and service management software
- Allow workload optimization for maximum performance and efficiency

0S

Single Hypervisor Image

0S

Hypervisor,

N-way

SMP

05

Virtualization mobility and provisioning enabled

Mobility

Server Ensemble

New Server Platform – N Compatible Servers

0S

05

Hypervisor,

N-way

SMP

OS

Analogy with SMP systems: OS multi-threading and scheduling hide complexity from administrator & end-user

Ensemble Service Management

- Service Level Management
- Monitoring and Workload Management
- Mobility Provisioning

Ensemble Platform Management

- Virtualized Platform Management
- Parallel Management

05

05

Hypervisor

N-way

SMP

OS

Cloud Computing Addresses Key Challenges

and the y

Achieving changes in orders of magnitude in various areas

From state

To state

Better Every system is unique, few common configurations. Many configurations, difficult to manage.	Standardised delivery models utilise service catalog of standard components. Consistency of configuration driving compliance, easier support & auditing, consistent security.	Template and catalog based configurations Few configurations, reduced compliance.
Faster		Hours or minutes to
provision new systems	Deploy new systems faster shorter leads times, quicker to market, agility, competitive advantage	provision new system
Complex, slow process, low perceived business value	User/IT self service improving customer satisfaction and responsiveness	Responsive, user in control, value recognised.
Cheaper		
10's servers per administrator	Improve server/admin ratio E2E service management, drive down operational costs	100's or 1000's of servers per administrator
<10% average CPU / server utilisation. PUE metric > 2	Improve server & power utilisation cost avoidance on new hardware, energy & cooling costs.	>60-80% CPU / server utilisation. PUE metric < 1.5
Many roles & resources involved in new deployments	Low or No touch deployment drive down operational costs and manage thru full life-cycle	Minimised human intervention to deploy systems

IBM introduced 3 new choices to deploy workloads that matter to you for greater efficiency, productivity and control.

Smart Business Services – cloud services delivered.

- 1. Standardized services on the IBM cloud.
- 2. Private cloud services, behind your firewall, built and/or run by IBM.

Smart Business Systems - purpose-built infrastructure.

3. Integrated Service Delivery Platform

Analytics

Development and Test

Desktop and Devices

Infrastructure

Business Services

Smart Business Offerings for Cloud Computing

GTS Consulting Services supporting Cloud Computing

Infrastructure Strategy and Planning for Cloud Computing (SPL1) Networking Strategy and Optimization - for Cloud computing (SPL4)

The cloud market is expected to grow strongly \$47B market in 2008 growing at 28% CAGR will reach \$126B in 2012

Cloud Spending By Sub-Market

20 cloud computing centers and more than 100 projects

Cloud Computing

Six strategic steps must be taken

Developing your cloud strategy and plan is critical

and the set

Cloud Computing

Cloud Computing enables a Dynamic Infrastructure for IBM Systems Benchmarks & Education Classes

Delivering performance testing and course platforms as a service through the network

IBM Systems Centers " Light Benchmark " Offering

Booking for infrastructure building blocks to run tests, receiving VPN connections by mail within hours

Cloud Computing

Architecture Operational Model

Level 1 & 2 support (french working days) on new Incident tracking Tool
Backups/Restores

Desk Support Procedures
Problem Matrix / Known Errors
SLA

Booking	Provisioning	Running	29

Cloud Computing enables a Dynamic Infrastructure for IBM Systems Benchmarks & Education Classes

Delivering performance testing and course platforms as a service through the network

IBM Systems Centers " Light Benchmark " Offering

Booking for infrastructure building blocks to run tests, receiving VPN connections by mail within hours

before the class **Management Services Benefits Reservation Portal Benefits** Availability Security Optimization Provisioning Reduced cost by maximizing ✓ Reduced cost by sharing HW HW usage and streamlining **Automated Infrastructure Orchestration** and shrinking setup time operations ✓Affordability of benchmarking Enablement of homogeneous for IBM to win more server education business across business countries **Benchmark Center Cloud Management** Infrastructure Services Virtual zation **Benchmark Centers** Building Block Standardization Central Poughkeepsie, NY **Beijing**; China Montpellier Fr

Location for **IBM Systems** education labs

Cloud Computing

" Central Location "

Program

Resource Pools

Central Lab Platform Cloud Architecture

Cloud Computing

Central Lab Platform – Hardware optimization

and they

Resources			May				J	une	
	N 18	W 19	W 20	W 21	W 22	W 23	W 24	W 25	W 26
Block 1(type AU73)	AN)				_	-	-		
Block10(type AN)		_	-		-		_		
Block11(type AN)	-	_					-	-	
llock12(type AN)		-			_	-	_		
lock13a(type AU/AL/AW)					_		-		
ock13b(type AU/AL/AW)	and the second	_						-	
lock14a(type AU/AL/AW)		_	_				-		
lock14b(type AU/AL/AW)	-								
ock15(type AN)	_		_						
ock16(type AN)	-	_	_				_		
ock17(type AU78_p6)			1000	-					
ock18(type AN)									
ock19a(type AU / AL / AW)		_			_		_		
ock19b(type AU / AL / AW)					_				
ock2(type AU73)	145			11					
nck 3 (AU73)									
nck 4 (AU73)									
lock5(type AN)									
lockoa(type AU/AL/AW)									
ck6b(type AU/AL/AW)									
ck7a(type AU/AL/AW)									
ock7b(type AU/AL/AW)	-								
ock8a(type AU/AL/AW)									
lock8b(type AU/AL/AW)	48	-	-						
Block9(type AN)							_		_

ng M ze

IH

Introducing IBM CloudBurst Designed from client implementations to jumpstart private test Cloud adoption

- For IT executives seeking a breakthrough in:
 - delivery of service
 - reduction in cost
 - transformation of the data center into a Dynamic Infrastructure
- A product that integrates service management software with servers, storage, and Quickstart services to enable a private cloud
- "Fit for purpose" based on architectures required by specific workloads
- Available with several attractive financing options

Cloud Computing

Localizing the Cloud - Cloud Data Center Showcase in Montpellier

Cloud Data Center

 cloud effect and understand IBM technology and services value and differentiation to help them get started on their private cloud journey
 Opened October 6th, 2009 in Montpellier

Cloud Data Center <u>Showcase</u> featuring Training for Systems Cloud allowing customers to "sense" the

Showcase over a real Cloud production infrastructure

- Service Orientation
 - Dashboard of services running in the Cloud
- Service Management
 - Service catalog and booking
 - Service Provisioning
- Dynamic Infrastructure for Cloud
 - Cloud resources optimization

Cloud computing in Montpellier doubles learning power at IBM

IBM Case Study

The IBM Systems and Technology Group Product and Solutions Support Center (PSSC) in Montpellier provides a vast range of pre-sales and post-sales support activities, requiring a large physical infrastructure. This infrastructure enables the PSSC to offer demonstrations, prototyping, benchmarking,

THANK YOU !

For more information, please visit: ibm.com/cloud

Or contact me at: llaurency@fr.ibm.com